LINEAR FUNCTIONALS ON A BANACH SPACE WITH SEMI-NORMS
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We have given the definitions and sketched simle properties of inany
norms space in the previous paper [7], as the generalization of the Saks
space or the two norm space (see [1], [21, [3], [4], (8D In the paper, we
explained that <Z*| [*> is closed in <X,| [> and was given the conditions
of the reflexivity of <X, | |>. But, the proof of is not exact, so
is not complete also the condition of the reflexivity of <X,|||> wusing the
proposition (last theorem in [7). In the present paper, we shall give the
complete proof by the new topology (bounded mixed topology) and the condition
of the reflexivity of <X,| ||>. Moreover, we shall prove that the conjugate
space <&*,| |%| |> of the many norms space is a dual many norms space.

In §1 of the present paper, by—topology will be defined in the many
norms space <X, |,| [*> and be shown the space Hoy of the by—continuous
linear functionals is coincident with the closure of the space 5* of 7*—continuous
linear functionals. This fact was the property of the space Ey in the two-norms
space. It becomes clear in §2 the conjugate space <Z*| |I*| > is a dual
many norms space. It will be discussed in §3 make generalized in what form
in our case many properties of the biconjugate space in the two-norms space.
In §4, the y—reflexivity of the many norms space corresponds with Theorem
3.7 in §3, only will be considered. A deeper study on it must be made in
future.

§1. Topologies of a many norms space. Let X be a Banach space with
the norm | | and complete by norm topology, that is, a Banach space. Moreover,
we define that each element ¥ of X has some semi-norms Il 2. (aeA) satisfying
the conditions lx+yl:<lzl.+lyl5laxl:=lal Izl (lx]:=0 does not imply
x%=0)

The norm | %] and semi—norms | x |; (eA) have the relation

(M) | % l|=supacsl % |

By the norm ||x| of x in X, it is a locally convex, linear topological
space ; denote the topology by T.

The neighbourhoods of zero by semi-norms || x [, (axeA) are U (x5 x [, <e, =1,
2, .+, m: ail), its topology is denoted by 7% the system of the neighbourhoods
of zero by U(r*). The space X with topology 7* is a linear topological space:

(1) if UeU(v*) and XeR, Ax0, then \Ue U (7*),
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(2) if"UeU (7v*) and AeR, [N |< 1, then ANUCU,

(3) if UeU(r*), then for every xeX, there exists AeR, A0 such that AxeU,

(4) is U, VeU(r*), then there exists WeU (%) such that WcUNYV,

(6) if UeU(7*), then there therc exists VeU(7*) such that V+VcU.
Moreover, U(r*) satisfy the following condition by the assumption (M)

(6) for every xeX, x=0, there exists UeU (7*) such that xeU.

The space X with the topology 7* is incomplete. Of course, T*<r.

The space X with the norm || x| and semi-norms | x| (aeA) is denote by
<X |l I*> or <X,r,7*> in the same notation with the case of the two-
norm space and call it “many norms space”.

Many norms space has many important examples. (see [7])
We can introduce the mixed topology in a many norms space as in the

two-norm space; For each UeU(r) and for each sequence 173, U;, -« el (7%), we
shall denote by o (U}, U, ---; U) the set Ql(Um U+ U;n2U0+---+U,NnnU).

Wiweger has called this topology the mixed topology determined by
the 7 and 7*.

Mixed topology is weaker than 7 and stronger than 7* as the topology 7*
is weaker than the topology 7= (7*<7).

Both of U (), U(7*) are locally convex, so also the mixed topology is locally
convex. We shall denote by ¢—topology the mixed topology in according to
Wiweger.

We define that B is a bounded set in <X, || |> if for each UeU(r) there
exists AeR such that BCAU.

7* doesn’t satisfy the first countability axiom in general, so it is not also
in mixed topology. :

Next, if |x[: =] x| (aeA) and there exists the following condition instead
of the condition (M) between | x| (aeA) and || x |:

(DM) |xl=inf 5 2l
it will be named dual many normed space.

