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Let $E$ be a locally convex topological linear space over the real $nu$mber-
field. Throughout of this paper, we denote by $G$ an open subset, by $G$ the

closure of $G$ and by $\partial G$ the boundary of it.
A continuous mapping $F$ of $\overline{G}$ in $E$ is said to be completely $\omega n\ell inuous$ if

there exists a compact set $K$ such that $F(\overline{G})\subset K$.
Several fixed point theorems have been proved for a completely cont nuous

mapping $F$ of $\overline{G}$ in $E$. Schauder’s theorem [9], which was generalized by

Tychonoff [10], Hukuhara [5] and others into the case of locally convex linear

spaces, asserts that the mapping $F$ has a fixed point in $\overline{G}$ if

(S) $\overline{G}$ is convex and $F(\overline{G})\subset\overline{G}$ .
Rothe’s theorem [8], being a generalization of the Schauder’s theorem, asserts

that, when the space $E$ is a Banach space, the mapping $F$ has a fixed point in
$\overline{G}$ if
(R) $\overline{G}$ is a closed ball and $F(\partial G)\subset\overline{G}$ .
It is easy to see that this theorem is valid even in the case of a completely

continuous mapping $F$ of a convex closed set $\overline{G}$ contained in a locally convex

linear space $E$. Altman [1] proved a more general theorem by replacing the

condition (R) by
(A) $\Vert F(x)-x\Vert^{2}\geqq\Vert F(x)\Vert^{2}-\Vert x\Vert^{2}$ for every $x\in\partial G$ .

Therefore, in the case of the completely continuous mapping $F$ of the

closed ball $\overline{G}$ in a Banach space $E$, the Altman’s theorem may be regarded as

the most general form of the fixed point theorems. Altman proved this theorem

by making use of some properties of the mapping degree, but the propert es

seem not to be used out. If we use up these properties, we get more general

results which moreover contain the case that $0$ is not necessarily an inner point

so as to be a generalization of theorems of Schauder and $Rothe:-$

Theorem 1. Let $F$ be a completely continuous mapping of $G$ in E. If there

exists an element $a\epsilon G$ such that
(I. 1) if $F(x)=\alpha x+(1-\alpha)a$ for some $x\epsilon\partial G$ then $a\leqq 1$,

then the mapping $F$ has a fixed point in $\overline{G}$ .
The proof of this theorem will be given in \S 2. This is more general than



6 SADAYUKI YAMAMURO

the Rothe’s theorem, because, when $G$ is convex, the condition (I. 1) follows from
the condition (R) for any inner point $a\epsilon G$.

As a special ease of Theorem 1, we get
Corollary 1. Let $F$ be a completely continuous mapping of $\overline{G}$ in $E$ and

suppose that $ 0\epsilon$ G. Then the mapping $F$ has a fixed point in $\overline{G}\iota f$ the following
condition is satisfied:
(I. 2) If $F(x)=\alpha x$ for some $x\epsilon\partial G$ then $\alpha\leqq 1$ .

It is this corollary that generalizes the theorem of Altman in which the
assumption that $0\epsilon G$ is indispensable. It is easy to see that the condition (A)
implies the condition (I. 2).

As an application of this corollary we will prove in \S 3 the following
theorem which is a generalization of the Birkhoff-Kellogg theorem [2]:

Theorem 2. Let us assume that $0\epsilon G$ and $\partial G$ is a retract of G. If, for a
completely continuous mapping $F$ of $\overline{G}$ in $E$, there exists a number $\lambda$ such that
(II) $\lambda F(\partial G)\cap\overline{G}=\phi$,
then the mapping $F$ has at $ kas\ell$ one proper value.

By Dugundji [4] it was proved that, in case the $E$ was a infinite-dimensional
Banach space, the surface of the unit ball was a retract of the closed unit ball.
The reason why this theorem is a generalization of the Birkhoff-Kellogg theorem
will be explained in \S 3.

In \S 4, we prove the fbllowing theorem which may be regarded as com-
plementary with Theorem 1.

