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Introduction
R. H. Fox and J. W. Milnor have bestowed some consideration on the

singularities of a 2-sphere $S^{2}$ in euclidean 4-space $R^{4}$ from any imbedding $S^{2}$ in
$R^{4}[1$ and 2: p. 1655$]^{*}Below$ is given a partial explanation of the consideration
mentioned above :–

An oriented polygonal simple closed curve $S^{1}$ either in (oriented) euclidean
3-space $R^{3}$ or in the (oriented) 3-sphere $S^{3}$ will be called a knot, and their
combinatorial equivalence class will be called the same knot type.

Given an oriented polyhedral surface $M^{2}$ in 4-space $R^{4}$, one can measure
the local singularity of $M^{2}$ at a point $x$ as follows: Choose a small sphere $S^{f}$

in $R^{4}$ with center at $x$ . Then $S^{s}$ intersects $M^{2}$ in an oriented closed curve $S^{1}$ .
We say that $x$ is a singular or non-singular point according as $S^{1}$ is knotted or
unknotted. In either case, if $S^{1}$ belongs to the knot type $k$, we will say that the
singularity at the point $x$ is of type $k$.

Let $k$ be a knot type with representative $S^{1}$ in $R^{s}$ . Let $H^{4}$ be the half
space $R^{3}\times[(0, \infty)$ in $R=R^{8}\times(-\infty, \infty)$ . We define that $h$ is of trivial kuot cobordism
class, if there exists a non-singular, polyhedral 2-cell $E^{2}$ in $H^{4}$ with $S^{1}$ as its
boundary.

By a non-singular 2-cell, we mean a 2-cell such that each interior point
is non-singular in the above sense, and such that each boundary point $x$ is
non-singular in the following sense. A small sphere $S^{3}$ with center $x$ intersects
the half space $H^{4}$ in a 3-cell $E^{S}$, and intersects the cell $E^{2}$ in an arc $E^{1}$

spanning $E^{3}$ . We require that this arc $E^{1}$ will be unknotted in $E^{3}$ .
The product of two knot types can be defined in the usual way. (See 3:

Definition 4).

One of Fox and Milnor’s results is as follows: –
A collection $\{k_{1}, k, \cdots\cdots , k_{n}\}$ of knot types can occur as the couection of

singularities of a 2-sphere in $4$-space if and only if the product $k_{1}k_{2}\cdots\cdots k_{n}$ is of
the trivial knot cobordism class.

By Argument [5: p. 119] –the argument that the only euclidean space

*The bracketed uumber indicates the number of rcference given at the end of this
paper.
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in which we can knot $S^{n}$ is $(n+2)$ -dimensions, although the Schoenflies-Mazur-
Brown theorem gives an unknotting of $S^{n}$ in $S^{n+1}$ , –we will generalize the
result into an n-sphere in euclidean ($n+21$ -space from a combinatorial point
of view, but in the simple case which is l-flat (see p. 7).

It is hoped, therefore, that such terms as spheres, elements, spaces and
manifolds–all used in this paper–will be deemed oriented and combinatorial,
so long as a notice is not given.

V. K. A. M. Gugenheim $[3, 4]$ states that an n-sphere $(n\geqq 2)$ in an $(n+2)$

-sphere may be regarded as a generalization of the knot –the generalization
called n-knot –and that the same can be said of several other concepts of
the knot which is not yet generalized; $t\dot{o}r$ example, a congruence class of n-knots
is called an n-knot type.

In this paper, the knot cobordism class –the term created by Fox,
Milnor and Kervaire [Math. review. 8511 (1961) and 2]–will be adopted into
n- knots.

The main theorems are Theorems 2 and 3 of 4 which lead to the
conclusion of this paper, one of the essential parts of which, however, Theorem
1 makes.

1. Deflnitions and Notations*
1. 1.
Let $R^{q}$ be a q-dimensional metric euclidean space. By simplex we shall

mean closed euclidean simplex, by complex, rectilinear closed locally finite
simplicial complex of some euclidean space. Let $K$ be a complex; we denote
by $|K|$ the point set covered by the simplexes of $K$ ; such a point set will be
called a polyhedron, and $K$ a partition (or simplicial subdivision) of the
polyhedron. Polyhedra having isomorphic partitions will be said to be equivalent.
By a q-element we shall mean a polyhedron equivalent to a q-simplex, by a
q-sphere, on $e$ equivalent to the boundary of a $(q+1)$ -simplex.

Let $K$ be a complex and $A$ one of its simplexes. The set of all simplexes
of $K$ having $A$ as a face is denoted by $St(A, K)$ and referred to as the star of $A$

in $K$. The set of simplexes of $K$ which are faces opposite $A$ in some simplex of
$St(A, K)$ is defined by $Lh(A, K)$ and referred to as the link of $A$ in $K$.

A combinatorial q-manifold $M$ is defined as a complex $M$ such that $|St$

$*The$ author of this paper is indebted to Prof. Gugenheim for his exact and exhaustive
definitions and natations.



SINGULARITIES OF n-SPHERES IN $(n+2)$-SPACE 25

$(A, M)|$ is a q-element for every simplex $A\subset M.$ $A$ polyhedron is called a q-
manifold, if it has a partition which is a combinatorial q-manifold.

Let $M^{n}(n>2)$ be an n-manifold in the euclidean half m-space $ H_{+}^{m}=R^{m-1}\times$

[$(0, \infty)(m>n)$ and let $K,$ $L$ be the given partitions of $M^{n},$ $H_{+}^{m}$ such that $K$ is a
subcomplex of $L$. Let $P$ be any vertex of $K$ and let $E^{n}$ and $E^{m}$ be $|St(P, K)|$ and
$|St(P, L)|$ , respectively.

If $K$ is a combinatorial n-manifold (homogeneous complex), $\partial K$ will denote
its mod 2 boundary; and if $P=|K|$ , we shall write $\partial P=\partial|K|$ and int $|K|=|K|$

$-|\partial K|$ .
Let $K_{1},$ $K_{2}$ be isomorphic partitions of polyhedra $P,$ $Q$ and let $\varphi;P\rightarrow Q$

be the homeomorphism obtained by mapping each simplex of $K_{1}$ linearly onto

its correlate simplex of $K_{2}$ . We call $\varphi$ a piecewise linear homeomorphism onto

or $PLO$ . Let $M^{q}$ be an orientable $q- mani\dot{f}0$ld. An orientation preserving PLO
$\varphi;M^{q}-M^{q}$ is said to be positive in $M^{q}$, and we call it a $+PLO$.

Let $P,$ $Q\subset R^{n}$ be polyhedra and let $\varphi:R^{n}-R_{n}$ be the $+PLO$ such that
$\varphi P=Q$ . Then we say that $P,$ $Q$ are congruenf in $R^{n}$ and write $P\equiv Q$ in $R^{n}$ .

