ON EXISTENCE OF SOME SUBALGEBRA OF A GIVEN BOOLEAN ALGEBRA WHICH IS COUNTABLY INFINITE.

By

Tôru Mori

§1. Preface. Our main purpose in this paper is to show that every countably infinite Boolean algebra has a countably infinite atomic subalgebra. To this end, we use here the result that every countable Boolean algebra is absolute quotient retract (see §2). This is a consequence of a result in *P. R. Halmos* [1]. To prove this result we need various theorems which are more complicated. In this paper we use only the existence of a monomorphism. For this reason, we omit this proof. Preliminary arguments described in §2 and various theorems which are proved in detail in §2 and §4 are due to *P. R. Halmos* [1] and *R. Sikorski* [3]. In §3, I show the theorems which seem to be new facts to me, and prove them in detail. I wish to thank very much to these mathematicians. Finally, in §4 I solve a problem (Theorem 4) presented by *Halmos's* book [1], as an application of Theorem 3.

§ 2. Basic definitions and theorems. A compact Hausdorff space X said to be a Boolean space if every open set is the union of these simultaneously closed and open (abbr. *clopen*) sets that it happens to include. It is true that the class of all clopen sets is a field. The field of all clopen sets in a Boolean space is called the *dual algebra* of X.

By symbol 2 we understand the Boolean algebra whose members are only 0 and 1. It will be convenient to construct it as a topological space as well, endowed with the diserete topology. A product space 2^{I} (that is, all functions on a set *I* to the discrete space 2, with the product topology) is called a *Cantor space*. The discrete space 2 is compact and Hausdorff. Therefore it is well known that such a space 2^{I} is compact and Hausdorff (*Tychonoff*'s theorem). We shall denote the value of a function x in 2^{I} at an element i of *I* by x(i). The sets of the form $\{x \in 2^{I}: x(i)=\delta\}$, where $i \in I$ and $\delta \in 2$, constitute a subbase for the product topology of 2^{I} ; finite intersections of them constitute a base. Since the complement of each set of the indicated form is another set of the same form, so that each such a set is clopen, it follows that 2^{I} is a Boolean space.

(2.1) If X is a compact Hausdorff space and if B is a separating field of clopen subsets of X, then X is a Boolean space and B is the field of all clopen subsets of X (B is said to be a separating field provided that for any two distinct points x, y in X, there exists a set p in B such that $x \in p$ and $y \notin p$).

The fact that **B** separates points implies the **B** separate points and closed sets. This fact follows from a standard compactness argument. Suppose, in fact, that F is the closed set and x is a point not in F. Compactness yields a finite cover of F by sets in **B** none of which contains x; the finite union is a set in **B** that separates F and x.

This means that there exists a clopen set U such that $x \in U$ and $U \cap F = \phi$. Hence **B** is a base for X; this already implies that X is Boolean. Every clopen set in X is finite union of sets of **B**, because it is closed, accordingly, compact. Since **B** is closed under formation of finite unions, the proof is complete.

(2.2) Every closed subset Y of a Boolean space X is a Boolean space with respect to the relative topology. Every clopen set of Y is the intersection of Y with some clopen subset of X.

Since the clopen sets form a base in X, their intersections with Y are the same for Y. If Q is a clopen set in Y, then it is open in Y, and, therefore, there exists an open set U in X such $Q=Y\cap U$. The clopen subsets of U in X cover the closed set Q, therefore, by compactness, there exists a finite class of clopen subsets of U whose union, say P, covers Q. Since $Q \subset P \subset U$ and $Y \cup U = Q$, it follows that $Q=Y\cap P$.

(2.3) For every non-zero element p of every Boolean algebra A there is a 2-valued homomorphism f on A such that f(p)=1.

