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In several functions spaces, it has two kinds of norms and it makes a Banach

space by one of them. Alexiewicz, Semadeni and Wiweger named it two norm space and

obtain fundamental and important results of it, moreover have introduced in it

“mixed topology“ by two kinds topologies.
But, some examples of the space of functions have various semi-norms in

addition to the intrinsic topology (by norm) and, there exist remarkable relations
between the norm and the semi-norms.

In this paper, we denote $\Vert x\Vert$ the norm ofan element $x$ of $X$, semi-norms of
$x$ by $\Vert x\Vert_{a}^{*}(\alpha\epsilon\Lambda)$ and these two norms are combined by $\Vert x\Vert=\sup_{\alpha\epsilon r}\Vert_{X_{1}^{I}}|_{\alpha}^{*}$.

The space is of course a two-norm space as point out in Wiwtger (4). He de-

termined the form of the mixed topology under some conditions by pseudo-norm;

[X) $(\beta i)(\alpha i)=sup\frac{\Vert x\Vert_{\beta i}^{*}}{\alpha i}$ , $\beta_{i}\epsilon B,$ $0<a_{i}\rightarrow\infty$ .
But, the space is distinct in topology from two-norm space and it has various

important examples. Therefore, I shall be study the space as extension of two-

norm space in this paper.
1. Definition of many norms space. We consider a linear space with

norm $\Vert x\Vert$ of an element $x$ of set $X$ and complete by norm-topology, that is, a Banach
space. Moreover, we difine that each element $\chi$ of $X$ has some semi-norms $\Vert x_{\mathfrak{l}}|_{\alpha}^{*}(\alpha\epsilon\Lambda)$

satisfying the conditions $\Vert x+y|_{a}^{*}\leqq|_{s}|x|_{\alpha}^{*}+||y_{1}|_{\alpha}^{*},$ $\Vert ax||_{\alpha}^{*}=_{1}|a|||x||_{a}^{*}$. ( $|^{1}|x\Vert:=0$ does not implies
$x=0)$ The norm $\Vert x||$ and semi-norms $\Vert x\Vert_{\alpha}^{*}(\alpha\epsilon\Lambda)$ have the relation

$(M)$ $\Vert x\Vert=sup\Vert x\Vert_{\alpha}^{*}$

By the norm $\Vert x_{1}^{1}|$ of $x$ in $X$, it is a topological linear space and locally convex,

denote the topology by $\tau$ .
The neighbourhoods of zero by semi-norms $\Vert x_{I}^{(}$ : $(\alpha\epsilon\Lambda)$ is $U(x;\Vert X_{1}|_{ai}^{*}<\vee ei=1$ ,

2, $\cdots\cdots$ , $ n;\alpha_{i}\epsilon\Lambda$), its topology is dcnoted by $\tau^{*}$ , the sy.stem of thc $ncighb_{D}urhoods$ of

zero byU $(\tau^{*})$. The spaceX with topology $\tau^{*}i_{S}aliop^{r}$) ’

(1) if $U\epsilon U(\tau^{*})$ and $\lambda\epsilon R,$ $\lambda\neq 0$ , then $\lambda U\epsilon U(\tau^{*})$ ,
(2) if $U\epsilon U(\tau^{*})$ and $\lambda\epsilon R,$ $|\lambda|\leqq 1$ , then $\lambda U\subset U$.
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(3) if $U\epsilon U(\tau^{*})$ , then for ever $\gamma x\epsilon X$ there exists $\lambda\epsilon R,$ $\lambda\neq 0$ such that $\lambda x\epsilon U$.
(4) if $U,$ $V\epsilon U(\tau^{*)}$, then there exists $W\epsilon U(\tau^{*})$ such that $W\subset U\cap V$.
(5) if $U\epsilon U(\tau^{*})$, then there exists $V\epsilon U(\tau^{*})$ such that $V+V\subset U$.
Moreover, $U(\tau^{*})$ satisfies the condition by the assumption (Af).

$(\hat{o})$ for every $x\epsilon X,$ $x\neq 0$, there exists $U(\tau^{*})$ such that $x\overline{\epsilon}U$.
And, the linear space with topology $t^{*}$ is locally convex, but incomplete. Of

course, $\tau^{*}\leqq\tau$ and satisfies (d) of (4), so it has the various properties in (4).

