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Abstract 
 
Internet security threats utilizing highly functional malicious programs called malware are recently 

on the rise, and extensive research efforts have been made to counter them. With this explosive 

increase of malware, it is becoming nearly impossible to manually analyze all its forms by reverse 

engineering. An effective countermeasure for this problem, malware sandbox analysis, in which a 

malware sample is executed in a testing environment (a sandbox) to observe its behaviors, has been 

widely studied. Malware authors have responded by making their work more sophisticated to evade 

this analysis. One example is a type of malware called a bot, which changes its behaviors in 

accordance with the behaviors of remote servers with which it interacts, such as Command and 

Control (C&C) servers and malware download servers. Since a bot does not work unless it meets 

the conditions for activation, it is difficult to analyze it sufficiently with traditional sandbox 

analysis. Another example is a type of malware that stops or changes its behaviors when it detects a 

sandbox environment by checking Internet connectivity, the existence of a virtual machine, etc. 

Sandbox analysis thus faces a serious problem in dealing with this evasive malware. 

This dissertation first describes techniques performed by malware and malware authors for 

evading analysis and detection, and categorized evasion techniques against sandbox analysis, into 

two approaches: making comprehension of malware behaviors more difficult and detecting 

sandboxes. Then this study indicates a direction on how to develop a countermeasure technique 

against evasive malware without being evaded by an attacker – leveraging differences between 

malware and benign software that come from malware’s mechanism for evading the 

analysis/detection mechanism; that is, when proposing a new analysis method, the method of 

detecting malware that evades the analysis method should be considered. Consequently, the 

attackers can be given fewer choices. 

Chapter 4 proposes a novel sandbox analysis method that realizes better observability and 

efficiency against malware using techniques to make comprehension of malware behaviors more 

difficult. The method focuses on a function of malware that changes its behaviors in accordance 

with the behaviors of remote servers with which it interacts, such as C&C and malware download 

servers, and analyzes the server behaviors and corresponding malware behaviors. Experiments with 
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samples captured in the wild confirm that the method can observe more variety in their behaviors. 

Chapter 5 clarifies targeted sandbox detection vulnerability in public malware sandbox 

analysis systems (public MSASs) for pursuing better observability. First, properties of sandbox 

information for decoy injection attack, in which an attacker detects the sandbox based on its 

sandbox information disclosed by submitting a decoy sample, are defined: stability, uniqueness, 

and stealthiness of collection. Then, 16 different kinds of characteristic information of the sandbox 

for its detection are analyzed in terms of those properties. Experiments with real public MSASs in 

operation confirm the broad applicability of the decoy injection attack as well as the need for 

comprehensive countermeasures. 

Chapter 6 proposes a novel behavior-based malware-detection method using sandbox-evasive 

behaviors. Malware authors have been embedding functions that act as countermeasures against 

malware analysis and detection that often change runtime behaviors in each execution. The 

proposed method focuses on such characteristics. It conducts dynamic analysis on an executable 

file multiple times in the same sandbox environment to obtain multiple logs of API call and traffic, 

and then compares them to find the difference between the multiple executions. Experiments with 

malware samples captured in the wild and benign software samples confirm effectiveness of the 

method. 
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Chapter 1  
 
Introduction 
 

 

1.1 Motivation and Contributions 
As the Internet has become an increasingly essential medium in our life, security threats (e.g., 

divulging of private information, phishing, and denial-of-service [DoS] attacks) have also increased. 

In these threats, malware, a generic term for computer viruses, worms, Trojan horses, spyware, 

adware, and bots, plays a significant role, and extensive research efforts have been made to tackle it. 

The recent explosive increase of malware has made it nearly impossible to analyze all its forms 

manually using reverse engineering techniques. Malware sandbox analysis [1] [2] [3] [4] [5] [6] [7] 

[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] has 

been studied widely as an effective countermeasure. Its basic idea is to actually execute a captured 

malware sample in a testing environment (sandbox) in order to observe and analyze its behaviors. A 

great advantage of sandbox analysis is that it can be implemented in a highly automated fashion. 

Malware authors, however, have been making their malware more sophisticated in order to 

evade this analysis. For example, one type of malware, called a time bomb, does not activate until a 

certain date, and a bot changes its own behaviors in accordance with the behaviors of the remote 

servers with which it interacts; such as Command and Control (C&C) servers and malware 

download servers. Since these forms of malware do not work unless they meet the conditions for 

activation, it is difficult to sufficiently analyze them with traditional sandbox analysis. Another 

example is a type of malware that stops or changes its behaviors when it detects a sandbox 

environment by checking Internet connectivity, existence of a virtual machine, etc. Sandbox 

analysis thus faces a weighty problem in how to deal with such evasive malware. 

This dissertation contains three main contributions toward solving the problem. First, 
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techniques performed by malware and malware authors for evading analysis and detection are 

described, and evasion techniques against sandbox analysis are categorized into two approaches: 

making comprehension of malware behaviors more difficult and detecting sandboxes.  

An example of techniques to make comprehension of malware behaviors more difficult is 

making conditions for activation. A malware author often creates malware that conducts malicious 

activity only when the activation condition is met. A famous example is a bot, which changes its 

behaviors in accordance with the behaviors of remote servers with which it interacts, such as by 

conducting malicious activities in accordance with a C&C message received from a C&C server, 

downloading an additional binary from a malware download server, and running it. So in this case, 

when an activation condition is not met, malicious activity cannot be observed and sufficiently 

analyzed in sandbox analysis. Chapter 4 proposes a novel sandbox-analysis method that realizes 

better observability and efficiency against malware that changes its behaviors in accordance with 

the behaviors of remote servers with which it interacts, such as C&C servers and malware 

download servers. The method can efficiently analyze the server behaviors and corresponding 

malware behaviors. 

There are some detection techniques based on specific sandbox characteristics [8] [28] [29] 

[30] [31] [32]. For example, the malware author tries to detect by using information unique to each 

sandbox, such as specific Dynamic Link Libraries (DLLs), system resources like the OS product 

key, and the global IP address. A previous study pointed out the vulnerability of public MSASs 

against decoy injection attacks, in which an attacker detects the sandbox based on its IP address 

disclosed by submitting a decoy sample. However, the possibility of detection using sandbox 

information other than the IP address was not discussed in detail. Chapter 5 clarifies targeted 

sandbox-detection vulnerability in public Malware Sandbox Analysis Systems (public MSASs) for 

pursuing better observability. First, properties of sandbox information for decoy injection attack are 

defined: stability, uniqueness, and stealthiness of collection. Then, 16 different kinds of 

characteristic information of the sandbox for its detection are analyzed in terms of those properties. 

Experiments with real public MSASs in operation confirm the broad applicability of the decoy 

injection attack as well as the need for comprehensive countermeasures 

A direction is also indicated on how to develop a countermeasure technique against evasive 

malware without the attacker evading it – leveraging differences between malware and benign 

software that come from malware’s mechanism for evading analysis/detection; that is, when 

proposing a new analysis method, it should be considered in advance how to detect malware that 

evades the method. This results in fewer choices for the attackers. As an example of the concept, 

Chapter 6 proposes a novel behavior-based malware-detection method using sandbox-evasive 

behaviors. Malware authors have recently been embedding functions that act as countermeasures 

against malware analysis and detection, so modern malware often changes its runtime behaviors in 
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each execution for this purpose. The proposed method herein focuses attention on such 

characteristics. It conducts dynamic analysis on an executable file multiple times in the same 

sandbox environment to obtain multiple logs of API call and traffic, and then compares them to find 

the difference between the multiple executions. If attackers try to evade the proposed detection 

method, they have to use deterministic malware, and then (especially dynamic) analysis is made 

easier. Experiments with malware samples captured in the wild and benign software samples 

confirm effectiveness of the method.  

 

 

1.2 Organization 
The rest of this dissertation is organized as follows. Chapter 2 presents the background and related 

works. Chapter 3 describes evasion techniques that malware authors use and indicates a direction 

for how to develop countermeasure techniques for evasive malware. Chapter 4 details the design 

and implementation of a novel sandbox analysis for improving observability against malware that 

changes behaviors in accordance with the responses from remote servers. Chapter 5 describes 

decoy injection attacks and clarifies vulnerability in public malware sandbox analysis systems 

against the attack. Chapter 6 discusses a novel behavior-based malware-detection method by using 

sandbox-evasive behavior. The dissertation concludes with Chapter 7. 
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Chapter 2  
 
Background and Related Works 

 

 

2.1 Malware 
The term “malware” is derived from “malicious software,” and is a generic expression for 

computer viruses, worms, Trojan houses, spyware, adware, bots, etc. Malware has a long history. In 

1982, Elk Cloner, one of the first known computer viruses, appeared and Brain, the first computer 

virus targeting IBM PCs, appeared in 1986. In the late 1980s to early 1990s, the attackers’ objective 

was personal pleasure or showing off, and this malware caused phenomena easily recognized by 

users, such as a screen display notifying of the infection. Since the late 1990s, however, the 

attackers’ objective has clearly changed to monetary gain, and malware behaviors have grown 

increasingly stealthy and sophisticated so that the user cannot notice the infection. Malware has 

triggered most of the recent large-scale security incidents, such as divulging of private information, 

phishing, and denial of service (DoS) attacks. 

An attacker uses a wide variety of methods to attempt to run malware on the target system. 

These methods can be categorized into two types: exploiting human vulnerability and exploiting 

program vulnerability. Since users with low computer security literacy tend to more carelessly 

download and install software publically available on the Internet, in the former methods an 

attacker has a user manually execute and install malware on a targeted computer under the pretense 

of it being useful software. 

