SINGULARITIES OF »-SPHERES IN (#+2) - SPACE
by
HiroTaro TokupA

Introduction

R. H. Fox and J. W. Milnor have bestowed some consideration on the
singularities of a 2-sphere S? in euclidean 4-space R¢ from any imbedding S? in
R* [1 and 2: p. 1655].* Below is given a partial explanation of the consideration
mentioned above :—

An oriented polygonal simple closed curve S! either in (oriented) euclidean
3-space R?® or in the (oriented) 3-sphere S* will be called a knot, and their
combinatorial equivalence class will be called the same knot type.

Given an oriented polyhedral surface M? in 4-space R* one can measure
the local singularity of M? at a point x as follows: Choose a small sphere S3
in R* with center at x. Then S® intersects M? in an oriented closed curve Sk
We say that x is a singular or non-singular point according as S! is knotted or
unknotted. In either case, if S belongs to the knot type &, we will say that the
singularity at the point x is of type k.

Let k¥ be a knot type with representative S! in RS. Let H* be the half
space R®x [|0, o) in R¢=R3x(— o0, co). We define that k is of trivial kuot cobordism
class, if there exists a non-singular, polyhedral 2-cell E? in H* with S! as its
boundary.

By a non-singular 2-cell, we mean a 2-cell such that each interior point
is non-singular in the above sense, and such that each boundary point x is
non-singular in the following sense. A small sphere S® with center % intersects
the half space H* in a 3-cell E3, and intersects the cell E? in an arc E!
spanning E3% We require that this arc E! will be unknotted in E&,

The product of two knot types can be defined in the usual way. (See 3:

Definition 4).
One of Fox and Milnor’s results is as follows: —
A collection {k,Fk,----- skn} of knot types can occur as the collection of

singularities of a 2-sphere in A-space if and only if the product ki ky------ k. 1s of
the trivial knot cobordism class.
By Argument [5: p. 119] —— the argument that the only euclidean space

* The bracketed uumber indicates the number of reference given at the end of this

paper.
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in which we can knot S” is (n+2)—dimensions, although the Schoenflies-Mazur-
Brown theorem gives an unknotting of S* in S"*!, —— we will generalize the
result into an #s-sphere in euclidean (#+2) -space from a combinatorial point
of view, but in the simple case which is 1-flat (see p. 7).

It is hoped, therefore, that such terms as spheres, elements, spaces and
manifolds — all used in this paper—will be deemed oriented and combinatorial,
so long as a notice is not given.

V. K. A. M. Gugenheim [3, 4] states that an zn-sphere (#=2) in an (n+2)
—sphere may be regarded as a generalization of the knot — the generalization
called n-knot —— and that the same can be said of several other concepts of
the knot which is not yet generalized ; for example, a congruence class of #-knots
is called an n-knot type.

In this paper, the knot cobordism class —— the term created by Fox,
Milnor and Kervaire [Math. review. 8511 (1961) and 2]——will be adopted into
n- knots.

The main theorems are Theorems 2 and 3 of 4 which lead to the
conclusion of this paper, one of the essential parts of which, however, Theorem
1 makes.

1. Definitions and Notations*

1. 1.

Let R? be a g-dimensional metric euclidean space. By simplex we shall
mean closed euclidean simplex, by complex, rectilinear closed locally finite
simplicial complex of some euclidean space. Let K be a complex; we denote
by [ K| the point set covered by the simplexes of K ; such a point set will be
called a polyhedron, and K a partition (or simplicial subdivision) of the
polyhedron. Polyhedra having isomorphic partitions will be said to be equivalent.
By a g-element we shall mean a polyhedron -equivalent to a g¢-simplex, by a
g-sphere, one equivalent to the boundary of a (g+1)—simplex.

Let K be a complex and A one of its simplexes. The set of all simplexes
of K having A as a face is denoted by St(A, K) and referred to as the star of A
in K. The set of simplexes of K which are faces opposite A in some simplex of
St (A, K) is defined by Lk (A, K) and referred to as the link of A in K.

