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As a generalizaion of the function space $L_{p}(p>1)$, Beaurling and Livingstone
[1] introduced the notion of the Banach space with $ duati\phi$ mapping. The
purpose of this paper is to prove the following theorem:

Theorem. Let $E$ be a conditionally $\sigma$-complete Banach latiice. If there is
defined on $E$ a duality mapping $T$ with the property:
$t^{*})$ $x\cap y=0$ implies $\tau_{(X}+y$)$=Tx+Ty$,
then the spaca $E$ has the property $P$ of Bohnenblust [3]. Therefore, if the
dimension of $E$ is not smaller than 3, the space is the abstract $L_{p}$-space.

In \S 1, the definition of the Banach lattice with duality mapping will be
given. In \S 2, the facts which will be used in the proof in connection with the
lattice property are stated. In \S 3, we prove our theorem, and in \S 4 the case of
the Orliez space will be discussed.
\S 1. Let $E$ be a Banach space and $E^{*}$ be its conjugate space. We put

$S,.=(x\epsilon E:\Vert x\Vert=r)$ and $S_{r^{*}}=(x\epsilon E^{*} : \Vert x^{*}\Vert=r)$ .
Two elements $x\epsilon S_{1}$ and $x^{*}\epsilon S_{1}^{*}$ are said to be mutually conjugate when $(x^{*}, x)=1$,
where $(x^{*}, x)$ denotes the value of the linear functional $x^{*}$ at $x$ .

Throughout of this paper, we assume that, for any $x\epsilon S_{1}(x^{*}\epsilon S_{1}^{*})$ there is a
uniquely defined conjugate element.

Now, the mapping $T$ of $E$ onto $E^{*}$ was called by Beaurling and
Livingstone the duality mapping if

1. $T$ is one-to-one;
2. for any pair of mutually conjugate elements $x$ and $t^{*}$, the mapping $T$

maps the set $(\lambda x:0\leqq\lambda<\infty)$ onto the set \langle $\mu X^{*};$ $ 0\leqq\mu<\infty$ }.
3. for any positive number $r$ there is a positive number $\rho$ such that $T(S_{r})$

$\subset S^{*}$, and $\rho_{1}<\rho_{2}$ whenever $r_{1}<r_{2}$ . Beaurling-Livingstone [1] showed that, if $T$ is
the duality mapping, then, for muttally conjugate clements $x$ and $x^{*}$ , we have
$(\#)$ $T(\lambda x)=\phi(\lambda)_{X^{*}}$ $(\lambda\geqq 0)$ ,
where $\phi(\lambda)$ is a strictly increasing function of $\lambda$ such that $\phi(1)=1$ and is
depending only on $T$ (not depending on the choice of $x$ and $x^{*}$).

In the proof of our theorem, we especially make use of the fact that $T$ is
one-to-one and the equality $(\#)$ .
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\S 2. A Banach lattice $E$ is a vector lattice on which is defined a complete
norm $\Vert x\Vert(x\epsilon E)$ such that $|x|\leqq|y|$ implies $\Vert x\Vert\leqq\Vert\nu\Vert$ . ([2], p. 246) It is said to
be $wndi\ell i_{ona}uy\sigma\cdot wmpte\ell e$ if every non-void enumerable subset which has an
upper bound has the least upper bound.

If $E$ is a conditionally $\sigma$-complete vector lattice, we can define the
$projec\ell ion$ operator $P_{x}$ by

$P_{x}y=\bigcup_{n=1}\infty(y\cap n|x|)$ for every positive $y\epsilon E$,

and
$P_{x}y=P_{\theta^{+}}-P_{x}y^{-}$ for arbitrary $y\epsilon E$.

The $proj^{1}cction$ operator $P_{x}$ is linear, and, in case $E$ is a Banach lattice, we have
$\Vert P_{x}\Vert=1$, hence it follows that the linear functional $x^{*}P_{x}(y)=x^{*}(P_{\theta})$ is in $E^{*}$ .

