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\S 1. Preface. Our main purpose in this paper is to show that every
countably infinite Boolean algebra has a countably infinite atomic subalgebra.
To this end, we use here the result that every countable Boolean algebra is
absolute quotient retract (see \S 2). This is a consequence of a result in P. $R$.
Halmos [1]. To prove this result we need various theorems which are more
complicated. In this paper we use only the existence of a monomorphism. For
this reason, we omit this proof. Preliminary arguments described in \S 2 and
various theorems which are proved in detail in \S 2 and \S 4 are due to P. $R$.
Halmos [1] and R. Sikorski [3]. In \S 3, I show the theorems which seem to
be new facts to me, and prove them in detail. I wish to thank very much to

these mathematicians. Finally, in \S 4 I solve a problem (Theorem 4) presented
by Halmos’s book [1], as an application of Theorem 3.

\S 2. Basic definitions and theorems. A compact Hausdorff space $X$ said
to be a Boolean space if every open set is the union of these simultaneously
closed and open (abbr. clopen) sets that it happens to include. It is true that the
class of all $c1_{t^{-}}$ pen sets is a field. The field of all clopen sets in a Boolean space
is called the (fual algebra of $X$.

By symbol 2 we understand the Boolean algebra whose members are only
$0$ and 1. It will be convenient to construct it as a topological space as well,
endowed with the diserete topology. A product space $2^{I}$ (that is, all functions on
a set $I$ to the discrete space 2, with the product topology) is called a Cantor
space. The discrete space 2 is compact and Hausdorff. Therefore it is well known
that such a space $2^{I}$ is compact and Hausdorff (Tychonoff’s theorem). We shall
denote the value of a funetion $x$ in $2^{I}$ at an element $i$ of $I$ by $x(i)$ . The sets

of the form ( $ x\epsilon 2^{I};x(i)=\delta\rangle$ , where $i\epsilon I$ and $\delta\epsilon 2$ , constitute a subbase for the
product topology of $2^{I}$ ; finite intersections of them constitute a base. Since the
complement of each set of the indicated form is another set of the same form,
so that each such a set is clopen, it follows that $2^{[}$ is a Boolean space.

(2.1) If $X$ is a compact Hausdorff space and $\iota fB$ is a separating field of
clopen subsets of $X$, then $X$ is a Boolean space and $B$ is the field of all clopen
subsets of $X(B$ is said to be a separating field provided that for any two distinct
points $x,y$ in $X$, there exists a set $p$ in $B$ such that $X\epsilon p$ and $y\ell p$).
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The fact that $B$ separates points implies the $B$ separate points and closed
sets. This fact follows from a standard compactness argument. Suppose, in fact,
that $F$ is the closed set and $x$ is a point not in $F$. Compactness yields a finite
cover of $F$ by sets in $B$ none of which contains $x$ ; the finite union is a set in
$B$ that separates $F$ and $x$ .

This means that there exists a clopen set $U$ such that $x\epsilon U$ and $ U\cap F=\phi$ .
Hence $B$ is a base for $X$ ; this already implies that $X$ is Boolean. Every clopen
set in $X$ is finite union of sets of $B$, because it is closed, accordingly, conipact.
Since $B$ is closed under formation of finite unions, the proof is complete.

(2.2) Every closed subset $Y$ of a Boolean space $X$ is a Boolean space with
respect to the relative topology. Every clopen set of $Y$ is the intersection of $Y$

with some clopen subset of $X$.
Since the clopen sets form a base in $X$, their inte.sections with $Y$ are the

same for Y. If $Q$ is a clopen set in $Y$, then it is open in $Y$, and, therefore, there
exists an open set $U$ in $X$ such $Q=Y\cap U$. The clopen subsets of $U$ in $X$ cover
the closed set $Q$, therefore, by compactness, there exists a finite class of clopcn
subsets of $U$ whose union, say $P$, covers $Q$ . Since $Q\subset P\subset U$ and $Y\cup U=Q$, it
follows that $Q=Y\cap P$.

(2.3) For every non-zero element $p$ of every Boolean algebra A there is a
2-valued homomorphism $f$ on A such that $f(p)=1$ .

