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§ 1. Introduction

In the queuing problems the investigation of “‘the ergodicity condition” makes
us theoretical interesting. In other words, let P(#) be the probability of there being,
at time £, n customers in the system, then it is to investigate the conditions in order
that‘l_z;rréo Po(t)=pa(pn> 0) exist independent of the queue-length at ¢=0. Up to this

time, under the condition *“first-come, first-served” the ergodicity condition has been
investigated by generalizing service-time distribution, input distribution, and in-
creasing in number of counters. In these researches there is a great difference in
the point of difficulty between a single server and many servers. In the case of
single server D. V. Lindley " gave a considerable resolution and later did Kiefer-
Wolfowitz in the case of many servers.
The condition is given by
7227< 1

where p is the mean service rate, 2 the mean arrival rate and ¢ is the number of
servers.

The investigation mentioned above is the case of ordinary queue-discipline.
But recently the investigation on O. R. and on various types of queue has come to
be made earnestly. The queue-discipline from practical fields is rich in variety
and investigating ergodicity in these cases is apt to be accompanied with much diff-
iculty.

In fact, the solutions of this problem are hardly given in many papers. That
is to say, in them, input-distribution and service-time distribution are limited as
Poissonian, in exponential type respectively. Under these limitations differential
difference equations are generally used, but in this paper we shall, under the same
assumptions, treat the case where service time depends strongly on the queue-
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length.

This paper is concerned with the queuing system in which

1. there are ¢(= 1) counters,

2. the customers arrive “at random?, i. e. the inter-arrival times have the
negative exponential distribution e,

3. arriving at the counter, the customers can not leave the queuing system
without receiving service,

4. the mean service rate depends on the number of customers in the system
by the following rule

{ #l if 0'<n§N0
pn=
p if Nytlsn

where N, is a positive constant number and N,>c¢,

5. the queue-discipline is “first-come, first-served”,

6. the service-time in each counter has the identical negative exponential

distribution, and

7. infinite queue is allowed outside of counter.

In this paper we shall find the mean queue-length, the mean waiting time and

_ergodicity condition.

Let P,(#) denote the probability of there being, at the instant £, n customers in
the system. When n>¢, the fact of there being # customers in the system implies
that ¢ persons are actually being served and n—¢ are waiting in the queue. Using
normal methods it can be shown that the following set of equations characterize

the system:

For n=0

m d’};" — — AP0+ P(0).
For 0<n<e¢

@ AP — — et ) P+ 2o )+ Dy P
For ¢=n<N,

3) "f;’t(‘)- = — R+ 0) Palt)+ APr_y(§)+ gty Pn(®
For n=N,

@ APNE) _ _ (2 1 o) Prol) + 2P0 (8 + ¢ty P )

dt
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For N,<n

- dl;,;(t) = — A+ cpty) Pl + Apn- () + Cpty P (D).

We assume that P,(0)=0,s where 8., is the Kronecker’s delta. The steady
state solutions are obtained by putting the left members of these equations equal to
zero. Now we shall first find the solutions in the steady state.

§ 2. The steady state solutions

Assuming that lim Pu(t)=p. exists, we can then rewrite the equations (1) ~(5)
t—>00

as follows:

For n=0
6 —2po+ P =0
For 0<n<c
7 —QA+np)pn+2pn_,+n+ 1) py pns =0,
For c<n<N,
® —@+cu)pn+ A pn-y + 4+ Dty pnsy =0,
For n=N,
9 — Q@+ cp)PNo + APNo-1 + Epa PN+ =0,
For n>N,
(10 —Q+cp)pn+tApn, +cptypns, =0.
From these equations the steady state solution are found to be:
an pn= 2'!" 2o 0<n<0),
(12) =20 2)p,  Gsns N,
(13) Dn =;1'7P1N0 Pz"—No(—:_—)’;: (No=n)

where pi=2% (=1,2.