In contrast, more recent methods have the attacker attempting to exploit program vulnerability 

for automatically infecting a targeted machine with malware. This is because when a vulnerability 

is found in a program that runs on many computers, the attacker can exploit it to easily propagate 

malware to those computers. The program vulnerability often leads to a pandemic. An attacker tries 
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to exploit a wide variety of programs, such as operating systems, server applications, and client 

applications (e.g., web browsers). Attackers have long targeted operating systems and server 

applications. A well-known example, Conficker [33], found in 2008, exploits vulnerability in the 

Windows OS server service, and caused a pandemic. To exploit operating systems and server 

applications, malware needs to actively scan and identify a vulnerable computer. Since it basically 

does not know where the vulnerable computer exists, the scanning activity is often conducted 

widely on the Internet, and is often observed by researchers using network-monitoring techniques 

(e.g., darknet monitoring). On the other hand, to exploit client applications such as web browsers 

and browser plug-ins, first an attacker gives malicious web servers exploit code for propagating 

malware, and then tries to induce a user to the malicious servers via spam e-mail with malicious 

URLs or other techniques. In this type of malware infection, since an attacker only requires targeted 

and limited end-to-end communication without large-scale scanning, it is more difficult to observe 

and comprehend the actual conditions of malware propagation. 

 

 

2.2 Collecting Malware Samples 
In order to analyze malware, malware samples first need to be collected. Antivirus or security 

appliance vendors mainly collect malware samples from users’ submissions and reports from 

antivirus software or security appliances. 

Another way of collecting malware samples is to use a honeypot, which is a trap system used 

for detecting exploit codes and collecting malware samples installed using them. A honeypot looks 

like a simple vulnerable server/client to an attacker, but it is configured for blocking external 

attacks even if it is compromised. Honeypots can be classified based on their level of interaction 

with an attacker as low-interaction and high-interaction. A low-interaction honeypot emulates a 

vulnerable host and simplifies the detailed processing. Its advantage is that it requires lower 

construction and maintenance costs than a high-interaction honeypot, though it collects less 

information. Nepenthes [34] and Honeyd [35] are examples. A high-interaction honeypot uses an 

actual vulnerable host, and can collect more information. However, its performance is on the same 

level or less than that of an actual system, and it is at a high risk of being taken over by an attacker. 

Honeynet [36] is an example. 

Conventional honeypots are designed for receiving remote exploit attacks from worm-type 

malware, and only wait for attacks via the Internet. These are called server honeypots. Recently, 

however, client-side attacks such as drive-by-download (DBD) attacks have been on the rise. 

Unlike remote exploit attacks, DBD attacks are triggered by users accessing a malicious website. A 

server honeypot therefore cannot observe client-side attacks. To detect and collect these attacks, a 
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client honeypot equipped with a client application that connects to remote servers and collects 

information on client-side attacks has been proposed. HoneyMonkey [37] and MARIONETTE [38] 

are examples. 

 

 

2.3 Malware Analysis 
Malware analysis is a vital approach to handling security incidents. Its goal is to provide sufficient 

information about functionalities and characteristics of malware in order to develop effective 

countermeasures. It can be categorized into two approaches: static analysis and sandbox analysis 

(dynamic analysis). 

 

2.3.1 Static Analysis 

Static analysis is called white-box analysis and is a traditional method for analyzing malware 

binaries without execution. It typically disassembles malware binaries and analyzes the 

functionality and characteristics of malware in detail at the assembly level. 

The advantage of static analysis is that, in principle, it can reveal all the behavior information 

of malware included in malware binaries by analyzing all the disassembly code. However, malware 

authors often use packing tools such as UPS, AS Pack, and FSG that obfuscate malware and hinder 

the analyst’s understanding of the malware’s intent. Thus, in order to conduct static analysis, an 

analyst must unpack the packed malware code in advance using techniques like memory dump. 

The disadvantage of static analysis is that it is time-consuming and requires an analyst to have 

high-level network and programming skills. With the recent explosive increase of malware, it is 

becoming nearly impossible to analyze all its variations using static analysis by reverse 

engineering. 

 

2.3.2 Sandbox Analysis 

Sandbox analysis is called black-box analysis and is a method to analyze malware behaviors by 

executing a malware sample in a controlled environment (sandbox) and monitoring these behaviors, 

such as file activity, registry activity, and network activity. One advantage is that it is not disturbed 

by packing and code-obfuscation techniques, which malware developers often use to make static 

reverse engineering more time-consuming. Another advantage is that the sandbox analyzer can be 

implemented in a highly automated fashion. A disadvantage is that it can only observe and analyze 
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behaviors that are actually executed during the time of execution. 

The previous studies of malware sandbox analysis can be categorized into two approaches in 

terms of their Internet connectivity: a totally isolated sandbox and a sandbox with an Internet 

connection. 

Examples of the former approach include Norman SandBox [18], NICTER Micro analysis 

System [12] [13], and others [16] [17]. With this approach, malware can be safely analyzed with no 

impact on the Internet. Recently, however, since almost all malware communicates with remote 

servers such as C&C servers and malware download servers and its behaviors can be diverse 

depending on the behaviors of the remote servers, malware behaviors cannot be sufficiently 

observed with a totally isolated sandbox. These sandbox analysis systems have therefore emulated 

networks that provide malware samples with Internet services into the sandbox. Yet there is a 

limitation to this approach in that it is difficult to emulate remote hosts in the real Internet since 

malware make various different kinds of communications. Especially, when it interacts with a 

server such as a C&C or file server, it can use arbitrary (even customized) protocols for data 

transmission and authentication, which makes emulation increasingly challenging. 

The other approach is to carefully connect the sandbox with the real Internet. Examples of this 

include CWSandbox [23] [27], Anubis [2] [8] [9], and others [4] [5] [24] [26]. In these systems, 

since a malware sample can communicate with the actual remote server on the Internet, the 

behaviors corresponding to the remote server’s responses can be observed. However, there is also a 

risk that their attack may spill out of the sandbox and induce secondary infections, and the systems 

must carefully observe the outbound traffic from malware and filter out high-risk communication. 

 

There are three important properties of malware sandbox analysis [24]. 

 

 Observability 

Observability is a property in terms of observing the malware behaviors in consideration. 

Those writing removal tools or AV signatures may focus on internal behaviors such as changes of 

registry keys and creation and deletion of files. A network administrator may be interested in their 

network behaviors for writing an intrusion detection system (IDS) signature. In any case, the 

sandbox analysis should be able to provide the analyst with sufficient information. 

 

 Containment 

Containment represents two sub-properties: one for preventing the executed sample from 

attacking or infecting a remote host outside the sandbox (containment of outgoing attacks) and for 

suppressing a leakage of important information of the analysis system itself since that can be used 

against the system (i.e., sandbox detection). This is referred to as containment of system 
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information. 

 

 Efficiency 

Efficiency is a property of constantly providing analysis results with sufficient information in 

a reasonable amount of time. 

 

These three properties have trade-offs among each other and the means of simultaneously 

keeping all three properties at a high level is the design goal of malware sandbox analysis. 

 

2.3.3 Malware Clustering 

There is a great deal of malware that has similar functions in the wild. These reasons are as follows. 

 

 Reuse of malware source code 

 Change of compilers and compiler options 

 Use of polymorphic malware 

 Use of code-obfuscation techniques 

 

In particular, as mentioned above, malware authors often use packers that obfuscate the 

malware and hide its characteristic code, and can easily generate a great deal of malware variants 

with different signatures (e.g., MD5 hash values). Malware-clustering methods that group malware 

variants according to their similarities have been widely studied as a means of efficiently analyzing 

a great deal of malware variants. 

Malware-clustering methods can be classified into two approaches: static-features-based and 

behavioral-features-based. In the former approach [39] [40], in many cases unpacking is required 

for obtaining features from packed malware code. In the latter approach [5] [7], the major benefit of 

using behavioral features is that they are less susceptible to packing and other code obfuscation 

techniques. Yet there is a disadvantage of the behavioral-features-based approach in that only 

behavioral features of malware observed during the time of execution can be obtained. 
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2.4 Countermeasures Based on Malware 

Analysis 
 

2.4.1 Generating Malware Signatures 

An antivirus vendor collects and analyzes malware samples in order to extract characteristic strings 

and create signatures for detecting malware. There are some open source antivirus software 

packages such as ClamAV [41], and open source network-based IDSs such as Snort [42]. Using 

such software allows customizing of signatures, adding new signatures created by volunteers, and 

personally creating original signatures. As mentioned above, antivirus vendors mainly collect 

malware samples from user submissions, antivirus software reports, and honeypots. They can also 

collect samples from malware sample-sharing sites [43] [44]. 

Conventional signatures are created based on the characteristic binary code of malware and 

exploit codes. However, recently, since attackers often use packing techniques and polymorphic 

shellcodes for evading signature-based detection, security vendors have produced antivirus 

software and security appliances that have behavior-based detection engines and use the 

characteristic behaviors of malware and shellcodes as a signature. 

 

2.4.2 Detecting C&C Traffic 

Since the mid-2000s, a botnet, which consists of a large number of computers infected with bots, 

has posed a great threat to the Internet. Reports from security vendors exist on botnets consisting of 

more than one million computers. 

The controller of a botnet, called a herder, can direct the malicious activities (e.g., sending 

spam email, performing distributed denial-of-service [DDoS] attacks) of those compromised 

computers through command and control (C&C) channels formed by standards-based network 

protocols such as Internet Relay Chat (IRC) and Hypertext Transfer Protocol (HTTP), or a 

customized protocol. Since a bot needs to frequently access and communicate with the remote host 

for receiving C&C messages, computers infected with one can be detected by detecting the C&C 

traffic. 

Conventional botnets (e.g., Agobot, SDbot, IRCbot) often used the IRC protocol as a C&C 

channel, so there are many studies on detecting IRC-based C&C traffic [45]. And because the use 

of benign IRC communication has decreased, IRC-based C&C communication can now be detected 
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more easily. Accordingly, attackers came to adopt not the IRC protocol but more popular protocols 

such as HTTP, P2P, or original protocols as a C&C in order to evade detection. 

In particular, when a botnet uses an HTTP protocol as a C&C, since malware accesses not 

only HTTP-based C&C servers but also benign web servers for checking Internet connectivity, all 

web servers accessed by malware in the sandbox analysis cannot be regarded as C&C servers, and 

a discernment must be made between HTTP-based C&C traffic and benign HTTP traffic. 