Theorem 3. Let $F$ be a completely continuous mapping of $\overline{G}$ in E. When
the space $E$ is $fi\dot{m}\ell e$-dimensional and $G$ is bounded the mapping $F$ has a fixed
point in $\overline{G}$ if the following conditiOn is $sa\ell\dot{\prime s}fied$ :
(III. 1) There exists an element $a\epsilon G$ such that if $F(x)=\alpha x+(1-a)a$ for some

$x\epsilon\partial G$ then $a\geqq 1$ .
When thc space $E$ is infinnite-dimensional and $G$ is finitely bounded, the mapping
$F$ has a fixed point in $\overline{G}$ if the following condition is satisfied:
(III. 2) The $re$ exist an element $a\epsilon G$ and a neighbourhood $U$ of $0$ such that if

($F(x)-(ax+(1-a)a)\epsilon U$ for some $x\epsilon\partial G$ then a) 1.
As a special case of this theorem, we get
Corollary 2. Let $F$ be a completely continuous mapping of $\overline{G}$ in $E$ and

suppose that $ 0\epsilon$ G. When the space $E$ is finite-dimensional and $G$ is bounded
the mapping $F$ has a fixed point in $\overline{G}$ if the following condition is satisfied:
(III. 3) If $F(x1=ax$ for some $x\epsilon\partial G$ then $a\geqq 1$ .
When the space $E$ is infinite-dimensional and $G$ is finitely bounded the mapping
$F$ has a fixed point in $\overline{G}$ if the following condition is satisfied;
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(III. 4) There exists a $ne\dot{t}ghbourhoodU$ of $0$ such that, $\iota f$

$F(x)-ax\epsilon U$ for some $X\epsilon\partial G$ then $a\geqq 1$ .
As an application of Theorem 1 and Theorem 3, we prove in \S 5 the

following theorem.
Theorem 4. Let $E$ be, moreover, a vector lattice and the linear topology

of $E$ be compatible with the lattice structure. Let $\mathfrak{F}$ be a family of completely
continuous mappings $F$ of $\overline{G}$ in $E$ such that $F(\overline{G})\subset K(F\epsilon \mathfrak{F})$ for the same compact
set $K$.

(1) If
$F(x)\geqq x$ for any $x\epsilon\overline{G}$ and any $F\epsilon \mathfrak{F}$,

and, for any finite number of $F_{\ell}\in \mathfrak{F}(i=1,2, \cdots, n)$, the mapping
$F(x)=F_{1}(x)\cup F_{2}(x)\cup\cdots\cup F_{n}(x)$

of $\overline{G}$ in $E$ satisfies one of the conditions (I. 1.), (III. 1) (in case $E$ is finite
dimensional and $G$ is bounded and (III. 2) (in case $E$ is infinite-dimensional and
$G$ is finitely bounded) then the family $\mathfrak{F}$ has a common fixed point in $\overline{G}$ .

(2) If
$F(x)\leqq x$ for any $x\epsilon G$ and $F\epsilon \mathfrak{F}$ ,

and, . or any fin$zte$ number of $F_{\ell}\in \mathfrak{F}$ ($i=1,2,$ $\cdots$ , n) the mapping
$F(x)=F_{1}(x)\cap F_{2}(x)\cap\cdots\cap F_{n}(x)$

of $\overline{G}$ in $E$ satisfies one of the conditions stated above, then the family $\mathfrak{F}$ has a
common fixed point in $\overline{G}$ .

Before proceeding to the proofs of these theorems, we give in \S 1 some
remarks on the notion of the mapping degree.

\S 1. The Mapping Degree.
This notion, originally due to Brouwer [3], was defined by Leray [6] and

Nagumo [7] for the completely continuous movements acting on locally convex
linear spaces.

