ON BEAURLING-LIVINGSTONE'S THEORY ON THE BANACH SPACE WITH DUALITY MAPPING

By

Sadayuki Yamamuro

As a generalizaion of the function space $L_{p}(p>1)$, Beaurling and Livingstone [1] introduced the notion of the Banach space with duality mapping. The purpose of this paper is to prove the following theorem:

Theorem. Let E be a conditionally σ-complete Banach lattice. If there is defined on E a duality mapping T with the property:

$$
\begin{equation*}
x \cap y=0 \text { implies } T(x+y)=T x+T y, \tag{*}
\end{equation*}
$$

then the space E has the property P of Bohnenblust [3]. Therefore, if the dimension of E is not smaller than 3 , the space is the abstract L_{p}-space.

In §1, the definition of the Banach lattice with duality mapping will be given. In $\S 2$, the facts which will be used in the proof in connection with the lattice property are stated. In §3, we prove our theorem, and in § 4 the case of the Orliez space will be discussed.
\S 1. Let E be a Banach space and E^{*} be its conjugate space. We put

$$
S_{r}=\{x \in E:\|x\|=r\} \quad \text { and } \quad S_{r}^{*}=\left\{x \in E^{*}:\left\|x^{*}\right\|=r\right\} .
$$

Two elements $x \in S_{1}$ and $x^{*} \in S_{1}^{*}$ are said to be mutually conjugate when ($\left.x^{*}, x\right)=1$, where (x^{*}, x) denotes the value of the linear functional x^{*} at x.

Throughout of this paper, we assume that, for any $x \in S_{1}\left(x^{*} \in S_{1}^{*}\right)$ there is a uniquely defined conjugate element.

Now, the mapping T of E onto E^{*} was called by Beaurling and Livingstone the duality mapping if

1. T is one-to-one;
2. for any pair of mutually conjugate elements x and x^{*}, the mapping T maps the set $\{\lambda x: 0 \leqq \lambda<\infty\}$ onto the set $\left\{\mu x^{*}: 0 \leqq \mu<\infty\right\}$.
3. for any positive number r there is a positive number ρ such that $T\left(S_{r}\right)$ $\subset S_{\rho}^{*}$ and $\rho_{1}<\rho_{2}$ whenever $r_{1}<r_{2}$. Beaurling-Livingstone [1] showed that, if T is the duality mapping, then, for muttally conjugate elements x and x^{*}, we have

$$
T(\lambda x)=\phi(\lambda) x^{*} \quad(\lambda \geqq 0)
$$

where $\phi(\lambda)$ is a strictly increasing function of λ such that $\phi(1)=1$ and is depending only on T (not depending on the choice of x and x^{*}).

In the proof of our theorem, we especially make use of the fact that T is one-to-one and the equality (\#).
§2. A Banach lattice E is a vector lattice on which is defined a complete norm $\|x\|(x \in E)$ such that $|x| \leqq|y|$ implies $\|x\| \leqq\|y\|$. ([2], p. 246) It is said to be conditionally σ-complete if every non-void enumerable subset which has an upper bound has the least upper bound.

If E is a conditionally σ-complete vector lattice, we can define the projection operator P_{x} by

$$
P_{x} y=\bigcup_{n=1}^{\infty}(y \cap n|x|) \quad \text { for every positive } y \in E
$$

and

$$
P_{x} y=P_{x} y^{+}-P_{x} y \quad \text { for arbitrary } y \in E .
$$

The projection operator P_{x} is linear, and, in case E is a Banach lattice, we have $\left\|P_{x}\right\|=1$, hence it follows that the linear functional $x^{*} P_{x}(y)=x^{*}\left(P_{x} y\right)$ is in E^{*}.

We will also use the fact that $x \cap y=0$ implies $P_{x} y=0$.
The notion of the conditionally σ-complete Banach lattice with the property P was introduced by Bohnenblust [3]. The space E is said to have the property P if, for any pair x and y such that

$$
x=x_{1}+x_{2}, x_{1} \cap x_{2}=0 ; y=y_{1}+y_{2}, y_{1} \cap y_{2}=0 ;\left\|x_{i}\right\|=\left\|y_{i}\right\|(i=1,2),
$$

we have $\|x\|=\|y\|$. Bohnenblust [3] showed that, if the dimension of a conditionally σ-complete Banach lattice with the property P is not smaller than 3, then there exists a number $p(1 \leqq p \leqq \infty)$ such that for any mutually orthogonal $x_{i}(i=$ $1,2, \cdots, n$)

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|=\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}} .
$$

§3. We prove our theorem. It is assumed that, for any $x \in S_{1}\left(x^{*} \in S_{1}{ }^{*}\right)$ there is one and only one $x^{*} \in S_{1}{ }^{*}\left(x \in S_{1}\right)$ such that x and x^{*} are mutually conjugate.

We define a functional $N(x)$ on E by

$$
N(x)=(T x, x) \quad(x \in E) .
$$

Then, we have
Lemma 1. $\|x\|=\|y\|$ if and only if $N(x)=N(y)$.
Proof. Assume that $\|x\|=\|y\|$, then we have by (\#) that

$$
\begin{aligned}
N(x) & =\left(T\left(\|x\| \frac{x}{\|x\|}\right), x\right)=\|x\| \phi(\|x\|)\left(\left(\frac{x}{\|x\|}{ }^{*}, \frac{x}{\|x\|}\right)\right. \\
& =\|x\| \phi(\|x\|)=\|y\| \phi\|y\|)=N(y) .
\end{aligned}
$$

Conversely, if $N(x)=N(y)$, we have $\|x\| \phi(\|x\|)=\|y\| \phi(\|y\|)$, and, since $\phi(\lambda)$ is strictly increasing, we get $\|x\|=\|y\|$.