A combinatorial g-manifold M is defined as a complex M such that |St

* The author of this paper is indebted to Prof. Gugenheim for his exact and exhaustive

definitions and natations.
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(A,M)| is a g-element for every simplex AcM. A polyhedron is called a g¢-
manifold, if it has a partition which is a combinatorial g-manifold.

Let M™(n>2) be an n-manifold in the euclidean half m-space H}=R™! x
[(0, o) (m>mn) and let K, L be the given partitions of M", H7 such that K is a
subcomplex of L. Let P be any vertex of K and let E” and E™ be | St (P, K)| and
| St (P, L)|, respectively.

If K is a combinatorial z#-manifold (homogeneous complex), 9K will denote
its mod 2 boundary; and if P=|K|, we shall write 9P=9| K| and int | K|=| K|
—|2K|.

Let K, K; be isomorphic partitions of polyhedra P, @ and let ¢: P— @
be the homeomorphism obtained by mapping each simplex of K; linearly onto
its correlate simplex of K,. We call ¢ a piecewise linear homeomorphism onto

or PLO. Let M? be an orientable g-manifold. An orientation preserving PLO
¢: Me——M? is said to be positive in M9, and we call it a +PLO.

Let P,QCR™ be polyhedra and let ¢: R"——R, be the +PLO such that
¢ P=Q. Then we say that P,Q are congruent in R™ and write P=@ in R™

A g-manifold will be called strongly connected if the following condition
is satisfied in the manifold: Let A% B? be g-simplexes of the manifold; then
there is a sequence

A= a2 Ai’—l, Ai’, e, A%_I, A§=B"
of g-and (g—1)—simplexes of the manifold such that successive simplexes of the
sequence are incident.

Let Xc M be a point set of a g-manifold M7; it will be said to disconnect
Mo if the condition of strong connectivity is no longer satisfied in M*—X.

A polyhedron P is said to be locally imbedded in an m-manifold M™ if

(1) there is an m-element E*cM™ such that PC int E™;

(i1) P dose not disconnect M™.

By [P, M] we shall denote the pair consisting of

(i)  a polyhedron P locally imbedded in the orientable #-manifold M™

(where M shows that it is not yet oriented).

(ii) The oriented manifold M™( " )
We call [P, M"] a patr.

Let [P,M"] be a given pair and N" an #- mamfold Since P is locally
imbedded, there is an n-lement E*cM™ such that P C int E”. We can clearly
find a piecewise linear homeomorphism into ¢:E"—>N", where E* has the
orientation induced by M. Then ¢P=@ is locally imbedded in N* with QC
int F», where F*=¢E". In this case we say that the pairs [F, M"] and [Q, N7]
are congruent, and we write [P,M"]=[Q, N™].
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For n<m, an n-sphere S™ either in m-sphere S™ or in m-space R™ will
be called (n, m)-knot and each their congruence class will be called (n, m)-knot
type and we denote a set of congruence classes of n-spheres of m-sphere or m-
space, by the use of [n,m].

1. 2

Punctured knot* Let M™ be an m-manifold in the upper half m-space
H™(=R™1'x[0,0]), and let K, L be the partitions of M", HT, respectively, such
that K is the subcomplex of L,oM"® c R™!(= R"»!x0) and int M"C R™!x (0,00).
Let P be a vertex of K. By [P, K, L] we will denote {|Lk(P, K)|,| LK (P, L)|] in brief.

Case I: Pe int M

It is clear that the pair [P, K, L] represents an eclement if [n—1, m—1]
which is a set of congruence classes of (n—1,m—1)—knot type.

Case 1I: PeoM™

In this case is given a generalized way of interpreting of [P,K,L] as a
knot as follows: —

LE[P,L] is an (m—1)—element EP~! such that 2Lk(P,L)CR™'x0 and
int Lk (P, L)c R*'x(0, o). |dLk(P, L)| is an (m—2)—sphere S*~2 In R™"!, there
is an (m—1)—element EP~* with S™2 as its boundary. Then ET'UEZ™ is an
(m—1)—sphere S™! by the Alexander’s theorem [6:p.314].

“For the same reason |Lk P,K)| is an (n—1)—element E7~! such that oLk
(P,K)CR’”—‘XO and int (P, K)c R™1x(0. o0). In this case, 9| Lk(P, K)| is an (n—2.
—sphere S*2, and 9M"NR™! is an (n—1)—element E;~' with S$"? as its
boundary. Then E;-*UE}™ is an (n—1)—sphere S™! and S*-'cS™-.

