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Let R be a real Banach space and H be a Non-linear operator defined on the
whole space R.

H is said to be bounded if H transforms any bounded set to a bounded set. In
the case of linear operators, this is equivalent to the existence of a positive number
r such that

(*) VHf | < 7l £ for every feR.

We shall say that a non-linear operator H defined on R is linearly bounded if
H satisfies the above condition (*).

The purpose of this note is to make clear the relation between the bounded-

ness and the lingar boundedness properties of non-linear operators and to discuss
related topics.

Throughout of this paper, we assume that H0 = 0.
§ 1. Examples.
1. 1. On the space L? on (0, 1), we define
Hf = JTfT.
This oparator H is defined for every feL? and | Hf|? < || fI.
1.2. On the space L? on (0, 1), we define

Hf = ¥ fO[ 1Al
This is defined for every feL? and j|Hf|* < T}c—h-
1. 3. On the space { of summable real sequences { fin)}, we define
| fn)] if lfn) s 1
Hfn) = 1 .
= i w1

This operator H is defind for any fel.
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1. 4. On the Banach space R, we define
(L i A<
mp= =T A<
f if Az L

This is defined for every feR.
§ 2. Linear Boundedness and Boundedness.

We shall say that a non-linear operator H defined on a Banach space R is
linearly upper bounded if there exist numbers a, y > 0 such that

1Hfi=rlfl if 1f] ze.
Similarly, an operator H is said to be linearly lowsr bounded if there exist numbers
B8, r> 0 such that .

IHA= 1Al if Ifll< B
The notion of the linear upper boundedness is firstly due to A. Granas (1), where
he called the operator with this property was quasi-bounded.
We shall also say that an operator H is linearly upper (or lower) bounded evary-
where if, for any positive number a (or ), there exists a positive number 7 (a) (or 7(B)
such that
1Hf | = r@@-|fl if | flza.
or [HflS 7®-IfI i 1fl= p.
It is clear that if H is linearly upper (or lower) bounded everywhere then H is
linearly upper (or lower) bounded, and that, if H is linearly lower bounded every-
where, then H is bounded.
Theorem 1. (1) If H is bounded and linearly ubper (or lower) bounded, then H is line-
arly upper (or lower) bounded everywhere.
(2) A bounded operator H is linearly bounded if and only if it is linsarly upper and lower
bounded. ,
Proof. (1). Assume that H isnot linearly upper bounded everywhere, then
we can find a positive number a and a sequence feR (n= 1,2, ) such that
(Hfzlzne|fx]l and | fal > B.
The sequence f, (n=1, 2,---- ) is bounded, because, if {f} is not bounded, the linear
upper boundedness implies the existence of infinitely many f, such that
[ Hfall < 70 fa |
from which then follows an impossible incquality n< y for infinitely many
Therefore, since {fx} is bonnded, from the boundedness of H it follows that the
sequence {Hf,} is also bounded. This contradicts the fact that |Hfxlznp (u=1,2,...),
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By the same way we can prove that, if H is bounded and linealy lower bound-
ed, then H is linearly lower bounded everywhere.
(2). If the bounded operator H is linearly upper and lower bounded, then, as was
proved in (1), H is linearly upper and lower bounded everywhere, and hence it
follows that H is linearly bounded.

The converse is clear.

Remark. The operator of Example 1.1 is bounded but is neither linearly upper

nor lower bounded. The operator of Example 1.2 is linearly upper bounded every-
where, but is not bounded. The operator of Example 1.3 is linearly lower bounded,
but is not bounded, and so it is not linearly lower bounded everywhere. The oper-
ator of Example 1.4 is linearly upper bounded, but is not linearly upper bounded,
but is not linearly upper bounded everywhere.

§ 3.  Differentiability and -Linear Boundedness.

An operator H defined on a real Banach space R is said to be Fréchet-differ-
entiable at 0 if there exists a linear (additive and continuous) operator D such that

Hf = Hf~HO0=Df+r(f) and lim %%’ 0.

We denote D by VHO.

An operator H is said to be asymptotically differentiable, if there exists a linear

operator H, such that
m [~ Hof] _
lim |__._°£
ifi—>+00 [ f]
Theorem 2. (1). If H is Fréchet-differentiable at 0, then H is linearly lower bounded:
\HfI < [VHO[ | f) if IfIsB for some .
2). If H is asymptotically differentiable, then H is linearly upper bounded :
|Hfl| = 1 Hooll«IfIl if IfllZza for some a>0.

Proof. Let H be Fréchet-differentiable at 0. Assume that there exists a se-

quence freR(n=1, 2,------ ) such that

I/l <+ and  [EHfal > [VHO|-| falh

Then, since we have

lim “—flnT | Hfu — (VHO) f]| = 0,

n—> 00

we have

/| =

n—>00 lfn [
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Therefore, there exists n, such that

|V HO| < (7 HO) (ﬁ) n (n2no),

which is a contradiction. This completes the proof of (1).

By the same way we can prove (2).

Remark. The operator of Example 1.3 is linearly lower bounded but is not
Fréchet-differentiable at 0.

§ 4. Continuity and Boundedness.

Although these two notions (the continuity and the boundedness) are mutual-
ly independent as has been discussed in Vainberg (2], p. 29, we are going to prove
that, in the case of the generalized Nemyzkii operators defined on some Banach
lattice the continuity implies the boundedness. In order to prove this, we need
some preliminary remarks.

A real Banach space is called a Banach lattice if it is a vector lattice and | f|<|g|
implies | f] </ gl

A non-linear operator F defined on the Banach lattice R is called the general-
ized Nemyzkii operator if F satisfies the following condition:

|fINnlgl=0 implies |f|n|Fg|=0 and F(f+g=Ff+Fg.
In the space L? (0, 1), the operator
FEf) = F(¢, f(2)
is an emample of the generalized Nemyzkii operator when the function F(¢, &)
satisfies some conditions.

Theorem 3. Let F be the generalized Nemyzkii operator, continuous at 0, defined on
the Banach lattice R. Then, for any real-valued function N(f) (feR) with the following
properties :

13 0K N(f)<+oo if f*0;

22 |finlgl=0 implies N(f+g = N{(f)+ N(g;

30 nﬁrgollﬁ\|=0 if and only if lim N(f) =0, and

lim || fa||=co if and only if {_z;rgo N fa) =o0;

42 If N()> a, there are f, and f, such that
f=fi+fi 1£INIf;l=0 and N(f)=a,

we have

NEHS aN(H+ 1 (feR)
for some a >0, and hence it follows that the operator is bounded whenever there is dfined
such a functional N(f).
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Proof. From the definiton it follows that F0=0. Since F is assumed to be
continuous at 0, by 3° we can find a number a > 0 such that
aN(f)<1 implies NFNHLL

For any f such that aN(f) 2 |, we can find a natural number »n such that
n<aN(fi<n+ 1

By 49 we can find fi(i =1, 2,-----, n+1) such that
F="3 i 1£I051=0 G+ and aN(f)< L.
=1
Therefore, since the operator F is additive for orthogonal elements,
Ff="3 Ff,
=1
and, by 29 we have
NFEf)="3 N Ffy)<n+1s a N+,
=1

which is to be proved.

Remark. Example 1.1 shows that the constant 1(or at least a non-zero constant)
of the above inequality is indispensable if we do not assume that F be Fréchet-
differentiable at 0.

Yokohama Municipal University.
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