Ui
The value of p, is determined by normalizing process which requires 3 =1,
7n=0

assuming that p, <c¢ (this proof is given later), and emerges as:

w0 pm(Sed B (LT )
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Average number of customers being served, N, is given by

c
- =p o dlto + L1 ... 4
(15) N—”Z;onpn—pop.{l+p.+—i,——+ +(c—l)’}

Average number of customers in the system, L, is given by

(16) L=2np,

n=0

-l E iy Bn (8)5(8) 3 A(2))

Mean number of customers waiting for service, Lq, is given by

{17) Lo= 3 t—)pn

n=_C

~nle i 28 (8 ()} -

Mean waiting time of customers is seen that

(18) =1La

J3

- (S 255 8w S(B) 5 a(8)) 5

Multiplying equations (6), (7), (8), (9) and (10) by 2" and summing over all »,
we obtain the generating function F(2) in the following expression:

(19) F)=p,{ 5 02" 1 ¢ '§°( ) c!(c)No Zabu

6‘ n=C+1 c_pzz

Next the problem of queue-length distribution after a finite time has passed
from the start has been of interest to many researchers and many papers on this
problem have been issued, yet they are not so complete. For simplicity, the queuing
system in which (1) there is only one counter, (2) the customers arrive at random
and are served in the order of arrival and (3) the service-time distribution has a
negative exponential type, will be discussed in this paper.

Especially, trials of finding solution by using Laplace transformation have
come to be seen in some papers ((6), (7), etc.). Here by using Laplace transfor-
mation we shall treat with the model discribed before.
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§ 3. The non-steady state

Using Laplace transformation

)= et Pttt (R6)Z 0
1]

we can rewrite above-mentioned (1)~(5) as follows:
For n=0

1) —(s+ D gos)+ 1 £1(8)= —ya,
For 0<n<e¢

(2°) —(s+2+np) gnl8)+ Agn-,(8) + @+ 1) oy gnsy(5)= —Ona,
For ¢csn<N,

(3°) —(s+2+cp)) gn(5)+ Agn-y(5) +cpt) gnai ()= —0na,
For n=N,

4°) —(s+A+cp) gno () + AgNo-1()+ € 1128N0+1(8)= — O Nna,
For n> N,

(5°) —(s4+ 2+ cpty) gnls) + Agn-y(8) +cpty gna(8) = — Ona-

Multiplying equations (1°) ~(5°) by x* and summing over all », generating
function, i. e.

Flx,5=2 gn(s)x"
n=0
is given by

c- N
xat 4 (1 — x){n{.i (npry —cpty) gnls) X + < () — y,)n{‘;gn(s)x'}

F(x,5)= — A2+ (s +A+cp)x—cp,

Next we shall find the expressions of g(s) and ergodic condition in single
channel case.

I. The case a=0

(1.1 —(+Dg )+ g (=~-1 for n=0,

(1-2) —($+2+p|)gn(5)+2gn;l(5)+y|gn+](5)=0 fOr 0<n <N0,
(1 .3) "““l"Z +[l|)gNo(S)+ng0—|(S)+ﬂngq+|($}=0 for n= N‘,,
(1.4 — (s + 2+ 1) gn()+ Agn- )+ 1, gnar()= 0 for n> N,

From these equations it is seen that

- BNo(, B —~pp 0) ™
1.5 £n(5) {(a =D aNo(p,6 — p, @) + (B—1) N0 (1, B— 11,00} 1, for n= N,
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_ (aBNo(B—a) 67No
(1.6) &) = G Dave o - T (B= D AN, B— 11,00}

for n> N,

where a and B are roots of the equation g2 —(s+24p)x+2=0. On the other
hand, 4 is the root of the equation p,22—(s+2+p,)x+2=0 and [6|< 1.

From the equations (1.5)and (1.6), it is seen that the necessary and sufficient
condition to be steady state is given by

p2_=_i< 1.

Yo

The steady state solution are found to be:

=i = P\
(1.7 Dn ~{anosgn(«s') Tp Fp 7 +pNelp, T o) for n < N,,

= N0 p," No
1+ 0,+ 0+ -+ 0 Not o\ N0, + 0,2+ )

for n>N0.