A q-manifold will be called strongly connected if the following condition
is satisfied in the manifold: Let $A^{q},$ $B^{q}$ be q-simplexes of the manifold; then
there is a sequence

$A^{q}=\triangle_{0}^{q},$ $\triangle_{1}^{q-1},$ $\triangle_{1}^{q},$

$\cdots,$
$\triangle_{k}^{q-1},$ $\triangle_{k}^{q}=B^{q}$

of q-and $(q-1)$ -simplexes of the manifold such that successive simplexes of the
sequence are incident.

Let $X\subset M^{q}$ be a point set of a q-manifold $M^{q}$ ; it will be said to disconnect
$M^{q}$ if the condition of strong connectivity is no longer satisfied in $M^{q}-X$

A polyhedron $P$ is said to be locally imbedded in an n-manifold $M^{n}$ if
(i) there is an n-element $E^{n}\subset M^{n}$ such that $ P\subset$ int $E^{n}$ ;

(ii) $P$ dose not disconnect $M^{n}$ .
By $[P, M]$ we shall denote the pair consisting of
(i) a polyhedron $P$ locally imbedded in the orientable n-manifold $M^{n}$

(where $M^{n}$ shows that it is not yet oriented).

(ii) The oriented manifold $M^{n}($ ,, $)$

We call $[P, M^{n}]$ a pair.
Let $[P, M^{n}]$ be a given pair and $N^{n}$ an n-manifold. Since $P$ is locally

imbedded, there is an n-lement $E‘‘\subset M^{n}$ such that $P\subset intE^{n}$ . We can clearly
find a piecewise linear homeomorphism into $\varphi:E^{n}-N^{n}$, where $E^{n}$ has the
orientation induced by $M^{n}$ . Then $\varphi P=Q$ is locally imbedded in $N^{n}$ with $ Q\subset$

int $F^{n}$, where $F^{n}=\varphi E^{n}$ . In this case we say that the pairs $[P, M^{n}]$ and $[Q, N^{n}]$

are congruent, and we write $[P, M^{n}]\equiv[Q, N^{n}]$ .
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For $n<m$ , an n-sphere $S^{n}$ either in m-sphere $S^{m}$ or in m-space $R^{n}$ will
be called $(n, m)$-knot and each their congruence class will be called $(n, m)$-knot
type and we denote a set of congruence classes of n-spheres of m-sphere or m-
space, by the use of $[n, m]$ .

1. 2
Punctured knot.* Let $M^{n}$ be an n-manifold in the upper half m-space

$H_{+}^{m}(=R^{m-1}\times[0, \infty])$, and let $K,$ $L$ be the partitions of $M^{n},$ $H_{+}^{m}$, respectively, such
that $K$ is the subcomplex of $L,$ $\partial M^{n}\subset R^{m-1}(=R^{n-1}\times 0)$ and int $M^{n}\subset R^{ n-1}\times(0,\infty)$ .
Let $P$ be a vertex of $K$. By $[P, K, L]$ we will denote $[|Lk(P, K)|,|LK(P, L)|]$ in brief.

Case I: $ P\epsilon$ int $M^{n}$

It is clear that the pair $[P, K, L]$ represents an element if $[n-1, m-1]$

which is a set of congruence classes of $(n-1, m-1)$ -knot type.
Case II: $P\epsilon\partial M^{n}$

In this case is given a generalized way of interpreting of $[P, K, L]$ as a
knot as follows: –

$Lk[P, L]$ is an $(m-1)$ -element $E_{1}^{m-1}$ such that $\partial Lk(P, L)\subset R^{m-1}x0$ and
int $Lk(P, L)\subset R^{n-1}\times(0, \infty)$ . $|\partial Lk(P, L)|$ is an $(m-2)$ -sphere $S^{m-2}$ . In $R^{m-1}$ , there
is an $(m-1)$ -element $E_{2}^{m-1}$ with $S^{m-2}$ as its boundary. Then $E_{1}^{m-1}\cup E_{2}^{m-1}$ is an
$|m-1)$ -sphere $S^{m-1}$ by the Alexander $s$ theorem [6: p. 314].

“For the same reason $|LkP,$ $K$ ) $|$ is an $(n-1)$ -element $E_{1}^{n-1}$ such that $\partial Lk$

$(P,\dot{K})\subset R^{n-1}\times 0$ and int $(P, K)\subset R^{m-1}\times(0_{:}\infty)$ . In this case, $\partial|Lk(P, K)|$ is an $(n-2’$

-sphere $S^{n-2}$, and $\partial M^{n}\cap R^{m-1}$ is an $(n-1)$ -element $E_{2}^{n-1}$ with $S^{n-2}$ as its
boundary. Then $E_{1}^{n-1}\cup E_{2}^{n-1}$ is an $(n-1)$ -sphere $S^{n-1}$ and $S^{n-1}\subset S^{m-1}$ .

$[S^{n-1}, S^{n-1}]$ which has been constructed now, is an $(n-1, m-1)$ -knot.”
Definition 1. Let $P\epsilon\partial M^{n}$ be the vertex of K. The pair $[P, K, L]$ is called

the punctured $(n-1, m-1)$ -knot, and its knot $\ell ype$ is called $k$, if the knot $[S^{n-1}$ ,
$S^{n+1}]$ , which was constructed in the above, has the knot $tyPe^{**}k$.

2. Trivial Knot Cobordism Class

Proposition 1 given below is on the basis of Gugenheim’s argument [4: $p$ .
135.]

Proposition 1. The $(n-1, m-1)$ -knot tyPes $for$ the common vertex of any

two Partitions of an n-manifold $M^{n}$ in an m-space $R^{m}$ are exactly the same as

$*The$ author $h\circ s$ adopted the term “punctured knot“, as he called, for convenience, after

the name of a “punctured” oriented n-sphere which was described by Prof. Solomon Lefshetz

on page 170 of his book entitled “Introduction To TopoloSy”, 1949, and [4: p. 132;7.14].

$**The(n-1. m-1)knot$ is rcprescntcd by the $(n-1)$ –knot or simply knot if $(m-1)$ or

$(n-1. m-1)$ is clear. The same ean be said of the knot type.
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each other.
Proof. Let $x$ be a vertex of $K$ and let $L_{1}$ and $L_{2}$ be any two partitions

of $R^{m}$ with $x$ as their common vertex. $B_{1}=Lk(x, L_{1})$ and $B_{2}=Lk(x, L_{2})$ are
composed of all the opposite faces of $x$ in the $x$ -containg simplexes of $L_{1}$ and
$L_{2}$, respectively. Then ray $ xy(y\epsilon B_{1})\rightarrow$ and $B_{1}$ have only one point $y$ in common.
Since $B_{2}=LK(x, L_{2}),$

$\vec{\theta}\cap B_{2}$ has only one point $z$ . Then there is homeomorphism
$\varphi:B_{1}-B_{2}$ by $\varphi(y)=z$ . It is also known that $\varphi$ is $+PLO$ by [4; p. 135: 7. 32].

By $p*A$ we denote the complex composed of ali the simplexes that have
both $p$ and the vertices of each simplcx of A-as vertices also of the complex.
We call the complex the join of $p$ and A.

Proposition 2. Let $l$ be a point of a manzfold M. Then we can find the
partition of $M$ with $p$ as its vertex.