 

2.4.3 Blacklisting 

IP addresses, domain names, and uniformed resource locators (URLs) of malicious hosts (e.g., 

C&C servers, malware download sites) can be obtained by analyzing malware samples. This 

information is extremely useful as a blacklist for filtering access to malicious hosts and detecting 

infected hosts. There is also DNS-level filtering such as DNSBL and DNS sinkholes. 

In addition, recently, the most common way of infecting vulnerable computers with malware 

is to present them with a web page that performs a DBD attack. Thus, there are many efforts to 

interrupt access to malicious websites by using a blacklist for protecting users from DBD attacks. 

Google, for instance, provides a safe browsing service [46] that enables applications to check URLs 

against Google’s continually updated lists of malicious websites. Some web browsers, such as 

Mozilla Firefox and Google Chrome, use so-called safe browsing and display a warning message if 

a user tries to access a URL contained in the blacklist. A similar filtering system called SmartScreen 

Filter [47] is implemented in Microsoft Internet Explorer. 

Although filtering systems based on a blacklist help in making users safer, they suffer from a 

number of limitations. For example, attackers frequently change domain names and URLs of 

malicious sites, which makes them difficult to keep up to date with. Attackers also use cloaking 

techniques for evading inspection by client honeypots. 

 

2.4.4 Botnet Takedown 

The most effective countermeasure against a botnet is to shut down the C&C communication. If 

this is possible, the botnet can be destroyed and potential victims can be prevented from being 

affected by cyber-attacks from it. Legal and technical action needed against botnets requires 

collaboration between technology companies and law enforcement. Some successful cases of 

botnet takedowns are Waledac [48], Rustock [49], and ZeroAccess [50].  
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Chapter 3  
 
Analysis and Detection vs. Evasion 
 

As malware analysis and detection techniques become known, malware authors have begun to 

utilize anti-analysis techniques for evading analysis and detection. This chapter describes evasion 

techniques that malware authors use and indicates a direction on how to develop a countermeasure 

technique against evasive malware. 

 

 

3.1 Evading Static Analysis 
Malware authors try to make static analysis more time-consuming. A typical example is code 

obfuscation by using a packer. Recently, there are many sophisticated packers that can conduct 

multilayer packing and debugger detection. And as mentioned in Section 2.3.3, a malware author 

can create many malware variants more easily by reusing malware source code, changing compilers 

and compiler options, and developing malware creation tools. Thus, with the recent explosive 

increase of malware, it is becoming nearly impossible to analyze it all by static analysis with 

reverse engineering. To address this problem, many studies has examined automatic unpacking [51] 

[52] and malware clustering. 

Another example of evading static analysis is a type of malware called a downloader that 

connects to a remote site to download an additional program as necessary and runs it on an infected 

computer. In such a case, it is difficult to acquire information about an additional program from a 

downloader by conducting static analysis. 
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3.2 Evading Sandbox Analysis 
Techniques to evade sandbox analysis are classified into two approaches: making comprehension of 

malware behaviors more difficult and detecting sandboxes. 

An example of techniques to make comprehension of malware behaviors more difficult is 

making conditions for activation. A malware author often creates malware that conducts malicious 

activity only when the activation condition is met. So in this case, when an activation condition is 

not met, malicious activity cannot be observed and sufficiently analyzed in sandbox analysis. There 

are many types of conditions. A typical example is a time condition, and a Trojan house that 

activates on a certain date is often called time bomb. There is also malware that activates in a 

certain period of execution. Another example is a bot, which changes its behaviors in accordance 

with the behaviors of remote servers with which it interacts, such as by conducting malicious 

activities (e.g., sending spam email, performing distributed denial of service attacks) in accordance 

with a C&C message received from a C&C server, downloading an additional binary from a 

malware download server, and running it. Many analysis techniques have been studied for dealing 

with malware with activation conditions, such as disclosing activation conditions [53] and 

exploring multiple execution paths of malware [17]. However, these techniques cannot reveal 

additional functionalities of malware that are added by the interaction with the remote servers. 

Another example is randomizing behaviors. Some malware changes its runtime behaviors in 

each execution to evade analysis and detection. The most well-known example is Conficker, which 

has been a form of pandemic malware since 2009. It generates a to-be-accessed domain name by 

using a pseudorandom number generator, making it difficult to list all accessed domain names of 

malicious servers. Malware authors sometimes also create kernel mode malware, commonly known 

as a rootkit, which runs in the OS kernel with absolute rights to system resources. Its behaviors 

cannot be observed and analyzed using standard analysis techniques for user mode malware. 

 

Techniques to detect a sandbox can be categorized into two approaches: based on 

characteristics that almost all sandboxes have in common and based on a specific sandbox’s 

characteristics. 

An example of the former is debugger detection, a traditional technique to evade analysis, and 

many types of malware have a debugger-detection function (e.g., Rbot [54], Sdbot [55], IRCBot 

[56]). There are many techniques for detecting the presence of a debugger, such as using a Win32 

API called IsDebuggerPresent, which will return a Boolean true if the program is being debugged, 

searching system resources of well-known debuggers, and monitoring the system clock to confirm 

whether too much time has elapsed between instructions. Malware also often checks for the 

presence of monitoring mechanisms or tools like a process monitor or API hook in order to detect a 
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sandbox. Therefore, there are some studies on evading debugger detection [57]. In addition, 

because a malware sample is actually executed in a sandbox, the sandbox environment must be 

recovered after analysis. Thus, virtual machine monitors (VMMs) are often used for developing a 

sandbox analysis system in order to make recovery easier. However, there are not so many cases of 

home-use virtual machines. Consequently, some types of malware detect the use of a virtual 

machine environment, and change or stop their behaviors if they are running on a virtual machine. 

There are many ways to detect virtual machine environments [58] [59] [60] [61], such as using 

specific processes/files/directories/registry keys, using specific information about virtualized 

hardware (e.g., MAC addresses on NICs, USB controller type, SCSI device type), and using 

specific processor instructions and capabilities. An example of these types of malware is Agobot 

[62], which has functions to detect the presence of well-known virtual machine monitors such as 

VMware [63] and Virtual PC [64]. When using a sandbox with Internet connectivity, since there is 

also a risk of that attack from malware spilling out of the sandbox and inducing secondary 

infections, the outbound traffic from malware must be carefully observed and high-risk 

communication filtered out. There is a sandbox-detection method that checks for the presence of 

filtering mechanism for outgoing traffic [65]. 

There are some detection techniques based on specific sandbox characteristics [8] [28] [29] 

[30] [31] [32]. For example, the malware author tries to detect by using information unique to each 

sandbox, such as specific Dynamic Link Libraries (DLLs), system resources like the OS product 

key, and the global IP address. Previous works [31] [32] have pointed out a vulnerability of a 

certain type of malware sandbox systems against detection based on the IP address. It was reported 

that in the real world this type of attack had been conducted against several sandbox systems [66]. 

 

 

3.3 Evading Detection Techniques 
Antivirus software and personal firewalls are used in Windows systems as a basic protection 

method against malware. Therefore, there is malware that tries to evade detection by searching the 

processes of security software and kills them after intruding on a computer. 

Since antivirus software often uses a signature-based detection engine, malware authors use 

techniques for evading signature-based detection. For example, when using a binary in a file as a 

signature, a malware author tries to conceal the characteristic binaries by using runtime packers, 

and when using a file/directory name or registry entry name as a signature, malware changes its 

runtime behaviors in each execution to evade detection. Malware also uses a polymorphic shellcode 

for evading signature-based detection in IDSs. Polymorphic shellcode engines create different 

forms of the same initial shellcode by encrypting the payload with a different random key each time, 
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and by prepending to it a decryption routine that makes it self-decrypting. To evade detection 

methods based on lists of malicious IP addresses/domains/URLs, malware also uses evasion 

techniques like a domain generation algorithm (DGA) and fast flux [67]. 

For a DBD attack, the lifetime of a malicious URL is short because attackers frequently 

changes URLs of malicious websites in order to evade blacklist-based detection. Attackers also use 

cloaking techniques such as delivering contents based on the IP addresses or the User-Agent HTTP 

header of the user requesting the page for evading inspection by client honeypots. That is, if an 

accessed user is identified as a crawler/client honeypot of security vendors/researchers, a server 

delivers benign dummy contents for deceiving the crawler/client honeypot. 

 

 

3.4 Direction: Leveraging Evasive 

Behaviors for Countermeasures 
Since malware emerged, security researchers have been engaged in a type of arms race against it. 

There has been repeated development of analysis/detection methods against sophisticated malware 

by security researchers, and attackers have responded by developing techniques to evade the 

methods. There is also the dilemma of academic researchers needing to publish their research, 

which can lead to attackers subsequently evading the published analysis/detection methods. 

Therefore it is necessary to consider how to develop/publish countermeasure techniques against 

evasive malware without attackers evading them. 

We pay attention to the many cases in which malware has characteristic behaviors that differ 

from benign software’s behaviors and come from the malware’s mechanisms for evading 

analysis/detection. For example, there is malware that detects a particular malware sandbox and 

terminates (environment-sensitive malware [6]). However, no benign software is known to do so, 

and environment-sensitive programs can be regarded as malware. When using the detection method, 

if attackers try to evade the detection they must stop using environment-sensitivity, upon which 

malware analysis is made easier. Another example is malware that detects and kills the antivirus 

process when executed. However, no benign software is known to do so, and such types of 

programs can be regarded as malware [68]. When using the detection method, if attackers try to 

evade detection, they must stop killing the antivirus process, upon which protection is made easier. 