First we shall prove that there exists a maximal ideal M in A such that $p \notin M$. In fact, there is an ideal in A which does not contain p. For example, the set **B** of all subelement of p (this means the elements q with $q \subset p$) can be constructed as a Boolean algebra, as follows: 0, meet, and join in B are the same as in A, but 1 and q' in B are defined to be the element p and $p \cap q'$ of A. The mapping $h(s) = p \cap s$ is an **B**-valued homomorphism on **A**. Then $h^{-1}(0)$ is the desired ideal. Consider the partially ordered set (inclusion) of all ideals not containing p, and apply Zorn's lemma. Then there is an ideal M_0 not containing p that is maximal among all the ideals not containing p. It remains to prove that M_0 is maximal among all proper ideals. We note first that if $p' \notin M_0$, then the ideal generated by $M_0 \cup \{p'\}$ is strictly greater than M_0 . This generated ideal consists of all elements of the form $q \cup r$ where $q \in \mathbf{M}_0$ and $r \subset p'$, and, consequently, it does not contain p. The known maximality property of M_0 implies therefore that $p' \in M_0$. The same property implies also that if M is an ideal strictly greater than M_0 then $p \in M$. It follows that every ideal strictly greater than \mathbf{M}_0 contains both p and p', therefore equals A. This implies that \mathbf{M}_0 is a maximal.

If we write f(q)=0 or 1 according as the element $q \in M_0$ or $q \in M$, then f is

a 2-valued homomorphism on A. (Here we use the fact that an ideal \mathbf{M}_0 in a Boolean algebra A is maximal if and only if either $p \in \mathbf{M}_c$ or $p' \in \mathbf{M}_0$, but not both, for each p in A).

(2.4) The set X of all 2-valued homomorphism on a Boolean algebra A is a closed subset of the Cantor space 2^{A} of all 2-valued functions on A.

The definition of topology in 2^A implies for each fixed p in A the value x(p) depends continuously on the point x of 2^A. Since the set of points where two continuous functions are equals is always a closed set, for two continuous functions x(p', (x(p))'), it follows that $\{x : x(p')=(x(p))'\}$ is closed in 2^A for each p in A. Forming the intersection of all these sets, we conclued that those 2-valued functions that preserve complementation form a closed subset of 2^A. A similar argument, involving sets such as $\{x : x(p \cup q) = x(p) \cup x(q)\}$, justifies the same conclusion for the join-preserving functions.

(2.2) implies that the set X of all 2-valued homomorphism on Boolean algebra becomes a Boolean space with respect to relative topology. We shall call that Boolean space the *dual space* of A.

The following assertion, known as the Stone representation theorem, is the most fundamental result about the relation between Boolean algebras and Boolean spaces.

(2.5) If **B** is the dual algebra of the dual space X of A, and if $f(p) = \{x \in X: x(p)=1\}$ for each p in A, then f is an isomorphism from A onto B.

Since $\{x \in X : x(p) = 1\} = \{x \in 2^{\mathbf{A}} : x(p) = 1\} \cap X$, it follows that f(p) is clopen for each p in \mathbf{A} , and hence that f maps \mathbf{A} into \mathbf{B} . The proof that f is a homomorphism is purely mechanical. Thus,

 $f(p \cup q) = \{x : x (p \cup q) = 1\} = \{x : x (p) \cup x (q) = 1\}$ = $\{x : x (p) = 1\} \cup \{x : x(q) = 1\} = f(p) \cup f(q)$ $f(p') = \{x : x (p') = 1\} = \{x : x (p) = 0\} = \{x : x (p) = 1\}' = (f(p))'$

If $f(p)=\phi$, that is $\{x: x(p)=1\}=\phi$, then (2.3) implies that p=0; this means that f is one-to-one. Since the range of every Boolean homomorphism is a Boolean algebra, the clopen sets of the form $\{x: x(p)=1\}$ constitute a field. Since two distinct 2-valued homomorphisms on A must disagree on some element of A, the field is separating, and consequently, (2.1) implies that f maps A onto B.

(2.6) Let X be the dual space of a Boolean algebra A. A is atomic if and only if the set of all isolated points is dense in X. A is non-atomic if and only if X is dense in itself, i. e. if X has no isolated points.

Let f be an isomorphism of A onto the dual algebra B of the dual space X of A. Then an element $p \in A$ is an atom if and only if f(p) is a singleton of X. Of course, a singleton $\{x\}$ belongs to B if and only if x is an isolated

point of X.

(2.7) If Y is the dual space of the dual algebra A of a Boolean space X, and φ_x for each $x \in X$ is the 2-valued homomorphism that sends each element p of A onto 1 or 0 according as $x \in p$ or $x \notin p$, then $\psi(\psi(x) = \varphi_x)$ is homeomorphism from X onto Y.