Proof. If $K$ be any partition of $M,$ $p$ is either a vertex of $K$ or an
inteoior point of a simlex $A$ of $K$. If $p$ is a vertex of $K,$ $K$ is one of the
required partitions. If $p$ is in int $A$ , the join of $\partial A$ and $p$ which is denoted
$\partial A*p$, is a partition of $A$ . Hence the partitions of $K$ with $p*(\partial St(A,K))$ as its
subcomplex are the required partitions of $M$.

Proposition 2 holds good with either an $m$ -space $R^{m}$ or a half $m$ -space
$H^{*}$ . Hence the knot type of $M^{n}$ in $R^{m}$ or $H^{m}$ at $p$ , which is defined in the
both cases of $p$, is in int $M^{n}$ and is in $\partial M^{n}$ , is determined uniquely $\downarrow proposition$

1).

For $n<m$ , we call a pair $[S_{1}^{n}, S_{l}^{n}]$ a trival $(n, m)$ -knot, so long as $S_{1}^{\hslash}$ is
congruent to the boundary of an $(n+1)$ -simplex in $S_{1}^{m}$ .

From propositions 1 and 2, for any point $p$ of $M^{n}$ , the $(n-1, m-1)$ -knot
type at $p$ is determined uniquely.

We can say, therefore, that any point $p$ of $M^{n}$ in $R^{m}$ is nonsingular or
singular according as the $(n-1)$ -knot type $k$ at $p$ is $tJivial$ or not, and that
the singularity of $M^{n}$ at the point $p$ is of type $k$, if the knot type belengs to $k$.

Proposition 3. Let $\triangle^{r}(r=1,2,\cdots, n)$ be an r-simplex of an n-manifold $M^{n}$ .
in euclidean $(n+2)$ -space $R^{n+2}$ and let $p_{1},p_{2}$ be two points of int $\triangle^{r}$ . Then their
singularities will be one and the same.

Proof. Let $K,$ $L$ be the same means as that of Proposition 2. Each of thc
two elements $|St(p_{1}, K)|$ and $|St(p_{2}, K)|$ of $p_{1}$ and $p_{2}$ in $K$, respectively, is $|St$

$(\triangle^{r}, K)|$ , if we subdivide $K$ by $p_{1}$ and $p_{2}$, each partition independent of the
other. That is;

(1) $|S\ell(p_{1}, K)|=|St(p_{2}, K)|=|St(\triangle^{r}, K)|$

By the same process, it is also foumd that
(2) $|S\ell(p_{1}, L)|=|St(p_{2}, L)|=|St(\triangle^{r}, L)|$
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Combining each of the three terms of (1) with its correlate term of (2) we find:
(3) $0[p_{1},K, L]=[p_{2}, K, L]$ .

From propositions 1 and 2 and the above mentioned (3) we will lead to the
conclusion that the proof of proposition 3 is complete.

Note: Proposition 3 hold good with $p$ ($i=1$ or2) which, is in $\partial\triangle^{r}$ if {1) and
(2) are hold.

Definition 2. For any r-simplex $\triangle^{r}(r=0.1, \cdots, n)$ of $K$ in $L$, we call the
knot type of $[\triangle^{r},K,L]$ the singularity of $\triangle^{r}$, which may contain the trivial knot
type.

We say that $M^{n}$ is O-flat if any $r$ -simplex of $M^{n}$ is $non-singular$ concer-
ning each $r$ and that, $M^{n}$ is l-flat* if any r-simplex of $M^{n}$ is non-singular
concerning each $r>0$ .

In the sense of O-flat, l-flat, we require that any above $r$-simlex in
both the interior and the boundary of $M^{n}$ , will be nonsingular.

Definition 3. We say that the $(n-1)$ -knot $\ell ypek$ belongs to the trivial knot
cobordism class, if $a$ O-flat combinatorial oriented n-element $E^{n}$ lies in $H^{n+2}$

$(H_{-}^{n+2}=R^{n+1}\times (-\infty, 0]$ or $ H_{+}^{n+2}=R^{n+1}\times[O, \infty$ )) with $S^{n-1}$ in $R^{n+1}$ as its boundary,
such that int $E^{n}$ lies in $H^{n+}-R^{n+1}$ and $[S^{n-1}, R^{n+1}]$ has the knot type $h$.

3. Product of Some Two $(n-1)$ -Knots

3. 1.
Let $M^{q}$ be a $q$ -manifold and $E^{q}$ a $q$ -element such that

$M^{q}\cap E^{q}=\partial M^{q}.\cap\partial E^{q}=E^{q-1}$

a $(q-1)$ -element. We say that $M^{q}$ and $E^{q}$ have regutar contact in $E^{q-1}$ .
Let $M^{q}\subset R^{n}$ be a $q$ -munifold and $E_{1}^{q}\subset M^{q}$ a $q$ -element such that

$\partial M^{q}\cap\partial E_{1}^{q}\supset E^{q-1}$ ,

a ($q-1^{1}$ -element. Keep $E_{2}^{q}\subset R^{n}$ in regular contact with $M^{q}$ in $E^{q-1}$ and let
$q$ -element $E_{1}^{q}\cup E_{2}^{q}$ be flat in $R$ “. Then we call $E_{2}^{q}$ a flat attachment to $M^{q}$ .

Let $E_{1}^{q},$ $E_{2}^{q}$ be disjoinied oriented $q$ -elements of $R^{n}$ and let $g^{q}$ be a flat
oriented $q$ -element which is a positive flat attachment both to $E_{1}^{q}$ and to $E_{2}^{q}$ ;
we say that $g^{q}$ is a posih $ve$ flat connection between $E_{1}^{q}$ and $E_{2}^{q}$ . In this case,
$G^{\tau q}=E_{1}^{q}\cup g^{q}\cup E_{l}^{q}$ is an oriented $q$ -element and we call that $G^{q}$ the connected
sum of $E_{1}^{q}$ and $E_{2}^{q}$ and denote $G^{q}=E_{1}^{q}\# E_{2}^{q}$, or $G^{q}=[E_{1}^{q},g^{q}, E_{2}^{q}]$ .