Remark: The equation (1.7) coincides with (11),[I2) and (I3} in § 2.

II. The case 1<a <N.

2.1 —(G+Dg )+ pgs)=0 for n=0,

2.2 —(s4+ 24+ p,) gn($)+ 2gn-(5)+ pt, gnei(5)=0 for n+0,a and n < N,,
2.3 —(s+ A+ ) gals)+ 2ga- () + py gas(8)=—1 for n=a<N,,

2.9 — (s + 2+ p) N8+ 2gNo-1 () + s gNoni()=0 for n=N,,

2.3 —G+24 ) gnl)+2gn- 1)+ s gnsy()=0 n >N,

By solving above (2.1) ~ (2.5) we get

BNt 8 — p1,0) + aNo~a(p1,6 — 1, )

(= Dam+1—p)
2.6 gis) = A= DEAE P { G D aiu 5= )+ B~ DNl ~B) |

for 0<n<a,

@2.7) (s)=(a—1)a“+(1—ﬁ>ﬁa{ a” BN, B — 11,0) + BraNo(pt,8 — pr, ) }
' & mapfa—p  a=DaNoud — pa)+ (B— DN, B— p19)

for agn< N,

- {(1—a)aa+(8—1) B} (afWNo=adnNo >
@.8)  gnl)= (@ — DaNo(p,0 — pya) + (8 — 1)BNo(p, B — p1,0) for n2 N,

where a, pand é are the same as before. We have p, <1 as the ergodic condition
in this case. In the same way as before, we obtain




ON A QUEUING PROCESS ETC. 59

= o for n< N
2.9 Pn l+pi+p 2+ + pNo+p Nolp, +p,* +---) or 1= Mo

= 0:Nop,"No 6 N
l+p‘+P12+"'+P|N0+P1N0(Pg+p22+ ) or n> IV,

III. The case a= N,

3.1 —(s+ g+, 28)=0 for n=0,
(3.2 —(+2+p) gnl8)+ Agn_ () + p1,gn5)=0 for 0<n <N,
3.3) — (424 1) gNo(8) + 2gNo-1 () + pagnonS)=—1 for n=N,,
3.4) — (s 4+ 2+ 1) gnls)+ Agn () + 1o gns (s)=0 for n>N,.

From equations (3.1), (3.2), (3.3) and (3.4), we get

_ (@=Dant(1—B)pn
3.5) gn(s)— (a—DaNo (,Ula—#za)'i'(ﬁ-‘l)ﬁNO(ﬁza——ylﬁ) for n<N,,

_ (a—1)aNo+(1 —B)BNo e
(3.6) ‘gn(s)- @—TDaM (ra— 1) + B=1D fNolup — P onNo for n=N,

where a, 8 and § are the same as before.

From the equations (3.5) and (3.6), it is seen that the necessary and sufficient
condition to be steady state is given by p,< 1.

By Abel’s theorem we can derive

= li = pi” .
3.7) Pn sl-l—?:sgn(S) l+p|+p;2+-'-+p1No+p,N0(p2+P22+'-') for ngNm
= p\Nop,"No
Trotort+pMotpip top ¥ or "=No
IV. The case a> N,
“4.D —+Ag )+ pg5)=0  for n=0,
4.2 —(5+2+ 1) gn() +2gn D+ 11 gns() =0 for 0<n< N,
4.3) — (s + 2+ 1) gNo(8) + 2gNoc1 () + 12 gNoni(8)=0  for n=N,,
(4.4) —(s+2+ 1) gn($) 4+ Agn_ () + 1 g (5)=0 for n>N, n+a,
4.5) —(s+24 1) ga(8) +Aga () + 1y g2 (s)=0 for n=a>N,.
From these equations we can derive
_ (1-a)an+(—1)p"
4.6) anls) {la =D Grd— ) + (1= B BVe(gd — 1 I} 75 Vo for 0sn< N,,
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4.7 oy = 1 +_{(a— DaNo(y,a — g, 1) +(1 — B)BNo (g1, B — pty7)} yNo-a
' & = e T (= DalNold — 1,00+ (1 — N0y — 1, P} £6No