To prove that ψ is continuous, it is sufficient to prove that the inverse image of every clopen subset of Y is clopen in X. The proof follows from the fact that every clopen subset of Y is of the form $\{y: y(p)=1\}$, where $p \in A$. This fact follows from (2.5). Moreover we obtain $\psi^{-1}(\{y: y(p)=1\}) = p$. Therefore we conclude also that inverse image of non-empty clopen set in Y is never empty; since clopen sets forms a base for Y, this implies that the range of the function ψ is dense in Y. The continuity of ψ i. e. the compactness of $\psi(X)$ and the density of its range together imply that ψ maps X onto Y. Since the clopen set separates points in X, distinct points of X determine distinct 2-valued homomorphism on A, so that ψ is one-to-one.

A set G of generators of a Boolean algebra A is said to be a set of *free* generators of A if every mapping f of G into an arbitrary Boolean algebra B can be extended to a homomorphism of A into B. A Boolean algebra A is said to be *free* provided it contains a set G of free generators of A. It is well known that an infinite Boolean algebra with m generators has m elements.

(2.8) A countably infinite Boolean algebra A is free if and only if it is non-atomic.

First, suppose that **A** is free, then **A** is isomorphie with the dual algebra **B** of a Cantor space 2^{I} (the power of I is \aleph_{0}) which is a free Boolean algebra with a set of free generators of the same power as I. Because two free Boolean algebra with same power of free generators are isomorphic. In addition, the Cantor space 2^{I} is dense in itself. Therefore, by (2.7) the dual space of **B** is dense in itself. i. e. by (2.6) **B** is non-atomic. Hence, **A** is non-atomic.

We note that since **A** is countable, the dual space X of **A** is metrizable. Conversely, suppose **A** is non-atomic, then X is totally disconnected, perfect, compact metric space and also 2^1 (the power of I is \aleph_0) is similar. Since any two totally disconnected, perfect, compact metric space are homeomorphic, by

⁽¹⁾ The Boolean space of a Boolean algebra A is metrizable if and only if A is countable. (see Sikorski [3])

⁽²⁾ A Boolean space is equivalent to a totally disconnected compact Hausdorff space. (see Halmos [1])

⁽³⁾ Any two totally disconnected, perfect, compact metric spaces are homeomorphic. (see Hocking and Young [6])

(2.5) A is isomorphic with the dual algebra B of 2^{I} . By the fact that B is free, A is free also.

(2.9) The closure of a set which is dense in itself is dense in itself. Let E be a set which is dense in itself, then $E \subset E'$. Since $E \subset \overline{E}$ we get $E' \subset (\overline{E})'$ and therefore $E \subset (\overline{E})'$. But \overline{E} is closed, hence $(\overline{E})'$ is closed and, since $(\overline{E})'$ contains E, it must contain \overline{E} .

(2.10) A finite Boolean algebra is atomic.

It follows from the finiteness and the atomicity of the algebra.

A homomorphism f from a Boolean algebra **B** to a Boolean algebra **A** is said to be *monomorphism* provided that it is one-to-one into, i.e. if f(p)=f(q), then p=q. A homomorphism f is said to be *epimorphism* provided that it is onto, i.e. every element of **A** is equal to f(p) for some p in **B**.

We say that a Boolean algebra **B** is *absolute quotient retract* if to every epimorphism f from a Boolean algebra **A** to **B** there corresponds a monomorphism g from **B** to **A** such that, again, the composite $f \circ g$ is the identity i on **B**.

(2.11) Every countable Boolean algebra is absolute quotient retract. (see Halmos $\lceil 1 \rceil$)

§ 3. Existence theorems.

THEOREM 1. Every countably infinite Boolean algebra A contains an countably infinite free subalgebra provided that its dual space X contains a non-empty perfect subset D.

Proof. If D=X, then by (2.6) A is non-atomic and, consequently, by (2.8) A is free itself. In the case $D \neq X$, let B be the dual algebra of X and let h be an isomorphism from A onto B. If we write $\mathbf{J} = \{p \in \mathbf{A} : h(p) \cap D = \phi\}$, then J is an ideal which is not empty. Because if $p_1 \in \mathbf{J}$, $p_2 \mathbf{J} \in$, then $h(p_1) \cap D = \phi$ and $h(p_2) \cap$ $D = \phi$. This implies $(h(p_1) \cup h(p_2)) \cap D = h(p_1 \cup p_2) \cap D = \phi$, i. e. $p_1 \cup p_2 \in \mathbf{J}$. And if $p_2 \subset p_1 \in \mathbf{J}$, then $\phi = h(p_1) \cap D \supset h(p_2) \cap D$ i. e. $h(p_2) \cap D = \phi$. Hence $p_2 \in \mathbf{J}$. Since X - Dis non-empty open set, J is non-empty.