Condition (DM) will be used only in §3.

Under the condition (M), we have :

Proposition 1. The unit sphere || x| = 1 s closed by the v*—topology. (see
[8], p. 62). It satisfies moreover the conditions (o),(n),(d) in [8].

We have also in our case Proposition 1.5 in [2] (p. 124) or Theorem B in
[3](p. 268) which play an important réle in further discussions.

Let be &, &,, §* the set of linear continuous functionals concerning T,, 7*

on X, so it will be o &yD&E*.
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Theorem 1. The set Y={E;Ee=* |E| < 1} is norming; that is, | x|=sup
{&(x); EY') for each x.

Proof. We take any %, (|| %0||=1),¢>0,S={x;| x|| < 1} is convex, symmetric,
T*—closed. 5* is a linear topological space and (1+¢)%, is not in S, so there is a
EeZ* such that
<1 for xeS,

£ (x) {
=1 for x=(1+¢) x,.
by in [5] (p.21, Mazur’s theorem in a topological space)
|E(x)| <1 for | x| =< 1, therefore | ] < 1, that is, E€Y.

In the other hand,

E(x0)= ”1’-?5” = 1_1‘_5 , and ¢ is any positive nu nber.

So, it will be sup {§(x); &Y }=1.

‘Proposition 2. If the sequence {x.)} converges to x by v*—topology, then
the set {x.} is norm bounded ; | x| < K (see [7]).

By the proposition, we shall introduce in X another topology: if ENnA is
closed in y—topology for each norm bounded set A, then E will be called by—
closed. This topology will be called bounded mixed topology or bounded -
topology (by—topology).

7*—topology is identical with ¢—topology for bounded set by proposition
2.2.1 in [8]. Therefore, 7*—topology, «v—topology or by—topology are coincident
in bounded set.

Let E»y be the set of by—continuous linear functionals.

From the relation 7*<, it follows T™*<y=<7([7], p.3) and moreover, T™*=
y<by=<t. Let E* Ey,5,y,5 be the set of the linear functionals continuously
concerning T*,, by, 7—topology respectively. And, there is the following inclusion
relations between these four spaces; E*CEyCHyyCE.

The closure of the space £* is Ey in the two norms space. This property
has important meaning in the reflexivity in the two norm space. In our case,
it has no this property in Zy, because there exists no the first countability
axiom in 7*. The space which takes the place of it in many norms space will
be Eb-y.

Lemma. Let H be a linear closed subset of <X, | | >, and x,e¢ H, then
there exists a constant A such that heH,|Axo+h| <1 imply |h| < A. (see [2],
Lemma 4.1)

Theorem 2. by-—lnear functionals £ in <X, | |, | I*> #s represented by
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£ (x)=lim &, (%),
n—po
where E,(x)eE* and |Ex—E|| > 0.

Proof. It suffices to consider only non-trivial functional £. Let H be the
null-set of &, let E(x0)=1. Zn=HNS,(Sa=(x:||x||<n) is closed in <X, | |*>
(see Theorem 3.2, (2])). This set is convex, symmetric and x¢e Zy. There exists
{n (%) eE* by the Mazur’s theorem in a topological space (see (5]) such that

<l/n xeZn,
Cn () {

=1 X=X
Then, |[{a(x)| <1/m for xeHNS,=Z2,.
We set &, (%)=E (x)—&n (%), sO
<1l/n for xeZy
| En (%) {

x is any clcmeﬁt such that x| =< 1, from lemma |k|< A, x=h+\%, heH, so
h/A EZ;.’ Then |En(x)| = |Enth)| =A|Ex(B/A)| S A/n. It follows |Enl S A/n.
Thus, we have & (x)=lgn En(x).

=0 for x=x,.

Proposition 3. If {E.(x))eE*, ,}fgf" (X)=E(2) (| Ea—E | = 0) im <X, | |, || [*>,
then E(x) is a by—Iinear functional.