First we shall prove that there exists a maximal ideal $M$ in A such that
$p\phi M$ . In fact, there is an ideal in A which does not contain $p$ . For example, the
set $B$ of atl subelement of $p$ (this means the elements $q$ with $q\subset p$ ) can be const-

ructed as a Boolean algebra, as follows: $0$ , meet, and join in $B$ are the same as
in $A$ , but 1 and $q^{\prime}$ in $B$ are defined to be the element $p$ and $p\cap q^{\prime}$ of A. The
mapping $h(s)=p\cap s$ is an B-valued homomorphism on A. Then $h^{-1}(0)$ is the
desired ideal. Consider the partially ordered set (inclusion) of all ideals not

containing $p$ , and apply Zorn’s lemma. Then there is an ideal $M_{0}$ not
containing $p$ that is maximal among all the ideals not containing $p$ . It remains
to prove that $M_{0}$ is maximal among all proper ideals. We note first that if
$p^{\prime}fM_{0}$ , then the ideal generated by $M_{0}\cup(p^{\prime})$ is strictly greater than $M_{0}$ . This
generated ideal consists of all elements of the form $q\cup r$ where $q\epsilon M_{0}$ and $r\subset p^{\prime}$,

and, $consequentl\iota$ , it does not contain $p$ . The known maximality property of
$M_{0}$ implies therefore that $p^{\prime}\epsilon M_{0}$ . The same property implies also that if $M$ is an
ideal strictly greater than $M_{0}$ then $p_{\epsilon M}$ . It follows that every ideal strictly greater

than $M_{0}$ contains both $p$ and $p^{\prime}$ , therefore equals A. This implies that $M_{0}$ is
a maximal.

If we write $f(q)=0$ or 1 according as the element $q\epsilon M_{0}$ or $q\epsilon M,$ then $f$ is



ON EXISTENCE OF SOME SUBALGEBRA 43

a 2-valued homomorphism on A. (Here we use the fact that an ideal $M_{0}$ in a
Boolean algebra A is maximal if and only if either $p\epsilon M_{\iota^{\backslash }}$ or $p^{\prime}\epsilon M_{0}$ , but not both,
for each $p$ in A).

(2.4) The set $X$ of all 2-valued homomorphism on a Boolean algebra A $is$

a closed subset of the Canto $r$ space $2^{A}$ of all 2-valued iunctions on A.
The definition of topology in $2^{A}$ implies for each fixed $p$ in A the value

$x(p)$ depends continuously on the point $x$ of $2^{A}$ Since the set of points where
two continuous functions are equals is always a closed set, for two continuous
functions $x(p^{\prime}\uparrow, (x(p))^{\prime}$, it follows that { $ x:x(p^{\prime})=(x(p))^{\prime}\rangle$ is closed in $2^{A}$ for each
$p$ in A. Forming the interscction of all these sets, we conclued that those 2-
valued functions that preserve complementation form a closed subset of $2^{A}$ . A
similar argument, involving sets such as ($x:x(p\cup q)=x(p)\cup x(q)_{J}^{t}$ , justifies the
same conclusion for the join-preserving functions.

(2.2) implies that the $\cdot$ set $X$ of all $2\cdot valued$ homornorphism on Boolean
algebra becomes a Boolean space with respect to relative topology. We shall call
that Boolean space the dual space of A.

The following assertion, known as the Stone representation theorem, is the
most fundamental result about the relation between Boolean algebras and Bool-
ean spaces.

(2.5) If $B$ is the dual algebra of the dual space $X$ of $A$ , and $\iota ff(p)=(x\epsilon X$ ;

$ x(p)=1\rangle$ for each $p$ in $A$ , then $f$ is an isomorphism from A onto B.
Since { $x\epsilon X:x(p)=1)=\{x\epsilon 2^{\overline{\grave{A}}}: x(p)=1\}\cap X$, it follows that $f(p)$ is clopen

for each $p$ in $A$, and hence that $f$ maps A into B. The proof that $f$ is a
homomorphism is purely mechanical. Thus,

$f(p\cup q)=(x:x(p\cup q)=1\}=(x:x(p)\cup x(q)=1\}$

$=\{x:x(p)=1)\cup(x:x(q)=1)=ftp)\cup f(q)$

$f(p^{\prime})=fx:x(p^{\prime})=1)=\{x:x(p)=0)=\{x:x(p)=1\}^{\prime}=(f(p))^{\prime}$

If $ f(p)=\phi$, that is {$ x:x(p)=1\rangle$ $=\phi$, then (2.3) implies that $p=0$ ; this means that $f$

is one-to-one. Since the range of every Boolean homomorphism is a Boolean
algebra, the clopen sets of the form $(x:x(p)=1)$ } constitute a field. Since two

distinct 2-valued homomorphisms on A must disagree on some element of $A$ ,
the field is separating, and consequently, (2.1) implies that $f$ maps A onto B.