D is a closed set in *X*. Therefore, by (2.2) *D* is a Boolean space with respect to relative topology and $\{h(p) \cap D : p \in A\} = B_D$ is the dual algebra of the space *D*. If we define the mapping h_0 by the formula

$$h_0 = (h(p) \cap D) = [p]_J,$$

then the mapping h_0 is an isomorphism from \mathbf{B}_D onto \mathbf{A}/\mathbf{J} , where $[p]_J$ is the class containing an element $p \in \mathbf{A}$, i.e. the element of the factor algebra \mathbf{A}/\mathbf{J} . First, to show this definition of h_0 is unambigous and h_0 is one-to-one, we shall prove that $h(p_1) \cap D = h(p_2) \cap D$ is equivalent to $[p_1]_J = [p_2]_J$.

If $h(p_1) \cap D = h(p_2) \cap D$, then $h(p_1) \cap h(p'_2) \cap D = \phi$. This implies $h(p_1 - p_2) \cap D = \phi$, i. e. $p_1 - p_2 \epsilon \mathbf{J}$. Similarly, we have $p_2 - p_1 \epsilon \mathbf{J}$. Therefore we have $[p_1]_J = [p_2]_J$. Conversely, i $[p_1]_J = [p_2]_J$, that is, $p_1 - p_2 \epsilon \mathbf{J}$. and $p_2 - p_1 \epsilon \mathbf{J}$, then $h(p_1 - p_2) \cap D = \phi$ and $h(p_2 - p_1) \cap D = \phi$ respectively. For example, from $h(p_1 - p_2) \cap D = \phi$, we have $h(p_1) \cap h(p_2') \cap D = \phi$. It follows from this that $h(p_1) \cap D \subset h(p_2)$, accordingly, $h(p_1) \cap D \subset h(p_2) \cap D$. Similarly we have $h(p_2) \cap D \subset h(p_1) \cap D$. Hence we have $h(p_1) \cap D = h(p_2) \cap D$. By the definition of h_0 , it is clear that h_0 is onto.

Second, we shall prove that the mapping h_0 is an isomorphism. By the fact that h is an isomorphism, we obtain

 $h_0((h(p_1) \cap D) \cup (h(p_2) \cap D)) \cup (h(p_2) \cap D)) = h_0(h(p_1) \cup p_2) \cap D = [p_1 \cup p_2]_J$

 $= [p_1]_J \cup [p_2]_J = h_0 (h(p_1) \cap D) \cup h_0 (h(p_2) \cap D)$

Since $\overline{h(p) \cap D} = D - h(p) \cap D = X \cap D - (p) \cap D = (X - h(p)) \cap D = h(p') \cap D$, where is complement in space D, we have

 $h_0(\overline{h(p)\cap D}) = h_0(h(p')\cap D) = [p']_J = [p]_J' = (h_0(h(p)\cap D))'.$

Let Y be the dual space of the dual algebra \mathbf{B}_D of D, then by (2.7), the space D is homeomorphic to the space Y. Since the subset D of X is dense in itself, D is dense in itself as a Boolean space. Hence the space Y is dense in itself. Therefore, by (2.6) \mathbf{B}_D is non-atomic. It follows from this that \mathbf{A}/\mathbf{J} is also non-atomic. Since A is countably infinite, \mathbf{A}/\mathbf{J} is countable. If \mathbf{A}/\mathbf{J} is finite, then by (2.10), \mathbf{A}/\mathbf{J} is atomic. This contradicts the fact that \mathbf{A}/\mathbf{J} is non-atomic. Therefore \mathbf{A}/\mathbf{J} is certainly countably infinite. Hence \mathbf{A}/\mathbf{J} is countably infinite non-atomic Boolean algebra.