Proof. It is clear that £(x) is an additive, homogeneous functional. Let
| 2| < K, zero be an accumulation point of {x},&a(x)e5* and taken # such as
| En—Ell<e/2k, so there exist aicA, ||, < 8(7=1,2,--,m) and ||x|| < K, |E-(x)| <
¢/2 . Therefore,

EWISEn(n)] +1E—5 @) S (@) + K| Ea—E| <55 =c.

Thus, we have the extension in our case of Theorem A in [3).

Theorem 3. ZEb.y is coincident with the closure of E* in <Z, | |>.

Next, we shall consider the similar property concerning Zy.

Let Uy (o) be a neighbourhood of &; in £y, in accordance with the set (£;
|E(x)—Eo(x)| <e, for an element x of y—bounded set S)

Proposition 4. If elements {En} sequentially converge to £ by the topology,
then & belongs to Ey.

Proof. We shall be proved at first the additivity and homogeneity of § (x)
=lim &a(x) by the above topology. Given a y—bounded set S containing x, y
ann(T;+y, there exists NN such that for n>N;,

|En () =& (2)| <e/4, |En(9)—E(9)| <e/4,|En (%) +En (9)—E (x)—E (¥)| <e/2.
But, as &, is linear, &, (x+y)=E&n (x)+£. (¥), and
|En (x+y)— E(x+3)| <e/2,m>Ns, x+ye S.
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Thus, it will be the relation for #> max (N;, N;)=N,
|E (x+y)—E (%) (y) <.
Next, taken ¢>0 and y—bounded set S containing ¥ and ax so there
exists N, for n>N
| En (x)—& (2)]| <e/2] a],
| En (ax)—& (ax) | <e/2.
But, af.(x)=E.(ax), so

& 13
| aE (x)—E (ax) | <gtg=e

For a neighbourhood by y—topology U, and xeU,, there exists N such
that for any n>N
| En (x)—E(x) | <&/2,
EneE* implies Enefy, so we take a neighbourhood U’ such th‘at U'cUy for xeU’,
|En (%)| <e/2,

[E@) < |Enix)| + 1En(2)—E (%) ] <i2+%-=e.

Thus, we have & (x) is v—continuous.

§2. Conjugate space of many norms space. Because the topology (T%—
topology) defined by semi-norms | x|;(xer) in a many norms space is weaker
than the norm topology (r—topology), the set E* of T*—continuous linear
functionals.

We can define the norm | €| to each element £ of E*¥CZ, moreover can
introduce semi-norms || £ (aed) to xeE* as follow; for Ee=* let |E[. be the
infimum of K; |£(x)|< K| x|, for x such as | x|, 0. By this definition |&|.
(ated) are semi-norms; in fact for | x|, =0,

|Ev(2)+E (%) | S |E ()| + |E2(x)], |@E (%) =|allE ()

From these inequality or equality, | E,+&: | < || &, | + | &Il aEll =]all|&] and | £
=0 does not imply £=0.

Otherwise, in §1 of this paper, we have defined the dual many norms
space. We shall prove in the next theorem each element & in the dual space
E* of a many norms space satisfies the condition (DM).

Theorem 4. If X is a many norms space, itls conjugate space Z* is a dual
many norms space.

Proof. It is clear .that ||%|. < (x| implies |E]. =|&|. We shall prove
| Ell=infee, | E.. From the fact that | %] = supa., )| x[: for each element x of a
many norms space, there exists an a@=a (%) such that x| +:< [ x|, <|x] where
| x2ll2x0. So, we have the relation

IE@I=NEN 2N < (Hxla+e) | E (1)
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In general, for each x, | x|, % 0,

LE@ | =IENL =12 (2)

The supremum of the left side of (2) for all x such as | x| is constant
for fixed « is equal to the right side. Then, there exists x (| x|, % 0) such that
for any >0

TELN 21z <[E(®)] +e ~ (3)

We take as x in (1) ¥ satisfies the relation (3) and a (x) for new x, so

Tl 2l <IE@) | +e = ([xli+)IE] +e.

el < [El+elELy &

Hxl] (4)

M=

lx|l; >0 and & are constant, so | £| is also constant. We take the last two terms
of (4) is easily small, then it concludes |&|=infs | E|:. Thus, £* is a dual
many norms space.

