ON THE IMBEDDING OF POLYHEDRA IN MANIFOLDS

By

TATSUO HOMMA

This paper deals with the imbedding of finite k-polyhedra in finite combinatorial n-manifolds, $2k+2 \le n$, and the main theorem is:

Theorem. Let M^n , \widetilde{M}^n and \widetilde{P}^k be two finite combinatorial n-manifolds and a finite k-polyhedron such that \widetilde{M}^n is topologically imbedded in M^n , \widetilde{P}^k is piecewise linearly imbedded in int (\widetilde{M}^n) and $2k+2 \le n$. Then for any $\varepsilon > 0$ there is an ε -homeomorphism F of M^n onto M^n such that

$$F|\dot{M}^{n}-U\varepsilon(\tilde{p}^{k})=1$$
 and $F|\dot{p}^{k}$ is piecewise linear.

1. V. K. A. M. Gugenheim proved the following:

Lemma 1.(1) Let P^k be a finite k-polyhedron which is piecewise linearly imbedded in a euclidean n-space E^n , $2k+2 \le n$, and let f be a piecewise linear homeomorphism of P^k into E^n . Then there is a piecewise linear homeomorphism F of E^n onto E^n such that

$$F|P^k=f$$

Moreover it is easy to see that his proof induces the more general theorem as follows:

Proposition 1. Under the same conditions as in Lemma 1, if L is a subpolyhedron of P^k such that f|L=1, then for any $\varepsilon>0$ there is a piecewise linear homeomorphism F of E^n onto E^n such that

$$d(F, 1) < d(f, 1) + \varepsilon$$

$$F|E^n - U\varepsilon(\bigcup_{t=0}^{1} f_t(P^k - L)) = 1$$

where $f_t(x) = (1-t)x + tf(x), 0 \le t \le 1$.

Let M^n be a finite combinatorial n-manifold. Then we can choose a positive number η and two sets of combinatorial n-balls, $\{B_1, \dots, B_j\}$ $\{B'_1, \dots, B'_j\}$, which are piecewise linearly imbedded in M^n and satisfy

$$B_1 \cup \cdots \cup B_j = M^n$$

$$B_i' \supset U_{37}(B_i) \qquad i = 1, \cdots, j.$$

For any $i = 1, \dots, j$ we take a continuous function $\varphi_i(x)$, $x \in M^n$, such that

$$0 \le \varphi_i(x) \le 1$$

$$\varphi_i(x) = 1 \quad \text{for } x \in B_i$$

$$= 0 \quad \text{for } x \in M^n - U_n(B_i)$$

Then we define a set of continuous function on M_n , $\{\chi_o(x), \dots, \chi_j(x)\}$ by the formula

$$\chi_o(x) = 0$$

$$\chi_i(x) = Max \{\varphi_1(x), \dots, \varphi_i(x)\}$$

Then it is clear that $0 = \chi_o(x) \le \chi_1(x) \le \cdots \le \chi_j(x) = 1$ and $\chi_{i-1}(x) < \chi_i(x)$ implies $x \in U_{\tau}(B_i)$.

Definition. Let P^k and L be a finite polyhedron piecewise linearly imbedded in M^n and a subpolyhedron of P^k such that

$$cl(P^k-L) \subset int M^n$$
.

Then we call (P^k, L) a pair of subpolyhedra of M^n . A piecewise linear homeomorphism f of P^k into M^n is called a piecewise linear homeomorphism of (P^k, L) , if f satisfies

$$f|L=1$$

$$f(c l(P^k-L)) \subset \text{int } M^n.$$

Proposition 2. For any $\varepsilon > 0$ there is a positive number $\gamma = \gamma(M^n, \varepsilon)$ such that for any piecewise linear γ -homeomorphism f of any pair (P^k, L) of subpolyhedra of $M^n, 2k+2 \le n$, there exists a sequence $\{f_0, \dots, f_j\}$ of piecewise linear ε -homeomorphisms of (P^k, L) satisfying

$$f_o = I,$$
 $f_j = f$

$$f_i | P^k \cap (M^n - U_{\eta}(B_i)) = f_{i-1} | P^k \cap (M^n - U_{\eta}(B_i))$$

and $f_i f_{i-1}^{-1}$ is a piecewise linear ε -homeomorphism of $(f_{i-1}(P^k), L), i = 1, \dots, j$.