Let $E^{q}$ and $S^{q}$ be a $q$ -element and a $q$ -sphere of $R^{n}$, respectively. We

$*It$ will be notice that the definition of $p$-flat in this paper is differcnt from one of
the $p$-flat in [4: p. 135; 7. 33).
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say that $E^{q}(S^{q})$ is flat in $R^{n}$ , if it is congruent to a $q$ -simplex (the boundary

of a $(q+1)$ -simplex). And if $E^{q}(S^{q})$ is flat in $R^{n}$ , then it is of course O-flat,

but the converse is not true.
For $i=1,2$,

(i) Let $S_{1}^{q},$ $S_{2}^{q}$ be oriented and disjointed $q$ -spheres of $R^{n}$ .
(ii) Let $E_{1}^{n},$ $E_{2}^{n}\subset R^{n}$ be disjointed $n$ -elements such that $S_{i}^{q}\subset E^{n}$ and $S_{\ell}^{q}\cap E_{i}^{n}\supset e_{t}^{q}$

$q$ -element.
(iii) Let $g^{q+1}$ be a flat $(q+1)$ -element such that

$g^{q+1}\cap E_{i}^{n}=\partial g^{t_{\wedge}+1}\cap\partial E_{i}^{n}=e_{i}^{q}$

and such that $g^{q+1},$ $S_{t}^{q}$ induce opposite orientation in $e_{i}^{q}$ . Then
(iv) $U^{q}=c1[S_{1}^{q}\cup S_{2}^{q}\cup g^{q+1}-e_{1}^{q}-e_{2}^{q}]$

(where cl indicates closure’) is a $q$ -sphere of $R^{n}$ , which can be oriented so that
$S^{q},\subset U^{q}$ ; in this case, we say that $g^{q+1}$ is a positive flat connection between $S_{1}^{q}$

and $S_{2}^{q}$ and we write
$U^{q}=(S_{1}^{q}, S_{2}^{q},g^{q+1})$ or $U^{q}=S_{1}^{q}\# S_{2}^{q}$

and call that $U^{q}$ is the connected sum of $S_{1}^{q}$ and $S_{2}^{q}$ .
Let $S_{\ell}^{r}(r<q;i=1,2)$ be each sphere in $s\prime l$ and let $g^{r+1}\subset S^{q}$ be a positive

flat connection between $S_{1}^{r}$ and $S_{2}^{r}$ , and let $e_{\ell}^{r}\subset S_{l}^{r}$ be $r$-elements as $e_{\ell}^{q}$ in the

process of making $(S_{1}^{q}, S_{2}^{q},g^{q+1})$ . Suppose that we can make $U^{r}=(S_{1}^{r}, S_{2}^{r},g^{r+1})$ in $U^{q}$ .
Definition 4. Under the above preparations, we call the knot $[U^{r}, U^{q}](r<q)$

the product of the knots $[S_{1}^{r}, S_{1}^{q}]$ and $[S_{2}^{r}, S_{2}^{q}]$ .
3. 2.
Let $S^{n}$ be an $n$ -sphere in $R^{n+2}$ and let $K,$ $L$ be partitions of $S^{n},$ $R^{n+2}$

respectively, such that $K$ is a subcomplex of $L$ . By $L^{\prime},$
$L^{\prime\prime}$ we will understand

the first, second barycentric partitions of $L$, respectively, and let $K^{\prime}.K^{\prime\prime}$ be the

first, second barycentric partitions of $K$. Let $p_{1},p_{2}$ be the only two singular

points of $S^{n}$, each belonging to types $k_{1},$ $k_{2}$ , respectively.
Remember: –
$E_{i}^{n+2}=|S\ell(p_{i}, L^{\prime\prime})|$ , $S_{\ell}^{n+1}=\partial E_{\ell}^{n+2}(i=1,2)$ ,
$E_{i}^{n}=|St(p_{i},K^{\prime\prime})|$ , $S_{l}^{n-1}=\partial E_{i}^{n}$ $(i=1,2)$ .

$p_{1}$ and $p_{2}$ are connected with each other by a simple polygonal arc $E^{1}$ of $K$ Let
$p_{1}=x_{0},$ $x_{1},$ $\cdots\cdots\cdots,$ $x_{\ell-1},$ $x_{l}=p_{2}$

be the vertices of $E^{1}$ in $L^{\prime}$ in this order and suppose
$F_{i}^{n+2}=|St(x, L^{\prime\prime})|$ , $(i=0,1, \cdots\cdots, l)$,
$F_{i}^{n+2}\cap F_{i}^{n}\ddagger^{2}1=E_{\ell}^{n+1}$ , $i=0,1,$ $\cdots\cdots,$

$t-1$).

This is possible since $F_{t}^{n+2}$ and $F_{i+1}^{n+2}$ retain regular contact with each other,

judging from the construction of $F_{i}^{n+2}$ .
Specially put
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$F_{0}^{n+2}=E_{1}^{n+2}$ , $F_{\ell}^{n+2}=E_{2}^{n+2}$ .
Put
$g^{n+2}=F_{1}^{n+}’\cup F_{2}^{n+2}\cup\cdots\cdots\cup F_{\ell-1}^{n+2}$,

and put
$E_{0}^{n+1}=e_{1}^{n+1}$. $E_{\ell-1}^{n+1}=e_{2}^{n+1}$ .
Theorem 1. We can make the product of $[p_{1}, K^{\prime\prime}, L^{\prime\prime}]$ and $[p_{2}, K^{\prime\prime}, L^{\prime\prime}]$ ,

under the above preparations.

Let $K$ be a subcomplex of a $q$ -manifold $M^{q}$ . By a regular neighborhood
of $K$ in $M^{q}$, we shall mean a subcomplex $U(K, M^{q})$ of $M^{q}$ such that:

(1) $U(K, M^{q})$ is a $q$ -manifold.
(2) $U(K, M^{q})$ contracts geometrically into $K$

[7; p. $ 293\rfloor$ .
We shall prove Theorem 1 by the following lemmas.

Lemma 1. Let $N^{n}$ be an m-manifold in an $m$ -manzfold $W^{n\prime}$ with no
boundary, and let $N^{m}$ and $E^{n}\subset W^{m}$ have the $pos\ell t\dot{\iota}ve$ regular contact in an $(m-1)$

-element $E^{m-1}$ . Then
$N^{m}\cong N^{m}\cup E^{m}$.

[emma 2. Let. $M^{q}\subset R^{n}(q<n)$ q-mantfold with no boundary and let $E_{\ell}^{q}(i=$

$1,2)$ . be disjointed flat q-elements in $M^{q}$. Let $F_{i}=U(E_{\ell y}^{q}M^{q})$ be any reqular
neighborhood of $E_{\ell}^{q}$ in $M^{q}$. Then $lhere$ are

(i) $+PLO\varphi_{1}$ : $E_{1}^{q}\rightarrow E_{2}^{q}$,
(ii) $+PLO\varphi_{2}$ : $M^{q}\rightarrow M^{q}$,

such that
$\varphi_{2}|E_{1}^{q}=\varphi_{1}$ .

(iii) $+PLO\varphi$ : $R^{n}-R^{n}$ ,
such that

$\varphi M^{q}=M^{q}$,
$\varphi E_{1}^{q}=\varphi_{1}$ ,
$\varphi F_{1}=F_{2}$ .