[S*1, S»-1] which has been constructed now, is an (#—1, m—1)—knot.”

Definition 1. Let PcoM™ be the vertex of K. The pasr [P,K,L] is called
the punctured (n—1, m—1)—knot, and its knot type is called k, if the knot [S*,
S+, which was constructed in the above, has the knot type** k.

2. Trivial Knot Cobordism Class

given below is on the basis of Gugenheim’s argument [4:p.
135.]

Proposition 1. The (n—1,m—1)—knot types for the common vertex of any
two partitions of an n-manifold M" in an m-space R™ are exactly the same as

* The author hrs adopted the term “punctured knot”, as he called, for convenience, after
the name of a “punctured” oriented n-sphere which was described by Prof. Solomon Lefshetz
on page 170 of his book entitled “Introduction To Topolo8y”, 1949, and [4: p. 132; 7. 14].

** The (n—1. m—1)knot is represented by the (n—1)—knot or simply knot if (m—1) or
(n—1. m—1) is clear. The same ean be said of the knot type.
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each other.

Proof. Let x be a vertex of K and let L; and L, be any two partitions
of R™ with x as their common vertex. B,=Lk(x,L,) and B;=Lk(x,L;) are
composed of all the opposite faces of x in the x—containg simplexes of L, and
L;, respectively. Then ray xy(yeB;) and B; have only one point y in common.
Since B;=LK (x, L;), xyN B; has only one point z. Then there is homeomorphism
¢:Bi—B; by ¢(y)=2. It is also known that ¢ is +PLO by [4: p.135:7. 32].

By p*A we denote the complex composed of all the simplexes that have
both p and the vertices of each simplex of A—as vertices also of the complex.
We call the complex the join of p and A.

Proposition 2. Let p be a point of a manifold M. Then we can find the
partition of M with p as its verlex.

Proof. If K be any partition of M, p is either a vertex of K or an
inteoior point of a simlex A of K. If p is a vertex of K, K is one of the
required partitions. If p is in int A, the join of 24 and p which is denoted
9Axp, is a partition of A. Hence the partitions of K with px {o0St(A,K)} as its
subcomplex are the required partitions of M.

holds good with either an m—space R™ or a half m—space
Hm™. Hence the knot type of M* in R™ or H™ at p, which is defined in the
both cases of p, is in int M* and is in 9M™, is determined uniquely (proposition
1).

For n<m, we call a pair [S?,S;] a trival (», m)—knot, so long as S} is
congruent to the boundary of an (n+1)—simplex in Sp.

From propositions 1 and 2, for any point p of M", the (#—1, m—1)—knot
type at p is determined uniquely.

We can say, therefore, that any point p of M™ in R™ is nonsingular or
singular according as the (m—1)—knot type k& at p is tiivial or not, and that
the singularity of M™ at the point p is of type k, if the knot type belengs to k.

Proposition 3. Let A"(r=1,2,...,n) be an r—simplex of an n—manifold M"-
in euclidean (n-+2)—space R"*?* and let p,, p: be two points of int /\". Then their
sihgularities will be one and the same.

Proof. Let K, L be the same means as that of Each of the
two elements |St(p,, K)| and | St(ps, K)| of p, and p; in K, respectively, is |St
(A7, K)|, if we subdivide K by p, and p,, each partition independent of the
other. That is:

(1) [St(p, K)| = |St(pe, K)| = |St(A, K|
By the same process, it is also foumnd that

(2)  ISt(py, L)| = |St(pe, L)| = | St(A", L)
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Combining each of the three terms of (1) with its correlate term of (2),/ we find:
(3) [P, K Ll=[p K, L]. ‘

From propositions 1 and 2 and the above mentioned (3) we will lead to the

conclusion that the proof of proposition 3 is complete.

Note: hold good with p;(§=1 or 2) which, is in dA" if (1) and
(2) are hold.

Definition 2. For any r—simplex /A" (r=0.1,..-,n) of K in L, we call the
knot type of (A", K, L] the singularity of /", which may contain the trivial knot
type.