Proof. Since M^n is uniformly *i*-connected, $i = 0, \dots, k$, there is a $\gamma > 0$ such that for any piecewise linear γ -homeomorphism f of any pair (P^k, L) there exists an ε -homotopy $\{g_t\}$, $0 \le t \le 1$, of (P^k, L) in M^n satisfying

$$g_o = 1$$
 $g_1 = f$ $g_t | L = 1$
 $g_t (cl(P^k - L)) \subset int M^n$.

We put $f'_i(x) = g_{i(x)}(x)$, $x \in P^k$ and $i = 0, \dots, j$. Then it is clear that $\{f'_o(x), \dots, f'_j(x)\}$ satisfy all conditions of Proposion 2 except that of piecewise linearity. Since $2k+2 \le n$, we approximate $\{f'_o(x), \dots, f'_j(x)\}$ by piecewise linear ε -homeomorphisms $\{f_o(x), \dots, f_j(x)\}$ of (P^k, L) which satisfy all the conditions of Proposition 2.

The main theorem of Part 1 is;

Lemma 2. For any $\varepsilon > 0$ there is a $\delta = \delta(M^n, \varepsilon) > 0$ such that any piecewise linear δ -homeomorphism f of any pair (P^k, L) of subpolyhedra of M^n , $2k+2 \le n$, can be extended to

a piecewise linear ε -homeomorphism F of M^n onto M^n satisfying

$$F|P^{k} = f$$

$$F|M^{n} - U\varepsilon(P^{k} - L) = 1$$

$$F|bdry M^{n} = 1.$$

Proposition 1 can be restated as follows:

Proposition 1'. If M^n is a combinatorial n-ball, Lemma 2 is true.

Proof of Lemma 2. We take the positive number $\varepsilon' = Min(\frac{\varepsilon}{j}, \eta)$ and by Proposition 1' we get $\{\delta(B'_1, \varepsilon'), \dots, \delta(B'_j, \varepsilon')\}$. Moreover by Proposition 2 we get the number

$$\delta = \gamma(M^n, \delta')$$

where $\delta' = \underset{i=1}{\overset{j}{\min}} \{\delta(B'_i, \varepsilon')\}$. Let f be any piecewise linear δ -homeomorphism of any

pair (P^k, L) of subpolyhedra of M^n , $2k+2 \le n$. Then by Proposition 2 there is a sequence of piecewise linear δ' -homeomorphisms, $\{f_0, \dots, f_j\}$ of M^n such that

$$f_{o} = 1 f_{j} = f$$

$$f_{i}|P^{k} \cap (M^{n} - U_{n}(B_{i})) = f_{i-1}|P^{k} \cap (M^{n} - U_{n}(B_{i}))$$

and $f_i f_{i-1}^{-1}$ is a piecewise linear δ' -homeomorphism of $(f_{i-1}(P^k), L)$. Since $\delta' \leq \eta$, we have

$$f_i f_{i-1}^{-1} | f_{i-1}(P^k) \cap (M^n - U_{2^n}(B_i)) = I$$
, and

$$f_i f_{i-1}^{-1} | L = 1.$$

We can choose a subpolyhedron L_i of $f_{i-1}(P^k)$ such that $f_i f_{i-1}^{-1} | L_i = 1$ and $L_i \supset ((f_{i-1}(P^k) \cap (M^n - U_{2^n}(B_i))) \cup L$. Then we have

$$cl(f_{i-1}(P^k)-L_i)\subset \operatorname{int} B'_i$$

$$f_i f_{i-1}^{-1} cl(f_{i-1}(P^k) - L_i) \subset \text{int } B'_i$$
.

Therefore by Proposition 1' there is a sequence of piecewise linear ε' -hoemorphisms $\{F_1, F_2, \dots, F_j\}$ of M^n onto M^n such that

$$F_{i} f_{i-1} = f_{i}$$

 $F_{i} | M^{n} - U \varepsilon'(f_{i-1}(P^{k}) - L_{i}) = 1$
 $F_{i} | cl(M^{n} - B'_{i}) = 1$.

Since $\varepsilon' \leq \frac{\varepsilon}{j}$, it is clear that $F = F_j F_{j-1} \cdots F_1$ is the required piecewise linear ε -homeomorphism of M^n onto M^n and we have proved Lemma 2.

Corollary. Let f be a piecewise linear homeomorphism of a subpolyhedron P^k of a finite combinatorial n-manifold M^n into M^n such that $P^k \subset int M^n$, $f(P^k) \subset int M^n$, f is homotopic to the identity and $2k+2 \le n$. Then f can be extended to a piecewise linear homeomorphism of M^n onto M^n .