Lemma 3. We can make a connected sum of $S_{1}^{n+1}$ and $S_{2}^{n+1}$ in $R^{n+2}$ .
Lemma 4. We can make a connected sum of $S_{1}^{n-1}$ and $S_{2}^{n-1}$ in $S^{n+1}(=S_{1}^{n+1}$

$\#S^{+1})$ .
Proof of Lemma 1. From the hypothesis of this argument, $E^{m}$ is a flat

attachment to $N^{m}$ by [8 p. 101; Lemma 2]. Consequently,
$N^{n}\equiv N^{m}\cup E^{\prime}$

by [4: p. 129; Theorem 6*].
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Proof of Lemma 2.
(i) Since $E_{\ell}^{q}(i=1,2)$ are flat $q$ -elements in $M^{q}$, there are

$+PLO\theta_{\ell}$ : $E^{q}\rightarrow\triangle^{q}$

in $M^{q}$, where $\triangle^{q}$ is a $q$ -simlex. Then
$\varphi_{1}=\theta^{-1}\theta_{1}$

is a $+PLO$ and $\varphi_{1}E_{1}^{q}=E_{2}^{q}$ .
(ii) We can choose a polyhedron $P_{1}\subset M^{q}$ such that $P_{1}\subset M^{q}-E_{1}^{q}-E_{2}^{b}$ and

$P_{1}$ does not disconnect $M^{q}$.
Then there is $a+PLO\varphi_{2}$ ; $M^{q}-M^{q}$ such that

$\varphi_{2}|E\int=\varphi_{1}$ ,
$\varphi_{2}|P=1$,
$\varphi_{2}\approx 1$,

by the throrem on homogeneity of manifolds [3; p. 32; Theorem 3].

(iii)

(a) $F_{i}=UE_{i}^{q},$ $M^{q}$) $(i=1,2)$ are flat $q$ -elements which is clear from proposi-
tion 1 and the definition of the regular neighborhood. In passing any star

neigoborhood is a regular neighborhood. By ( $ii$ } there is $+PLO\varphi_{2}$ : $M^{q}\rightarrow M^{q}$,

such that $\varphi_{2}|E_{1}^{q}=\varphi_{1}$ . Then $\varphi_{2}F_{1}(\subset M^{q})$ is $\overline{U}(E_{2}^{q}, M^{q})$ a regular neighborhod of
$E_{2}^{q}$ in $M^{q}$ .

(b) There is $a+PLO\theta_{3}$ : $M^{q}\rightarrow M^{q}$ such that
$\theta_{\theta}\varphi_{2}F_{1}=F_{2}$,
$\theta_{3}\varphi_{2}|E_{1}^{q}=\varphi_{1}$

by [7: p. 293; Theorem $23_{q}$].

(c) Let $U(E^{q}, M^{q})=F_{\ell}$ . $U(F_{i}, M^{q})=\overline{F}_{\ell}(i=1,2)$ , then $\overline{F}_{\ell}$ are flat $q$ -elements
such that $F_{\ell}\subset int\overline{F}_{i}$ . We can choose a polyhedron $P_{2}$ such $\iota$ hat

$P_{2}\subset R^{n}-\overline{F}_{1}^{q}-\overline{F}_{2}^{q}$ ,
and that $P$, dose not disconnect $M^{q}$ . Then there is a $+PLO\varphi_{3}$ ; $R^{n}\rightarrow R^{n}$ such
that

$\varphi_{3}M^{q}=M^{q}$,
$\varphi_{S}|P_{2}=1$,
$\varphi_{\theta}|.F_{1}=\theta_{8}\varphi_{2}$

by [3: p. 33; Theorem 9] which is the generalized theorem of [3; p. 32; Theorem
3].

That is : There is a $+PLO\varphi=\varphi_{3}$ ; $R^{n}\rightarrow R^{n}$ such that
$\varphi M^{q}=M^{q}$,
$\varphi U(E_{1}^{q}, M^{q})=U(E_{2}^{q}, M^{q})$ ,
$\varphi E_{1}^{q}=E_{2}^{q}$,
$\varphi|P_{2}=1$ ,
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which proves Lemma 2.

Proof of Lemma 3. The following conditions are satisfied: –

(i) $ S_{1}^{n+1}\cap S_{2}^{n+1}=\phi$ since $ E_{1}^{n+2}\cap E_{2}^{n+2}=\phi$. where $E_{\ell}^{n+2}=$

$St(p_{t}, L^{\prime\prime}),$ $(i=1,2)$ in $R^{n\cdot r2}$ .
(ii) $S_{\ell}^{n+1}\subset E_{l}^{n+2}(i=1,2)$ since $S_{i}^{n+1}=\partial E_{l}^{n+2}$,

$S^{n+1}\cap\partial E_{\ell}^{n+2}\supset e^{n+1}(i=1,2)$ ,

where
$E_{1}^{n+2}\cap F_{1}^{n+2}=e_{1}^{n+1},$ $F_{\ell-1}^{n+2}\cap E_{2}^{n+2}=e_{2}^{n+1}$ .

(iii) $F_{1}^{n+2}$ and $F_{\ell}^{n}\ddagger^{2}1(i=0,1, \cdots t-1)$ have the positive regular contact in $E_{\ell}^{n+1}$

which is clear from the construction of $F_{\ell}^{n+2}$ . Then $F^{n+2}\cup F_{\ell+1}^{n+2}(i=1$,
2, $\cdot\cdot$ $l-2$) are flat $(n+2)$ -elements in $R^{n+2}$ by Lemma 1.

Besides –

For $i\neq j$,
$ F_{\ell}^{n+2}\cap F_{j}^{n+2}=\phi$ if $i\neq j\pm 1$ ,
$ F_{j}^{n+2}\cap E_{t}^{n+2}=\phi$ if $i=1,2;j=2,3,$ $\cdots\cdots,t-2$ ,

judging from $F_{t}^{n+2}=S\ell(x, L^{\prime\prime})$ . Then $g^{n+2}$ is a flat $(n+2)$ -element and
$E_{\ell}^{n+1}=g^{n+2}\cap E_{\ell}^{n+2}=\partial g^{n+2}\cap\partial E_{\ell}^{n+2}(i=1,2)$ .

And $g^{n+2}$ and $S_{\ell}^{n+1}(i=1,2)$ induce opposite orientations in $E_{\ell}^{n+1}$ .
(iv) put
$S^{n+1}=cl[S_{1}^{n+1}\cup S^{+1}\cup\partial g^{n+2}-e_{1}^{n+1}-e_{2}^{n+1}]$ .

Then
$S_{i}^{n+1}\subset S^{n+1}(i=1,2)$ .

Thus, the conditions of the connected sum of the two spheres $S_{1}^{n+1}$ and
$S_{2}^{n+1}$ are satisfied, which proves Lemma 3 complerely.

Proof of Lemma 4. In order to connect $S_{1}^{n-1}$ and $S_{2}^{n-1}$ in $S^{n+1}$, it is
sufficient to prove the existence of the positive flat connection between $S_{1}^{n-1}$ and
$S_{2}^{n-1}$ in $S^{n+1}$ since $S_{\ell}^{n-1}(i=1,2)$ are in $S^{n+1}$ .