Given a many norms space <X, | {, | [*>, the space <&*| [* | |I> will
be called v—conjugate space to <X, | ||, | [*>

Example 1. Let X be the space I* of sequence X¥={#;} of real numbers
such that thi <oo. The topology 7 is defincd by thc norm leli—(ZIti 2)1/2,
and the topology 7* is defined by the semi-norms | v|,= (th, 2072 (n= 1 2 ) It
is clear that these norm and semi-norms | x| (ced) satlsty the condition (M)
The linear functionals are also in 22 and £e 2 is £={s.},

sy - 3|t
€ (le = =hSt | 81 !2)1/2<1+J__=_EL___>1/2
EZS S%l! vz =1 1§1| e
Then,
AP v
sup-LEWL < g (14 =2 ) o g el

I=T S0P

Thus, we have [Ef=<|EIL Z[E(1+en), (a0 as n—0)

Therfore, inf | E|; = | E|.

Example 2. Let T be a completely regular Hausdorff space. Let X be
the space C*(T) of bounded, real-valued, continuous functions x=x(¢f) on T.
Let {Ta}acs be a family of compact subsets of T such that U T,=7. The

aed
topology 7 is defined by the norm |x|= sup teT |20, and the topology 7* is
defined by the semi-norms || x |, =sup teT, |x(2)]. It is clear |x|.=<|x|, and

sup | x[.=[xll. The general form of a linear functional £e& is & (x)=f, x(t) dg(¢)
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where g(#) is a function of bounded variation on T, and | £|= var. 7 g(?).

HEET= j‘“” Bl 1.z [ 1dgwiat |xI.Z1 £l -1

€71z =sup [ 1O - dgie) - I

Therefore, there exists x such that for any ¢>0,

1ELIxl—s < [ 200 gy 21

(M

VEIL Ixi—ex [(+a) dg@)) - x1;

1Ele———p—= 1 Ell(1+¢)

% li'
* < e
Thus, inf,, | EI = | €]l
By similar method as we can prove

Corollary. The conjugate space of a dual many norms space is a many
norms space. :

Thus, <&* | |* | | > is a dual many norms space and the relation of
two topologies is T*=7, so we can define the y—topology in it.

Propesition 5. Z* is closed concerning v —topology of a conjugate space.

Proof. Let &, is also an accumulation point by the topology 7 and set
E—EUy where Uy is a neighbourhood of zero by y—topology. For a neighbour-
hood U, of 0 by 7—topology, there exists Uy such that UycU,. So, for any
08>0, there exists £ such as | E—§,|<38.

[Eo(x) <& (x)—&o(x) 4+ E(x)] (1)
[E(x)—Eox) | = IE—&ol | 2] <3 =t (2)

By ||| =supac. il %], there exists a, such that jx| —6</|xl,. And &
being contained in &* is 7*—continuous. Therefore, there exists x, [x 1, <3 (Z=1,
2, .-, m) such that /

E(x)i<e/2 (3)

Thus, we take x such as [|x{,,<8(¢=0,1,2,---,n), from (1), (2) and (3)

|Eo(x)| S O (| x)lsy+8)+c/2=818+8)+¢/2

we take 8= *’z? s0 |Eo(x)] < e.

It is easily proved &, is an additive, homogeneous functional, so EyZ*.
Thus £* is closed in y—topology.
This proposition is correspond with Proposition 2.1 in [7].




)

20 MASAE ORIHARA

E* 15 closed in v*—topology.