Proof. Since f is homotopic to I and $2k+2 \le n$, we can choose a sequence of piecewise linear homeomorphisms $\{f_1, \dots, f_l\}$ of P^k into $int(M^n)$ such that $f_0 = I$, $f_0 = f$ and $d(f_i, f_{i-1}) < \delta(M^n, I)$. By Lemma 2 we have a sequence of piecewise linear homeomorphisms $\{F_1, \dots, F_l\}$ of M^n onto M^n such that

$$F_i f_{i-1} = f_i$$
 $i = 1, \dots, l.$

Then $F = F_1 \cdot \dots \cdot F_1$ is the required piecewise linear homeomorphism of M^n onto M^n .

2. We shall prove the Theorem. We have two combinatorial *n*-manifolds M^n and \tilde{M}^n and then two different metrics and two different piecewise linearities. Therefore the notations without \sim or with \sim relate to M^n or \tilde{M}^n respectively.

Proof of Theorem. At first we choose a piecewise linear $\delta(M^n, \frac{\varepsilon}{4})$ -hemeomorphism f of \tilde{F}^k into int M^n and denote $f(\tilde{p}^k)$ by P^k . Since \tilde{M}^n is a compact metric space in M^n , we can choose a positive number $\tilde{\varepsilon}$ such that for any two points x, y of \tilde{M}^n , $\tilde{d}(x, y) < \frac{\tilde{\varepsilon}}{2}$ implies $d(x, y) < \frac{\varepsilon}{2}$. We shall contruct two sequences $\{F_o, F_1, \dots\}$ and $\{\tilde{F}_o, \tilde{F}_1, \dots\}$ of piecewise linear homeomorphisms of M^n and of \tilde{M}^n respectively, two sequences $\{\varepsilon_o, \varepsilon_1, \dots\}$ and $\{\tilde{\varepsilon}_o, \tilde{\varepsilon}_1, \dots\}$ of positive numbers and two sequences $\{P_o, P_1, \dots\}$ and $\{\tilde{P}_o, \tilde{P}_1, \dots\}$ of simplicial subdivisions of P^k and \tilde{P}^k respectively such that

- $(0) \quad \tilde{d}(F_i|P^k, \, \tilde{F}_{i-1}|f^{-1}) < \delta(\tilde{M}^n, \, \tilde{\varepsilon}_{i-1})$
- (i) $d(\tilde{F}_i|\tilde{P}^k, F_i f) < \delta(M^n, \varepsilon_i)$
- (1) $d(F_i, F_{i-1}) < \varepsilon_{i-1}$ $F_0 = 1$
- (1) $\tilde{d}(\tilde{F}_i \tilde{F}_{i-1}) < \tilde{\varepsilon}_{i-1}$ $\tilde{F}_0 = 1$
- (2) $F_i F_{i-1}^{-1} | M^n U_{\varepsilon_{i-1}} (F_{i-1}(P^k)) = 1$
- $(\tilde{2}) \quad \tilde{F}_{i} \tilde{F}_{i-1}^{-1} \mid \tilde{M}^{n} \tilde{U}_{\tilde{\epsilon}i-1} \left(\tilde{F}_{i-1} \left(\tilde{P}^{k} \right) \right) = 1$
- (3) P_i is a simplicial subdivision of P_{i-1} mesh $(P_i) < \frac{1}{i}$
- (3) \tilde{p}_i is a simplicial subdivision of \tilde{p}_{i-1} mesh $(\tilde{p}_i) < \frac{1}{i}$
- (4) F_i is simplicial on P_i
- (4) \tilde{F}_i is simplicial on \tilde{P}_i
- (5) $2\varepsilon_i < \varepsilon_{i-1}$ $\varepsilon_0 = \frac{\varepsilon}{4}$

(5)
$$2\tilde{\varepsilon}_i < \tilde{\varepsilon}_{i-1}$$
 $\tilde{\varepsilon}_0 = \frac{\tilde{\varepsilon}}{4}$

- (6) $4\varepsilon_i < d(F_i(\sigma), F_i(\sigma'))$ for any disjoint simplexes σ , σ' of P_i
- (6) $4\tilde{\epsilon}_i < \tilde{d}(\tilde{F}_i(\tilde{\sigma}), \tilde{F}_i(\tilde{\sigma}'))$ for any disjoint simplexes $\tilde{\sigma}$, $\tilde{\sigma}'$ of \tilde{P}_i
- $(7) \quad U\varepsilon_i \; (F_i(P^k)) \subset F_i(U_{\underline{i}}(P^k))$
- $(\tilde{7}) \quad \tilde{U}_{\tilde{\epsilon}i} \; (\tilde{F}_i(\tilde{p}^k)) \subset \tilde{F}_i(\underline{\tilde{U}_1}(\tilde{p}^k))$

First of all we take $F_0 = I$, $\tilde{F}_0 = I$, $\varepsilon_0 = \frac{\varepsilon}{4}$, $\tilde{\varepsilon}_0 = \frac{\tilde{\varepsilon}}{4}$ and any simplicial subdivisions P_0 and \tilde{P}_0 of P^k and \tilde{P}^k respectively.