The space $X$ with the norm $\Vert x\Vert$ and semi-norms $\Vert x\Vert_{a}^{*}(a\epsilon\Lambda)$ is denote by $<X$,
$\Vert\Vert,$ $\Vert\Vert^{*}>or<X,$ $\tau,$ $\tau^{*}>and$ call it “many norms space”.
First, we shall discuss the properties of the many-norms space as linear to.

pological space.
Proposition 1. If $x_{n}$ comrrges to $x$ by $\tau^{*}$-topology, $th\ell n$ the set $\{\Vert x_{n}\Vert\}$ is bounded.
In fact, for any $\epsilon>0$ th $e$re exist $\alpha_{i}\epsilon\Lambda(i=1,2,\cdots\cdots, n)$ and $N$ such that $\Vert x_{\hslash}-x^{\prime}|_{\alpha i}^{*}$

$<\epsilon$ for $n>N$. Then $\Vert x_{n}\Vert_{\alpha i}^{*}-\Vert_{X_{1}^{1}}|_{\alpha i}^{*}\leqq\Vert x_{n}-x|_{l}^{*};<\epsilon,$ $\Vert a\Vert_{\alpha i}^{*}\leqq\Vert x_{I}|_{i}^{*}+\epsilon\leqq\Vert x\Vert+\epsilon=M$. $\Vert h\Vert=$

$\sup\Vert_{k\prime}\Vert_{i}^{*}\leqq M$.
$\Vert X_{l}^{*}$ is a Minkowski’s function, so there exists functional in $<X,$ $\tau^{*}>,f(x)\leqq\Vert x_{l}^{*}$.
This functional is continuous in $\tau^{*}$-topology and $\{f\}=\Xi^{*}$ is total in $X$.
In fact, if $x\neq 0$, we have an $a\epsilon\Lambda,$ $\Vert_{X_{|\alpha}^{\prime}}*\neq\theta$, set $f(\ell x)=\ell\Vert x_{1}^{I}|_{l}^{*}$ for every real number

$t,$ $sothisfunctionalf(x)$ is extensible on X. Therforef$(x)\neq\theta$ . $\Xi^{*}$ is total in X.
2. Examples. The many norms space have various examples, but main

space is as follows:
(1) the space $L^{f}$ . The norm of $\kappa X$ is $\Vert\triangleleft|=(j_{0}^{I}|x(t)|^{p}d\ell)^{1/\prime}$, the semi-norms of $x$,

$|\mu_{1}|_{\alpha}^{*}=\int_{0^{X(\ell)y_{\alpha}}}^{1-}(\overline{\ell)}$dt where $(\int_{0}^{l}|y_{\alpha}^{(\ell)_{1}^{}dt)^{1/q}\leqq}q1$ . $(^{1}/r+l/r=1)$

(2) The space ofcontinuous functions on the real $lin\ell-\infty<x<+\infty,$ $\Vert x(\ell)|=\sup|xt\ell)^{1}$,

$\Vert x(t)\Vert_{K}^{*}=sup|x(t)|\ell\epsilon K$
where $K$ is a compact subset. Obviously,

$\Vert x(\ell)\Vert=sul\Vert x(t)_{1}||_{K}^{*}$

(3) $X$ is a Banach space with norm $\Vert x\Vert$ . $f_{\alpha}$ is a bounded linear functional on $X$.
$\Vert_{X_{1}^{1}}|_{l}^{*}=|f_{\alpha}(x)|$ where $\Vert f_{\alpha}\Vert\leqq 1$ . Assumption $(M)$ is easily.

(4) $X$ is the conjugate space of a Banach space X. $f\epsilon X$ has a norm $|^{1}f\Vert$ as Banach
space, and $\Vert f\Vert_{a}^{*}=|f(\&)|$ where $n\epsilon X$ and $\Vert x_{\alpha}\Vert\leqq 1$ in X. $(M)$ is obvious.

(5) $B$ be a set of bounded linear operators on a Banach space $X,$ $B$ is also a
Banach space with norm $\Vert A\Vert$ as operator of $B$ and $|^{1}A||*\alpha$ is $||A\&\Vert$ where $k\epsilon X,$ \Vert &\Vert \leqq 1.
$B$ is a many norms space and $||A\Vert=\sup_{\alpha}\Vert Ax_{a}\Vert$ .

(6) In (5), $\Vert A\Vert_{\alpha}^{*},\rho=|f_{a}(Ax_{\beta})|$ with $x_{\beta}\epsilon X,$ $\Vert x_{\beta}\Vert\leqq 1,f_{n}\epsilon X,$ $\Vert f_{\alpha}[|_{\underline{-}}<\cdot 1$ ,

So, $||A\Vert=\sup_{*.\beta}|f_{a}(Ax_{\beta})|$ .
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In particular, $X$ be a Hilbert space $\mathfrak{H}B$ an operator ring $M$ on it, the neigh-

bourhoods of zero $\Vert A\Vert<\epsilon$ is uniform topology, $\Vert Ax_{i}\Vert<\epsilon(i=1,2, \cdots\cdots\cdots,n)$ is strong

topology, the neighbourhoods $|(A_{X_{i,y_{i}}})|<\epsilon(i=1,2,\cdots\cdots,n)$ is weak topology.