for Nysnga,

_ o7? | {a=1aNo(ua—pp)+(1— PNy, B—py)} yNoa
.8 el =t T DNl = ) T P pd— Pl O

for n=a

where a and B are the same as before, y and J are two roots of the equation

#zxz—(5+l+ﬂ2)x+2 =0

and |r|> 1, |6|<1. Moreover let £ be /(s+2+y,)*—44y,.
From the equations (4.6), (4.7) and (4.8), the ergodic condition is given by p,<1.
Stationary probability g, are

o <
1+P| +P|2+ ...... +PIN°+P|N°(P2+,02’+---) for n< N,

and
p:Nop,"No
T+p,+p 4o +0No+pNolp, +p," +++-)

for n= N,.

The following conclusions can be derived from the above-mentioned facts.
The ergodic condition in our system is given by p,<1.
The steady distribution is independent of initial numbers of customers, a.

"The total number L in the system is

L=Ej’;’np, + 3 npn

n=N, O+ ]

N, No
,E:" (o Nop,™ —p,Nop,™)+ %_8:07'

- pNo{l+p,+p,2+ - +p,No+p,No(p, + p,+-)}

The mean number in queue, L, is given by

Lo=3 n—1Dpu=L—1+p,.
n=}

The mean waiting time, W is given by -Ii—".

§ 4. The case c=2
In this case we get a set of following differential difference equations:

(i) iﬁ;t‘i=—zp“<n+y.}>,(z) for n=0,
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(i) d’(’}t‘" = — Q4 ) PO+ AP+ 20, P for n=1,

AP

. dPyy(D) _
(v) 8000 4241 Pyo(8) + APyio-i B+ 2412 Paoua®)  for =N,
W) d’;;“’: — A 2P0+ AP (D + 2, P (D for n>N,.

Letting P,(0) =d.s, we can obtain the expressions of g.(s) in a similar way.
Here gn(s) are the Laplace transforms of P,(). Mereover, it can be concluded that

the ergodic condition is given by
A

<l
2u,
and stationary probabilities are independent of initial number . In fact, under
the condition —* < 1, we have
20,
n
Dn £y for n<N,,

- % +o4+p 0 + pNo +p,No(p, +p,% + )

p\Nop,*No

- >
R AN Jhk AR +p0,No+ p,Nolp, +p,2+ ) for n2N,

where p;=2—fr— (i=1, 2.
]

Similarly we can successively get the result in case of more counters.

§ 5. The stochastic law of the busy period

Let us denote by Gy (x) the probability that the busy period is at most of
length x, consists of at least # services and at the end of the nth service, £ customers
are present in the queue. Then G,y#) is the probability that the busy period consists
of n services and its length is at most » By the theorem of total probability, we
can write that

x

5.1 G,,,(x)=se-w%3’_”‘y.ww4y for ks N,—1,

/
0
x

5.2 Gu= S e-w(_(]@{) kil L e“"“(yk’ E_J%JIW“N At 68y 5D dy

for k=z N,
ke e k-7 +1
(5.3  Gud=2 S Grory rlx—9) e-w_(%_,—y.e—ﬂ,ydy

=1
° for k< N,—1 and n 22
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and

Wo-7 g3y [;((_y —u))ENo

y
0

XAy, € W""dua’_y
k+1
+ 2 S Gn-yyr(x—y) €3

r=N, ot!

(Ay) k-r+1
k—r+1!

Introduce the Laplace-Stieltjes transform

Pnk(s)=Se"IdGnk(x) for R(©z0

0
so that we get

k
(5.5) P.k(s>=( A ) M for ks N,—1,

StA+p ) s+2+p

2 No p! k~No
(5.6) I, = ta
s (‘H"l""“z) (-H‘Z"‘ﬂz) stA+p,

k—NJ7

€2 dy

for k2N, and nz=2.

for k=N,

k_
5.7 [pls) = Z’F,,_,,,(s)(m> SO S No—1, 522
1

and

No - k-
5.8)  Luls)= 2T 1,,(s>( A )N" ”'( 2 )No 1ty

S+A4+p, S+A+p,

+ ks,l r (s) A k-7+1 A
7=Ng+! T s<s+2 + o > s+A+p,

Let us introduce the generating function

5.9) Cols, )= kﬁi Izt for |zl<1.

