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Let $R$ be a real Banach space and $H$ be a Non-linear operator defined on the

whole space $R$.
$H$ is said to be bounded if $H$ transforms any bounded set to $abounded/$ set. In

the case of linear operators, this is equivalent to the existence of a positive number
$\gamma$ such that
$t^{*})$ $\Vert Hf_{1}|\leqq\gamma\Vert f\Vert$ for every $f\epsilon R$ .

We shall say that a non-linear operator $H$ defined on $R$ is linearlp bounded if
$H$ satisfies the above condition $(*)$ .

The purpose of this note is to make clear the relation between the bounded-
ness and the lindar boundedness properties of non-linear operators and to discuss

related topics.
Throughout of this paper, we assume that $HO=0$.
\S 1. Examples.

1. 1. On the space $L^{2}$ on $(0,1)$ , we define

$Hf=\sqrt{}\overline{|f^{(}t)|.}$

This oparator $H$ is defined for every $f\epsilon L^{2}$ and $\Vert Hf\Vert^{2}\leqq||f\Vert$ .
1. 2. On the space $L^{2}$ on $(0,1)$ , we define

$ Hf=\sqrt{}\overline{|f(t)|}/\Vert f\Vert$ .
This is defined for every $f\epsilon L^{2}$ and $\Vert Hf||^{2}\leqq\frac{1}{\Vert f\Vert}$ .

1. 3. On the space 1 of summable real sequences $\{f(n)\}$ , we define

$Hf(n)=|\frac{|fn_{1}}{f^{(n})-1}$

$ifif$ $|f(n)|\leqq 1|f^{(}nJ|>1$

.

This operator $H$ is defind for any $f\epsilon l$ .
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1. 4. On the Banach space $R$, we define

$Hf=\left\{\begin{array}{ll}\frac{f}{1-|f\Vert} & if \Vert f] |<1\\f & if \Vert r\Vert\geqq 1.\end{array}\right.$

This is defined for every $f\epsilon R$ .
\S 2. Linear Boundedness and Boundedness.
We shall say that a non-linear operator $H$ defined on a Banach space $R$ is

linearly upper bounded if there exist numbers $\alpha,$ $\gamma>0$ such that
$\Vert Hf\Vert\leqq\gamma\Vert f\Vert$ if $\Vert f\Vert\geqq\alpha$ .

Similarly, an operator $H$ is said to be linearly low.$\gamma$ bounded if there exist numbers
$\beta,$ $\gamma>0$ such that

$|IHf|\leqq\gamma\Vert f\Vert$ if I $ f\Vert\leqq\beta$ .
The notion of the linear upper boundedness is firstly due to A. Granas (1), where
he called the operator with this property was quasi-bounded.

We shall also say that an operator $H$ is linearly upper (or lower) bounded evsry-
where if, for any positive number $\alpha$ (or $\beta$), there exists a positive number $\gamma(\alpha)$ (or $\gamma^{(}\beta$))

such that
$\Vert Hf\Vert\leqq\gamma(\alpha)\cdot\Vert f\Vert$ if $\Vert f\Vert\geqq\alpha$ .

(or $\Vert Hf\Vert\leqq\gamma(\beta)\cdot\Vert f\Vert$ if I $ f\Vert\leqq\beta$).

It is clear that if $H$ is linearly upper (or lower) bounded everywhere then $H$ is
linearly upper (or lower) bounded, and that, if $H$ is linearly lower bounded every-
where, then $H$ is bounded.

Theorem 1. (1) If $H$ is bounded and linearly ubper (or lower) bounded, then $H$ is line-
arly $upp_{9}r$ (or lower) bounded everywhere.
(2) A bounded operator $H$ is linearly bounded if and only $\iota f$ it is $lin9arly$ upper and lower
bounded.