(2.6) Let $X$ be the dual space of a Boolean algebra A. A is atomic if and
only $\iota f$ the set of all isolated points is dense in $X$ A is non-atomic if and only

if $X$ is dense in itself, $\dot{l}$. $e$ . if $X$ has no isolated points.
Let $f$ be an isomorphism of A onto the dual algebra $B$ of the dual space

$X$ of A. Then an element $p\epsilon A$ is an atom if and only if $f(p)$ is a singleton of
X. Of course, a singlet\‘on , $-belongs$ to $B$ if and only if $x$ is an isolated
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point of $X$.
(2.7) If $Y$ is the dual space of the dual algebra A of a Boolean space $X$,

and $\varphi oe$ for each $x\epsilon X$ is the 2-valued homomorphism that sends each element $p$ of
A onto 1 or $0$ according as $x\epsilon p$ or $xip$, then $\psi(\phi(x)=\varphi_{x})$ is homeomorphism from
$X$ onto Y.

To prove that $\psi$ is continuous. it is sufficient to prove that the inverse
image of every clopen subset of $Y$ is clopen in $X$. The proof follows from the
fact that every clopen subset of $Y$ is of the form $(y:y(p)=1)$ , where $p\epsilon A$ . This
fact follows from (2.5). Moreover we obtain $\psi^{-1}(\{y:y(p)=1\})=p$ . Therefore we
conclude also that inverse image of non-empty clopen set in $Y$ is never empty;
since clopen sets forms a base for $Y$, this implies that the range of the function
$\psi$ is dense in Y. The continuity of $\psi i.e$ . the compactness of $\psi(X)$ and the density
of its range together imply that $\psi$ maps $X$ onto Y. Since the clopen set separates
points in $X$, distinct points of $X$ determine distinct 2-valued homomorphism on
$A$ , so that $\psi$ is one-to-one.

A set $G$ of generators of a Boolean algebra A is said to be a set of free
generators of A if every mapping $f$ of $G$ into an arbitrary Boolean algebra $B$

can be extended to a homomorphism of A into B. A Boolean algebra A is said
to be free provided it contains a set $G$ of free generators of A. It is well known
that.an infinite Boolean algebra with $\mathfrak{m}$ generators has $\mathfrak{m}$ elements.

(2.8) A countably infinite Boolean algebra A is free if and only if it is
non-atomic.

First, suppose that A is free, then A is isomorphie with the dual algebra
$B$ of a Cantor space $2^{I}$ (the power of $I$ is $\aleph_{0}$ ) which is a free Boolean algebra
with a set of free generators of the same power as $I$. Because two free Boolean
algebra with same power of free generators are isomorphic. In addition, the
Cantor space $2^{I}$ is dense in itself. Therefore, by (2.7) the dual space of $B$ is dense
in itself. $i.e$ . by (2.6) $B$ is non-atomic. Hence, A is non-atomic.

We note that since A is countable, the dual space $X$ of A is metrizab1 $e^{1)}$.
Conversely, suppose A is non-atomic, then $X$ is totally disconnected, perfect,

compact metric spac$ea_{1}\urcorner d(2)$ also $2^{1}$ (the power of $I$ is $\aleph_{0}$) is similar. Since any
two totally disconnected, perfect, compact metric space are $homeomorphi_{C}^{3)}$, by

(1) The Boolean space of a Boolean algebra A $is$ metrizable if and only if A is countable.
(see Sikorski [3])

(2) A Boolean space is equivalent to a totally disconnected compact Hausdorff space. (see

Halmos [1])

(3) Any two totally disconnected, perfect, compact metric spaces are homeomorphic. (see
Hocking and Young [6])
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(2.5) A is isomorphic with the dual algebra $B$ of $2^{I}$ . By the fact that $B$ is free, A

is frec also.
(2.9) The closu $re$ of a set which is dense in itself is dense in itself. Let $E$

be a set which is dense in itself, then $EcE^{\prime}$ . Since EcE we get $E^{\prime}c(\overline{E})^{\prime}$ and

therefore $Ec(\overline{E})^{\prime}$ . But $\overline{E}$ is closed, hence $(\overline{E})^{\prime}$ is closed and, since $(\overline{E})^{\prime}$ contains
$E$, it must contain $\overline{E}$.