We will also use the fact that $x\cap y=0$ implies $P_{x}y=0$ .
The notion of the conditionally $\sigma$ -complete Banach lattice with the

property $P$ was introduced by Bohnenblust [3]. The space $E$ is said to have the
property $P$ if, for any pair $x$ and $y$ such that

$x=x_{1}+x_{2},$ $x_{1}\cap x_{l}=0;y=y_{1}+y_{2},$ $y_{1}\cap y’=0;\Vert x_{l}\Vert=\Vert y_{i}\Vert(i=1,2)$,
we have $\Vert x\Vert=||y\Vert$. Bohnenblust [3] showed that, if the dimension of a conditio-
nally $\sigma$-complete Banach lattice with the property $P$ is not smaller than 3, then
there exists a number $p(1\leqq p\leqq\infty)$ such that for any mutually orthogonal $x_{\ell}(i=$

$1,2,$ $\cdots,$ $n$)

$\Vert\sum_{\ell=1}x_{\ell}\Vert=(\sum_{\ell=1}^{n}$ II $x$ I $p\frac{1}{)^{p}}$

\S 3. We prove our theorem. It is assumed that, for any $x\in S_{1}(x^{*}\in S_{1}^{*}$)

thcre is one and only one $x^{*}\in S_{\iota^{*}}(x\in S_{1})$ such that $x$ and $x^{*}$ are mutually
conjugate.

We define a functional $N(x)$ on $E$ by
$N(x)\approx(Tx, x)$ $(x\in E)$.

Then, we have
Lemma 1. $\Vert x\Vert=\Vert y\Vert$ if and only if $N(x)=N(y)$ .
Proof. Assume that $\Vert x\Vert=\Vert y\Vert$ , then we have by $(\#)$ that

$N(x)\Leftarrow(T(\Vert x\Vert\frac{x}{\Vert x\Vert}), x)=\Vert x\Vert\phi(\Vert x\Vert)((\frac{x}{\Vert x\Vert}*, \frac{x}{\Vert x\Vert})$

$=\Vert x\Vert\phi(\Vert x\Vert)=\Vert y\Vert\phi_{1}\Vert y\Vert)=N(y)$.
Conversely, if $N(x)=N(y)$, we have $\Vert x\Vert\phi(\Vert x\Vert)=\Vert y\Vert\phi(\Vert y\Vert)$, and, since $\phi(\lambda)$

is strictly increasing, we get $\Vert x\Vert=\Vert y\Vert$ .
Lemma 2. $(Tx,y)=0$ if $x\cap y=0$.
Proof. We can assume that $x$ and $y$ are in $S_{1},$ $I_{n}$ . In fact, when this lemma
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could be proved for $x\epsilon S_{1}$ ane $y\epsilon S_{1}$ , then, for any $x\epsilon E$ and $y\epsilon E$ such that
$x\cap y=0$, we get

$(x/\Vert x\Vert)\cap(y/\Vert y\Vert)=0$

and hence it follows that $(T(x/\Vert x\Vert), y/\Vert y\Vert)=0$, which implies that
$(Tx,y)=\phi(\Vert x\Vert\}(T(x/\Vert x\Vert),y)=0$ .

Now, let us suppose that $x$ and $y$ are in $S_{1}$ . Thcn, we have
$1=(x^{*}, x)=(x^{*}, P_{x}x)=(x^{*}P_{x},x)\leqq\Vert x^{*}P_{x}\Vert\leqq\Vert x^{*}\Vert=1$ .