Proof. (1). Assume that $H$ is not linearly upper bounded everywhere, then
we can find a positive number $\alpha$ and a sequence $f_{n}\epsilon R(n=1,2,\cdots\cdots)$ such that

$|_{1}^{1}Hf_{n}\Vert\geqq n\cdot\Vert f_{n}\Vert$ and 1 $ f_{n}\Vert>\beta$ .
The sequence $f_{n}(n=1,2,\cdots\cdots)$ is bounded, because, if $\{f_{n}\}$ is not bounded, the linear
upper boundedness implies the existence of infinitely many $f_{n}$ such that

1 $ Hf_{n}\Vert\leqq\gamma\Vert f_{n}\Vert$

from which then follows an impossible inequality $ n\leqq\gamma$ {br infinitely many $n$ .
Therefore, since $\{f_{n}\}$ is bonnded, from the boundedness of $H$ it follows that the
sequence $\{Hf_{l}\}$ is also bounded. This contradicts the fact that $\Vert Hf_{n}||\geqq n\beta(u=1,2, \cdot.)$ .
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By the same way we can prove that, ifH is bounded and linealy lower bound-
ed, then $H$ is linearly lower bounded everywhere.
(2). If the bounded operator $H$ is linearly upper and lower bounded, then, as was
proved in (1), $H$ is linearly upper and lower bounded everywhere, and hence it
follows that $H$ is linearly bounded.

The converse is clear.
Remark. The operator of Example 1.1 is bounded but is neither linearly upper

nor lower bounded. The operator of Example 1.2 is linearly upper bounded every-
where, but is not bounded. The operator of Example 1.3 is linearly lower bounded,
but is not bounded, and so it is not linearly lower bounded everywhere. The oper-
ator of Example 1.4 is linearly upper bounded, but is not linearly upper bounded,
but is not linearly upper bounded everywhere.

\S 3. Differentiability and Linear Boundedness.
An operator $H$ defined on a real Banach space $R$ is said to be $Fr\acute{e}ch\ell t- differ-$

entiable at $0$ if there exists a linear (additive and continuous) operator $D$ such that

$Hf=$ Hf-HO $=Df+r(f)$ and $\lim_{f\rightarrow 0}\frac{r(}{\Vert}\frac{f)}{f\Vert}=0$.
We denote $D$ by $\nabla H0$.

An operator $H$ is said to be asymptotically differentiable, if there exists a linear
operator $H_{\infty}$ such that

$\lim_{||f||\rightarrow+\infty}\frac{|^{1}Hf-H\infty f\Vert}{\Vert f\Vert}=0$ .

Theorem 2. (1). If $H$ is $Fr\acute{e}chet- differentiable$ at $0$, then $H$ is linearly lower bounded:
$\Vert Hf\Vert\leqq\Vert\nabla H0|\cdot||f\Vert$ if $\Vert.f\Vert\leqq\beta$ for some $\beta$ .

(2). If $H$ is asymptotically differentiable, then $H$ is linearly upper bounded:
$\Vert Hf\Vert\leqq\Vert H_{\infty}\Vert\cdot\Vert f\Vert$ $tf\Vert f\Vert\geqq a$ for some $\alpha>0$ .

Proof Let $H$ be Fr\’echet-differentiable at $0$. Assume that there exists a se-
quence $f_{n}\epsilon R(n=1,2,\cdots\cdots)$ such that

$\Vert f_{n}\Vert<\frac{1}{n}$ and $\Vert Hf_{n}\Vert>\Vert\nabla H0||\cdot\Vert f_{n}\Vert$ .
Then, since we have

1
$\lim_{n\rightarrow\infty}\overline{||f}_{n}\overline{\Vert}\Vert Hf_{n}-(\nabla H0)f_{n}\Vert=0$,

we have

$\lim_{n\rightarrow\infty}|\frac{\Vert H}{||f}\frac{f_{n}\Vert}{||}n-|(\nabla H0)\left(\begin{array}{l}f_{n}\\\neg|f_{n}\overline{||}\end{array}\right)\Vert|=0$ .
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Therefore, there exists $n_{0}$ such that

$|||\nabla H0\Vert<\Vert(\nabla HO)(\frac{f_{n}}{\Vert f_{n}\Vert})\Vert$ $(n\geqq n_{0})$,

which is a contradiction. This completes the proof of (1).

