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In this paper, we will study some problems on the spectra of the generalized
Hammerstein operators defined on the Hilbert space. For this purpose, we regard
the Hilbert space as a Banach lattice. In \S 1, we give some remarks on the Hilbert
lattice. In \S 2, we will define the generalized Hammerstein operators and will give
some remarks. In \S 3, we will consider properties of the spectrum of the general-
ized Hammerstein operator in the case when its completely continuous part admits
a proper elements system consisting of positive elements. Thcorem 5 there is a
correction of Theorem 2 of (2).

\S 1. We assume that the space $R$ satisfies the following three conditions:
I. $R$ is a real Hilbert space. The.inner product of $f\epsilon R$ and $g\epsilon R$ will be denot-

ed by $(f, g)$, which is a real number.
II. $R$ is a vector lattice. Namely, $R$ is a lattice with the following properties:

(1) $ f\geqq\theta$ and $ g\geqq\theta$ imply $f+g\geqq 0$ ; (2) $f\geqq 0$ and $\alpha\geqq 0$ ( $\alpha$ is a real number) imply
$\alpha J\geqq 0$ .

The following relations are well-known:
1. $|f|=f\cup(-f)=f^{+}+.f^{-}$

$wheJef^{+}=f\cup 0$ and $f^{-}=(-f)^{+}$ .
2. $f+g=f^{\cup}g+f_{n}g$.
3. $|.f-g|=f\cup g-f_{n}g$.

If $|f|\leqq|g|$ , then $\Vert f||\leqq|!g\Vert$ .
Throughout of this paper, we denote by $R$ the space with the above three

properties.
The following two lemmata are important for our subsequent discussions.
Lemma 1. If $0\leqq f\leqq g$ and $h\geqq 0$, then

$(f, h)\leqq(g, h)$.
Proof We have only to prove that, for any positive element $f$ and any posi-

tive element $g$, we have $(f, g)=\theta$. Since we have
$|f-g|=f^{\cup}g-f_{\cap}g\leqq f^{\cup}g+f_{n}g=f+g$,

the condition 3 implies that
$||f-g\Vert\leqq||r+g\Vert$ .
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Therefore,
2 $(f, g)=|^{1}f+g\Vert^{2}-\Vert f-g||^{2}\geqq\theta$ .

Lemma 2. For p0sitive $elem\theta ntsf$ and $g,$ $ f_{n}g=\theta$ is equivalerd to $tf,$ $g$) $=\theta$.
Proof. If $f_{n}g=0$, then, by the condition III, we have

2 $(f, g)=\Vert f+g\Vert^{2}-\Vert f-g\Vert^{2}=\theta$,
because, $|f-g|=f+g$ and $\Vert f-g\Vert=\Vert(|f-g|)\Vert$ .

Conversely, if $(f, g)=\theta$ for positive elements $f$ and $g$, we have, by Lemma 1,
that

$0\leqq(f_{n}g, f_{ng})\leqq(f, g)=\theta$,
which implies that $ f_{n}g=\theta$.

\S 2. Let $K$ be a symmetric, completely continuous linear operator defined
on $R$ . Let $F$ be a non-linear, continuous operator defined on $R$ . We assume that
$(^{*})$ if $|f|_{\cap g_{1}}^{1!}=\theta$, then $|f|_{\cap}|Fg|=0$ and $F(f+g)=Ff+Fg$. The operator $H=KF$
with the condition $(*)$ is called the generalized $Hamrmst\ell in$ operator.

The integral operator of Hammerstein type

$ Hf(s)=\int_{0}^{1}K(s, t)Ftt,ft))d\ell$,

where the kernel function $K(s,$ $t$ } is symmetric and square-integrable on $(\theta, 1)\times(\theta, 1)$

and the function $F(t, u)$ is bonnded and continuous with respect to $t$ in $(\theta, 1)$ and to
$u$ in $(-\infty+\infty)$ and $ F(t, \theta)=\theta$ for any $t$ in $(0,1)$ , is an example of the generalized
Hammerstein operator defined on $L^{2}(\theta, 1$ ], the space of square-integrable measur-
able functions on $(\theta, 1$ ]. Here, we have only to put

$Kf(s)=\int_{0}^{1}K(s, t)f(t)dt$ and $Ff(t)=F(t,f(t))$.
We shall say that the space $R$ is non-atomic, if, for any number $\alpha>\theta$, any ele-

ment $f$ with $\Vert f\Vert>\alpha$ can be devided in the following way:
$f=f_{1}+f_{2},$ $|f_{1}|n|f_{2}|=0$ and $||f_{1}\Vert=\alpha$ .