Let the mapping $F$ be completely continuous on $\overline{G}$ . The mapping
$f(x)=x-F(x)$

is called a conpletely continuous movement on $\overline{G}$ . Let us assume that a $tf(\partial G)$,
then the mapping degree $d(a, G,f)$ of $G$ at $a$ by the completely continuous
movement $f$ is defined and has the following properties:
(D. 1) When $f(x)\equiv x$ on $\overline{G}$, then $d(a, G,f)=1$ if $a$ $\epsilon G$ and $d(a,g,f)=0$ if a $i\overline{G}$ .
(D. 2) If $d(a, G,f)\neq 0$, then $f(x)=a$ for some $x\epsilon\overline{G}$ .
(D. 3) Let $H_{t}(x)$ be a mapping of $\overline{G}\times[0,1]$ into $E$ such that it is continuous
with respect to $(x, t)\epsilon\overline{G}\times[0,1]$ and the range is contained in a compact set.
Then, for the mapping $h_{\ell}(x)=x-H_{t}(x)$, the mapping degree $d(a, G, h_{t})$ is constant
if a $i^{h_{t}}(\partial G)$ for any $t\epsilon[0,1]$ .
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In this paper, we need only these three properties. For the details and

the other properties, we refer the reader to Nagumo [7].

\S 2. Proof of Theorem 1.
Let $F$ be a completely continuous mapping of $\overline{G}$ in $E$. Suppose that there

exists an element $a\epsilon G$ such that the condition (I. 1) is satisfied. Put
$G_{a}=G-a=(x-a:x\epsilon G)$ ,

then the set $G_{a}$ is open, $\overline{G}_{a}=\overline{G}-a$ and $\partial G_{a}=\partial G-a$. Define the mapping $F_{a}(y)$

for $y\epsilon\overline{G}_{a}$ by
$F_{a}(y)=F(x)-a$ for $y=x-a$,

then the mapping $F_{a}$ is obviously continuous on $\overline{G}_{a}$ and $F_{a}(\overline{G}_{a})\subset K-a$ where the

set $K-a$ is compact. Consider the compact deformation:
$h_{t}(y)=y-\ell F_{a}(y)$ for $y\epsilon\overline{G}_{a}$ and $t\epsilon[0,1]$ .

Since $h_{0}(y)\equiv y$ and $0$ is an inner point of $G_{a}$ , we have $d(a, G, h_{0})=1$ . Therefore,

if $0\ell h_{t}(\partial G_{a})$ , we get $d(O, G_{a}, h_{1})=1$ from which it follows that there is an element
$y\epsilon\overline{G}_{a}$ such that $F_{a}(y)=y$ .

Now, suppose that
$h_{t_{O}}(y_{0}1=0$, namely, $y_{0}=\ell_{o}F_{a}(y_{0})$

for some $y_{0}\epsilon\partial G_{a}$ and $t_{o}\in[0,1]$ . Since $y_{0}\epsilon\partial G_{a}$ and $0i\backslash $ an inner point of $G_{a}$ ,

the number $t_{o}$ is not zero. Putting $a=1/t_{o}$ , we get
$F_{a}(y_{0})=\alpha y_{0}$ , namely, $f(x_{o})-a=\alpha(x_{o}-a)$

where $y_{0}=x_{o}-a$ . From this it follows that $F(x_{o})=\alpha x_{o}+(1-a)a$. The condition
(I. 1) implies that $\alpha=1$ , namely, $t_{o}=1$ . Therefore, in any case, there exists an

element $y$ in $\overline{G}_{a}$ such that $F_{a}(y)=y$, from which it follows that $F(x)=x$ for

$x=y+a$ .
\S 3. Proof of Theorem 2.

Let $r(x)$ be the retraction, namely, $r(x)$ is a continuous mapping of $\overline{G}$ into
$\partial G$ and $r(x)=x$ for any $x\epsilon\partial G$ . From the condition (II), it follows that

$\lambda F_{o}(\overline{G})\cap\overline{G}=\phi$ where $F_{o}(x)=F(r(x))$ .
The mapping $\lambda F_{o}$ is a completely continuous mapping of $\overline{G}$ in $E$, and has no

fixed points in $\overline{G}$ . Therefore, by Corollary 1, we see that there exists a number

$a>1$ and an element $x_{o}\epsilon\partial G$ such that

$\lambda F_{o}(x_{o})=\alpha x_{o}$ .