(2.10) $A$ finite Boolean algebra is atomic.
It follows from the finiteness and the atomicity of the algebra.

A homomorphism [ from a Boolean algebra $B$ to a Boolean algebra A is

said to be monomorphism provided that it is one-to-one into, $i.e$ . if $f(p)=f(q)$,

then $p=q$ . A homomorphism $f$ is said to be epimorphism provided that it is

onto, $i.e$ . every element of A is equal to $f(p)$ for some $p$ in B.

We say that a Boolean algebra $B$ is absolute quotient retract if to every

epimorphism $f$ from a Boolean algebra A to $B$ there corresponds a monomorph-

ism $g$ from $B$ to A such $tha\tau$ , again, the composite $f\circ g$ is the identity $i$ on B.

(2.11) Every countable Boolean algebra is absolute quotient retract. (see

Halmos [1])

\S 3. Existence theorems.

THEOREM 1. Every counlably infinite Boolean algebra A contains an
countably infinite free subalgebra provided that its dual space $X$ contains a non-
empty perfect subset $D$.

Proof. If $D=X$, then by (2.6) A is non-atomic and, consequently, by (2.8)

A is free itself. In the case $D\neq X$, let $B$ be the dual algebra of $X$ and let $h$ be

an isomorphism from A onto B. If we write $J=(p\epsilon A:h(p)\cap D=\phi$ }, then $J$ is an

ideal which is not empty. Because if $p_{1}\epsilon J,$ $ p_{2}J\epsilon$ , then $ h(p_{1})\cap D=\phi$ and $ h(p_{2})\cap$

$ D=\phi$ . This implies $(h(p_{1})\cup h(p_{2}))\cap D=h(p_{1}\cup p_{2})\cap D=\phi$ , $i$ . $e$ . $p_{1}\cup p_{\circ}*\epsilon J$ . And if

$p_{2}\subset p_{1}rJ$ , then $\phi=h(p_{1})\cap D\supset h(p_{2})\cap Di.e$ . $ h(p_{2}1\cap D=\phi$ . Hence $p_{2}\epsilon J$ . Since $X-D$

is non-empty open set, $J$ is non-empty.
$D$ is a closed set in $X$ Therefore, by (2.2) $D$ is a Boolean space with

respect to relative topology and { $h(p)\cap D;p\epsilon A)=B_{D}$ is the dual algebra of the

space $D$. If we define the mapping $h_{0}$ by the formula
$h_{0}=(h(p)\cap D)=[p]_{J}$ ,

then the mapping $h_{0}$ is an isomorphism from $B_{D}$ onto $A/J$ , where $[p]_{J}$ is the

class containing an element $p_{\epsilon A},$ $i.e$ . the element of the factor algebra $A/J$ .
First, to show this definition of $h_{0}$ is unambigous and $h_{0}$ is one-to-one, we shall

prove that $h(p_{1})\cap D=h(p_{2})\cap D$ is equivalent to $[p_{1}]_{J}=[p_{2}]_{J}$ .
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If $h(p_{1})\cap D=h(p_{2})\cap D$, then $ h(p_{1})\cap h(p_{2}^{\prime})\cap D=\phi$ . This impliea $ h(p_{1}-p_{2})\cap$

$D=\phi,$ $:$ . $e$ . $p_{1}-p_{2}\epsilon J$ . Similarly, we have $p_{2}-p_{1}\epsilon J$ . Therefore we have $[p_{1}]_{J}=$

$[p_{2}]_{J}$. Conversely, $i$ $[p_{1}]_{J}=[p_{2}]_{J}$ , that is, $p_{1}-p_{2}\epsilon J$ . and $p_{2}-p_{1}\epsilon J$ , then $h(p_{1}-p_{2})$

$\cap D=\phi$ and $ h(p_{2}-p_{1})\cap D=\phi$ respectively. For example, from $ h(p_{1}-p_{2})\cap D=\phi$,
we have $ h(p_{1})\cap h(p_{2^{\prime}})\cap D=\phi$ . It follows from this that $h(p_{1})\cap D\subset h(p_{2})$,
accordingly, $h(p_{1})\cap Dch(p_{2})\cap D$. Similarly we have $h(p_{2})\cap D\subset h(p_{1})\cap D$. Hence we
have $h(p_{1})\cap D=h(p_{l})\cap D$. By the definition of $h_{0}$ , it is clear that $h_{0}$ is onto.