It is evident that the space $L^{2}$ is non-atomic.
Theorem 1. If the space $R$ is non-atomic, then, for the operat0r $F$ satisfying the con-

dition $(*)$, there exists a positive number $a$ such that
$\Vert Ff\Vert\leqq\alpha||f\Vert+1tf\epsilon R)$,

namely, the operat0r $F$ is boundcd (the image ofany norm boundcd set by $F$ is also norm bound-
ed).

Proof. Since $F$ is continuous, we can find a positive number $\alpha$ such that
$\Vert f||<\alpha$ implies $\Vert Ffll<1$ . $\cdot$ ........... (1)

For any $f\epsilon R$. there is an integer $ n\geqq\theta$ such that
$n\alpha^{2}\leqq\Vert f\Vert^{2}\leqq(n+1)\alpha^{2}$ . $\cdot$ -......... (2)
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Since the space is assumed to be non-atomic, there exist $f_{i}(i=1,2,\cdots\cdots, n+l)$ such
that

$f=f_{1}+f_{2}+f_{2}+\cdots\cdots+f_{n+I}$ , $|f_{i}|_{n^{1}}f_{j}|=0(i\neq j)$

and $\Vert f_{i}\Vert\leqq a(i=1,2,\cdots\cdots, n+l)$ .
Therfore, by $(*)$ we have

$Ff=Ff_{1}+Ff_{2}+\cdots\cdots+Ff_{n+1}$ ,

and, by (1) and (2), we have

$\Vert Ff|\downarrow 2=\sum_{i=1}^{n+1}\Vert Ff_{i}\Vert^{2}<n+1\leqq\frac{1}{\alpha^{2}}\Vert f||^{2}+1$ ,

which means that $F$ is bounded.
By making use of the above theorem, we have the following.
Theorem 2. If the $spa^{\rho}eR$ is $non- atom^{j}c$, th. $g3njrali_{J}ed$ Hammerstein operat0r is

completely continrrous, namely, it is continuous and the $imag_{\vee}of$ any bound set is compact.

\S 3. We denote by $S(H)$ or $S(K)$ the set of all proper values of the operator
HorKrespectively. For $\lambda\epsilon S(H)$ or $\lambda\epsilon S(K)$ , we denote the set of proper elements be-
longing to the $\lambda$ by $E_{\lambda}(H)$ or $E_{i}(K)$ respectively.

In this section. we assum $ J\phi$ that the $symm^{l}’\ell ric$, completelv continuous linear operat0r $K$

admits a pr0ber elemends svstem consisting ofpositive elem. $nts$ . Namely, we assume that
we can choose a positive proper element corresponding to each proper value.

For this kind of $K$, any element $f$ in $K(R)$, the range of $K$, can be express-
ed in the following way:

$f=\sum_{n=1}^{\infty}(f, \phi_{n})\phi_{n}$ (3)

where $\phi_{n}$ is a positive, normalized, proper element belonging to the proper value
$\lambda_{n}\epsilon S(H^{\neg}J$. The n-th coordinate of $f$ is denoted by $f^{(n)}$ , namely, we put

$f^{(n)}=(f, \phi_{n})$ $(n=1,2.\cdots\cdots\cdots)$

We define the real-valued functions $\Phi_{n}(\xi)$ of real variable $\xi$ by
$\Phi_{n}(\xi)=(F(\xi\phi_{n}), \phi_{n})$ $(n=1,2\cdots\cdots)$.

The functions $\Phi_{n}(\xi)$ are obviously continuous and $\Phi_{n}(\theta)=\theta$ .
Theorem 3. For any $f\epsilon K(R)$, we have

$ Hf=2\lambda_{n}\Phi_{n}(f^{(n)})\phi_{n}n--1\infty$

Proof. Since $(\phi_{m}, \phi_{n})=0(m\neq n)$, we have, by Lemma 2, th $clt$

$\phi_{m\cap}\phi_{n}\cdot=\theta$ ,



14 SADAYUKI YAMAMURO

because $\varphi_{m}>0$ and $\phi_{n}>\theta$ . Therefore, we have
$|f^{()}m\phi_{m}|_{\cap}|f^{(n)}|=\theta$ ,

which implies that

$Ff=\sum_{n=1}^{\infty}F(f^{(n)}\phi_{n})$,

because of $(*),$ (2) and the fact that $F$ is continuous. Applying $K$ to the both sides
of the above formula, we have by $(_{\grave{J}}^{*}$, that

$Hf=KFf$
$=\infty$

$=_{n_{\overline{-}1}}\ovalbox{\tt\small REJECT}_{\lambda_{n}(\sum_{m=1}F(f^{()}\phi_{m}),\phi_{n})\phi_{n}}^{\infty}m$