Step 1. Since $d(f^{-1}, 1) < \delta(M^n, \varepsilon_0)$, we can choose a piecewise linear $\delta(M^n, \varepsilon_0)$ -homeomorphism f_1 of P^k into int M^n such that

$$\tilde{d}(f_1, f^{-1}) < \delta(\tilde{M}^n, \tilde{\varepsilon}_0)$$

By Lemma 2 there is a piecewise linear ε_0 -homeomorphism F_1 of M^n onto M^n satisfying the conditions (0), (1), (2). Then we can choose a simplicial subdivision P_1 of P_0 satisfying the conditions (3), (4) and a positive number ε_1 satisfying (5), (6), (7).

Step \tilde{I} . Since $\tilde{d}(F_1|P^k, \tilde{F}_0f^{-1}) < \delta(\tilde{M}^n, \tilde{\epsilon}_0)$, there is a piecewise linear $\delta(\tilde{M}^n, \tilde{\epsilon}_0)$ -homeomorphism \tilde{f}_1 of \tilde{P}^k into $\inf(\tilde{M}^n)$ such that

$$d(\tilde{f}_1, F_1 f) < \delta(M^n, \varepsilon_1).$$

Then by Lemma 2 there is a piecewise linear $\tilde{\epsilon}_0$ -homeomerphism \tilde{F}_1 of \tilde{M}^n onto \tilde{M}^n satisfying (3), (1), (2). We choose \tilde{P}_1 satisfying (3), (4) and $\tilde{\epsilon}_1$ satisfying (5), (6), (7).

Step 2 is the same as Step 1 and we get F_2 , P_2 , ε_2 satisfying (0),...(7). And then we get all the sequences inductively.

By the conditions (1), (1), (5) and (5) it is clear that $\{F_0, F_1, \dots\}$ and $\{\tilde{F}_0, \tilde{F}_1, \dots\}$ converge to a continuous mapping G and \tilde{G} of M^n onto M^n and of \tilde{M}^n onto \tilde{M}^n respectively. Furthermore G and \tilde{G} are homeomorphisms. In fact for any different points p and p' of P^k there is an integer i > 0 and two disjoint simplexes σ and σ' of P_i such that

$$p\epsilon\sigma$$
 and $p'\epsilon\sigma'$.

Then by the conditions (1), (5), (6) we have

$$d(G(p), G(p'))$$

$$\geq d(F_{i}(p), F_{i}(p')) - d(F_{i}(p), G(p)) - d(F_{i}(p'), G(p'))$$

$$> d(F_{i}(\sigma), F_{i}(\sigma')) - 2\varepsilon_{i} - 2\varepsilon_{i}$$

$$> 4\varepsilon_{i} - 4\varepsilon_{i} = 0.$$

Hence $G(p) \neq G(p')$ and then $G(P^k)$ is one to one. Therfore by (2), (7) G is a homeomorphism. Similarly \widetilde{G} is a homeomorphism. Furthermore \widetilde{G} can be extended

to a homeomorphism. \tilde{G}' of M^n onto M^n such that

$$\tilde{G}'|M^n-\tilde{M}^n=1$$

By (0) we have $G^{-1}\tilde{G}'|\tilde{P}^k=f$. We denote the homeomorphism $G^{-1}\tilde{G}$ by F. Then by the conditions (1), (7), (2), (5), (5), F is the ε -homeomorphism of M^n onto M^n such that

$$F|\tilde{p}^k = f$$

$$F|M^n - U_{\epsilon}(\tilde{p}^k) = 1$$

Since f is a piecewise linear homeomorphism of \tilde{P}^k into M^n , we have proved the Theorem.

References

[1] V. K. A.M. Gugenheim "Piecewise Linear Isotopy and Embedding of Elements and Spheres I,.. Proc. London Math. Soc. 3(1952), 29-53.