Therefore, $x^{*}P_{x}\epsilon S_{1}$ , and $x$ and $x^{*}P_{u}$ are mutually conjugate. As we assumed
that the pair of mutually conjugate elements is determined uniquely, we have
$x^{*}=x^{*}P_{a}$. Therefore, we have, if $x\cap y=0$ , then

$(x^{*},y)=(x^{*}P_{x\mathcal{Y}=})(x^{*}, P_{x}y)=0$.
Proof of our theorem.
Assume that
$x=x_{1}+x_{2},$ $x_{t}\cap x_{2}=0;y=y_{1}+y_{2},$ $y_{1}\cap y_{2}=0;\Vert x\Vert=\Vert y_{i}\Vert(i=1,2)$,

then, by Lemma 2, and the relation $(^{*})$, we have
$N(x)=N(x_{1}+x_{2}^{1}=(T(x_{1}+x_{2}),x_{1}+x_{2})=(Tx_{1}+Tx_{2},x_{1}+x_{2^{1}}$

$=(Tx_{1}, x_{1})+(Tx_{2}, x_{2})=N(x_{1})+N(x_{2})$ .
Similarly, we have $N(y)=N(y_{1})+N(y_{2})$.

By Lemma 1, since $\Vert x_{\ell}\Vert=\Vert y\Vert(i=1,2)$, we have $N(x_{i})=N(y_{\ell})(i=1,2)$, and

so, $N(x)=N(y)$ . Therefore, again by Lemma 1, we have $\Vert x\Vert=\Vert y\Vert$ .
\S 4. In this section, we give a remark on the duality mapping acting on

the Orlicz space $L_{\Phi}$ . Let $\varphi(u)$ be a continuous, strictly increasing function of
$u\geqq 0$ such that $\varphi(0)=0$ , and $\psi(u)$ be the inverse function of $\varphi(u)$. Define the

function $\Phi(u)$ and V $(u)$ by

$\Phi(u)=\int_{0}^{u}\varphi(\ell)dt$ and $\Psi(u)=\int_{0}^{u}\psi(\ell)dt$,

then the set of all measurable functions $x_{(}t$) on $[a, b]$ such that

$\int_{a}^{b}\Phi(|x(\ell)|)d\ell<+\infty$

is the Orlicz space $L_{\Phi}$ which is a $conditi\dot{on}ally\sigma$-complete Banach lattice when

we define the order relation $x\geqq y$ in $L_{\Phi}$ in the sense that $x(t)\geqq y(t)$ almost

everywhere in $[a, b]$ . (See Orlicz [4]) The conjngate space $L_{\Psi}$ of all measurable

functions $P(\ell)$ on $[a, b]$ such that
$\int_{a}^{b}\Psi(|x^{*}(\ell)|)d\ell<+\infty$ .

In the Orlicz space of this kind, the pair of mutually conjugate elements is

determined uniquely, because the functions $\varphi(u$ and $\psi(u)$ are strictly increasing.

As was stated in the paper [1], the notion of duality mapping had becn

introduced as a generalization of the mapping:
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$Tx(t)=|x(\ell)|^{\frac{p}{q}}sgn\cdot x(t)$

of $L_{p}$ onto $L_{q}$ where $q=p/t$p-l). The natural generalization of this mapping
into the case of the Orlicz space is the following:

$Tx(\ell)=\varphi(|x(\ell)|)sgn\cdot x1t)$ ,
which is a one-to-one mapping of $L_{\Phi}$ onto $L_{\Psi}$. It is easy to see that this
mapping $T$ satisfies the condition $(\#)$, and hence we can conclude that, if the
mapping $T$ is the duality mapping of the Orlicz space onto its conjugate space,
then the space must be a $L_{p^{-}}space$ for some $p>1$ .

References.
1. A. Beaurling and A. E. Livingstonc: A Theorem on Duality Mappings in Banach Spaces,

Arkiv f6r Math., 4 (1962) 405-411.
2. G. Birkhoff: Lattice Theory, 1949.
3. F. Bohncnblust: An Axiomatic Characterization of $L_{p}$-spaces, Duke Math. Journ., 6 (1940)

627.640.
4. W. Orlicz: Uebcr cine gewisse Klasse von R\S umen vom Typus B, Bull. Acad. Polonaise,

(1932) 207-220.

(Received June 15, 1963)


	Theorem. Let ...
	\S 1. Let $E$ be a Banach ...
	\S 2. A Banach lattice ...
	\S 3. We prove our theorem. ...
	\S 4. In this section, ...
	References.