Then we have from (5.5) and (5.6) that

S+A+

for kzN,nz=2.

Ng-1 ¢ No
= 3T ozt £ i
6100 Gl S Tk (55750

and from (5.7), (5 8) that

No-1
— J k Y .. B r,_
5.1 Culs,2) 50P,,k<s>z e z>{r§1 ey 1

No | K
+ Cp-y (5,2)— ;'01 n_l,,-(s)zf} for n=2.
J=

2 No-7+1 N
1]
(s+l+,u,> <
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Hence from (5.10) and (5.11), we get

e’} . 1 _ _ -
(5.12) ,f.c"(s’z)w P O g g {Ez{s+y2+2<1 D —pmw)

No-1 N,
x 8 7 (s,w)zk + i‘Lz—o-{erNo_l (5,0) — g1, Wy N (s, w)}
k=0 H

where

rk(s,w)=°Z':F,,k(s) w* for k=0.

Note the identity

2 2 No No A No-1+1
L ane S =2 S (s ——2
! Mo <s+2+~.> - S’w(s+2+m>

The left side of (5.12) is a regular function of z if [2|<1, R(s$)=0 and |w;<1.
In this domain, the denominator of the right side has only one root

S+ Adpy— N+ A P — 4w
a= 57 .

This must also be the root of the numerator, satisfy the relation

(5.13) 287 No- (S 0) — pyw e (s,w) = 0.
From (5.5) and (5.7), we get

Ay (s, w)=7,s,w)— A
Ar,(s,w)=7r,(s, w)— By, (s,w)
5.14) Ars(s,w)=7,(s,w)— By, (s,w)

.......................................

Arny(s,w) =7y (s, w) = Br, _, (s,w0)
wherce v

A=A, w=— 1% and B=Blo—_ 1 .
s+A+ S+A+p

Using these relations among yj(s,w) (j=0,1,.-- , Ny, we get

1 5 ¥ PR —_ 1 B -82
J. 15) /J(J,w)— {{1—] "‘A.;_—l ‘J-_ICY;*_ A_;:Z . Q— ............

(— R LJ/_’]
“rB e a C } 7(s, )

A7 c
L2 J”i,‘l/if 1’.]))2’\;

LBl B BT
Aiv A T 4 -2 ' Aj.-w[j—l}/j R :j,‘!,”}
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where (j) denotes the greatest integer less than j and ,C; the combination calcu-
lation.

Using (5.13) and (5.15), we obtain the following theorem:

Theorem. For R(s)20 and \w|< 1, we have

_ 2aPyyA,B — p,wPy,,(4,B)
5.16) Zragtoun = ST (i wPy, A, B

where o is the root in z of the equation 2{s+ p, +A(1-2)} —p,w =0 in the unit circle |z| <1
and Pj(A,B) is given by the identity

Piap=t_-B.c+ B .c—.... y =B 7, .
A1 A j11 Ai—? j-2 2 A'-["IZ] j‘[.i/zj E'iIZJ

Putting w=1 in (5.16), we get the Laplace-stieltjes transformation of busy
period.

Special case: (i) N,=1.

oo v
Xr = mw
n=1 molsw” s+u, +4(1-a)’

S, (9= th h ~(a)
n=1 ""s—s+yl+2(l—a,) where a,=(8]w=.

i) No=2.

Iy (8w = mwls+p, +4(1—a)}
Zruto st m+ A —a) s+ A+ p)— A’

| _ wls+p +4(1—a)}
n§ l—‘”o (S) {S+ﬂ|+2(1—-al)}(8+2+,u,)-lpl )

(i) N,— co.