Since $\lambda\neq 0$, we have $F_{o}^{(}x_{o}$ ) $=\frac{a}{\lambda}x_{o}$ , from which it follows that

$F(x_{o}1=\frac{a}{\lambda}x_{o}$ ,

because $F_{o}(x_{o})=F(r(x_{o}))=F(x_{o})$ .
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Remark. Let $E$ be a Banach space and $\overline{G}$ be the closed unit ball. Suppose
that

inf $(\Vert F(x)\Vert:x\epsilon\partial G$ } $=\mu>0$.
Then, for a number $\lambda$ such that $\lambda>\frac{1}{\mu}$ , we have the condition (II). Therefore,
combining with a result of Dugundji [4], we see. by Theorem 2, that the
mapping $F$ has a proper value. This is the Birkhoff-Kellogg theorem in the
case of Banach spaces.

\S 4. Proof of Theorem 3.
Let us consider in the first place the case when $E$ is finite-dimensional. As

in the proof of Theorem 1, we consider the set $G_{a}$ and the mapping $F_{a}$ . Let us
consider the continuous deformation:

$h_{t}(y)=(2t-1)y-tF_{a}(y)$ for $y\epsilon\overline{G}_{a}$ and $t\epsilon[0,1]$ .
Since the space $E$ is assumed to be finite-dimensional, we can consider the
mapping degree $d(0, G_{a}, h_{t})$ if $0\phi h_{t}(\partial G(l)$.

At first, since $0\epsilon G_{a}$ , we see easily that $0fh_{o}(\partial G_{a})$ and $d(0, G_{a}, h_{0})\neq 0$.
Next, suppose that $0\epsilon h_{t_{O}}(\partial G_{a})$, namely,

$(2_{t_{O}}-1)y_{0}=\ell_{o}F,$ ( $y_{0}1$ for $y_{0}\epsilon\partial G_{a}$ and $\ell_{o}\epsilon[0,1]$ .
Since $y_{0}\neq 0,$ $t_{o}$ is not zero. Therefore, putting $\alpha=2-\frac{1}{t_{o}}$ , we get

$F_{a}(y_{0})=\alpha y_{0}$ and $\alpha\leqq 1$ .
By the definitions of $F_{a}$ and $y_{0}$ , we get, for $x_{o}=y_{0}+a$,

$F(x_{o})=\alpha x_{o}+(1-\alpha)a$ .
Therefore, by th $e$ condition (III. 1), we have $\alpha=1$ , namely, $F(x_{o})=x_{o}$ .

Finally, suppose that $0\{h_{t}(\partial G_{a})$ for any $t\epsilon[0,1]$ . Then, we have $d(O, G_{a}, h_{1})$

$\neq 0$ and $h_{1}(y)=y-F_{a}(y)$ . Therefore, there exists an element $y_{0}\epsilon\overline{G}_{a}$ such that
$F_{a}(y_{0})=y_{0}$ . Taking $x_{o}=y_{0}+a$ , we get $F(x_{o})=x_{o}$ .

Thus, in any case, the mapping $F$ has a fixed point in $\overline{G}$ .
Next, let us consider the case when $E$ is infinite-dimensional. Let $\mathfrak{U}$ be

the totality of all neighbourhoods of zero. We start by the following
Lemma. If, for any $V\epsilon U$ , there exists an $x_{V}\epsilon\overline{G}$ such that

$x_{V}-F(x_{\grave{V}})\epsilon V$,
then there exists at least one $x\epsilon\overline{G}$ such that $F(x)=x$ .

Proof. Putting $y_{V}=F(x_{V})$ , let us consider the sets:
$A_{U}=\langle y_{V}$ : $V\subset U,$ $V\epsilon \mathfrak{U}$ } for every $U\epsilon \mathfrak{U}$ .