Finally, from the fact that A/J is countably infinite, by (2.11) A/J is absolute quotient retract. Since there is a natural homomorphism of A onto A/J, i. e. epimorphism f, there corresponds a monomorphism g from A/J to Asuch that $f \circ g = i$. By the result of the preceding paragraph, A/J is countably infinite non-atomic, therefore g(A/J) is also countably infinite non-atomic subalgebra of A. And yet, by (2.8), g(A/J) is free subalgebra of A.

THEOREM 2. Every countably infinite free Boolean algebra A contains a countably infinite atomic subalgebra.

Proof. Let **B** be the field of all subsets of a countably infinite set X. Then the subfield of B which generated by the set of all singletons of **B** is a countably infinite atomic subfield i. e. countably infinite atomic subalgebra of the Boolean algebra **B**. It follows from this that there exists surely a countably infinite atomic Boolean algebra. Let A' is one of such algebras.

Since A is the countably infinite free Boolean algebra, by means of the definition of a free Boolean algebra, A contains a set G of countably infinite

free generators of A. Since A' and G have the same power \aleph_0 , there is a oneto-one mapping f from G onto A'. Accordingly, f can be extended to a homomorphism h of A onto A'. By (2.11), A' is absolute quotient retract. Therefore, there corresponds a monomorphism g of A' to A such that $h \circ g = i$. As the result of the fact that A' is a countably infinite atomic Boolean algebra, g(A') is also same.

THEOREM 3. Every countably infinite Boolean algebra, A contains a countably infinite atomic subalgebra.

Proof. Let C be the set of all isolated points of the dual space X of A. First suppose that $\overline{C} = X$. Then C is dense in X. Therefore, by (2.6) A is atomic itself.

Second, suppose that $\overline{C} = \phi$. Then $C = \phi$. Therefore, X has no isolated points. By (2.6), A is non-atomic, hence by (2.8), A is a countably infinite atomic subalgebra. It follows from Therem 2 that A contains a countably infinite atomic Subalgebra.

Finally, suppose that $\overline{C} \neq \phi$ and $\overline{C} \neq X$. Then $X-\overline{C}$ is non-empty. If we write $G=X-\overline{C}$, then the open set G is dense in itself. This follows: if x is an arbitrary point of G, then there exists a neighborhood N of x since G is open. While x is not an isolated point of X. Hence x is a limit of X. Accordingly, there exists a point $y \in X$ in N which is distinct from x. Since y belongs to G, there exists a point $y \in G$ in every neighborhood of x which is distinct from x. Therefore, $G(\neq \phi)$ is dense in itself. If we write $\overline{G}=D$, then by (2.9), $D \neq \phi$ is a perfect subset in X. By means of Theorem 1, A contains a countably infinite free subalgebra. Hence, by Theorem 2, A contains a countably infinite atomic subalgebra. The proof is complete.

§4. Application. A set **D** of elements of a Boolean algebra **A** is said to be dense (in **A**) provided, for every element $p \in \mathbf{A}$, $p \neq 0$, there exists an element $q \in \mathbf{D}$ such that $0 \neq q \subset p$.

(4.1) Let A be an atomic Boolean algebra and, for every $p \in A$, let h(p) be the set of all atoms contained in p. Then h is an isomorphism of A into the field B of all subsets of the set X of all atoms of A. And that h(A) is dense subalgebra of B.

First we shall prove that h is an isomorphism of A into B. To prove this we use the fact that an element $a(\neq 0)$ of A is an atom if and only if for every element $p \in A$, either $a \subset p$ or $a \cap p = 0$.

If $p \neq q$, then at least one of $p' \cap q$ and $p' \cap q$ is not 0. For example, if $p \cap q' \neq 0$ then an atom b such that $b \subset p \cap q'$ is not contained in q and simultaneously b is contained in p. Hence $f(p) \neq f(q)$. This implies that h is one-to-one.

For every $a \in h(p \cup q)$ i.e. $a \subset p \cup q$, at least one of $a \cap p$ and $a \cap q$ is not 0. If $a \cap p \neq 0$, then $a \subset p$. Hence $h(p \cup q) \subset h(p) \cup h(q)$. Conversely, inverse inclusion is clear. Therefore we obtain $h(p \cup q) = h(p) \cup h(q)$. Next, for every $a \in (h(p))'$, we have $a \cap p = 0$ i.e. $a \subset p'$. Hence $(h(p))' \subset h(p')$. Inverse inclusion is evident. Therefore we obtain (h(p))' = h(p'). These imply that h is a homomorphism, accordingly an isomorphim of A into B.