§ 3. Biconjugate space. Given a many norms spaee <X, | |, | [*>, the
space <Z*, || ||, || [> is a dual many norms space by [Theorem 4, and it will be
called the y—conjugate to <X, | |, | [*>. ‘

Let us denote by <X, | |[> and <X*, | [*> the spaces conjugate to <&,
I 1> and <&*, || |*> respectively. So,

Igll =Sup {|£(E)]; &eE, |E| =1} for reX.
lele =Sup {1t (8)]; &€&, |E. = 1,11E]:%0} (axed) for geX*.

Next, let us denote by <z, | [> the space conjugate to <&*, || | >; the

- norm is equal to

lell =Sup {1t (&)|;EE*NE, || = 1).
We have corresponding to Proposition 2.2 in ,
Proposition 6. The space <X, | | > is identical with the space conjugate
o <Ey, | [|> or <&y, | | >.

Proof. The space <&y, | |> is identical with the closure of the set <&%,
| I> by Theorem 3. Moreover,
EyyDEyDE*
the closure of <&y, || |[> is also identical with it of &,y. Thus, we have the
proposition.
<X, | I, I *> is yy—conjugate to <&*, | |*, | |>, whence it is the second
7—conjugate to <X, | |, | [*>.

Proposition 7. Xy be a set of y—linear functionals on <E* || |*,||>. The
set <X* | |* | |> being a dual many norms space, the set Xy is identical with
the closure of X in <X, || |*>.

Proof. Let zeX, r—g, € U(r¥), that is, [r—1to, <¢ for suitable a; (£=1,
2., n)

@I =1 @) -t @I+ ®] (1)
reXYCX,|p(E) <e/2 for | E., < 8(§=1,2,---,m) and 1o, 8:<1/2 there exists Qny1,
LEE) 2@ S lt—2olapy 1§ apypy <25

Thus the right side of (1) is

lEE)—to )] + ()| = 2l +e/2<0e+e/2< ¢,

Proposition 8. Let <X, | |, | I*> be a many norms space. Then, the y—
canonical mapping embeds <X, || ||, | I*> into <X, || |, || |I*> with the preserva-
tion of both | | and || |*, that is, |r-| = x|, | rz{*=|| x|* for xeX, r: e X,

Proof. By

|7z ll=sup {|E (%) |; EeE*, | E| = 1) =] x|.
and by the definition of semi-norms | | (xeA) in X*
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7z lz = sup {|& (x)[; EeZ%, [ E =1} = | x| (cxeA).

§4. 7v—reflexive many norms space. A many norms space <X, | [, | [*>
is called y—reflexive if the v—canonical mapping embeds <X, | |, || I*> on (X,
I I, || ¥> or equivalently, if each linear functional on <Z&y, || || > is of the form

t(E)=E (x) with xeX.

In our case, as in [3], the space conjugate to X with the topology o (X, &y)
is equal to &y. This is realization of (Theorem B in [3]) in our
case, we have also as in [3], §3.

Theorem 5. A many norms space <X, | |, | |*> #s y—reflexive if and
only if the unit sphere S is compact in the weak topology o (X, Zv)
We have also the the theorem corresponds to Theorem 3.7 in [3].

Theorem 6. Let <X, || |, | |*> be a many norms space, then the following
conditions are equivalent;

(1) <X, I, | I*> #s y—reflexive and Epy =3,

(2) <X, | > is reflexive.

Proof. The set Zpy is closed in <&, | |[> by Theorem 3 and it is also
total with respect to X since &* is total by

By the definition of reflexivity, any closed total subset of the space &
(Dixmier [6], p. 1061). Thus, we have &,y=5. Let ¢ be a linear functional on
<&y, | [>; by the reflexivity of <X, | |> and Z,y=5, ¢ is of the form g(§)=
E (x) with an %eX, which means that <X, | |, | [*> is y—reflexive and that Zyy
=&. Then the space conjugate to <&, || > and <&, || | > are identical,
whence <X, || [> must be reflexive.

. . . . . ve . o . . ‘e . . .o .
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