Since the sets $A_{U}(U\epsilon U)$ are contained in the compact set $K$, there exists an
element $y_{0}\epsilon E$ such that
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$y_{0}\epsilon\cap\langle\overline{A}_{U}$ : $U\epsilon \mathfrak{U}$ }.
At first we prove that $y_{0}\epsilon\overline{G}$ . Take an arbitrary $U_{0}\epsilon U$ and take a $U_{1}\epsilon U$ such
that $U_{1}+U_{1}\subset U_{0}$ . Since $y_{0}\epsilon\overline{A}_{U_{1}}$ , there is a $U_{2}\subset U_{1}$ such that

$y_{U_{2}}-y_{0}\epsilon U_{1}$ .
On the other hand, $x_{t_{2}}\cdot-y_{U_{2}}\epsilon U_{2}$ . Therefore, we have

$x_{U},-y_{0}=(x_{U},-y_{U_{2}})+(y_{U_{2}}-y_{0})\epsilon U_{2}+U_{1}\subset U_{1}+U_{1}\subset U_{t)}$ ,
namely, for any $U_{0}\epsilon \mathfrak{U}$, there exists an $x\epsilon\overline{G}$ such that

$x\epsilon y_{0}+U_{0}$.
which means that $y_{0}\epsilon G^{=}=\overline{G}$ .

Now, since $F$ is continuous at $y_{0}$, for any $U_{0}\epsilon U$, there exist a $U_{1}\epsilon \mathfrak{U}$ and a
$U_{2}\subset U_{1}$ such that

$U_{1}+U_{1}\subset U_{0}$ and $F(x)-F(y_{0})\epsilon U_{1}$ if $x-y_{0}\epsilon U_{4}$ .
Take a $U_{l}\epsilon \mathfrak{U}$ such that $U_{8}+U_{S}\subset U_{2}$ , then, since $y_{0}\epsilon\overline{A}_{U_{3}}$, there is a $U_{4}\epsilon U$ such
that

$U_{4}\subset U_{8}$ and $y_{U_{4}}-y_{0}\epsilon U_{8}$,
hence it follows that

$F(y_{U_{4}})-F(y_{0})\epsilon U_{1}$ .
Thercfore, we have

$y_{0}-F(y_{0})=(y_{0}-y_{U_{4}})+(y_{U_{4}}-F(y_{U_{4}}))+(Fy_{U_{4}})-F(y_{0}))$

$\epsilon U_{8}+U_{4}+U_{1}\subset U_{2}+U_{1}\subset U_{1}+U_{1}\subset U_{0}$ .
Since $U_{0}\epsilon u$ is taken arbitrarily, $y_{0}=F(y_{0})$ .

Now, let us return to the proof of Theorem 3. Take the $U\epsilon U$ and the
element $a\epsilon G$ in the condition (III. 2). Take a $V\epsilon \mathfrak{U}$ such that $V\subset U$. Then,

there exist a finite-dimensional linear subspace $E_{\gamma}$ of $E$ and a continuous
mapping $S_{V}$ of $K$ into $E_{V}$ such that

$S_{V}(x)-x\epsilon V$ for every $x\epsilon K$.
Considering the relative topology on $E_{V}$ , the set $G_{V}=G\cap E_{V}$ is an open se $t$ which
can be assum $ed$ to contain the element $a$ and $S_{V}\lfloor F(x)$] is a bounded continuous
mapping of $\overline{G}_{V}$ in $E_{V}$ . We will prove that the condition (III. 1) is satisfied by

the mapping $S_{V}[F(x)]$ . (The set $G_{V}$ is bounded, because $G$ is finitely bounded.)

Suppose that
$S_{V}[F(x_{0})]=\alpha x_{0}+(1-\alpha)$ $a$ for some $x_{0}\epsilon\partial G$,

then, by the abovc mentioned property of $S_{V}$ , we have
$F(x_{0})-(ax_{0}+(1-a)a)=F(x_{0})-S_{V}[F(x_{0})]\in V\subset U$,

and $x_{0}\epsilon\partial G_{V}\subset\partial G$ . Therefore, by the condition (III. 2), we have $\alpha\geqq 1$ . Hence,

by making use of the upper half of Theorem 3, it follows the existence of a
fixed point $x_{V}$ of $S_{V}[F(x)]$ in $\overline{G}_{V}$ :
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$S_{V}[F|x_{V})]=x_{V}$ and $x_{V}\epsilon\overline{G}_{V}\subset\overline{G}$ .
Therefore, by the lemma proved above, we get the existence of an $x_{o}\epsilon\overline{G}$ such
that $F(x_{o})=x_{o}$