We say that M™ is 0— flat if any r—simplex of M" is non—singular concer-
ning each 7 and that, M is 1-flat* if any r-simplex of M" is non-singular
concerning each r>0.

In the sense of O—flat, 1—flat, we require that any above r—simlex in
both the interior and the boundary of M", will be nonsingular.

Definition 3. We say that the (n—1)—knot type k belongs to the trivial knot
cobordism class, if a 0—flat combinatorial oriented n—element E™ lies in Hn+2
(H2¥*=R™*1x(—00,0] or H¥?*=R"*'x [0, o)) with S™' in R as its boundary,
such that int E™ lies in H"t*— R+ and [S" !, R™*Y] has the knot type k.

3. Product of Some Two (#n—1)—Knots

3.1
Let M? be a g—manifold and E? a g—element such that
MinE?=oMinNoE*=E+!
a (g—1)—element. We say that M? and E? have reSular contact in E<!,
Let MecR" be a g—munifold and E¢cM? a g—element such that
oMNoLEID E*,
a (g—1'—element. Keep E{cR™ in regular contact with M? in E<! and let
g—element E¢UEY] be flat in R™». Then we call E{ a flat attachment to M-.
Let E¢, EY be disjointed oriented g—elements of R™ and let g¢ be a flat
oriented g—element which is a positive flat attachment both to E¢ and to E§;
we say that g? is a positive flat connection between E¢ and Ej§. In this case,
G'=EiUugiUE? is an oriented g—element and we call that G¢ the connected
sum of E¢ and E{ and denote G'=E%EY, or G'=[E}{ g% E{].
Let E? and S? be a g—element and a g—sphere of R®, respectively. We

* It will be notice that the definition of p—flat in this paper is different from one of
the p—flat in [4:p. 135;7. 33).
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say that E?(S9 is flat in R™, if it is congruent to a g—simplex (the boundary
of a (g+1)—simplex). And if E?(S?) is flat in R7, then it is of course J—flat,
but the converse is not true.

For i=1,2, \

(i) Let S, S? be oriented and disjointed g—spheres of R™.
(ii) Let E7, EzCR™ be disjointed n—elements such that S{CE% and SINE"De!
q—element.
(iii) Let g¢*' be a flat (q+1)—element such that
g™ NE?=0gt*'NoE=e!
and such that g+, S? induce opposite orientation in e?. Then
(iv) Ut=cl [S{USiUg!—ei—ei]
(where cl indicates ‘closure’; is a g—sphere of R®, which can be oriented so that
StcU¢ ; in this case, we say that gl is a positive flat connection between S¢
and S} and we write :
Ue=(Ss, Sy, go+1) or Uts=Si4 S
and call that U? is the commnected sum of S? and Si.

Let S;(r<q;¢=1,2) be each sphere in S* and let g™1cS? be a positive
flat connection between S; and S; and let e;CS; be r—elements as e} in the
process of making (S{, Sg, g9+1). Suppoée that we can make U"=(S7, S;,g7+!) in U
, Definition 4. Under the above preparations, we call the knot (U, U4r<q)
the product of the knots [S;, S{] and [S3, Sl

3.2.

Let S® be an n—sphere in R™*? and let K, L be partitions of S*, R"+
respectively, such that K is a subcomplex of L. By L', L" we will understand
the first, second barycentric partitions of L, respectively, and let K', K" be the
first, second barycentric partitions of K. Let py,p. be the only two singular
points of S, each belonging to types ki, k., respectively.

Remember : —

Ewt=|St(p;, L"), Si**=0E}**(i=1,2),

Ep =[St(p,K")|, St'=0E} (i=1,2)

#: and p, are connected with each other by a simple polygonal arc E* of K. Let
Pr="oy Ky veeeeenee , X1, X1= Do
be the vertices of £! in L’ in this order and suppose

Frt2=|St(xs, L'y,  (£=0,1,--- D,

FrnFii=E, i=0,1,: , 1—-1).

This is possible since F*? and F7/} retain regular contact with each other,
judging from the construction of F7*%.
Specially put
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Fri=FEr, Frt=Ep+3,

Put

gn+2= Fiﬂ-z U F;l+2 U ,,,,,, U F?_+12,
and put

Ejt=et*,  Epti=eptl.