Second, we shall prove that the mapping $h_{0}$ is an isomorphism. By the
fact that $h$ is an isomorphism,-we obtain

$h_{0}((h(p_{1})\cap D)\cup(h(p_{2})\cap D)\cup(h(p_{g})\cap D))=h_{0}(h(p_{1})\cup p_{2})\cap D=[p_{1}\cup p_{2}]_{J}$

$=[p_{1}]_{J}\cup[p_{B}]_{J}=h_{0}(h(p_{1})\cap D)\cup h_{0}(h(p_{2})\cap D)$

Since $\overline{h(p)\cap D}=D-h(p)\cap D=X\cap D-(p)\cap D=(X-h(p))\cap D=h(p^{\prime})\cap D$, where–
is complement in space $D$, we have

$h_{0}\overline{(h(p)\cap D})=h_{0}(h(p^{\prime})\cap D)=[p^{\prime}]_{J}=[p]_{J}^{\prime}=(h_{0}(h(p)\cap D))^{\prime}$ .
Let $Y$ be the dual space of the dual algebra $B_{D}$ of $D$, thcn by (2.7), the

space $D$ is homeomorphic to the space Y. Since the subset $D$ of $X$ is dense in
itself, $D$ is dense in itself as a Boolean space. Hence the space $Y$ is dense in
itself. Therefore, by (2.6) $B_{D}$ is non-atomic. It follows from this that $A/J$ is also
non-atomic. Since A is countably infinite, $A/J$ is countable. If $A/J$ is finite, then
by (2.10), $A/J$ is atomic. This contradicts the fact that $A/J$ is non-atomic.
Therefore $A/J$ is certainly countably infinite. Hence $A/J$ is countably infinite
non-atomic Boolean algebra.

Finally, from the fact that $A/J$ is countably infinite, by (2.11) $A/J$ is
absolute quotient retract. Since there is a natural homomorphism of A onto
$A/J,$ $i.e$ . epimorphism $f$, there corresponds a monomorphism $g$ from $A/J$ to A
such that $f\circ g=i$. By the result of the preceding paragraph, $A/J$ is countably
infinite non-atomic, therefore $g(A/J)$ is also countably infinite non-atomic
subalgebra of A. And yet, by (2.8), $g(A/J)$ is free subalgebra of A.

THEOREM 2. Every countably infinite free Boolean algebra A contains a
counlably infinite atomic subalgebra.

Proof. Let $B$ be the field of all subsets of a countably infinite set $X$.
Then the subfield of $B$ which generated by the set of all singletons of $B$ is a
countably infinite atomic subfield $i$ . $e$ . countably infinite atomic subalgebra of
the Boolean algebra B. It follows from this that there exists surely a countably
infinite atomic Boolean algebra. Let $A^{\prime}$ is one of such algebras.

Since A is the countably infinite free Boolean algebra, by means of the
definition of a free Boolean algebra, A contains a set $G$ of countably infinite
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free generators of A. Since $A^{\prime}$ and $G$ have the same power $\aleph_{0}$, there is a one-
to-one mapping $f$ from $G$ onto $A^{\prime}$ . Accordingly, $f$ can be extended to a
homomorphism $h$ of A onto $A^{\prime}$ . By (2.11), $A^{\prime}$ is absolute quotient retract.
Therefore, there corresponds a monomorphism $g$ of $A^{\prime}$ to A such that $ hog=\iota$ .
As the result of the fact that $A^{\prime}$ is a countably infinite atomic Boolean algebra,
$g(A^{\prime})$ is also same.

THEOREM 3. Every countably infinite Boolean algebra, A contains a
countably infinite atomic subalgebra.

Proof. Let $C$ be the set of all isolated points of the dual space $X$ of A.
First suppose that $\overline{C}=X$. Then $C$ is dense in $X$. Therefore, by (2.6) A is

atomic itself.
Second, suppose that $\overline{C}=\phi$ . Then $ C=\phi$ . Therefore, $X$ has no isolated

points. By {2.6), A is non-atomic, hence by (2.8), A is a countably infinite atomic
subalgebra. It follows from Therem 2 that A contains a countably infinite
atomic Subalgebra.