Consequently, we indicate a direction on how to develop/publish countermeasure techniques 

against evasive malware without the attacker evading them. Differences between malware and 

benign software that come from malware’s mechanism of evading analysis/detection should be 

leveraged; that is, when proposing a new analysis method, it should be considered in advance how 
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to detect malware that evades the analysis method. The attackers are then given fewer choices. 
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Chapter 4  
 
Sandbox Analysis Utilizing 
Dummy Client 
 

 

4.1 Introduction 
As mentioned in the above section, sandbox analysis is an effective solution for analyzing a large 

amount of malware. However, there are several important issues to be addressed in malware 

sandbox analysis. One is that it can observe only a single execution path of the malware sample by 

each execution and important behavior that can be crucial for developing an efficient 

countermeasure may not be observed. In particular, because recent malware communicates with 

remote hosts on the Internet for receiving C&C commands, updating themselves, etc., its behaviors 

can be diverse depending on remote hosts’ behaviors. In fact, a previous study [26] reports that the 

malware behaviors observed by malware sandbox analysis can differ greatly when the analyses are 

performed in two different time periods because some of the remote servers that the analyzed 

samples communicated with changed their behaviors over time. Therefore, in malware sandbox 

analysis, it is important not only to focus on behaviors of the malware sample itself but also those 

of the remote servers that attackers control. A simple solution to achieve this is observing the live 

sample with an Internet-connected sandbox for a long period of time. However, since it is not 

known when these servers will send meaningful responses, the sample being executed needs to be 

kept in the sandbox, which is a costly operation. Additionally, leaving the live malware in the 

Internet-connected sandbox increases the risk of its attacks spilling out of the sandbox and inducing 

secondary infections. 

In this chapter, we propose a novel sandbox analysis method utilizing a dummy client, an 
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automatically generated lightweight script to interact with the remote servers instead of the actual 

sample. In the proposed method, first a malware sample is executed in the sandbox connected to the 

real Internet and an Internet emulator. Then the traffic observed in the sandbox is inspected and 

high-risk communications are filtered out. The dummy client then uses the rest of the traffic to 

interact with the remote servers instead of the sample itself, and effectively collects the responses 

from the servers. The collected server responses are then fed back to the Internet emulator in the 

sandbox and will be utilized for improving observability of malware sandbox analysis. For example, 

the next time a malware sample is analyzed and the remote servers cannot be connected, the 

dummy server can emulate the remote servers by sending the collected responses. Another example 

is when a new response from the remote servers is observed, the malware sample that accesses the 

corresponding server can be re-analyzed and the responses fed back to the sample in order to 

observe its corresponding reactions. 

The advantage of the proposed method is that by utilizing lightweight dummy clients instead 

of observing the interactions by live malware itself, observability of malware behaviors can be 

increased by continuously monitoring many remote servers in parallel while not too greatly 

decreasing the efficiency. Apart from that, since the malware traffic can be closely inspected and 

potentially dangerous traffic filtered out before replaying it with the dummy client, containment of 

the outgoing attacks is also expected to improve. 

We evaluate the proposed method using samples captured in the wild. By using a low-risk 

containment policy of emulating only harmless HTTP and IRC connections, we confirm that, in 

comparison with the simple Internet-connected sandbox, the method can improve observability of 

malware sandbox analysis, and it revealed more malware behaviors. 

The rest of this chapter is organized as follows. Section 4.2 gives related works. Section 4.3 

explains the proposed method and Section 4.4 its implementation. Section 4.5 covers the 

experiments for evaluation of the proposed method. Section 4.6 discusses the challenges of the 

proposed method and Section 4.7 summarizes the chapter. 

 

 

4.2 Related Works 
As mentioned Chapter 2, there are many studies on sandbox analysis, but they mainly focus on how 

to observe behaviors of a malware sample itself and therefore do not deeply discuss the issue of 

how the sample is influenced by the variety of responses from the remote servers such as C&C and 

malware download servers controlled by attackers. When viewed from this perspective, analysis 

with a totally isolated sandbox is not desirable because it cannot observe the behavior of the remote 

servers on the Internet. In contrast, analysis with an Internet-connected sandbox can observe how 
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malware samples interact and are influenced by the remote servers. However, since it is not known 

when these servers send meaningful responses to the sample executed in the sandbox, it is 

necessary to continue executing it to observe the responses. Other related technology with a similar 

goal is to explore multiple execution paths. In a previous study [17], multiple execution paths of the 

malware sample can be observed by controlling the conditional branches. However, even exploring 

multiple execution paths cannot reveal additional functionalities of malware that the interaction 

with the remote servers adds. We propose a sandbox analysis utilizing a dummy client for solving 

this problem.  

Some related works also use a dummy client. Caballero et al. [69] performed a measurement 

study of the pay-per-install (PPI) market by infiltrating four PPI services to gather and classify the 

resulting malware executable files the services distribute. They built and used a dummy client 

called a milker to “milk” programs that the PPI services distributed. Their approach leverages 

techniques for automatic binary reuse [70] [71] that from an executable extract a specific function 

defined by an analyst. Cho et al. [72] proposed a technique to extrapolate complete protocol state 

machines and applied it to analysis of botnet C&C protocols. They built a bot emulator that 

interacts with the C&C servers, reverse-engineered the message formats and their semantic content 

using automatic protocol reverse engineering [70], and extracted encryption/decryption modules 

from the bot binary [73]. In comparison with above related works, the advantage of the proposed 

method is that the method is simple and easy to automate. 

 

 

4.3 Proposed Method 
This section explains the proposal of a sandbox analysis method utilizing a dummy client. In the 

method, first, a malware sample is executed in the sandbox connected to the real Internet and 

Internet emulator. The emulator consists of numerous dummy servers and hosts with emulated/real 

vulnerable services. These are called a Honeypot in the Sandbox (HitS). Then the traffic observed in 

the sandbox is inspected and high-risk communications such as port scanning, remote exploitation, 

and DoS are filtered out. The dummy client then uses the rest of the traffic data to interact with the 

remote servers. Then the dummy client continually interacts with the remote servers instead of the 

sample itself and effectively collects the responses from the servers. The accumulated server 

responses are fed back to the Internet emulator in the sandbox and will be utilized for improving 

observability of malware sandbox analysis. For example, the next time a malware sample is 

analyzed and the remote servers cannot be connected, the dummy server can emulate the remote 

servers by sending the collected responses. As another example, when a new response from the 

remote servers is observed, the malware sample that accesses the corresponding server can be 
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re-analyzed and the responses fed back to the sample in order to observe its corresponding 

reactions. The advantage of the proposed method is that observability of malware behaviors can be 

increased by continuously monitoring many remote servers in parallel while not too greatly 

decreasing the efficiency by utilizing lightweight dummy clients instead of observing the 

interactions by live malware itself. Apart from that, since the malware traffic can be closely 

inspected and potentially dangerous traffic filtered out before replaying it with the dummy client, 

containment of outgoing attacks is also expected to improve. 

First, an overview of the proposed sandbox system is given in Figure 4.1. In the figure, solid 

arrows indicate the communications by the analyzed malware sample and the dummy client, and 

dotted arrows indicate communications by the sandbox system for its operation. The proposed 

sandbox consists of two units: a sandbox unit and dummy client unit. The sandbox unit is where the 

malware sample is actually executed and analyzed. It consists of five components: victim host, 

Internet emulator, access controller, analysis manager, and data spool. The dummy client unit is 

where the dummy clients are generated and executed. This unit contains two components: a dummy 

client generator and dummy client. Each component is described in Section 4.3.1. The 

implementation of each component is also described in Section 4.4.1. 

 

 
Figure 4.1  Overview of Proposed System 
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4.3.1 Components 

The proposed system consists of seven components, as follows. 

 

 Victim Host 

The victim host is a host on which a malware sample is first executed to be observed. It is 

important that the security of the victim host is properly configured so that the executed malware 

performs further actions for us to observe. 

 

 Access Controller 

The access controller controls the traffic from the victim host. It receives all packets from the 

victim host and redirects it to either the Internet emulator or the real Internet in accordance with the 

filtering rules. The analysis manager generates the filtering rules. 

 

 Internet Emulator 

The Internet emulator provides various network services to the victim host. It consists of 

dummy servers such as HTTP, SMTP, FTP, NTP, IRC, DNS, and feedback servers. A feedback 

server emulates behaviors of remote servers with which malware interacts by sending the collected 

server responses. Apart from those servers, it also deploys hosts with unpatched vulnerable services, 

HitS. Suspicious traffic from the malware sample can be tested with HitS to see if it actually 

compromises it. 

 

 Analysis Manager 

The analysis manager is the core component that manages the full analysis procedures. Based 

on a simple config file, it loads and refreshes an OS image of the victim host, boots up and shuts 

down the victim host, executes malware sample in the victim host, receives and inspects all traffic 

logs and internal logs, sends all traffic logs to the dummy client generator, and finally outputs the 

analysis results to the analyst. 

 

 Dummy Client Generator 

The dummy client generator receives traffic logs from the analysis manager, inspects them, 

and generates a dummy client. 

 

 Dummy Client 

The dummy client generated by the dummy client generator is executed in the environments 

with the real Internet connection and emulates malware communications. When the dummy client 
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receives server responses, those responses are stored in the data spool. 

 

 Data Spool 

The data spool is the component that stores server responses collected by the dummy clients. 

The Internet emulator loads the stored server responses and sends them back to the malware 

executed in the victim host from dummy servers. 

 

4.3.2 Analysis Procedure 

The following is, in brief, the procedure of the proposed sandbox analysis. 

 

(1) The analyst inputs a malware sample and the configurations (OS image of the victim host, 

filtering rules for access controller, etc.) to the system. 

 

(2) The analysis manager reflects the configurations to the access controller and Internet 

emulator and boots up the victim host. 

 

(3) The victim host executes the malware sample. All traffic from the victim host is first sent to 

the access controller, and the access controller redirects the traffic to either the real Internet 

or Internet emulator in accordance with the filtering rules. 

 

(4) After a certain instructed time has elapsed, the victim host sends all traffic logs and internal 

monitoring logs to the analysis manager. The Internet emulator also sends its logs to the 

analysis manager. 

 

(5) The analysis manager receives all logs from the victim host and the Internet emulator, shuts 

down and refreshes the victim host, and sends traffic logs to the dummy client generator. 

 

(6) The dummy client generator inspects the received traffic logs to eliminate high-risk 

communications, such as port scanning and remote exploitation, and generates the dummy 

client that emulates the remaining communications. Section 4.4.2 describes how to generate 

the dummy client. 