Theorem 1. We can make the product of [p,K",L"] and [p,, K", L"],
under the above preparations.

Let K be a subcomplex of a g—manifold Me By a regular neighborhood
of K in M9, we shall mean a subcomplex U (K, M% of M2 such that:

(1) U(K, M9 is a g—manifold.

(2) U (K, M? contracts geometrically into K.
[7: p. 293].

We shall prove Theorem 1 by the following lemmas.

Lemma 1. Let N™ be an m—manifold in an m—manifold W™ with no
boundary, and let N™ and E™CW™ have the posilive regular contact in an (m—1)
—element E™'. Then '

Nr=NmUE™,

Lemma 2. Let. M1CR™(g<n) q—manifold with no boundary and let E$ (i=
1,2)-be disjointed flat q—elements in M<. Let Fi=U(Ei, M9 be any reqular
neighborhood of E? in M<. Then lhere are

(1) +PLO ¢,: Et —> E},

(ii) +PLO ¢2: Me—> My,

such that
P2 E$=o1.
(iii) +PLO ¢ : R» —> R™,
such that
oM~ M,
¢ Et=¢,
® F1 =F2.

Lemma 3. We can make a connected sum of S;*' and Sp*! in Rm+2,

Lemma 4. We can make a connected sum of S;~' and S3~' in S*+ (=Sr+
#S:+1).
Proof of Lemma 1. From the hypothesis of this argument, E™ is a flat
attachment to N™ by [8 p.101; Lemma 2]. Consequently,
Nmr=NmUE™
by [4:p.129; Theorem 6*].
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Proof of Lemma 2.
(i) Since E¢(i=1,2) are flat g—elements in M9, there are
+PLOGO,;: E{—> N\
in M9 where A? is a g—simlex. Then
p1=0716,
is a +PLO and ¢, E{=E4
(ii) We can choose a polyhedron P,c M? such that P,.c M*—E{—E; and

P, does not disconnect M¢<.
Then there is a+ PLO ¢o: M?*—>M?¢ such that

¢2|Eg=¢1’
¢2| P =1,
SDzzl’

by the theorem on homogeneity of manifolds [3:p.32; Theorem 3].

(iii)

(a) F:=U E%, M (i=1,2) are flat g—elements which is clear from proposi-
tion 1 and the definition of the regular neighborhood. In passing any star
neigoborhood is a regular neighborhood. By (ii’, there is +PLO ¢;: M?—> M?,
such that ¢, | E9=¢,. Then ¢ F;(c M9 is U(E3, M9 a regular neighborhod of

E¢ in M«
(b) There is a+ PLO 03: M4—>M?< such that
03 P2 Fy=F,,
Os 2 | E{=11

by [7:p.293; Theorem 23,]. .
(c) Let U(E% M9=F, U(FiM%9=F,(i=1,2), then F; are flat g—elements
such that F;cint F;,. We can choose a polyhedron P; such that
P.cR*—Fi—Fy,
and ;hat P; dose not disconnect M Then there is a + PLO ¢3: R®» —> R™ such
that '

s MO=M?,
o3| Pp=1,
o3| Fy=03 @2

by [3:p.33; Theorem 9] which is the generalized theorem of [3:p.32; Theorem
3].
That is : There is a + PLO ¢=¢3: R® —> R™ such that
o Mi=M?1,
¢ U(ES, MY=U (E%, M9,
¢ E{=E4,
¢| Pp=1,
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which proves Lemma 2.

Proof of The following conditions are satisfied: —
(i) S NS;* =¢ since ET*? NE3*? =g, where E7* =

St (pe, L"), (i=1,2) in R*v2. :
(i) Sr*i CEr2(=1,2) since Syt =3E}*,

S+t NoEDer+ (i=1, 2),

E®:n Frt =ent!, FrN E+? =gptt,

(iii) F7*? and F7:13({=0, 1,--- I—1) have the positive regular contact in E7*!
which is clear from the construction of F7?*?. Then F?*?UF7#i(i=1,
2, -+ ,1—2) are flat (n+2)—elements in R"+? by

Besides ——
For ixj,
FrinNF12=¢ if §xjx1,
F;l+2 nEin+2=¢ if i=1,2;j=2’3, ...... ,1_2,

judging from F7+* =St (x;, L"). Then g**? is a flat (m+2)—element and
' Erti=grtin En+? =agn+2 NoEr(i=1,2).