Remark. From Corollary 1 and Corollary 2, we can conclude that, in the
case of finite-dimensional $E$, if the mapping $F$ has no fixed point in a bounded
$\overline{G}$ , then $F$ has at least two proper values, one of which is greater than 1 and the
other is smaller than 1. In the infinite-dimensional case, if we say that the

number $a$ is a U-almost proper value with respect to $\partial G$ when $F(x)-\alpha x\epsilon U$ for
a point $x\epsilon ac$ , we can conclude that, if $F$ has no fixed points in a finitely
bounded $\overline{G}$ , then $F$ has at least one proper value which is greater than 1 and
at least one U-almost proper value which is smaller than 1. In both cases, the
corresponding proper vectors are on $\partial G$ .
\S 5. Proof of Theorem 4.

At first we give some remarks on the lattice properties of $E$.
1. Since $E$ is assumed to be a vector lattice, for any pair of elements $x$ and $y$,

there are defined the $\dot{jO}inx\cup y$ and thc meet $x\cap y$, namely,
$x\cup y\geqq x,$ $y$ $(x\cap y\leqq x,y)$

and
$z\geqq x,y(z\leqq x,y)$ implies $z\geqq x\cup y(z\leqq x\cap y)$ .

2. Since the topology of $E$ is assumed to be compatible with the lattice stucture,

the mapping
$(x,y)\rightarrow x\cup y$, $(x,y)\rightarrow x\cap y$

are continuous as the mappings of $E\times E$ into $E$. This implies that the sets ( $x\cup y$ ;

$x,y\epsilon K)$ and ($x\cap y:x,y\epsilon K$ } are compact, and hence it follows that, for comple-

tely continuous mappings $F_{1}(x)$ and $F_{2}(x)$ of $\overline{G}$ in $E$ such that $F_{i}(\overline{G})\subset K(i=1,2)$

for the same compact set $K$, the mappings $F(x)=F_{1}(x)\cup F_{2}(x)$ and $ F(x)=F_{1}(x)\cap$

$F_{2}(x)$ are completely continuous on $\overline{G}$ .
Now, let us proceed to the proof of thc first half of the theorem. At first,

we prove that every subfamily of $\mathfrak{F}$ has a common fixed point. Take $F\in \mathfrak{F}(i=$

$1,2,$ $\cdots$ , n) and consider the completely continuous mapping
$F(x)=F_{1}(x)\cup F_{2}(x)\cup\cdots\cup F_{n}(x)$

of $\overline{G}$ in $E$. Then, by the assumption, there exists at least one $x_{0}\epsilon\overline{G}$ such that
$F(x_{0})=x_{0}$ . Hence it follows that

$0=x_{0}-F(x_{0})=x_{0}-(F_{1}(x_{0})\cup F_{2}(x_{0})\cup\cdots\cup F_{n}(x_{0}))$

$=(x_{0}-F_{1}(x_{0}))\cap(x_{0}-F_{2}(x_{0}))\cap\cdots\cap(x_{0}-F_{n}(x_{0}))$ .
Since $x-F(x)\leqq 0$ for any $x\epsilon\overline{G}$ and any $F\epsilon \mathfrak{F}$ we hav $e$

$F_{\ell}(x_{0})=x_{0}$ $(i=1,2, \cdots n)$ .
Thus the intersection of finite number of closed sets
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$A_{F}=\{x\epsilon\overline{G}\cap K:F(x)=x\}$ $(F\epsilon \mathfrak{F})$

is always not empty. Since $K$ is compact, we get that the set
$\cap\{A_{F} : F\epsilon \mathfrak{F}\}$

is not empty. It is clear that each element in this set is a common fixed point
of the family $\mathfrak{F}$ .

The second half of this theorem can be proved similarly.
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