 

(7) The dummy client is executed in the environment with the real Internet connection. It 

repeats malware communication with the remote servers on the Internet, continues 

collecting server responses, and stores them in the data spool. 
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4.4 Implementation 
Figure 4.2 gives an overview of the implementation of the proposed sandbox analysis system. Solid 

arrows indicate the communication by the analyzed malware and dotted arrows indicate 

communication by the sandbox system for its operation. 

 

 

Figure 4.2  Implementation of Proposed System 

 

4.4.1 Components 

The entire system was implemented in a single real machine, except for the environment for the 

dummy client to be executed. A virtual machine by VMware Player 3.1.4 running Windows XP 

Professional SP1 was used as the victim host. The host OS is Ubuntu 11.04, on which the analysis 

manager, access controller, Internet emulator, and dummy client generator are implemented. The 

network between the victim host and host OS is realized by a virtual private network provided by 

VMware Player. Each component is implemented as follows. 
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 Victim Host 

The victim host is implemented as a virtual machine running Windows XP SP1. To avoid 

VMware detection, the default port number of the VMware server’s console and MAC address of 

the virtual NIC were changed. Basic monitoring tools such as Regmon and Filemon [74] are 

currently installed in the victim host. Other monitoring tools such as InCtrl [75] or techniques like 

API hooking [76] can also be deployed. The victim host is also configured to automatically 

download and execute a Windows batch file command.bat from the analysis manager upon each 

boot-up using SSH. The batch file contains the further instructions to be followed by the victim 

host. 

 

(1) Download the malware sample 

(2) Start designated monitoring tools 

(3) Execute the sample 

(4) Send the monitoring results to the manager after a designated time period 

 

Since the analysis manager can modify the command.bat file, the manager can easily control 

the procedure of the victim host remotely. 

 

 Internet Emulator 

The Internet emulator consists of two subcomponents: dummy servers and HitS. Both of these 

run on the system’s host OS. The dummy DNS, IRC, HTTP, HTTPS, NTP, SMTP, FTP, ECHO, and 

feedback servers are implemented as lightweight simplified server scripts using Perl to emulate the 

network services on the real Internet. When A-record query is received from a malware, the DNS 

server checks whether the responses from the server of the queried domain name have been stored 

in the data spool. If the responses exist, the dummy DNS server returns the IP address from the 

specific range. Otherwise, the dummy DNS server works as the DNS proxy. In addition, IP 

addresses that the dummy DNS server returns are unique during the same analysis pass. The 

feedback server is the server to send the collected server responses to the malware. When the 

malware attempts to access the remote servers, the feedback server obtains the server’s domain 

name by issuing a DNS query for the PTR record, and checks whether the server can be accessed. 

If the server can be accessed, the feedback server works as the proxy server. Otherwise, it searches 

the server responses corresponding to the domain name, received data, and collected time in the 

data spool. The feedback server has two response modes: latest response mode and unique response 

mode. In the latest response mode, it searches the latest collected server response and sends it to the 

malware. It can also send the response collected at a specific time. The latest malware behaviors 

can be analyzed by using the latest response mode. How the malware works at the specific time can 
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also be examined. In the unique response mode, for the HTTP protocol the feedback server 

searches and lists the unique responses and sends them to the malware by rotation, and for the IRC 

protocol the feedback server searches the latest collected response and unique PRIVMSGs, and 

sends them to the malware. The malware’s various behaviors corresponding to the responses can be 

efficiently analyzed using the unique response mode. And for the IRC protocol the feedback server 

replaces the nickname appropriately. 

HitS is dedicated to inspecting the connections initiated by the sample to see if they contain 

any harmful attacks. In order to do this, HitS is designed to run emulated/real vulnerable network 

services for the sample to exploit, like a honeypot. The current implementation utilizes 

low-interaction honeypot programs Nepenthes v0.2.2 [34] and Dionaea [77] since it can emulate 

multiple vulnerable services. A virtual/real machine running a full vulnerable OS to detect zero-day 

exploits can also be deployed, though such an implementation is a subject of future work. 

 

 Access Controller 

The access controller is implemented by iptables [78], a packet-filtering application. Before 

analysis, the analysis manager generates and executes a shell script, called firewall.sh, to apply 

newly generated filtering rules. All traffic from the victim host is redirected to either the real 

Internet or Internet emulator in accordance with the filtering rules. For the connections to the 

Internet emulator, their destination IP addresses are changed to those of the host OS by the 

REDIRECT target of a PREROUTING chain in iptables so that they are sent to the servers running 

on the host. 

 

 Analysis Manager 

The analysis manager loads the configuration, and based on that, changes the configuration of 

the Internet emulator and generates a Windows batch file command.bat and a shell script 

firewall.sh. 

 

 Dummy Client Generator 

The dummy client generator inspects the traffic logs and removes high-risk communications, 

and generates the dummy client that replays the communications. There are several choices of how 

to replay. For example, a dummy client can be generated for each malware sample to emulate its 

communications to remote servers. In this way, the server responses corresponding to each type of 

malware can be collected. However, when the different types of malware access the same server 

with the same query, redundant data are saved in the data spool, and the quantity of data increases. 

Therefore, for efficiency, a method was implemented to generate a single dummy client that 

emulates all unique communications observed by the execution of all malware samples. 
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Section 4.4.2 describes the process of the dummy client generator. 

 

4.4.2 Generating Dummy Client 

Generating a dummy client that emulates communications observed by malware sandbox analysis 

is performed as follows. 

 

1) The dummy client generator divides the traffic logs into all TCP and UDP sessions. A 

session is a series of packets exchanged between a port of the victim host and a port of a 

remote host in the analysis. 

 

2) Each reconstructed session is closely inspected in the following rules to eliminate high-risk 

communications. These are called attack-filtering rules. 

i. Do not allow any session whose source IP address is spoofed. 

ii. Do not allow any session that the inspection determines is a port scan. Likewise, do 

not allow any session that the inspection determines is part of a DoS attack. In order 

to detect a DoS attack, it counts the number of sessions the victim host initiates for 

the same destination IP address and port. If over a threshold number ThDoS of sessions 

are initiated, it is considered a DoS attack. In order to detect a port scan, it counts the 

number of unique IP addresses the victim host accesses on each destination port 

without DNS name resolution. A port is considered scanned if the victim host 

accesses over a threshold number Thps of distinct IP addresses on that port. 

iii. Do not allow any session that caused a successful exploitation of the vulnerabilities in 

HitS. 

iv. Do not allow any session whose application protocol is not authorized. Recognition 

of the application protocol is based on the message flow analysis. Namely, a check is 

performed as to whether certain messages that characterize the application protocol, 

such as methods in HTTP and commands in IRC, are transmitted in the legitimate 

order of the protocol. 

 

3) For each session that passed the above-mentioned rules, the dummy client generator 

extracts the payload. The extracted payload is appended with the information on the 

destination (e.g., domain name or destination IP address, destination port, protocol) and 

stored in the host OS. 

 

4) Each session is inspected in the following rules to increase efficiency. These are called 
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duplication-reduction rules. 

i. Leave only one session if there are two or more sessions that send the same payload 

to the same server. 

ii. Delete a session whose payload is included in another session. 

iii. Leave only one session if there are two or more sessions that join the same IRC server 

with different IRC nicknames. The reason for utilizing this filtering rule is that 

malware often communicates with an IRC server by a random nickname, and if each 

session is emulated, the number of emulated sessions will greatly increase. 

iv. Leave only one session if there are two or more sessions that send the same HTTP 

GET queries with different arguments to the same server. This filtering rule is utilized 

because malware sends the information about the infected host, the own ID, etc. by 

using arguments of a HTTP GET query, and if each session is emulated, the number 

of emulated sessions will greatly increase. 

 

5) The dummy client generator generates the dummy client that replays the remaining 

communications. It emulates the communication with remote servers via the following 

procedures. 

i. The dummy client loads the destination information (i.e., domain name or destination 

IP address, destination port, protocol) of each session. 

ii. If the destination information includes a domain name, the dummy client resolves it 

and obtains the corresponding destination IP address. 

iii. If the protocol is TCP, the dummy client tries to connect to the destination IP address 

on the destination port via a three-way handshake. When the connection is established, 

the dummy client sends the first packet to the destination. If the protocol is UDP, it 

sends the first packet to the destination IP address on the destination port. 

iv. The dummy client waits for a response from the destination. When it receives the 

response, it stores it in the data spool. 

v. If the packet to be sent to the destination is remaining and no response for the 

previous packet has arrived within a certain period of time the dummy client sends 

the next packet to the destination. 

vi. After sending all packets, the dummy client waits for the response from the server, 

unless the server has closed the session, and stores the received response in the data 

spool. For the IRC protocol, the dummy client also automatically replies with a 

PONG command when receiving a PING command from the IRC server for that not 

to be closed session by the server. 
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4.5 Evaluation 
Experiments were conducted to evaluate the proposed method using 7,184 malware samples 

captured in the wild by low-interaction honeypots (Nepenthes and Dionaea), high-interaction 

honeypots, client honeypots, and others. A total of 557 names of samples were obtained from 

Symantec, and these were randomly divided into two sets. Then, one was used one for creating the 

dummy client and the other for comparison. The former set is called the training set and the latter 

the test set. Table 4.1 is a list of the top 20 virus names of samples in each set. 

 

Table 4.1  Top 20 Names of Samples in Each Set Obtained from Symantec 

(a) training set    (b) test set 

     

 

The objective of the experiment is twofold. First, whether the behaviors of remote servers can 

be observed by using the dummy client is confirmed. Then, the possibility of improving the 

observability of the proposed sandbox as opposed to a simple Internet-connected sandbox is 

confirmed. 