Finally we shall prove that $h(\mathbf{A} = \mathbf{B}')$ is dense subalgebra of **B**. Since **B**' is an isomorphic image of a Boolean algebra **A**, it is clear that **B**' is a subalgebra of **B**. Let $\{a_t\}$ be an arbitrary non-empty element of **B**. And we select a finite number of elements $a_1, a_2, a_3, \dots, a_n$ from $\{a_t\}$. Then $\bigcup_{i=1}^n a_i$ belongs to **A** and we obtain $h(\bigcup_{i=1}^n a_i) \subset \{a_t\}$. This implies that **B**' is a dense subalgebra of **B**.

(4.2) If h_0 is a homomorphism of a proper subalgebra A_0 of a Boolean algebra A into a complete Boolean algebra A' and if $p_0 \in A - A_0$, then h_0 can be extended to a homomorphism h^* of the subalgebra A_1 generated by A_0 and p_0 into A'.

To prove this, let us recall A_1 is the set of all elements $p \in A$ which can be represented in the form

(1) $p = (p_1 \cup p_0) \cap (p_2 - p_0)$ where $p_1, p_2 \in A_0$. Let b_1 be the join (in the complet algebra A') of all elements $h_0(p)$ where $p \in A_0$ and $p_0 \subset p$. Similarly, let b_2 be the meet (in the complete algebra A') of all element $h_0(p)$ where $p \in A_0$ and $p_0 \subset p$. By definition, $b_1 \subset b_2$. Choose an element $b \in A'$ such that $b_1 \subset b \subset b_2$. By definition.

(2) if $r, s \in A_0$ and $r \subset p_0 \subset s$, then $h_0(r) \subset b \subset h_0(s)$.

If $p \in A_1$ is an element of the form (1), we define

(3) $h^{*}(p) = (h_{0}(p_{1}) \cap b) \cup (h_{0}(p_{2}) - b)$

To verify the unambiguity of this definition, we have to show that the element on the right side of (3) does not depend on the representation of $p \in A_1$ in the form (1). Suppose that (1) holds and that simultaneously

(1') $\mathbf{p} = (q_1 \cap \mathbf{p}_0) \cup (q_2 - \mathbf{p}_0)$ where $q_1, q_2 \in \mathbf{A}_0$. It follows from (1) and (1') that

 $\begin{array}{ll} p_2 - q_2 \subset p_0, & q_2 - p_2 \subset p_0 \\ p_0 \subset p_1' \cup q_1, & p_0 \subset p_1 \cup q_1' \end{array}$

Bacause, multiplying $p_0 \cap q_1'$ the both sides of

$$(p_1 \cap p_0) \cup (p_2 \cap p_0') = (q_1 \cap p_0) \cup (q_2 \cap p_0')$$

we have $p_1 \cap q_1' \cap p_0 = 0$, hence $p_0 \subset p_1' \cup q_1$, and the others are similar. Consequently, by (2)

 $\begin{array}{ll} h_0(p_2) - h_0(q_2) \subset b, & h_0(q_2) - h_0(p_2) \subset b, \\ b \subset (h_0(p_1))' \cup h_0(q_1), & b \subset h_0(p_1) \cup (h_0(q_1))', \end{array}$

which implies

$(h_0(p_1) \cap b) \cup (h_0(p_2) - b) = (h_0(q_1) \cap b) \cup (h_0(q_2) - b)$

Thus (3) defines uniquely a mapping h^* of A_1 into A'. It is easy to verify that for every $p = (p_1 \cap p_0) \cup (p_2 \cap p_0') \in A_1$, we have $p' = (p_1' \cap p_0) \cup (p_2' \cap p_0')$. It follows from this that h is a homomorphism. If $p \in A_0$, then $p = (p \cap p_0) \cup (p - p_0)$ and by (3), $h^*(p) = (h_0(p) \cap b) \cup (h_0(p) - b) = h_0(p)$, i.e. h is an extension of h_0

(4.3) Let A_0 be a subalgebra of a Boolean algebra A. Every homomorphism h_0 of A_0 into a complete Boolean algebra A' can be extended to a homomorphism of A into A'.