Finally, suppose that $\overline{C}\neq\phi$ anc $\overline{C}\neq X$. Then $X-\overline{C}$ is non-empty. If we
write $G=X-\overline{C}$, then the open set $G$ is dense in itself. This follows: if $x$ is an
arbitrary point of $G$, then there exists a neighborhood $N$ of $x$ since $G$ is open.
While $x$ is not an isolated point of $X$. Hence $x$ is a limit of $X$. Accordingly,
there exists a point $y\epsilon X$ in $N$ which is distinct from $x$. Since $y$ belongs to $G$,
there exists a point $y\epsilon G$ in every neighborhood of $x$ which is distinct from $x$ .
Therefore, $G(\neq\phi)$ is dense in itself. If we write $\overline{G}=D$, then by (2.9), $ D\neq\phi$ is
a perfect subset in $X$. By means of Theorem 1, A contains a countably infinite
free subalgebra. Hence, by Theorem 2, A contains a countably infinite atomic
subalgebra. The proof is complete.

\S 4. Application. A set $D$ of elements of a Boolean algebra A is said to be
dense (in A) provided, for every element $p\epsilon A,$ $p\neq 0$, there exists an element $q\epsilon D$

such that $0\neq q\subset p$ .
(4.1) Let A be an atomic Boolean algebra and, for every $p_{\epsilon A}$ , let $h(p)$ be

the set of all atoms contained in $p$ . Then $h$ is an isomorphism of A into the
field $B$ of all subsets of the set $X$ of all atoms of A. And that $h(A)$ is dense
subalgebra of B.

First we shall prove that $h$ is an isomorphism of A into B. To prove this
wc use the fact that an element $a(\neq 0)$ of A is an atom if and only if for every
element $p\epsilon A$, either $a\subset p$ or a $np=0$.

If $p\neq q$, then at least one of $p^{\prime}\cap q$ and $p^{\prime}\cap q$ is not $0$ . For example, if $ p\cap$

$q^{\prime}\neq 0$ then an atom $b$ such that $bcp\cap q^{\prime}$ is not contained in $q$ and simultaneously
$b$ is contained in $p$. Hence $f(p)\neq f(q)$ . This implies that $h$ is one-to-one.
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For every $a\epsilon h(p\cup q)i.e$ . $acp\cup q$, at least one of $a$ $np$ and $a\cap q$ is not $0$ .
If $a\cap p\neq 0$ , then $a\subset p$ . Hence $h(p\cup q)\subset h(p)\cup h(q)$ . Conversely, inverse inclusion
is clear. Therefore we obtain $h(p\cup q)=h(p)\cup h(q)$ . Next, for every $a\epsilon(h(p))^{\prime}$ , we
have $a\cap p=0$ $i.e$ . $a\subset p^{\prime}$ . Hence $(h(p))^{\prime}ch(p^{\prime})$ . Inverse inclusion is evident.
Thereforc we obtain $(h(p))^{\prime}=h(p^{\prime})$. These imply that $h$ is a homomorphism,
accordingly an isomorphim of A into B.

Finally we shall prove that $h$ (A $=B^{\prime}$ is dense subalgebra of B. Since $B^{\prime}$

is an isomorphic image of a Boolean algebra $A$, it is clear that $B^{\prime}$ is a sub-
algebra of B. Let ( $a_{t}$ } be an arbitrary non-empty element of B. And we select
a finite number of elements $a_{1},$ $a_{2},$ $a,,$ $\cdots\cdots,$ $a_{n}$ from {$a_{t}$). Then $\cup^{n}a_{i}$ belongs to