And g™+ and S (i=1,2) induce opposite orientations in E7*.

(iv) put :

Sn+t—c] [Sr+t U Sptt Uognti—ett! —entl].
Then

Sy St (i=1,2).

Thus, the conditions of the connected sum of the two spheres Si*' and

Sz+ are satisfied, which proves complerely.

Proof of Lemma 4. In order to connect S?~! and S;~! in S*™*, it is
sufficient to prove the existence of the positive flat connection between Sf~' and
Sz-! in S**! since S{7'(f=1,2) are in S**.

(a) Remember: —

(i) E! is a simple polygonal arc of K and

P1="%0, Xy, =+eoo Xe—1, X1=D2 ,
are the vertices of E! in L’ in this order. Let A; be the middle point of p, x;
and let A; be that of x:._; p..

(li) F?H =[St (xl’ L") ] ’ (i=0, """ ’ l)’
specially Ez**=|St(ps, L")|, (i=1;2),
FranF=Er, (=0, 1-1,

specially E?*?NFi*2=et*', E}" NF =t
gn+2=F?+2 UF;;-H Ueeroes UF?i-i!-
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(iii) F7?=|St(x, K")|, (£=0,1,2,-.--.- , 1),
specially E2=St(P;,K"), (i=1,2).
FnF?,=E?' ({=0,1,..-[-1),
specially rNF;=e??, E:NFpr,=e;t.
g"=F{;UF;U---UF™,
Then each one of (iii) is the intersection of S* and that of (ii) which is
correlate.
(b) Fr(=1,2,:-,l—1) are flat #—elements in S*, and F? and F7,, (i=1,2,
------ ,I—1) have the regular contact in E?!, Then E?NE?P, are flat n—elements
by Thus gm is a flat #—element. Since g® and E7%(¢=12) have the
positive regular contact in e}!, g" is a positive flat connection between Si~
and S;°!.
(c) Put
I =L XX e X Ty, I™¥2=I7"1x [} X Inyy X Iny2,
where I; is the interval [—1,1] of the j—axis of rectrngular coordinates in Rnt2,
It =11 X InX Inyy X (— 1),
IV =11 x I x Iy x 1.
I" =I"1x0x0x Inqs.
It =I""1x0x0x(—1),
IT7'=I"1x0x1.

And
hr=I"1x0x {([0,1]x(—1))U(1x[-1,1])U([1,0]x 1)},
B.=(0,0, +---ere- ,0, —1),
By=(0,0, -oveveee ,0,1).

(d) [ogn,ogn*®], [oI",oI™*?] are each a trivial (n—1,7+1)—knot. Then
there is a+ PLO ¢, such that
¢y Og™te=0I"+2 ¢, ogn=0ol".
Since er! §=1,2) are U(A, e77?),
¢1(As) epy €27t CoI™.
(e)) Since er' is U(A,e;~!) and I is U(By, It™"), there is a +PLO ¢y,
: R"*? —— R™*? by Lemma 2 such that
¢a oI"=0I",
¢21 01 A= By,
e o€t =IT7
(e2) We can choose an (n—1)—element P; in 9" Lemuma 2 such that
P, { (¢ 01 €37 )UIT ).
Then by Lemma 2 again, there is a +PLO ¢ : R"*2 — R™¥2
such that
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n+i
S.t

A bird’s-eye view of the proof of Lemma 4
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P22 BI"=aI",

P22 21 91 Az = B,
P2 P 1€t =137,
Pes | P=1.

Put

Do = P22 P21.