(a) Remember: –

(i) $E^{1}$ is a simple polygonal arc of $K$ and
$p_{1}=x_{0},$ $x_{1},$ $\cdots\cdots x_{t-1},$ $x_{\ell}=p_{2}$

are the vertices of $E^{1}$ in $L^{\prime}$ in this order. Let $A_{1}$ be the middle point of $\overline{p_{1}x_{1}}$

and let $A_{2}$ be that of $x_{\ell-1}p_{2}$ .
(ii) $F_{\ell}^{n+2}=|St(x_{\ell}, L^{\prime\prime})|$ , $(i=0, \cdots\cdots, t)$ ,

specially $E_{\ell}^{n+2}=|St(p_{i}, L^{\prime\prime})|$ , $(i=1;2)$ ,
$F_{\ell}^{n+2}\cap F_{i}^{n}\ddagger_{1}^{2}=E_{i}^{n+1}$ , $(i=0,$ $\cdots\cdots l-1^{1}$,

specially $E_{1}^{n+2}\cap F_{1}^{n+2}=e_{1}^{n+1}$ , $E_{2}^{n+2}\cap F_{\ell-t}^{n+2}=e_{2}^{n+1}$ .
$g^{n+2}=F_{1}^{n+2}\cup F_{2}^{n+2}\cup\cdots\cdots\cup F_{\iota-1}^{n+2}$ .
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(iii) $F_{i}^{n}=|St(x_{i}, K^{\prime\prime})|$ , $(i=0,1,2, \cdots\cdots , l)$,
specially $E_{i}^{n}=St(P_{i}.K^{\prime\prime})$ , $(i=1,2)$ .

$F_{\ell}^{n}\cap F_{\ell+1}^{n}=E_{i}^{n-1}$ $(i=0,1, \cdots l-1)$,
specially $E_{1}^{n}\cap F_{2}^{n}=e_{1}^{n-1}$ , $E_{1}^{n}\cap F_{\ell-1}^{n}=e_{2}^{n-1}$ .

$g^{n}=F_{1}^{n}\cup F_{2}^{n}\cup\cdots\cup F_{l-1}^{n}$ .
Then each one of (iii) is the intersection of $S^{n}$ and that of (ii) which is

correlate.
(b) $F_{\ell}^{n}(i=1,2, \cdots, l-1)$ are flat $n$ -elements in $S^{n}$, and $F_{\ell}^{n}$ and $F_{\ell+1}^{n}(i=1,2$,

...... , $l-1$) have the regular contact in $E_{i}^{n-1}$ . Then $E_{\ell}^{n}\cap E_{\ell+1}^{n}$ are flat $n$ -elements
by Lemma 1. Thus $g^{n}$ is a flat $n$ -element. Since $g^{n}$ and $E_{t}^{n}(i=1.2)$ have the

positive regular contact in $e_{i}^{n-1},$ $g^{n}$ is a positive flat connection between $S_{1}^{n-1}$

and $S_{2}^{n-1}$ .
(c) Put
$I^{n-1}=I_{1}\times I_{2}\times\cdots\cdots\times I_{n-1},$ $I^{n+2}=I^{n-1}\times I_{n}\times I_{n+1}\times I_{n+2}$ ,

where $I_{J}$ is the interval [-1, 1] of the $j$-axis of rectrngular coordinates in $R_{1}^{n+2}$.
$I_{1}^{n+1}=I^{n-1}\times I_{\hslash}\times l_{n+1}\times(-1)$ ,
$I_{2}^{n+1}=I^{n-1}\times I_{n}\times I_{n+1}\times 1$ .
$I^{n}=I^{n-1}\times 0\times 0\times l_{n+2}$ .
$I_{1}^{n-1}=I^{n-1}\times 0\times 0\times(-1)$,
$I_{2}^{n-1}=I^{n-1}\times 0\times 1$ .

And
$h^{n}=I^{n-1}\times O\times(([0,1]\times(-1))\cup(1\times[-1,1])\cup([1,0]\times 1))$ ,

$B_{1}=(0,0, \cdots\cdots\cdots, 0, -1)$,
$B_{2}=(0,0, \cdots\cdots\cdots, 0,1)$ .

(d) $[\partial g^{n}, \partial g^{n+2}],$ $[\partial I^{n}, \partial I^{n+2}]$ are each a trivial $(n-1, n+1)$ -knot. Then

there is $a+PLO\varphi_{1}$ such that
$\varphi_{1}\partial g^{n+2}=\partial I^{n+Z},$ $\varphi_{1}\partial g^{n}=\partial I^{n}$ .

Since $e?^{-1}i=1,2$ ) are $U(A\iota, e_{\ell}^{n-1})$ ,
$\varphi_{1}(A_{i})\epsilon\varphi_{1}e_{\ell}^{n-1}\subset\partial I^{n}$ .
$(e_{1})$ Since $e_{1}^{n-1}$ is $U(A_{1}, e_{1}^{n-1})$ and $I_{1}^{n-1}$ is $U(B_{1}, I_{1}^{n-1})$, there is a $+PLO\varphi_{21}$

: $R^{n+2}\rightarrow R^{n+2}$ by Lemma 2 such that
$\varphi_{21}\partial I^{n}=\partial I^{n}$ ,
$\varphi_{21}\varphi_{1}A_{1}=B_{1}$ ,
$\varphi_{21}\varphi_{1}e_{1}^{n-1}=I_{1}^{n-1}$ .

$(e_{2})$ We can choose an $(n-1)$ -element $P_{l}$ in $\partial I^{n}$ Lenrma 2 such that
$P_{2}\supset((\varphi_{21}\varphi_{1}e_{1}^{n-1})\cup I_{1}^{n-1})$ .

Then by Lemma 2 again, there is a $+PLO\varphi_{22}$ ; $R^{n+2}\rightarrow R^{n+2}$

such that
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A bird $s$-eye view of the proof of Lemma 4
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$\varphi_{22}\partial I^{n}=\partial I^{n}$ ,
$\varphi_{22}\varphi_{21}\varphi_{1}A_{2}=B_{2}$,
$\varphi_{22}\varphi_{21}\varphi_{1}e_{2}^{n-1}=I_{2}^{n-1}$ ,
$\varphi_{22}|P_{2}=1$ .

Put
$\varphi_{2}=\varphi_{22}\varphi_{21}$ .

(f) Since $e_{i}^{n+:}$ are $U(e_{i}^{n-1}, e_{\ell}^{n+1})$ and $I_{t}^{n+1}$ are $U(I?^{-1}, I_{\ell}^{n+1})$ , by Lemma 2
there are $+PLO\pi(i=1.2)$ :

$+PLO\pi_{i}\varphi_{2}\varphi_{1}e_{\ell}^{n+1}=I_{\ell}^{n+1}$ ,

under the same notice in the way of $(e_{1})$ and $(e_{2})$ .
Put $\pi=\pi_{2}\pi_{1}$ , and the result is:

There is a $+PLO\varphi_{3}=\pi\varphi_{2}\varphi_{1}$ : $R^{n+2}\rightarrow R^{n+2}$

such that
$\varphi_{8}\partial g^{n+2}=\partial l^{n+2}$ ,
$\varphi_{8}e_{\ell}^{n+1}=I_{\ell}^{n+1}$ ,
$\varphi_{8}|e_{\ell}^{n-1}=\pi_{i}\varphi_{2}\varphi_{1}$ .