A and we obtain $h(\bigcup_{\ell=1}^{n}a_{i})c\{a_{t}\}$ . This implies that $B^{\prime}$ is a dense $i=lsubalgebra$ of B.
(4.2) If $h_{0}$ is a homomorphism of a pr0per subalgebra $A_{0}$ of a Boolean

algebra A into a complete Boolean algebra $A^{\prime}$ and if $p_{0}\epsilon A- A_{0}$, then $h_{0}$ can be
extended to a homomorphism $h^{*}$ of the subalgebra $A_{1}$ generated by $A_{0}$ and $p_{0}$

into $A^{\prime}$ .
To prove this, let us recall $A_{1}$ is the set of all elements $p\epsilon A$ which can be

represented in the form
(1) $p=(p_{1}\cup p_{0})\cap(p_{2}-p_{0})$

where $p_{1},p_{2}\epsilon A_{0}$ . Let $b_{1}$ be the join (in the complet algebra $A^{\prime}$ ) of all elements $h_{0}(p)$

where. $p\epsilon A_{0}$ and $p_{0}\subset p$ . Similarly, let $b_{2}$ be the meet (in the complete algebra $A^{\prime}$ )

of all element $h_{0}(p)$ where $p\epsilon A_{0}$ and $p_{0}cp$. By definition, $b_{1}\subset b_{2}$ . Choose an
element $b\epsilon A^{\prime}$ such that $b_{1}cb\subset b_{2}$ . By definition.

(2) if $r,$
$s\epsilon A_{0}$ and $r\subset p_{0}\subset s$, then $h_{0}(r)\subset b\subset h_{0}(s)$ .

If $p\epsilon A_{1}$ is an element of the form (1), we define
(3) $h^{*}(p)=(h_{0}(p_{1})\cap b)\cup(h_{0}(p_{2})-b)$

To verify the unambiguity of this definition, we have to show that the element
on the right side of (3) does not depend on the representation of $p\epsilon A_{1}$ in the
form (1). Suppose that (1) holds and that simultaneously

(1) $p=(q_{1}\cap p_{0})\cup(q_{2}-p_{0})$

where $q_{1},$
$q_{2}\epsilon A_{0}$ . It follows from (1) and $(1^{\prime})$ that

$p_{2}-q_{2}\subset p_{0}$, $q_{2}-p_{2}\subset p_{0}$

$p_{0}\subset p_{1^{\prime}}\cup q_{1}$ , $p_{0}\subset p_{1}\cup q_{1^{\prime}}$

Bacause, multiplying $p_{0}\cap q_{1^{\prime}}$ the both sides of
$(p_{1}\cap p_{0})\cup(p_{2}\cap p_{0^{\prime}})=(q_{1}\cap p_{0})\cup(q_{2}\cap p_{0^{\prime}})$

we have $p_{1}\cap q_{1^{\prime}}np_{0}=0$ , hence $p_{0}\subset p_{1^{\prime}}\cup q_{1}$ , and thc others are similar. Conscquen-
tly, by (2)

$h_{0}(p_{2})-h_{0}(q_{2})\subset b$, $h_{0}(q_{2})$ $h_{0}(p_{2})\subset b$,
$b\subset(h_{0}(p_{1}))^{\prime}\cup h_{0}(q_{1})$ $b\subset h_{0}(p_{1})\cup(h_{0}(q_{1}))^{\prime}$ ,
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which implies
$(h_{0}(p_{1})\cap b)\cup(h_{0}(p_{2})-b)=(h_{0}(q_{1})\cap b)\cup(h_{0}(q_{2})-b)$

Thus (3) defines uniquely a mapping $h^{*}$ of $A_{1}$ into $A^{\prime}$ . It is easy to

verify that for every $p=(p_{1}\cap p_{0})\cup(p_{2}np_{0^{\prime}})\epsilon A_{1}$ , we have $p^{\prime}=(p_{1}‘ \cap p_{0})\cup(p_{2^{\prime}}\cap p_{0^{\prime}})$ . It
follows from this that $h$ is a homomorphism. If $p\epsilon A_{0}$, then $p=(p\cap p_{0})\cup(p-p_{0})$

and by (3), $h^{*}(p)=(h_{0}(p)\cap b)\cup(h_{0}(p)-b)=h_{0}(p)$,
$i.e$ . $h$ is an extension of $h_{0}$

(4.3) Let $A_{0}$ be a subalgebra of a Boolean algebra A. Every homomorphism
$h_{0}$ of $A_{0}$ into a complete Boolean algebra $A^{\prime}$ can be extended to a homomorphism

of A into $A^{\prime}$ .
Let $f$ be an homomorphism of a subalgebra $A_{f}$ of A into $A^{\prime}$ ; suppose $A_{0}$

is a proper subalgebra of $A_{f}$ and the $f$ is an extension of $h_{0}$ . Let $F$ be the class
of all such homomorphisms $f$. If $f,g\epsilon F$, let us define the relation $f\leqq g$ to mean
that $A_{f}cA_{9}$ and that $g$ is an extension of $f$ This relation defines a partial
ordering of $F$. Moreover, $F$ is non-empty, for certainly $h^{*}$ in (4.2) belongs to $F$.