 

Malware Name # of samples

W32.Virut.W 571

W32.Spybot.Worm 347
Unknown 320

W32.Virut.B 281
Trojan Horse 189

W32.Sality.AE 147
W32.Pinfi 139

W32.IRCBot 127
W32.Korgo.S 125

W32.Rahack.W 125
W32.Virut.U 93
W32.Gobot.A 89
W32.Korgo.V 85

Hacktool 80
Backdoor.Trojan 54
W32.Rahack.H 51

Trojan.Gen 42
Backdoor.Graybird 38
Suspicious.IRCBot 32
W32.IRCBot.Gen 31

Others 626

Malware Name # of samples

W32.Virut.W 597

W32.Spybot.Worm 321
Unknown 292

W32.Virut.B 271
W32.IRCBot 170
Trojan Horse 153

W32.Sality.AE 143
W32.Pinfi 130

W32.Rahack.W 127
W32.Korgo.S 120
W32.Virut.U 104
W32.Korgo.V 90

Hacktool 76
W32.Gobot.A 72

W32.Rahack.H 63
Backdoor.Trojan 62

Trojan.Gen 48
W32.Korgo.W 36

Suspicious.IRCBot 35
W32.IRCBot.Gen 32

Others 650
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4.5.1 Procedure 

In order to evaluate the proposed method, two sandboxes were prepared for comparison: the 

proposed sandbox with accumulated server responses collected by dummy clients and an 

Internet-connected sandbox. The former is called the proposed sandbox and the latter the 

Internet-connected sandbox. Table 4.2 shows the configuration of the proposed sandbox. Each 

sandbox is implemented on a single real machine with the same specifications: Intel XEON 2.66 

GHz × 4 with main memory of 4 GB RAM, and the Internet-connected sandbox was implemented 

by removing the dummy client unit and feedback server in the proposed sandbox. 

 

The analysis by the proposed sandbox was performed as follows. 

(1) First Analysis – First, the training set in the Internet-connected sandbox was analyzed on 

August 5-9, 2011. 

(2) Collection of Server Responses – Then, a dummy client was generated with the observed 

traffic logs, and executed to collect server responses. The dummy client accessed each of 

the remote servers every hour from September 6 to October 25, 2011. 

(3) Second Analysis – Finally, the test set was analyzed in the proposed sandbox and in the 

Internet-connected sandbox on November 10-15, 2011. 

 

Table 4.2  Configuration of Proposed Sandbox 

 

 

4.5.2 Results 

(1) First Analysis 

Of the 3,592 samples, 2,322 attempted to connect to remote hosts with 4,848,791 sessions 

 EXECUTION_TIME  60 [sec]
 VICTIM_HOST_OS  Windows XP Professional SP1
 FILEMON  OFF
 REGMON  OFF
 HitS  Nepenthes v0.2.2

 Dummy Servers
 HTTP, NTP, IRC, FTP, SMTP,
 DNS, ECHO, Feedback

 Threshholds  Th ps  = 50, Th DoS  = 50

 Authorized Application  HTTP, IRC
 Execution interval of
 the dummy client

 1 [hour]
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consisting of 4,848,328 TCP sessions and 463 UDP sessions (except for DNS queries). Among 

them, 4,846,095 sessions (99.94%) were filtered out using attack-filtering rules. Most of the filtered 

sessions were considered as port scans. The remaining 2,696 sessions were again reduced to 242 by 

duplication-reduction rules. Most of the session reduction was due to duplicated IRC sessions. 

Likewise, the number of destinations to which the samples attempted to connect was 4,617,688. 

Here, a destination means either a destination IP address or a domain name of the destination host. 

The number of destinations was reduced to 148 using attack-filtering rules. Ultimately, 242 

different types of sessions, consisting of 224 HTTP sessions and 18 IRC sessions to 148 distinct 

destinations, were selected for replay by the dummy client to obtain server responses. 

 

(2) Collection of Server Responses 

The dummy client was run from September 6 to October 25, 2011 to collect responses from 

the servers. The client accessed the 148 destinations by replaying the 242 different types of sessions 

every hour. Results are as follows. 

 

A) For 70 types of replayed sessions, the client always received the same response with the 

same content every hour. 

B) For 23 types of replayed sessions, the client received no response during the experiment. 

C) For 37 types of replayed sessions, the client received either a response with the same 

content or no response. 

D) For 112 types of replayed sessions, responses from the server changed during the 

experiment. 

 

In case C, connectibility of the servers changes depending on when the client accesses the 

servers. In case D, responses from the servers change depending on when the client accesses the 

servers. Thus, analysis time may influence the result of normal sandbox analysis of malware that 

attempts to access the remote servers with these sessions. Here, the change of the response means 

that the hash value of the received HTTP content is changed or the IRC PRIVMSG is changed. 
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Windows Executable Files 

Figure 4.3 shows the number of new Windows executable files the dummy client collects over 

time. Only new executables are counted based on their hash values. From the figure, it can be 

confirmed that the dummy client can continuously receive a number of new Windows executable 

files. Since downloaded executables can be used for further malicious activity, it is important to 

observe such behavior. 

 

 

 

Figure 4.3  Number of Newly Observed Windows Executable Files 
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IRC PRIVMSG 

Figure 4.4 shows the number of new IRC PRIVMSGs collected by the dummy client over 

time. From the figures, it is confirmed that the dummy client can continuously receive a number of 

new PRIVMSGs from the IRC-based C&C servers. Since PRIVMSG is often used as a C&C 

command between a bot and its herder, it is important to observe such commands. For example, 

there are messages such as !get http://netnetnet1.com/sd7.txt, which seems to be a command for 

downloading a file. Actually, in the sandbox analysis, after having received such a message, the 

malware accessed the URL and downloaded an executable file. 

 

 

 

Figure 4.4  Number of Newly Observed PRIVMSGs 

 

(3) Second Analysis 

Table 4.3 shows the comparison between the analysis results of the proposed sandbox and 

Internet-connected sandbox. In Table 4.3, almost all items increased with the proposed sandbox. In 

particular, numbers of samples that used HTTP POST, samples that received an executable file by 

HTTP GET, samples that used SMTP, samples that used DNS MX-record queries and PTR-record 

queries, unique queried domain names, and samples that performed a port scan greatly increased. 

These results indicate an improved observability of malware behaviors by the proposed sandbox. In 

the proposed sandbox, 1,347 malware samples attempted to connect to the 19 remote servers whose 

responses were collected by the dummy client. Of these 19, 8 servers were not able to be accessed 
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in the second analysis; thus, the feedback server replied using the collected responses. This is one 

of the main reasons for this improvement. 

The above results demonstrate that the proposed sandbox has a certain level of feasibility for 

observing malware behaviors corresponding to the behaviors of remote servers. 

 

Table 4.3  Comparison of Proposed Sandbox and Internet-connected Sandbox 

 

 

 

4.6 Discussion 
Although the proposed sandbox showed the possibility of working for observing malware 

behaviors in accordance with server behaviors, there are several limitations that need to be 

discussed. 

 

Internet-Connected
Sandbox

Proposed Sandbox Unit

 Samples that used TCP 1982 2073 (sample)

 Samples that used HTTP 1310 1354 (sample)

 Samples that used HTTP GET 1308 1344 (sample)

 Samples that used HTTP POST 84 203 (sample)

 Samples that received EXE by GET 310 438 (sample)

 Samples that used SMTP 78 162 (sample)

 Samples that used IRC 448 480 (sample)

 Samples that used IRC PASS 29 30 (sample)

 Samples that used IRC NICK 445 472 (sample)

 Samples that used IRC USER 445 472 (sample)

 Samples that used IRC JOIN 439 440 (sample)

 Samples that used IRC MODE 43 46 (sample)

 Samples that received IRC PRIVMSG 404 409 (sample)

 # of unique received PRIVMSGs 8 37 (PRIVMSG)

 Samples that used UDP 2089 2067 (sample)

 Samples that used DNS 2088 2063 (sample)

 Samples that used DNS A-record queries 2088 2063 (sample)

 Samples that used DNS MX-record queries 18 142 (sample)

 Samples that used DNS PTR-record queries 30 128 (sample)

 # of unique queried domain names 687 1683 (domain)

 Queried domain names per sample 2.2 4.3 (domain)

 Samples that performed port scan 1619 1720 (sample)

 Samples that performed DoS attack 40 86 (sample)

 Samples that sent shell code to 135/TCP 26 23 (sample)

 Samples that sent shell code to 139/TCP 175 273 (sample)

 Samples that sent shell code to 445/TCP 1503 1591 (sample)

 Samples that sent shell code to 3127/TCP 79 79 (sample)

 Size of traffiic log per sample 11.1 75.7 (MB)



33 
 

4.6.1 Detection of Dummy Client by Remote 

Servers 

In this implementation, the dummy client simply replays the same communication observed in the 

sandbox. An attacker can easily overcome such a simple replay. The attacker can include sensitive 

information (source IP address, timestamp, other internal system parameter, or their hash values) in 

URL parameters, and reject queries with bad parameters. Moreover, if the remote servers change 

responses in accordance with URL parameters, not all responses can be obtained because applying 

duplication-reduction rules eliminates some sessions. The attacker can also adopt SSL or any other 

kind of protocol that is highly interactive. The dummy client needs to be made more interactive to 

deal with these interactive protocols. The internal behavior of the malware samples needs to be 

examined through techniques like API hooking in order to obtain necessary information for more 

complete emulation of server-client interactions. 

In addition, in the experiment, the dummy client used the same IP address for accessing the 

remote servers. Therefore, the attacker can detect the dummy client by looking at the frequently 

used IP addresses of the clients connecting their servers. Therefore, to avoid this network-based 

detection of the dummy client, the client’s IP address should be frequently changed. Another 

solution is to use anonymity networks like The Onion Router (TOR) [79]. TOR relays a 

multilayered encrypted message among its onion routers for sender/receiver anonymity. By using 

TOR, a dummy client can connect to the remote servers without revealing its IP address. However, 

careful consideration from the attackers’ viewpoint needs to be taken. Although TOR reasonably 

provides sender anonymity, there are several techniques for the receiver to determine if the sender 

is using TOR [80] [81]. If a normal malware victim hardly ever uses TOR, the very usage of it can 

raise an attacker’s suspicion. A similar discussion applies for an anonymous proxy [82]. 