Lemma 2. $(T x, y)=0$ if $x \cap y=0$.
Proof. We can assume that x and y are in S_{1}, I_{n}. In fact, when this lemma
could be proved for $x \in S_{1}$ ane $y \in S_{1}$, then, for any $x \in E$ and $y \in E$ such that $x \cap y=0$, we get

$$
(x /\|x\|) \cap(y /\|y\|)=0
$$

and hence it follows that $(T(x /\|x\|, y /\|y\|)=0$, which implies that

$$
(T x, y)=\phi\|x\|)(T(x /\|x\|), y)=0
$$

Now, let us suppose that x and y are in S_{1}. Then, we have

$$
1=\left(x^{*}, x\right)=\left(x^{*}, P_{x} x\right)=\left(x^{*} P_{x}, x\right) \leqq\left\|x^{*} P_{x}\right\| \leqq\left\|x^{*}\right\|=1 .
$$

Therefore, $x^{*} P_{x} \in S_{1}$, and x and $x^{*} P_{x}$ are mutually conjugate. As we assumed that the pair of mutually conjugate elements is determined uniquely, we have $x^{*}=x^{*} P_{x}$. Therefore, we have, if $x \cap y=0$, then

$$
\left(x^{*}, y\right)=\left(x^{*} P_{x}, y\right)=\left(x^{*}, P_{x} y\right)=0 .
$$

Proof of our theorem.

Assume that

$$
x=x_{1}+x_{2}, x_{1} \cap x_{2}=0 ; y=y_{1}+y_{2}, y_{1} \cap y_{2}=0 ;\left\|x_{i}\right\|=\left\|y_{i}\right\|(i=1,2),
$$

then, by Lemma 2, and the relation (*), we have

$$
\begin{aligned}
N(x) & =N\left(x_{1}+x_{2}\right)=\left(T\left(x_{1}+x_{2}\right), x_{1}+x_{2}\right)=\left(T x_{1}+T x_{2}, x_{1}+x_{2}\right) \\
& =\left(T x_{1}, x_{1}\right)+\left(T x_{2}, x_{2}\right)=N\left(x_{1}\right)+N\left(x_{2}\right) .
\end{aligned}
$$

Similarly, we have $N(y)=N\left(y_{1}\right)+N\left(y_{2}\right)$.
By Lemma 1, since $\left\|x_{i}\right\|=\left\|y_{i}\right\|(i=1,2)$, we have $N\left(x_{i}\right)=N\left(y_{i}\right)(i=1,2)$, and so, $N(x)=N(y)$. Therefore, again by Lemma 1, we have $\|x\|=\|y\|$.
§4. In this section, we give a remark on the duality mapping acting on the Orlicz space L_{Φ}. Let $\varphi(u)$ be a continuous, strictly increasing function of $u \geqq 0$ such that $\varphi(0)=0$, and $\psi(u)$ be the inverse function of $\varphi(u)$. Define the function $\Phi(u)$ and $\Psi(u)$ by

$$
\Phi(u)=\int_{0}^{u} \varphi(t) d t \quad \text { and } \quad \Psi(u)=\int_{0}^{u} \psi(t) d t,
$$

then the set of all measurable functions $x(t)$ on $[a, b]$ such that

$$
\int_{a}^{b} \Phi(|x(t)|) d t<+\infty
$$

is the Orlicz space L_{Φ} which is a conditionally σ-complete Banach lattice when we define the order relation $x \geqq y$ in L_{Φ} in the sense that $x(t) \geqq y(t)$ almost everywhere in [a,b]. (See Orlicz [4]) The conjngate space L_{Ψ} of all measurable functions $x^{*}(t)$ on $[a, b]$ such that

$$
\int_{a}^{b} \Psi\left(\left|x^{*}(t)\right|\right) d t<+\infty
$$

In the Orlicz space of this kind, the pair of mutually conjugate elements is determined uniquely, because the functions $\varphi(u$ and $\psi(\boldsymbol{u})$ are strictly increasing.

As was stated in the paper [1], the notion of duality mapping had been introduced as a generalization of the mapping:

$$
T x(t)=|x(t)|^{\frac{p}{a}} \operatorname{sgn} \cdot x(t)
$$

of L_{p} onto L_{q} where $q=p /(p-1)$. The natural generalization of this mapping into the case of the Orlicz space is the following:

$$
T x(t)=\varphi(|x(t)|) \operatorname{sgn} \cdot x(t),
$$

which is a one-to-one mapping of L_{Φ} onto L_{Ψ}. It is easy to see that this mapping T satisfies the condition (\#), and hence we can conclude that, if the mapping T is the duality mapping of the Orlicz space onto its conjugate space, then the space must be a L_{p}-space for some $p>1$.

References.

1. A. Beaurling and A. E. Livingstone: A Theorem on Duality Mappings in Banach Spaces, Arkiv för Math., 4 (1962) 405-411.
2. G. Birkhoff : Lattice Theory, 1949.
3. F. Bohnenblust : An Axiomatic Characterization of L_{p}-spaces, Duke Math. Journ., 6 (1940) 627-640.
4. W. Orlicz: Ueber eine gewisse Klasse von Räumen vom Typus B, Bull. Acad. Polonaise, (1932) 207-220.