S wr =SF4tm= V‘S;;+m)’—4lplw ’
n=1

S Ty (5) = S+1+#l—~/(~;‘3+#1)2—41#l :
n=1

Next, we shall write the expected length of the busy period, Ey,(B).
For N,=o0dd number
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En(B) = — 418, 1)

ds
s=o
Ng-2 No=2
{ [ [h;{—]( s o) G [:v{?zgf 90— pl4p) " €
; —_— r —_— —) — —_ +
. I—Pz =0 Py +pIN0-2-rr P r=0 ° r pl £ No-2r 7
= No-1 N z
1—%"_( 1+ o [ffl]( Y+ o) G
=0 —f +p‘ I:]O-I-r r—‘al 7=0 O + o NO-7 1
No—~1 No—2
R No-2-27 . [ !2E‘] )
+ 3 (Nyg—1=27X—=p)" (1 +p,) C 11 {denominator} p—32 2 (—p))
r=0 No=1-r r =0
/7
No-1 Ny-1
Atpd" Y C =y B (= p)r (14 )NO-HTCH L 3 (pr
. — — S S, — 0
o N--1 7 H r=) P P Ny=l=-r 1 — 2 r=) o
V/4
Ny-1o No
)70 22 1(N 1= 29 (= p)r U4 p) o C [fjw 25) (— p,)7
+ 0 Ny=1-7 T_Pl ol (.)" — LIy + Ny-ie7 r+ = A PR
V4
N__
)T
No=7 r
V/4

For N, = even number

No~-2 N,_.
'Qf“ Ny—e=27 9 2 Ny=3=2r
Pr 3 (—p)(l+p) C—p 2 (Ny=2-29)(=p)ill+p) c
_ ‘1=py r=0 Ny=2-7 1 r=) No=2=1 1
Eno(B) LRy
Tz -1- N - ¢
{‘ I (U ol Oy B L) }
r=) No=l=r r b No=l=r 7r

r=0
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, Ny-2
A No=2-21 | ) vh
+ X AN, =1 =29 (=p) L+ pp C 1 {denominalor} — 4 X (—p)
=) Ny-1-7 7'“ 7=0
”
No- Ng-1
l N()-Z-Qrc 2‘ 1( vl )No—l—zr [ %‘ ]
{1+ p0) - 2 (= + -2 S (=p)
VNg=2-1 1 Mo o 1 Notr rJll—py = .
”
No-! NO_
No-1-2r L 2 - No-2-27 2 11
(1 +py) C—-p, SIN=1=29=p) A+ p) C+ X (Ny=29(=pp7
No=1-7 7 =0 No=i=r r =)
”
Ny=1-2r
(l | {Ul (;}
No~r 71 A
”

Putting N,=1and 2 in En,(B) and using above expressions, we get

1 1+p,—p.
EB=_1 __ EB=:T0"0
l wd—p,) (1 —p,y)
From these expressions it is seen that

E,B <E,B for

respectively.

P> 02

§ 6. The modified busy period.

We shall now investigate the stochastic law of the modified busy period.

Let (@ (0 = P;. {modified busy period consists of at least n services, is at
most of length x and at the end of the nth service, £ customers are present in the
quene’ [ customers are present in the systemeat £ 0]

TS Po for nz N,
Conge WY = = PrCay)  where  p,—
=1

oi=2 and
l Do 0N p, Ny for n< N, i
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No )
:___.{ v /’I'l+/)lN” 1‘”2

-
fo £t

n=0

(o]

ETC. o7/

[¥2)

Let pils) = S ~SEdy G and 1",,,{‘5)-:Se‘s“'(l.,(},,kw) for Ris)z 0.

nk

0

Then we have

6.1) [a(s) =

The expressions of Cnr V() 1s very similar to the one given in § 3,

[

/Jll'(l’