 

4.6.2 Determining Changes of Server Behavior 

In the proposed method, it is important to determine whether remote servers have changed their 

behavior in order to emulate remote servers effectively. This is not a trivial issue. There are indeed 

some parts of a server’s responses that change every time a client accesses it, such as a time stamp. 

These changes need to be automatically distinguished from those caused by the attacker’s behavior 

in order to efficiently perform the feedback analysis. Moreover, the attacker can disturb this 

decision by intentionally randomizing responses of its server or introducing a challenge-response 

protocol to avoid a replayed query. However, it should be noted that for stable connection attackers 
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sometimes use a paid server-hosting service that supports only a standard protocol, and in such 

cases such customized protocols cannot be utilized. In fact, it was confirmed that some of the 

remote servers observed were hosted by a paid service and they used only a regular HTTP protocol; 

thus, this method worked effectively. 

 

4.6.3 Filtering High-risk Communications 

In our proposed method, the dummy client keeps replaying the observed malware traffic. It means 

that the client might mistakenly keep replaying a high-risk communications, such as remote 

exploits and DoS, to innocent hosts. In addition, although we don’t filter HTTP traffic in the 

experiments, there are various exploits by using HTTP query such as SQL injection, Remote File 

Inclusion, and Comment Spamming. Therefore, the filtering of high-risk communication is a critical 

issue in our proposal. Besides the presented filtering rules, we can also estimate the likeliness of the 

remote server to be an attacker’s server in various ways. One possible solution is to use a blacklist 

of malicious servers. 
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Chapter 5  
 
Decoy Injection Attack on Public 
Malware Sandbox Analysis 
Systems 
 

 

5.1 Introduction 
With the growing popularity of malware sandbox analysis, there are a number of systems [1] [2] [3] 

[4] [10] [11] [18] [19] [20] [21] [22] [27] [83] [84] [85] [86] [87] [88] [89] [90] [91] that use a 

public interface to accept online submissions of samples from arbitrary users, automatically analyze 

them using a sandbox, and send analysis reports back to the user. Most of these systems focus on 

Windows executable files, but some focus on JavaScript [88], Flash [88], DLL [4], and PDF [4] 

[88]. Similar systems also exist for the analysis of suspicious websites [1] [2] [83] [84] [85] [86] 

[87] [88] [89] [91]. This dissertation refers to a malware analysis system with a public interface as a 

public malware sandbox analysis system (public MSAS). One public MSAS reportedly received 

over 900,000 submissions of unique samples (based on MD5 hashes) in less than two years [8], 

demonstrating the popularity of such systems. Previous works [31] [32] have pointed out a 

vulnerability of public MSASs against decoy injection attacks, in which an attacker detects the 

sandbox based on its IP address that can be obtained by submitting a decoy sample designed for this 

purpose. Yet they did not further investigate the possibility of detection using sandbox information 

other than its IP address.  

In this chapter, in order to better understand the vulnerability and develop an effective 

countermeasure, first, we define properties of sandbox information for decoy injection attack: 
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stability, uniqueness, and stealthiness of collection. Then, we evaluate 16 different kinds of 

characteristics in the sandbox in terms of those properties. As a result of experiments with real 

public MSASs in operation, we found that characteristic information such as a Windows OS product 

key, MAC address, and Windows OS install date can be utilized for sandbox detection, except for 

particular systems that appeared to have deployed a countermeasure. Moreover, besides 

network-based disclosure, we show that such characteristic information of the sandbox can be 

disclosed via an analysis report provided to the user, which means that the decoy injection attack 

can be performed against the sandbox isolated from the real Internet. Thus, this study confirms the 

broad applicability of the decoy injection attack as well as the need for comprehensive 

countermeasures. 

The rest of this chapter is as follows. Section 4.2 describes the model of public MSASs, and 

Section 4.3 explains some examples of existing public MSASs. Section 4.4 addresses decoy 

injection attacks against public MSASs, and Section 4.5 explains the properties of 4.5 properties of 

sandbox information for decoy injection attacks. Section 4.6 describes a case study with 15 existing 

public MSASs for evaluating the impact of a decoy injection attack. Section 4.7 provides 

discussion, and Section 4.8 summarizes this chapter. 

 

 

5.2 Models 
This section explains the model of a public MSAS, which can be classified into two groups; one for 

analyzing a submitted file and the other for analyzing a website of a submitted URL. In this 

dissertation, the former is called a public MSAS for sample files (public MSAS-F) and the latter a 

public MSAS for websites (public MSAS-W). 

 

5.2.1 Public MSAS-F 

Figure 5.1 and Figure 5.2 respectively show the model of a public MSAS-F with an isolated 

sandbox and that with an Internet-connected sandbox. In both systems, the submitter is the user of 

the analysis system who submits a sample file to the system. The reception is the publicly known 

interface of the system, which is typically realized by a website to accept sample submissions. The 

sandbox represents the testing environment in which the submitted sample is executed and 

analyzed.  

An isolated sandbox does not connect to the real Internet, but rather the emulated Internet, 

which consists of various dummy servers, as depicted in Figure 5.1. The Internet-connected 
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sandbox connects to the Internet, as in Figure 5.2. The outbound traffic from an Internet-connected 

sandbox is carefully checked in order to mitigate the risks of infection outside the sandbox [9] [24]. 

The sandbox implements various means such as API hooking to monitor internal behavior of the 

executed sample. Finally, the analysis report that describes the detailed malware behavior such as 

API calls, file access, registry access, process creation, network activities, is provided to the 

submitter via reception or other electronic means, such as e-mail. 

 

 

Figure 5.1  Model of Public MSAS-F for Sample Files (Public MSAS-F) 

with an Isolated Sandbox 
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Figure 5.2  Model of Public MSAS for Sample Files (Public MSAS-F) 

with an Internet-connected Sandbox 

 

 

5.2.2 Public MSAS-W 

Figure 5.3 shows the model of a public MSAS-W. The analysis of a website works similarly as with 

a public MSAS-F. The submitter first submits a URL of a website for which he or she wants to 

check the level of safety with regard to the system. Then, the sandbox actually accesses the website 

to obtain the web contents for analysis. To analyze a website that refers to other websites the 

sandbox also connects to them to obtain the referred content; so the sandbox for a public MSAS-W 

is Internet-connected by nature. 
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Figure 5.3  Model of Public MSAS for Websites (Public MSAS-W) 

 

 

5.3 Samples of Public MSAS 
This section gives some examples of existing public MSASs. 

 

 Norman SandBox 

Norman SandBox [18] is a malware sandbox analysis system with an isolated sandbox, 

developed by Norman Safeground. The company provides Norman SandBox as a public MSAS-F, 

and users are able to submit executable files to the system via the Norman Safeground website. The 

system analyzes submitted files and provides an analysis report to the submitter via e-mail. 

Analysis reports of all submitted files are also published on the website for public perusal. 

Figure 5.4 and Figure 5.5 respectively show the web interface of the system for submitting an 

executable file and an example of a published analysis report. 
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Figure 5.4  Web Interface of Norman SandBox for Submitting a File 

 

 
Figure 5.5  Example of Analysis Report of Norman SandBox 
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 Anubis 

Anubis [2] is a malware sandbox analysis system with an Internet-connected sandbox, 

developed by International Secure Systems Lab. Anubis is also provided as a public MSAS. It is 

able to analyze not only Windows executable files but also Android APK files and websites. The 

Analysis report can be received via e-mail or website in a preferred format (e.g., HTML, XML, 

PDF, text file). Anubis also provides the traffic log (PCAP format) of the analysis. It is one of the 

most well-known public MSASs and, as previously reported [8], it had over 900,000 unique 

samples (based on MD5 hashes) submitted in less than two years. 

Figure 5.6 and Figure 5.7 respectively show the web interface of the system for submitting an 

executable file and an example of a published analysis report. 

 

 

 
Figure 5.6  Web Interface of Anubis for Submitting a File or URL 
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Figure 5.7  Example of Anubis Analysis Report 

 

 gred 

gred [89] is a malware sandbox analysis system for websites, developed by SecureBrain 

Corporation and provided as a public MSAS-W. When submitting a URL, submitters can request 

that it checks all links found within the web page of the submitted URL. gred then judges whether 

or not the URL is malicious. If it is, the analysis report shows what kind of threats it includes by 

using icons indicating threat categories (e.g., phishing site, one-click fraud, bogusware). In addition, 

if HTML files of the malicious URL include suspicious files, a submitter can receive an additional 

analysis report about those files via e-mail. 

Figure 5.8 and Figure 5.9 respectively show the web interface of the system for submitting an 

URL and an example of a published analysis report. 

 



43 
 

 
Figure 5.8  Web Interface of gred for Submitting a URL 

 

 
Figure 5.9  Example of Analysis Report of gred 



44 
 

5.4 Decoy Injection Attack 
Since public MSASs are available to arbitrary users, even an attacker can use them as a submitter to 

learn the systems. The basic idea of a decoy injection attack is to submit a decoy sample that 

collects and discloses information on the targeted public MSAS. Typically, unique characteristics of 

the sandbox, such as its operating system’s product ID or the existence of certain files, registry keys, 

and processes, can be utilized for sandbox detection. 

This section explains the decoy injection attack that can be conducted against public MSASs. 

It consists of two phases. In the first phase, the disclosing sandbox information phase, the attacker 

submits a decoy to the targeted public MSAS in order to disclose its sandbox information. Then, in 

the second phase, the sandbox-detection phase, the attacker uses the disclosed sandbox information 

to detect the sandbox. 

 

5.4.1 Disclosing Sandbox Information 

In the disclosing sandbox information phase, the attacker’s objective is to disclose sandbox 

information that can be utilized for detecting the targeted public MSAS by injecting decoy samples 

or decoy URLs into the system. 

Figure 5.10 shows an overview of disclosing sandbox information against a public MSAS-F. 