Now suppose that $S$ is a completely ordered subset of $F$. We shall define
an element $h\epsilon F$ which is an upper bound of $S$. Let $A_{k}$ be the union of all the
set $A_{f}$ corresponding to elements $f\epsilon S$. This set $A_{k}$ is a subalgebra of A. For
suppose $p_{1},p_{2}\epsilon A_{k}$ . Then there exist elements $f_{1},$ $f_{2}\epsilon S$ such that $p_{\ell}\epsilon A_{f\ell}(i=1,2)$. We
may suppose $f_{1}\leqq f_{2}$ , since $S$ is completely ordered. Then $A_{f_{1}}\subset A_{f_{2}}$ , and so $p_{1}\cup p_{2}$

$\epsilon A_{f_{2}}\subset A_{k}$ . Next, suppose $p\epsilon A_{k}$ . Then there exists a element $f\epsilon S$ such that $p\epsilon A_{f}$.
Therefore $p^{\prime}\epsilon A_{f}cA_{n}$, since $A_{f}$ is a subalgebra of A. Now, suppose $p\epsilon A_{k}$ . Then
$p\epsilon A_{f}$ for some $f\epsilon S$ . We shall define $h(p)=f(p)$ . This definition is unambigous,
for, if $p\epsilon A_{f_{1}}$ and $p\epsilon A_{f_{2}}$, where $f_{1},f_{2}\epsilon S$, we have $f_{1}(p)=f_{2}(p)$ by the fact that $S$ is
completely ordered. The proof that $k$ is a homomorphism is like the proof that
$A_{k}$ is a subalgebra. It is clear that $k\epsilon F$ and that $f\leqq k$ for every $f\epsilon S$.

We now know that the $F$ satisfies the conditions of Zorn’s lemma and
must, therefore, contain a maximal element, say $h$ . The $A_{h}$ must equal to $A$,
for otherwise, we could regard $A_{\hslash}$ as the $A_{0}$ in the first part of the proof and
thus obtain an element $g\epsilon F$ with $g\neq h,$ $h<g$, contrary to the maximality of $h$ .
The proof of the theorem is now complete, for $h$ has the properties required in
the theorem.

(4.4) Let $A_{0}$ be a dense subalgebra of a Boolean algebra A and let $h_{0}$ be
an isomorphism of $A_{0}$ into a complete Boolean algebra $A^{\prime}$ . The isomorphisn $h_{0}$

can be extended to an isomorphism $h$ of A into $A^{\prime}$ .
By $\backslash \prime 4.3$ ), the isomorphism $h_{0}$ can be extended to an homomorphism $h$ of

A into $A^{\prime}$ . If $p\epsilon A,$ $p\neq 0$, then there exists an $p_{0^{\epsilon}}A_{0}$ such that $0\neq p_{0}cp$ .
Consequently $0\neq h_{0}(p_{0})=h(p_{0})\subset h(p)$. Thus $h(p)\neq 0$ which proves that $h$ is an
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isomorphism.
THEOREM 4. Every infinite complete Boolean algebra has a subalgebra

that is isomophic to the field of all subsets of a counlably infinite set.
Proof. Let A be an infinite complete Boolean algebra. Then A has a

countably infinite subset D. The subalgebra $A^{\prime}$ generated by the set $D$ is
countably infinite. Therefore, by Theorem 3, it has countably infinite atomic
subalgebra $A_{0}$ of $A^{\prime}$ . This shows that A contain a countably infinite atomic
subalgebra $A_{0}$ . Let $X$ be the set of all atoms of $A_{0}$ and let $B$ be the field of
all subsets of the set $X$ Then, by (4.1), there exists an isomorphism $h$ of $A_{0}$

into B. And that $h(A_{0})$ is a dense subalgebra of B. The set $X$ is clearly
conntable, but X must be countably infinite, for $h(A_{0})$ is countably infinite.
Since the inverse mapping $h^{-1}$ of $h$ is an isomorphism, we can apply (4.4) to $h^{-1}$ .
Thus this shows that the property required in the theorem is reasonable.
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