Let f be an homomorphism of a subalgebra A_f of A into A'; suppose A_0 is a proper subalgebra of A_f and the f is an extension of h_0 . Let F be the class of all such homomorphisms f. If $f, g \in F$, let us define the relation $f \leq g$ to mean that $A_f \subset A_g$ and that g is an extension of f. This relation defines a partial ordering of F. Moreover, F is non-empty, for certainly h^* in (4.2) belongs to F.

Now suppose that S is a completely ordered subset of F. We shall define an element $k \in F$ which is an upper bound of S. Let A_k be the union of all the set A_f corresponding to elements $f \in S$. This set A_k is a subalgebra of A. For suppose $p_1, p_2 \in A_k$. Then there exist elements $f_1, f_2 \in S$ such that $p_i \in A_{fi}$ (i=1,2). We may suppose $f_1 \leq f_2$, since S is completely ordered. Then $A_{f_1} \subset A_{f_2}$, and so $p_1 \cup p_2$ $\epsilon A_{f_2} \subset A_k$. Next, suppose $p \in A_k$. Then there exists a element $f \in S$ such that $p \in A_f$. Therefore $p' \in A_f \subset A_n$, since A_f is a subalgebra of A. Now, suppose $p \in A_k$. Then $p \in A_f$ for some $f \in S$. We shall define k(p) = f(p). This definition is unambigous, for, if $p \in A_{f_1}$ and $p \in A_{f_2}$, where $f_1, f_2 \in S$, we have $f_1(p) = f_2(p)$ by the fact that S is completely ordered. The proof that k is a homomorphism is like the proof that A_k is a subalgebra. It is clear that $k \in F$ and that $f \leq k$ for every $f \in S$.

We now know that the F satisfies the conditions of Zorn's lemma and must, therefore, contain a maximal element, say h. The A_h must equal to A, for otherwise, we could regard A_h as the A_0 in the first part of the proof and thus obtain an element $g \in F$ with $g \neq h, h < g$, contrary to the maximality of h. The proof of the theorem is now complete, for h has the properties required in the theorem.

(4.4) Let A_0 be a dense subalgebra of a Boolean algebra A and let h_0 be an isomorphism of A_0 into a complete Boolean algebra A'. The isomorphism h_0 can be extended to an isomorphism h of A into A'.

By (4.3), the isomorphism h_0 can be extended to an homomorphism h of **A** into **A'**. If $p \in \mathbf{A}, p \neq 0$, then there exists an $p_0 \in \mathbf{A}_0$ such that $0 \neq p_0 \subset p$. Consequently $0 \neq h_0$ $(p_0) = h$ $(p_0) \subset h$ (p). Thus $h(p) \neq 0$ which proves that h is an

isomorphism.

THEOREM 4. Every infinite complete Boolean algebra has a subalgebra that is isomophic to the field of all subsets of a countably infinite set.

Proof. Let A be an infinite complete Boolean algebra. Then A has a countably infinite subset D. The subalgebra A' generated by the set D is countably infinite. Therefore, by Theorem 3, it has countably infinite atomic subalgebra A_0 of A'. This shows that A contain a countably infinite atomic subalgebra A_0 . Let X be the set of all atoms of A_0 and let B be the field of all subsets of the set X. Then, by (4.1), there exists an isomorphism h of A_0 into B. And that $h(A_0)$ is a dense subalgebra of B. The set X is clearly conntable, but X must be countably infinite, for $h(A_0)$ is countably infinite. Since the inverse mapping h^{-1} of h is an isomorphism, we can apply (4.4) to h^{-1} . Thus this shows that the property required in the theorem is reasonable.

REFERENCES

- [1] Paul. R. Halmos, Boolean algebras. (1959)
- [2] Paul. R. Halmos, Injective and projective Boolean algebras, (Proceedings of Symposia in Pure Mathematics Vol. II Lattice Theory) Amer. Math. Soc. (1961)
- [3] Roman Sikorki, Boolean algebras, Berlin: Springer-Verlage (1960)
- [4] Roman Sikorski, Cartesian products of Boolean algebras, Fund. Math. 37 (1950)
- [5] W. Hurewicz and H. Wallman, Demension Theory, Princeton U. P. (1941)
- [6] J. G. Hocking and G. S. Young, Topology, Reading Mass.: Addison Wesley (1961)

DEPARTMENT OF MATHEMATICS, SAGA UNIVERSITY, SAGA.

(Received July, 28, 1963)

50