35

(f) Since ert: are Uler ', er*') and I?* are U([7;™',I7*'), by Lemma 2

there are +PLO 7 (i=1.2):
+PLO 7t; o5 , €11 =171,
under the same notice in the way of (e;) and (e).
Put n=mem,;, and the result is:
There is a +PLO gg=nps¢,: R"? —— R™+2
such that ‘
©s agn+2=aln+2,
Sps e"_l‘"l _____I:l'l-l,
psl e =mi @2 01,
Then
ps{cl [ogn+t—erti—e;*'] }=cl [oI*2— (11" UIF*") ]
(g) In oI™*% there is +PLO ¢,:9I"** —> 2I"+?
such that
e hr=I"1x0x {I1x[-1,1]}=h"
e 771 =I""1x0x1x(—1)
o I3t =I""1x0x1x1.

If we choose U (k" oI+, U (k" 0I™+2), there is a +PLO ¢5: R"*2——R"42, by

Lemma 2 such that
@5 | B*= 4.
¢s U (h~oI™+2)= U (koI ™*?)

(h) Let T, T (i=1,2) be o, 03 Si7', @4 s ST, respectively. From the
above process, there is a +PLO ¢=g5¢3: R™? —> R"*2, such that
¢ ognri=0ol"+?,
¢St =T,
¢ ogn=0oh",
¢Si"=..T?". B
Since A" is in the (n—1)—sphere T7*'§ T+, ¢t h* is in S™H and it is a
pos'tive flat connection between Sf~' and S;~'. This is the very m—element

which we have long been seeking for.

All these prove Lemma 4 completely.

Proof of Theorem 1. This proof is clear from Lemmas 3 and 4 and
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De on

4. Main Theorems
Under the above preliminaries, the main theorems are as follows: —

Theorem 2. If a collection {ky, ks, - sk} of (n—1)—Eknot types can occur
as a collection of all singularities of a 1- flat n-sphere S*(n>2) in euclidean
(m+2)—space R**2, then the product ki ky----- km ts one of the trivial knot
cobordism classes.

Theorem 3. (A converse of [Theorem 2).

If the poduct ki ky------ km of (n—1)—knot types is a trivial knot cobordism
class, then a collection {ki,k;, ------ kn} of 1—flat (n—1)—Fknot types can occur as a
collection of singularities of S* in Rn™*2,

The notations used in Chapter 3, will also be used in Chapter 4.

Proof of Remembering that K is a subcomplex of L, let K, L

be partitions of S*, R"+?, and K”,L"” be the second barycentric partitions of K,
L, respectively. And suppose that p;(i=1,2, .- ,m) are all singular points in
M. From this it is clear that we can choose a polyhedron E"*? in R»*? such
that

EtrryEp+2y. ... UEcEnre?,

(Ex* UERV)NE™2=¢
and E"*? does not disconnect R"*+2,
Then, from [3: p. 37; 3. 22 Lemma], there is an (#+43)—element Frt2C Rn+2
disjointed from E"+2 such that E?** U E?*?Cint F™¥2,
Theorem 1, therefore, lead to making a product of [p, K", L”] and [p;, K", L"]

in int F»+2, In the analogous way, we can make another product of this product
and [ps, K", L"].
Repeat this method, and we can make a product of all knots, which are
[D1, K", L], [ Doy K" L], ceeveereeeerers s [ pm, K", L'"].
Suppose the following:
E"+’=E;‘+’ # E;»H # ,,,,,, ¥ E;’n“
Srntl —Sn+l # Qrdl ...l # Sl
er  =Er #$E= - RRRREE $E?
Srt =S ST B S
S* =cl[S"—e™].
Then
S Sn+1,
e"CS", but e S™,
aen=s'n-l,
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and int e® has all singularities of S».

Reference [6:p.316; 28] illustrates that f* is an n—element with S*! as
its boundary. f™ has no singularity of S* from the property of e".