Then
$\varphi_{8}\{c1[\partial g^{n+1}-e_{1}^{n+1}-e_{2}^{n+1}]\rangle=c1[\partial I^{nr2}-(l_{1}^{n+1}\cup I_{2}^{n+1})]$ .
(g) In $\partial I^{n+2}$, there is $+PLO\varphi_{4}$ ; $\partial I^{n+2}\rightarrow\partial I^{n+2}$

such that
$\varphi_{4}h^{n}=I^{n-1}\times 0\times\langle 1\times[-1,1]\}=\underline{h^{n}}$

$\varphi_{4}I_{1}^{n-1}=I^{n-1}\times 0\times 1\times(-1)$

$\varphi I_{2}^{n-1}=I^{n-1}\times 0\times 1\times 1$ .
If we choose $U(h^{\prime\prime}, \partial I^{n+2}),$ $U(\underline{h^{n}}, \partial I^{n+2})$ , there is a $+PLO\varphi_{f}$ ; $R^{n+2}\rightarrow R^{n+2}$, by

Lemma 2 such that
$\varphi_{f}|h^{n}=\varphi_{4}$ .
$\varphi_{\hslash}U(h^{n}\partial I^{n+2})=U(\underline{h^{n}}\partial I^{n\cdot f2})$

(h) Let $T_{\ell}^{n-1},$ $T_{i}^{n+1}(i=1,2)$ be $\varphi_{4}\varphi_{\theta}S_{i}^{n-1},$ $\varphi_{4}\varphi_{S}S_{\ell}^{n+1}$ , respectively. From the
above process, there is a $+PLO\psi=\varphi_{f}\varphi_{\theta}$ ; $R^{n+2}\rightarrow R^{n+2}$, such that

$\psi\partial g^{n\tau}\underline’=\partial I^{n+2}$ ,
$\psi S_{\ell}^{n+1}=T_{\ell}^{n+1}$ ,
$\psi\partial g^{n}=\partial\underline{h^{n}}$ ,
$\psi S^{n-1}=.T_{\ell}^{n-1}$ .

Since $\underline{h^{n}}$ is in the $(n-1)$ -sphere $T_{1}^{n+1}\# T_{2}^{n+1},$ $\psi^{-1}\underline{h^{n}}$ is in $S^{n+1}$ and it is a
pos tive flat connection between $S_{1}^{n-1}$ and $S_{2}^{n-1}$ . This is the very $n$ -element

which we have long been seeking for.

All these prove Lemma 4 completely.
Proof of Theorem 1. This proof is clear from Lemmas 3 and 4 and
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Definition 4.

4. Main Theorems
Under the above preliminaries, the main theorems are as follows: –

Theorem 2. If a collection { $k_{1},$ $h_{2},$ $\cdots\cdots$ , $k_{m}$) of $(n-1)$ -knot types can occur
as a collection of all $s\ell ngularities$ of $a$ 1- flat n-sphere $S^{n}(n>2)$ in euclidean
$(n+2)$ -space $R^{n+2}$ , then the product $h_{1}h_{2}\cdots\cdots k_{m}$ is one of the trivial knot
cobordism classes.

Thcorem 3. (A converse of Theorem 2).

If the poduct $k_{1}k_{2}\cdots\cdots k_{m}$ of $(n-1)$ -knot types is a trivial knot cobordism
class, then a collection $(k_{1}, k_{2}, \cdots\cdots k_{m})$ of l-flat $(n-1)$ -knot types can occur as a
collection of singularities of $S^{n}$ in $R^{n+2}$ .

The notations used in Chapter 3, will also be used in Chapter 4.

Proof of Theorem 2. Remembering that $K$ is a subcomplex of $L$, let $K,$ $L$

be partitions of $S^{n},$ $R^{n+2}$ , and $K^{\prime\prime},$
$L^{\prime\prime}$ be the second barycentric partitions of $K$,

$L$, respectively. And suppose that $p_{i}$ $(i=1,2, \cdots\cdots , m)$ are all singular points in
$M^{n}$ . From this it is clear that we can choose a polyhedron $E^{n+2}$ in $R^{n+2}$ such
that

$E_{3}^{n+2}\cup E_{4}^{n+2}\cup\cdots\cdots\cup E_{m}^{n+2}\subset E^{n+2}$ ,
$(E_{1}^{n+2}\cup E_{2}^{n+2})\cap E^{n+2}=\phi$

and $E^{n+2}$ does not disconnect $R^{n+2}$ .
Then, from [3; p. 37; 3. 22 Lemma], there is an $(n+3)$ -element $F^{\prime\prime\tau\cdot 2}\subset R^{n+2}$

disjointed from $E^{n+2}$ such that $E_{1}^{n+2}\cup E_{2}^{n+2}\subset intF^{n+2}$ .
Theorem 1, therefore, lead to making a product of [ $p_{1},$ It, $L^{\prime\prime}$] and $[p_{2},$ $K^{\prime\prime},$ $L^{\prime\prime}1$

in int $F^{n+2}$ . In the analogous way, we can make another product of this product
and [ps, $K^{\prime\prime},$

$L^{\prime\prime}$].

Repeat this method, and we can make a product of all knots, which are
$[p_{1}, K^{\prime\prime}, L^{\prime\prime}],$ $[p_{2}, K^{\prime\prime}, L^{\prime\prime}],$

$\cdots\cdots\cdots\cdots\cdots,$
$[p_{m}, K^{\prime\prime}, L^{\prime\prime}]$ .

Suppose the following:
$E^{n+2}=E_{1}^{n+2}\# E_{2}^{n+2}\#\cdots\cdots\# E_{m}^{n+2}$

$S^{n+1}=S_{1}^{n+1}\# S_{2}^{n+1}\#\cdots\cdots\# S_{m}^{n+1}$

$e^{n}$ $=E_{1}^{n}$ $\# E_{2}^{n}$ $\#\cdots\cdots\# E_{m}^{n}$

$S^{n-1}=S_{1}^{n-1}\# S_{2}^{n-1}\#\cdots\cdots\# S_{m}^{n-1}$

$\int^{n}$ $=cl[S^{n}-e^{n}]$ .
Then

$S^{\iota-\dagger}\subset S^{n+1}$ ,
$e^{n}\subset S^{n}$ , but $e^{n}\not\subset S^{n+1}$ ,
$\partial e^{n}=S^{n-1}$ ,
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and int $e^{n}$ has all singularities of $S^{n}$ .
Reference [6; p. 316; $2\delta$] illustrates that $f$ is an $n$ -element with $S^{n-1}$ as

its boundary. $f^{n}$ has no singularity of $S^{n}$ from the property of $e^{n}$ .
$E^{n+2}$ is an $(n+2)$ -element and it is flat in $R^{n+2}$ from Newman’s theorem

on homogeneity of manifolds $[3; p;32]$ . Then $E^{n+2}$ is congruent to a euclidean
$(n+2)$ -ball $V^{n+2}$ which is not a topological ball. By means of Stereographic
projection,

$\partial V^{n_{t^{j}}}\equiv R+1\cup\{\infty\}$

where $R^{n+1}$ is a euclidean $(n+1)$ -space. As the result, there is
$+PLO\varphi$ . $[R^{n+2}\cup\{\infty)]-\cdot>[R^{n+2}\cup(\infty_{J}’]$

such that
$\varphi(\partial E^{n+2})=R^{n+1}\cup(\infty)$ ,
$\varphi f^{n}\subset H^{\underline{n}+2}$,
$\varphi f^{n}$ is O-flat in $R^{n+}’,$ ,
$\varphi$ int $f\subset H^{\underline{n}+2}-R^{n+1}$ ,
$\varphi\partial f^{n}=\varphi S^{n-1}.\subset R^{n\cdot f1}$ .