3. Mixed topology in the many norms space. We can introduce the

mixed topology in many norms space as in the two-norm space.
For each $U\epsilon U(\tau)$ and for each sequence $U_{1}^{*},$ $U_{2}^{*},\cdots\cdots\epsilon U(\tau^{*})$, we shall denote by

$\gamma^{(}U_{1}^{*},$ $U_{2}^{*},$ $\cdots\cdots;U$ ) the set $\infty\bigcup_{n\overline{-}1}(U_{1}^{*}\cap U+U_{2}^{*}\cap 2U+\cdots\cdots+U_{n^{*}}\cap nU)$ . Wiweger (4)

has called this topology the mixed top0logy determined by the topologies $\tau$ and $\tau^{*}$ .
Mixed topology is weaker than $\tau$ and stronger than $\tau^{*}$ as the topology $\tau^{*}$ is

weaker than the topology $\tau(\tau^{*}\leqq\tau)$.
Both $of^{\sim}U(\tau),$ $U(\tau^{*})$ are locally convex, so also the mixed topology is locally

convex. We shall denote by $\gamma$-topology thc mixed topology in order to Wiweger.

We define that $B$ is bounded set in $<X,$ $\tau>if$ for each $U\epsilon U(\tau)$ there exists $\lambda\epsilon R$

such that $B\subset\lambda U$.
In general, $\tau^{*}$ doesn’t satisfies the first countability axiom, so it has not also

in mixed topology.
But, if $\tau^{*}$ satisfies the first countability axiom, by Wiweger (3) and proposition

1 the convergence in $\tau^{*}$ and $\gamma$ -convergence are equivalent.
4. Conjugate space. Let be $\Xi,$ $\Xi_{\gamma},$

$\Xi^{*}$ the set of linear continuous func-

tional conceming $\tau,$ $\gamma$ or $\tau^{*}$ on $X$, so $\Xi\supset\Xi_{r}\supset\Xi^{*}$ . For $\tau^{*}$ -continuous functional $\xi(x)$,

$|_{1}\xi\Vert^{*}.=sup|\xi(x)|$, where $\Vert x||_{a}^{*}\leqq 1$ . Then, $|\xi(x)|\leqq\Vert\xi\Vert_{\alpha}^{*}\cdot\Vert x||_{\alpha}^{*}$ and $\Vert\xi_{1}+\xi_{2}\Vert_{t}^{*}\leqq\Vert\xi_{1}\Vert_{a}^{*}+|_{1}\xi_{2}\Vert_{\alpha}^{*}$ ,

$\Vert a\xi\Vert_{*}^{*}=|a|\Vert\xi\Vert_{*}^{*}$ for every $ a\epsilon\Lambda$. $|_{1}\xi|||_{\alpha}^{*}=\theta$ doesn’t implies $\xi=0$ . $\Xi^{*}\subset\Xi$ , so $\xi\epsilon\Xi^{*}$ has

the norm $\Vert\xi\Vert=||xsuf\leqq 1|\xi(x)|$
.

Proposition 2. $<\Xi^{*},$ $\Vert\Vert^{*}>is$ closed $in<\Xi,$ $\Vert\Vert>$ .
Proof. $y$ is an element in the closure of $\Xi^{*}$ , so there exists $y_{0}\epsilon\Xi^{*}$ such that

$\Vert y-y_{0}^{1},|<\epsilon$ . $y_{0}$ is a functional of $\Xi$ ‘. So for $x$ of $\Vert y_{0}x$) $-y_{0}x_{0}$ .
We have $||x||_{\alpha}^{*}\leqq\delta+|||n|_{\alpha}^{*}\leqq 2\Vert x_{1}|_{a}^{*}\leqq 2\Vert\triangleleft|.y,y_{0}$ are $\tau$ -continuous, so we hav $e$ $|y^{(\chi)-}$

$ y\leqq|y-y_{0}x)|+|.y_{\circ}-y_{\Phi}\mathfrak{l}y_{0\&}-yx_{0}|||x|+|^{1}y-y_{0}|_{1}|x_{o^{t^{\downarrow}}},+\epsilon$

$=\Vert y-y_{\Phi}\Vert(|||x|+\Vert n\Vert+\epsilon\leqq 3\epsilon\Vert k^{1}\downarrow|+\epsilon=(3\Vert n\Vert+1)$

Therefore $y_{\sigma}$ is continuous in $\tau^{*}$ . So, $<\Xi^{\iota},$ $\Vert||^{*}>$ is closed in $<\Xi,$ $\Vert|>$ .
Theorem. $<\Xi^{*},$ $\Vert\Vert,$ $\Vert\Vert^{*}>is$ many morms space.
Form the proposition 2, we have following theorem.

Theorem. $<X,$ $\tau,$
$\tau^{*}>be$ a mxny norm $\zeta$ space, then the following conditions are

equivalent;
(i) $<X,$ $\Vert\Vert,$ $\Vert\Vert*>is$ $*$ -reflexive and $\Xi^{*}=\Xi$ .
(ii) $<X,$ $\Vert\Vert>is$ reflexive.
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We can prove as same as 3. 7, theorem in (2).
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