5, this 1s,

x
. - Ay kL . .
6.2  Gutw= e‘“’ézy) ey for 120,12, 5 kS N
, !
=0 for k<!
x R . . k-N
, (Ap)No=2=1 e {xlx—p}" " ) .
6.3) le(l'”)(x)=s a ]\)—l)— Va kN7 2’1 Apry e e F Y dy
x
Ay k-1 . . .
=S e“yfiyg—ﬁ,;zze""zy(ly for k=N, (=N,
, /
(¢2] : W /’Z.y\)k_jﬂ
o S ~ Ny . e N 9
6.4 Chw= S()f_(’n_,,,(" P g e dy for k= N,~1, 2=,
z N, y k=N,
A - : GawNo-i {aly—w)’
6. (¢)) =S W (o S — (it O A ) CatY ) (y-u)
6.5 G j2=| o Y\ € A o (k——.’\’(,)’A‘! e dudy
y=0 u=0
T ok W (L pyk-i+
w0 B Al ety 7T dy for kz N, nz2.
SO ijUH(, x—yle 2} Ty mdy o
Hence by 6.1), we get
E Ayt
6.6) Gl —ﬂ;} Sew(k e for kS N— L,
I=0"1+1
x . k-No
- © Noot . {(Ap)Ny=I-1 g AETY) [/ x—y} - .
6.7 Caw= 2 S e T X g, ) gy
Gk I=U‘l)l+l o N =T=T! TN "€ y
3 c ¢ ‘ ,
+ = 1+1 e “ L s ../r,e“ 27 dy or K=V,
N T
. P ﬂ" jkoa , . . i
6.8 Guly “S 2 Gy "—U—_fﬂ-’ ety fov K2 N, L 250

l)J
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* N No-j _ k-No
6.9 Caw= ,-:lé""’ x—p) Sye"(zml)u &yj_}f! ({;Cuf N':){,} Aty RO du gy
y=0 ©u=0
+ S IEV Grn1y 5k —yle aregdY (]c(g)k-:;;’ wdy for k=N, nz2.

Forming Laplace-Stieltjes transforms of (6.6}, (6.7), (6.8) and (6.9), wc gct
k-1

A § 4 ik
CRUNEES §78 ,(_w ) i for kSN,

% 1 No—l( P! k-No Ua
6.1 [|k ﬁl+l<s+z+#1> s-{-l—}—‘u,) S+2+/12

+ 5 (-2 )H 2 for k=N
Nﬁlﬂ +1+‘u2 S+2+p2 or =1V

k1 1 k=j+i
. ,, 2 Ppryi (O —— M —
6.12 [l = 3 Prois s)(s ) e for kSNo—1 nz2

6.13) [l = jé(;:l“"_]’j('y)( A )No‘j+'( i )Ia—No It

s+A+p, S+A+p, s+ A+,
k—j+1
ktl A Y7,
> ( ) 2 b =2.
+j=1v0+nl" 15 5(8) pew ST for k=N, n=2

Let us introduce the gencerating function
p R .
6.14) Cnls,2)= 2 Prulsigh
k=0

Then we get from (6.10) and (6.11),

N No—J+1
. ( _% X th {
€19 Gilsa= & Pl e o) _g"p,z (s+z+,a.) + A
—?Md}
Jj=1
and from (6.12), (6.13),
. No=1 | ’ Nn A No-J+i
16)  Culs, )= 3 [k & { - _ Az
6.16)  Calsz #=0 [l )2k + 2 {s+tm+11-2)} l" bil )(s+A+/¢,)
No
ot (5,20 = 2 P, ,-(.y)zf} for n22
]=U

where k(x)=3 p;zi
j=t
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Hence from (6.15) and (6.16), we get

1
cls+m+21-2) —puw

2.17) Z’w Cnls, )= { Celsp+41-2) = )

¥ 505,002 + 12 22N61 frgo (5, 0) = 11, 2N 7y, (5, 10)
j=0 "

N
+ {k(z) — ZQI y2E2 /zzw}
j=
From (6.7) we get

6.18)  2arpno- (5,20) — 7o (5,20)+ popiwoiNo fzg_a_= 0
2

0.0
in the similar way to the one given in § 5, where 7 (s,w)= 2" w”[’,;(s) and
J n=1

a={s+2+p,— J/(s+2+ 1, —42p,w} |22,

On the other hand, using (6.10) and (6.12) we get
A7\ w) + p} =7,sw)
Al7 (s, w)+ p} =7 ,(s,0)— Bf (s, w)
A{7 (s, w)+ ps} =7,(s,w) — Bf (s,w)

A7 N8, W)+ o} =7 No-1(s, W) — B no—ols, ).