$=\sum_{n=1}^{\infty}\lambda_{n}(F(f^{(\hslash)}\phi_{\hslash}), \phi_{n})\phi_{n}=\sum_{n=1}^{\infty}\lambda_{n}\Phi_{n}(f^{(n)})\phi_{n}$,

which is to be proved.
Theorem 4. $\lambda_{n}\Phi_{n}(1)\epsilon S(HJ$ $(n=1,2,\cdots\cdots\cdots)$.
Proof. By (4), we have

$H\phi_{n}=\infty_{\sum_{m_{-}- l}\lambda_{m}\Phi_{m}(\phi_{n^{(m)}})\phi_{m}=\lambda_{n}\Phi_{n}(1)\phi_{n}}$,

which means that $\lambda_{n}\Phi_{n}(1)\epsilon S(H)$ .
The above theorem shows that the number of elements of $S(H)$ is not less

than that of $S(K)$ . Although there is an example’ of Hammerstein operator that has
finite number of proper values (See p. 201 of (1]), the spectra of non-linear orerators

usually contain intervals of real line.
Now, we will show that the fact that $S(HJ$ does not contain any interval is

almost characteristic for the linearity of the operator $H$ Note that, in this section,
we have assumed that the completely continuous linear operator $K$ admits a proper
elements system consisting of positive elements.

Theorem 5. Let us assume that the functions $\Phi_{n}(\xi)(n=l, 2,\cdots\cdots)$ are differerdiable at

the point $0$ . Then, $tfS(H)$ contains no int.rvals, the operator $H$ is $lin\prime ar$ on the set $K(R)$ ,

the range of $K$.
Proof For each $n$, since the function $\Phi_{n}(\xi)$ is continuous, the function $\Phi_{n}(\xi)/\xi$

is also continuous with respect to positive $\xi$ or negative $\xi$ respectively. Let us
assume that there exist $\xi$ and $\eta$ such that

$\xi>\overline{\theta},$ $\eta>0$ and $\underline{\Phi_{n\xi}}\underline{(\xi)}\neq\frac{\Phi_{n^{(\gamma}i)}}{\eta}$
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Then the continuity of $\Phi_{n}(\xi)/\xi$ implies that, for any number $\alpha$ between $\Phi_{n}(\xi)/\xi$ and
$\Phi_{n}(\eta)/\eta$ , there exists $\xi_{\alpha}>0$ such that

$\Phi_{n}(\xi_{a})=\alpha\xi_{\alpha}$ .
Then by Theorem 3, we have

$ H(\xi_{\alpha}\phi_{n})=\sum_{m=1}\lambda_{m}\Phi_{m}((\xi_{a}\phi_{n})^{(}m))\phi_{m}\infty$

$=\lambda_{n}\Phi_{n}(\xi_{a})\phi_{n}=\lambda_{n}a\xi_{\alpha}\phi_{n}$ ,
which means that $\lambda_{n}\alpha\epsilon S(H)$. Since, by the assumption, $S(H)$ contains no intervals,

we conclude that there exists a number $\alpha$ such that
$\Phi_{n}(\xi)=\alpha\xi$ for any $\xi>0$ .

Similarly, we can find a number $\beta$ such that
$\Phi_{n}(\xi)=\beta\xi$ for any $\xi<0$ .

The assumption that the function $\Phi_{n}(\xi)$ is differentiable at $0$ implies that $\alpha=\beta$ .
Since $\Phi_{n}(11=1\cdot\Phi_{n}(1)$ we have

$\Phi_{n}(\xi)=\xi\Phi_{n}(1)$ for every $\xi$ .
Then, since we have

$(f+g)^{(n)}=f^{(\hslash)}+g^{(n)}$

for any $f$ and $g$ in $K(R)$, we have by Theorem 3 that

$ H(f+g)=\sum_{n\overline{-}1}\lambda_{n}\Phi_{n}((f+g)^{(n)})\phi_{n}\infty$

$=\sum_{n=1}\lambda_{n}\Phi_{n}(f^{(n)})\phi_{n}+\infty\ovalbox{\tt\small REJECT}_{\lambda_{n}\Phi_{n}(g^{(n)}})\Phi_{n}=Hf+Hgn--1$

which is to be proved.
\S 4. In this last section, we give some remarks about the condition that the

operator $K$ admits a proper elements system consisting of positive elements.
Let $K$ be a symmetric, positive definite, completely continuous linear opera-

tor defined on the space $R$ . It is well known that, if $K$ is positive, namely, if $f\geqq 0$

implies $Kf\geqq 0$, then the proper element belonging to the largest proper value can
be chosen as positive. This fact is due to the following lattice property:

$(Kf,f)\leqq(K|f|, |f_{1})$ for any $f\epsilon R$ .
The n-th proper element $\phi_{n}$ is $\det^{\iota}\dot{e}$rmined by calculating

sup { $(Kr,f);\Vert f||=1$ and $(f, \phi_{i})=0(i=1,2,\cdots\cdots, n- 1)|$ .
Therefore, if the subspace $A_{n}$ spanned by such $f$ that $(f, \phi_{i})=0(i=1,2,\cdots\cdots, ; -1)$

is clossed by the lattice operation, the n-th proper element can bc chotscn as positive,
because, in this case, the subspace $A_{n}$ stated above contains $|f|$ whenever $f$ is in it.
In other words, the operator $K$ with the properties stated above admits a proper
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elements system $\phi_{n}\geqq 0(n=1,2,\cdots\cdots)$ if and only if, for each $n$ , the fact that $(f, \phi_{i})=0$

$(i=1,2,\cdots\cdots, n)$ implies the existence of such a positive element $g\epsilon R$ that
$(g, \phi_{i})=0(i=1,2,\cdots\cdots, n)$ and $(Kf, f)\leqq(Kg, g)$.

In connection with this problem, it would not be of no use to discuss about
the following condition:

$(Kf, g)=0$, implies $(Kr, |g|)=0,\cdots\cdots\cdots\cdots(5)$

because this condition immediately implies the fact that the subspace $A_{n}$ stated
above is itself a vector lattice, namely, $|f|\epsilon A_{\hslash}$ if $f\epsilon A_{\hslash}$ . As is easily seen, if the oper-
ator $K$ satisfies the condition (5), then, by the proposition stated above, $K$ admits a
proper elements system consisting of positive elements.

We shall say that a positive element $u\epsilon R$ be a unit of $R$ if $u\cap|f=0$ implies
$f=0$ . Obviously. the function $flt$) $=\alpha>0(0\leqq t\leqq 1)$ is a unit of the function space
$L^{2}(0,1)$ .

In the sequel, the operator $K$ is naturally assumed to be not identically
vanishing.

Lemma 3. If the obrrator $K$ is positive, symmetric and atisfies (5), then $(Ku, u)\neq 0$

for any unit $u$ of $R$ .
Proof. If $Ku=0$ for a unit $u$ of $R$, then, for any element $f\epsilon R$, we have, by

(5), that
$(u, K|f_{1})=(Ku, |f|)=0$ .

Therefore, by Lemma 2, $\iota ve$ have $u_{n}K|f|=0$, from which it follows that $K|f|=0$ .
Since $|Kf|\leqq K|f|$ , because $K$ is positive, we have

$Kf=0$ $(f\epsilon R)$ .
This is a contradiction. Therefore, $Ku\neq 0$ and hence it follows that $(Ku, u)\neq 0$.

Theorem 6. Let us assume that the operat0r $K$ be positive, symmetric and satisfies the
condition (5). Then, for any unit $u$ of $R$ , the elem$\prime tnt\phi_{0}=Ku$ is a proper element of $K$ and
we have

$Kf=\lambda(f, \phi_{0})\phi_{t)}$ where $\lambda=1/(Ku, u)$

for any $f\epsilon R$ .
ltoof Since, by Lemma 3, $(Ku, u)$ is not zero, we can put $\lambda\simeq 1/(Ku, u)$. If

$(Ku,g)=0$ for an element $g\epsilon R$ , then, by (5), we have $Kg=0$ by making use of the
same method as in the preceeding lemma. Therefore, for any $f\epsilon R$, we have

$(Kf, g)=(f, Kg)=0$ .
Namely, we have

$(Ku, g)=0$ implies $(Kf, g)=0$,

from which it follows that there exists a number $\alpha$ such tha $\iota$

$Kf=\alpha Ku=\alpha\phi_{0}$ .
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Then, we have
$\alpha(\phi_{0}, u)=(Kf, u)=(f\phi_{0})$,

hence it follows that, since $\lambda=1/(\phi_{0}, u)$,
$\alpha=\lambda(f\phi^{0})$.

This completes th proof.

This theorem shows that, if the symmetric, positive operator satisfies the con-
dition (5), then the set $K(R)$ is generated by a single element $\phi_{0}$ which is positive.
It is easy to see that, conversely, if the symmetric, positive operator admits the ex-
pression of Theorem 6, then $K$ satisfies the condition (5).

Yokohama Municipal University.
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