By the same way we can prove (2).

Remark. The operator of Example 1.3 is linearly lower bounded but is not
Fr\’echet-differentiable at $0$ .

\S 4. Continuity and Boundedness.

Although these two notions (the continuity and the boundedness) are mutual-
ly independent as has been discussed in Vainberg (2), p. 29, we are going to prove
that, in the case of the generalized Nemyzkii operators defined on some Banach
lattice the continuity implies the boundedness. In order to prove this, we need
some preliminary remarks.

A real Banach space is called a Banach lattice if it is a vector lattice and $|f|\leqq|g|$

implies $\Vert f\Vert\leqq\Vert g\Vert$ .
A non-linear operator $F$ defined on the Banach lattice $R$ is called the general-

ized Nemyzkii operat0r if $F$ satisfies the following condition:
$|f|\cap|g|=0$ implies $|f|\cap|Fg|=0$ and $F(f+g)=Ff+Fg$.

In the space $L^{p}(0,1)$ , the operator
$Ff(t)=F(t,f^{(}t))$

is an emample of the generalized Nemyzkii operator when the function $F(t, \xi)$

satisfies some conditions.
Theorem 3. Let $F$ be the generalized Nemyzkii operator, continuous at $0$, defned on

the Banach lattice R. Then, for any real-valued function $N(f)(f\epsilon R)$ with the following
properties:

$1^{o}$. $ 0<N(f)<+\infty$ $tf$ $f\neq 0$ ;

$2^{o}$ $|f|\cap|g|=0$ implies $N(f+g)=N(f)+N(g)$ ;

$3^{o}.\lim_{n\rightarrow\infty}||f_{n}\Vert=0$ if and only $tf\lim_{n\rightarrow\infty}N(f_{n})=0$, and

$\lim_{n\rightarrow\infty}\Vert f_{n}\Vert=\infty$ if and onlp if $\lim_{n\rightarrow\infty}N(f_{n})=\infty$ ;

$4^{o}$ If $ N(f)>\alpha$ , there are $f_{1}$ and $f_{2}$ such that
$f=f_{I}+f_{2},$ $|f_{1}|\cap|f_{2}|=0$ and $N(f_{1})=a$ ,

we have
$N(FfJ\leqq\alpha N(f)+1$ $(f\epsilon R)$

for some $\alpha>0$, and hence it follows that the operat0r is bounded whenever there is dfined
such a functional $Ntf$).
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Proof. From the definiton it follows that $FO=0$ . Since $F$ is assumed to be

continuous at $0$, by $3^{0}$ , we can find a number $\alpha>0$ such that
$\alpha N(f)<1$ implies $N(Ff)<1$ .

For any $f$ such that $aN(f)\geqq 1$ , we can find a natural number $n$ such that
$n\leqq aN(f)<n+1$ .

By $4^{o}$ we can find $f_{i}(i=1,2,\cdots\cdots, n+1)$ such that

$f=\sum_{i\overline{-}1}^{n+1}f_{i},$ $|f_{i}|\cap^{1}f_{j}|=0(j\neq j)$ and $\alpha Ntf_{*}$ ) $<1$ .
Therefore, since the operator $F$ is additive for orthogonal elements,

$Ff=\sum_{i\Leftarrow 1}^{n+I}Ff_{i}$ ,

and, by $2^{o}$ we have

$N(Ff)=\sum_{=*I}^{n+1}NFf_{i})<n+1\leqq aN(f)+1$ ,

which is to be proved.
Remark. Example 1.1 shows that the constant 1 (or at least a non-zero constant)

of the above inequality is indispensable if we do not assume that $F$ be Fr\’echet-

differentiable at $0$ .

Yokohama Municipal University.
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