Irom these relations we have

J
1 _ B B —plLz]
6.19 aw=4{ ————-e C +—0 C — b e C (s,w)
o =g, O e O T Sy
—{f)f "‘%f’f—n*‘(;‘;‘z‘_%)Pj—z‘f‘( 3 ‘fz 20)]), g
B C, B —n 5]

- - it € — e —— 2
<AJ AT j32 1*1—[1_11 -1—[1-‘] [J—l]) }

for 1<j5j< N,.
Iet Q (4, B) be

pit g pin H( 2= B) it (=L €) ot
s 28
...... +(Z2ITI—AI.;?—Q .j—gl.*....... B) )

A,-.-["] U5
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then 6.19) can be written as follows:’
(6.20) i w=P;(4,B) ¢ ,(ssw)—Q ;(4,B) for 1<j<N,.
Hence by (6.18) and (6.20), we get

7 & Q-1 A, B)— P4, B~ pup Nopuw 120
ia Py, (4, B— ;,wPyn, (A, B) T

6.21) 7, Gwl=

Using (6.20) and (6.21) we can determine the quantities 7(s,w) (1< j = N,).

We shall now consider the special cases:

(
o (5,00 wk(a) _ k((f) (5,200,

The case N,=1:
als+ p+2(1—-ad}

” Ny—oolpy=pu,=p): #,(s,w)=kla).

Note that for N,—0,(6.16) can be written as

rwikz) —2,(s,w)}
2{stp+20-2} —pw -~

3 Cn(s,2lw" =
n=1

§ 7. The waiting time process W1,

We shall now investigate the stochastic law of the waiting time process.

IY($)=P; {the waiting time is at most of length ¢}. Then we have

[2.2)

t
(7.1) wiw=3 ¥ Sop,, Ao,

n=ti

Forming Laplace-Stieljes transform of (3.1), we get

o0
Wis)= S o5 W) (RDZ0)

0

7.2 =ppl —(%)N”"} Gl D= pp 2 {1 ~(£;)N"“2} AR LR

No o
e Nl (W A \ o Y n A
FPu0, {l (/:2)}CN°"<S’1'+17”(()2> '12:]/),, Cnls, 1),
Putting z=1 in (6.10) and (6.15), we have

7.9 (s D=—12 {0+ p(

- + 2,
s+A+ b

S-}-Z-}-/zl)

y 2 A
TP S S
P’ S+ Ay P s+-4A+ 1y 2

Let
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2 Nu 1l b No 2
' 4 ! 4 ! ! }
D - -l | R S N
‘/‘(s-a—/m:-,z]) (s—l~/.~:—‘u,) P
No y No-j+) No
+ {Z’p,-(.-—f"——) £kD= Y [)j}.
S+ py \4=0 S+ A j=I

Further, putting z=1 in (6.16), we have

No-1 No No-Jj+1
A _ 123 Hh [ A R A i A
(7.4 (;f,(s,l)~ k{'ﬂ[,,k(s)—{— pray UEI],,_,,,(S)(———. ) + Cna (s D

No
-2 [‘,,_,,j(s)} for n=2.
j=0

Using (7.3) ane (7.4), we can successively determine the quantities,
éZ(Ss 1), és('f’ 1)9 """"" s éNO-l (.S‘, .
On the other hand, putting z=1 and w=p, in (6.17), (6.19) and 6.21) the quan-

tity :22 p." Cals, 1) can be obtained. Hence from (7.2) we can get J97ls).

Special case N,=1:

Pi=p,Lr 1 .{"“‘—)‘"'_“2s~‘< )+ A(l— )}
W ST =1 4 Fols, ol T 4T3y

where  p,=(1—p,)[(14+p,—p,).
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