All this has led to the complete proof of Theorem 2.

To prove Theorem 3.
Proposition 4. Let $S^{r-1}$ be the O-flat $(n-1)$ -sphere in $a$ euclidevn $(n+1)-$

space $R^{n+1}$ . If $p$ is a point of $R^{n+1}\times(0.\infty)$, then $E^{n}-p$ is O-flat in $ R^{n+1}\times[0.\infty$),

where $E^{n}=p*S^{n-1}$ .
Proof. Let $K_{1},$ $L_{1}$ be the partitions of $S^{n-1},$ $R^{n+}1$ , respectively, such that

$K_{1}$ is the subcomplex of $L_{1}$ and let the partition $K_{2}$ of $E^{n}$ is a partition
constructed from $K_{1}$ by the standard cone and let $L_{2}$ be a partition of
$R^{n+1}\times[0, \propto)$ containing $K_{2}$ as its subcomlex. Then all the siInlexes of $E^{n}-p$ are
either $\triangle^{r}$ $(r=0,1, \cdots , n-1)$ in $K_{1}$ or $p*\triangle^{r}$ .

Case I. The Simplex $\triangle^{r}$ in $K_{1}$

By the hypothesis, $S^{n-1}$ is O-flat. All simplexes of $S^{n-1}$ , therefore, are

non-singular.
Case II. The occasion of the Simplex being $\triangle^{r}*p$

Let $\beta$ be any point of $E^{n}-p$ and $\alpha=p\beta\cap S^{n-1}\rightarrow$ , where $\alpha$ is a vertex of the

subcomplex of $K_{1}$ . (We denote this subcomplex of $K_{1}$ by same $K_{1}$ ). Since $K_{1}$ is a
subcomplex of $L_{1}$ ,

$ Lk(\beta, L_{2})=\partial\{p*St(\alpha, L_{1})\rangle$

$\supset\partial(p*S\ell(\alpha, K_{1})\rangle$

$=St(\alpha, K_{1})\cup\{p*Lh(\alpha, K_{1})\rangle$

$=Lh(\beta, K_{2})$

Then there is $[\beta, K_{2}, L_{2}]$ .



38 HIROTARO TOKUDA

Since the knot $[\alpha, K_{1}, L_{1}]$ is trivial, on account of the hypothesis, there is
a flat $(n-1)$ -element $e^{n-1}$ in $Lkt\alpha,$ $L_{1}$ ) with $Lk(\alpha, K_{1})$ as its boundary. That is:

$e^{n-1}\equiv\triangle^{n-1}$ in $Lk(\alpha, L_{1})$ ,
where $\triangle^{n-1}$ is an $(n-1)$ -simplex. Then

$p*e^{n-1}\equiv p*\triangle^{n-1}=\triangle^{n}$ in $L_{2}$ .
where $\triangle^{n}$ is an $n$ -simplex. That is:
There is an $(n-1)$ -element $(\partial\triangle^{n}-\triangle^{n-})$ in $L_{2}$ with $\partial\triangle^{n-1}$ as its boundary.
Therefore, $[a, K_{2}. L_{2}]$ is trivial.

On the other hand, from Definition 1 and proposition 3 and its note.
$[a, K_{2}, L_{2}]=[\beta,$ $K_{2},$ $ L_{2}\rfloor$ .

Consequently, $[\beta, K_{2}, L_{2}]$ is trivial.
Since $\beta$ is any point of $p*\triangle^{r}-p$, the proof of case II is complete, which

naturally will lead to the complete proof of proposition 4.
Proof of Theorem 3. From the hypothesis of Theorem 3 will follow the

conclusion that there is an $(n-1)$ -sphere $S^{n-1}$ in a euclidean $(n+1)$ -space
$R^{n+1}\subset R^{n+2}=R^{n+1}\times(-\infty, \infty)$ , which has the knot type $k_{1}k_{2}\cdots\cdots k_{m}$. Since the 1 not

type $k_{1}h_{2}\cdots k_{n}$ belongs to the trivial knot cobordism class, there exists a O-flat
combinatorial $n$ -element $e^{n}$ in $H^{\underline{n}+1}$ with $S^{n-1}$ as its boundary, such that int $e^{n}$

is in $H^{\underline{n}+*}-R^{n+1}$ .
And the same hypothesis will lead to the conclusion $S^{n-1}$ is the connected

sum of $S_{1}^{n-1},$ $S_{2}^{n-1^{\backslash }},$

$\cdots\cdots,$
$S_{m}^{n-1}$ , each having knot types $k_{1},$ $k_{2},\cdots,$ $k_{m}$ in $R^{n+1},$ rcspecti $\cdot$

vely. We can choose all the points ps $(i=1,2, \cdots, m)$ in $R^{n+1}\times(0, \propto)$, such that
$p_{i}*S_{\ell}^{n-1}$ and $p_{f}*S_{j}^{n-1}$ are pairwise disjointed for $i\neq j$ as is clear from proposition
4. And $e^{n}=p_{i}*S_{\ell}^{n-1}$ will have the only one point $p_{t}$ as its own singularity, which
is also concluded from the same prorosinion.

On the $0$ her hand, we can choose each positive flat connection $g^{n}(i=1,2$,
... , $m-1$ ) in $H_{+}^{n+2}$, such that $g_{\ell}^{n}$ connects $e_{\ell}^{n}$ with $e_{2+1}^{n}$ in $R^{n+1}$ and that they
might be pairwise disjointed. Hence the connected sum is given below: –

$f^{n}=e_{1}^{n}\# e_{2}^{n}\#\cdots\cdots.\# e_{m}^{n}$ .
$f^{n}$ whose boundary is an $(n-1)$ -sphere $S^{n-1}$ , has points as its own singularity,
each $p$ $(i=1, \cdots , m)$ .

$e^{n}$ and $f^{n}$ are $n$ -elements with their boundary called $S^{n-1}$ and the interior
parts of the two have no point in common with each other. $e^{n}\cup f^{n}$ , therefore,

is an $n$ -sphere, according to J. W. Alexander’s theorem [6: p. 314]. In this way,
we have found our way to the conclusion that $e^{n}\cup f$“ is the very sphere which
we have long been reaching for.

And all this will give the complete proof of Theorem 3.
P. S. : At first, the trivial knot cobordism class was called nullequivalent
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by FOX and Milnor, as shown in (I), who, however, have been dis-satisfied
with this terminology. In result, FOX, in his work entitled “ A Quich Trip
Through Knot Theary”, adopted the name slice knot proposed by Edwin E.
Moise.

To my regret, however, it was after this paper was written when I met
with this terminology. And this is the reason why I used the former terminology
in this paper.
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