Em™+? js an (n+2)—element and it is flat in R**? from Newman’s theorem
on homogeneity of manifolds [3;p;32]. Then E"** is congruent to a euclidean
(n+2)—ball V»+2 which is not a topological ball. By means of Stereographic
projection, |

oVrri=Rntiy{co}
where R™ is a euclidean (#+1)—space. As the result, there is
+PLO ¢ : [R™*2U{o0}]—>[R"*?U{o0}]
such that
SD(aEn+2 = Rntiy {oo},
@ frCH,
o f* is 0—flat in R™*:,
@ int frC H+2— R+,
goaj"—go Sn—1, CRn-rl
All this has led to the complete proof of [T

To prove Theorem 3.
Proposition 4. Let S*! be the 0— flat (n—1)—sphere in a euclidevn (n+1)—
space R, If p is a point of R™'x(0.), then E*—p is 0—flat in R™+' x [0.00),
where E™=pxS™ .
Proof. Let K;, L, be the partitions of S*!, R**1, respectively, such that
K, is the subcomplex of L; and let the partition K, of E™ is a partition
constructed from K; by the standard cone and let L, be a partition of
Rn+1x [0, <) containing K; as its subcomlex. Then all the simlexes of E*—p are
either A7 (r=0,1,---,#—1) in K; or pxA".
Case I. The Simplex A" in K,
By the hypothesis, S*! is 0—flat. All simplexes of S*~!, therefore, are
non—singular.
Case II. The occasion of the Simp]ex_})eing ANET
Let @ be any point of E*—p and a=pBNS*"!, where a is a vertex of the
subcomplex of K;. (We denote this subcomplex of K; by same K;). Since K, is a
subcomplex of L,,
Lk (B, Ly)=02 { p=St («, L,)}
D9 {p*St (a, K3)}
=St (o, Ky)U { p*xLk (at, K))}
=Lk (B, K>)
Then there is [B, K;, L:].
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Since the knot [a, K, L,] is trivial, on account of the hypothesis, there is
a flat (n—1)—element e*! in Lk(a, L,) with Lk(a, K,) as its boundary. That is:
el=A™! in Lk(a, L),
where A™! is an (n—1)—simplex. Then
prer ' =pxA\"'= A" in L,.
where A" is an n—simplex. That is:
There is an (n—1)—element QA"—A™') in L; with 9A™! as its boundary.
Therefore, [, K. L;] is trivial.

On the other hand, from Definition 1 and proposition 3 and its note.

. [aa K29 L2] = [Bs K2s LZ]-

Consequently, [, Ks, L;] is trivial.

Since B is any point of pxA"—p, the proof of case II is complete, which
naturally will lead to the complete proof of proposition 4.

Proof of Theorem 3. From the hypothesis of Theorem 3 will follow the
conclusion that there is an (#—1)—sphere S*-! in a euclidean (n+1)—space
Rn+tc Rr+2= R+l x (— o0, o), which has the knot type & &;----- km. Since the } not
type ki k---km belongs to the trivial knot cobordism class, there exists a 0—flat
combinatorial n—element e* in H**? with S»-! as its boundary, such that int e®
is in H™*— R,

And the same hypothesis will lead to the conclusion S*-! is the connected
sum of S*-1, Sp-t, «eeee, S271, each having knot types &y, Ro,-++, b in R, respecti-
vely. We can choose all the points p¢(f=1,2,:-,m) in R™1x(0, <), such that
pxS?* and pp*S;~! are pairwise disjointed for fj as is clear from proposition
4. And er=p+Sp~! will have the only one point p; as its own singularity, which
is also concluded from the same prorosinion.

On the o her hand, we can choose cach positive flat connection g7 (§=1,2,
««,m—1) in H?*3, such that g7 connects e} with e}, in R"" and that they
might be pairwise disjointed. Hence the connected sum is given below : —

fr=et f el Her.
/™ whose boundary is an (#n—1)—sphere S*!, has points as its own singularity,
each pi(¢=1,---,m).

e” and f* are n—elements with their boundary called S*~! and the interior
parts of the two have no point in common with each other. e®Uf™, therefore,
is an m—sphere, according to J. W. Alexander’s theorem [6:p.314]. In this way,
we have found our way to the conclusion that e"U f™ is the very sphere which
we have long been reaching for.

And all this will give the complete proof of Theorem 3.

P. S.: At first, the trivial knot cobordism class was called nullequivalent
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by Fox and Milnor, as shown in (1), who, however, have been dis-satisfied
with this terminology. In result, Fox, in his work entitled “A Quich Trip
Through Knot Theary”, adopted the name slice knot proposed by Edwin E.
Moise.

To my regret, however, it was after this paper was written when I met
with this terminology. And this is the reason why I used the former terminology
in this paper.
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