To disclose the sandbox information from a public MSAS-F, the attacker simply submits a decoy 

sample to the targeted system. The sample is eventually executed in the system and discloses the 

system information it has collected. It should be noted that there are two possible channels over 

which the system information can be disclosed. The first is communication between an 

Internet-connected sandbox and remote hosts. The decoy sample can simply send the collected 

information over the network to a designated remote host under the attacker’s control, called a 

colluding server, outside the sandbox. Obviously, this channel does not exist in a public MSAS 

using an isolated sandbox. The second channel is the analysis report. The attacker submits a decoy 

sample that embeds the obtained system information in the analysis report. For example, a decoy 

sample can encode a Windows OS product key and use it as the name of a file it creates. Since the 

name of the file the sample creates is likely to be mentioned in the analysis report, the attacker can 

obtain the product key via the report. This channel exists even in a public MSAS using an isolated 

sandbox. 

Figure 5.11 shows an overview of disclosing sandbox information against a public MSAS-W. 

First, the attacker prepares a web server, called a colluding web server, and submits a decoy URL 

of a colluding web server. 
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When the sandbox accesses the colluding web server, there are three way of replying, as 

follows. 

・ Replying with benign contents or nothing 

・ Replying with benign contents with a client-side script (e.g., JavaScript) that collects 

sandbox information 

・ Replying with malicious contents with attack script that exploits a vulnerability of the web 

browser used by the sandbox in order to acquire a decoy sample downloaded and executed 

in the sandbox 

When replying with benign contents or nothing, the attacker can only learn the IP address of 

the sandbox and HTTP request headers. When replying with a client-side script that collects 

sandbox information, the attacker can learn some additional information such as browser plug-in, 

time zone, and monitor resolution. Since there are some studies about browser fingerprinting based 

on information collected by JavaScript [92], the attacker has a chance of detecting the sandbox via 

identifying the web browser of the sandbox. When replying with malicious contents, since the web 

contents contain the exploit, a decoy sample is downloaded and executed in the sandbox. The 

executed decoy sample then works the same as for a public MSAS-F. 

 

 
Figure 5.10  Disclosing Sandbox Information Against Public MSAS-F 
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Figure 5.11  Disclosing Sandbox Information Against Public MSAS-W 

 

5.4.2 Sandbox Detection 

In the sandbox-detection phase, the attacker’s objective is to detect and evade sandbox analysis by 

leveraging sandbox information disclosed in the disclosing sandbox information phase. There are 

two types of sandbox detection: host-based and network-based. 

In host-based sandbox detection, the attacker has embedded disclosed sandbox information of 

the targeted public MSAS in malware. The attacker also implements a function that checks sandbox 

information of the run-time environment and compares it with embedded information in malware. 

Thus, if embedded information is found in the run-time environment, the malware judges the 

environment as a sandbox and stops or changes behaviors in order to disrupt analysis. Figure 5.12 

shows an overview of host-based sandbox detection against a public MSAS-F. 

In network-based sandbox detection, first the attacker has embedded disclosed information of 

the targeted public MSAS in a C&C or malware download server, malicious web server, etc. Figure 

5.13 shows an overview of network-based sandbox detection against a public MSAS-F. The 

attacker implements a function that collects sandbox information on the run-time environment and 

sends the information to a remote server such as a C&C or malware download server. Then, the 

remote server compares the information received from the malware with that disclosed at the 
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disclosing sandbox information phase. If it matches, the remote server changes responses to the 

malware in order to disrupt analysis of the sandbox (e.g., the remote server never sends a C&C 

message to the malware in the sandbox). Figure 5.14 shows an overview of a network-based 

sandbox detection using an IP address against a public MSAS-W. 

The advantage of host-based sandbox detection is that it has the chance to detect a public 

MSAS-F with an isolated sandbox. The advantage of network-based sandbox detection is that it is 

easy to update the disclosed sandbox information for detection. 

 

 

 

Figure 5.12  Host-based Sandbox Detection Against Public MSAS-F 
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Figure 5.13  Network-based Sandbox Detection Against Public MSAS-F 
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Figure 5.14  Network-based Sandbox Detection Using IP address Against Public MSAS-W 

 

 

5.5 Properties of Sandbox Information for 

Decoy Injection Attack 
This section considers three important properties of sandbox information for a decoy injection 

attack: stability, uniqueness, and stealthiness of collection. 

 

Stability is the property of being able to collect the same value of the sandbox information 

every time. Since the attacker must collect the same information in the two phases of the decoy 

injection attack for efficient detection, the sandbox information utilized in the decoy injection 

attack requires a high level of stability. 

 

Uniqueness is the property of the values of the information collected from the systems being 

different from each other. If the attacker uses sandbox information with a low level of uniqueness 
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for the decoy injection attack, it leads to many false positives, so a high level of uniqueness is 

required. 

 

Stealthiness of collection is the property that can conceal collecting the sandbox information 

from the public MSAS side. If the attacker accesses sandbox information that has a high level of 

uniqueness and a low level of stealthiness of collection, the possibility of the sandbox detection by 

public MSAS side may be detected, so a high level of stealthiness of collection is required. 

 

 

5.6 Evaluation 
This section describes the experiments for evaluating the impact of a decoy injection attack on 15 

existing public MSASs, consisting of eight public MSAS-Fs and seven public MSAS-Ws. The i-th 

system is referred to as System i for i = 1, 2, .., 15. Note that Systems 1-8 are public MSAS-Fs and 

8-15 are public MSAS-Ws. 

 

5.6.1 Disclosing Sandbox Information 

In this section, decoy injection to public MSAS was conducted for disclosing sandbox information. 

Then, the sandbox information used in the sandbox-detection phase was selected based on the 

results of the disclosing sandbox information phase. 

 

5.6.2 Generating Decoy Samples and Decoy 

URLs 

For evaluating the eight public MSAS-Fs, a decoy sample was prepared that behaved as follows. 

 

1) It attempts to collect 15 types of sandbox information, as shown in Table 5.1, by using the 

Windows API. The colluding server collects the IP address. 

 

2) If the sandbox information is collected, the sample base64 encodes the value of the 

sandbox information, and the URL encodes the base64-encoded data. In the following step, 

the sandbox information indicates the data after the encoding. 
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3) The sample creates a registry subkey in HKEY_CURRENT_USER. 

4) The sample creates registry entries under the subkey by using the sandbox information 

code as the entry name and the value of sandbox information as the entry value. 

 

5) It attempts to connect to the colluding server. If the domain name of the server is not 

resolved or there is no reply from the colluding server, the sample halts. 

 

6) When connected to the colluding server, it issues an HTTP GET request. The name of the 

requested file represents the unique identifier of the sample. The parameters of the request 

represent the sandbox information. 

 

There are two main features of the decoy sample. 

・ Creating the registry keys to disclose the sandbox information via an analysis report 

・ Connecting to the colluding server with a unique identifier to disclose the sandbox 

information via network access 

 

Table 5.1  Sandbox Information Collected by Decoy Sample 

 

 

For evaluating the seven public MSAS-Ws, a decoy URL was also prepared by combining the 

domain name of the colluding server and the unique identifier of the sample (e.g., 

http://disclosing-server.com/ID.cgi). 

 

Sandbox Information
arp MAC Addresses of Surrounding PC's

bbn  Motherboard Product Name
bbns Motherboard Serial Number
bn  BIOS Product Name
bs BIOS Serial Number
cn Computer Name
cpu  CPU Product Name

cpuid  CPU Serial Number
dn Disk Drive Name
ds  Disk Drive Serial Number

insd Windowa OS Install Date
mac MAC Address
pk  Windows OS Product Key
pn  Windows OS Product Name
un User Name
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5.6.3 Preparing Colluding Servers 

A colluding server and CGI files with names corresponding to each decoy ID were prepared. The 

server works as follows. 

 

1) It waits for an incoming TCP connection request from a client. 

 

2) If an HTTP GET request arrives from a client, the server checks whether the name of the 

requested file is in the list of valid identifiers. 

 

3) The server collects the parameters of the request, acquires the sandbox information by URL 

decoding and base64 decoding the parameters, and stores that in log files. The server also 

collects and stores the HTTP request header and IP address of the client. Then the server 

sends the benign HTTP response to the client. 

 

5.6.4 Procedure 

An experiment was performed concerning the disclosing sandbox information phase during a 

one-week period in November 2010. Five decoy samples/URLs per day per system were submitted 

to the 15 target systems. All submitted samples/URLs contained a distinct identifier. 

 

5.6.5 Results 

Table 5.2 shows a summary of the experiments. It includes the number of received analysis reports, 

number of accesses to colluding servers, and results of disclosure about the information. Note that 

the sandbox information, except for the IP address in Systems 3-7, was able to be disclosed via both 

network access and analysis report, and the table includes both results. The results except for the IP 

address were represented in the form of number of unique values / number of successful disclosures. 

When multiple values of the sandbox information were collected, the lists were compared, and if 

they matched exactly they were regarded as the same. 

Note that in the experiments exploit code was not sent to the public MSAS-W in order to 

acquire a decoy sample downloaded, and executed in the sandbox but only the IP address of the 

sandbox was collected. Therefore, in Systems 9-15, there are no results of sandbox information 

except for the IP address. 
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 Disclosing Sandbox Information via Network Access 

HTTP GET requests were observed at the colluding server immediately after each decoy 

submission to 12 target systems: 3-7, and 9-15. Thus, the sandbox information was able to be 

disclosed via network access. They are considered to utilize an Internet-connected sandbox. Among 

them, seven systems – Systems 5 and 10-15 – used a single IP address or a few IP addresses for the 

entire experimental period of one week. There was no connection that made attempts to the 

colluding servers using identifiers for the three target systems: Systems 1, 2, and 8. These systems 

are considered to utilize an isolated sandbox. They are tolerant of disclosing sandbox information 

via network access. However, disclosing sandbox information via analysis report is still effective 

against these systems. 

In System 6, the number of accesses to colluding servers is less than the number of submitted 

decoy samples. This is because that DNS query of colluding server’s domain failed due to a system 

error or some other factor. In contrast, in Systems 10, 11, and 15, the number of accesses to 

colluding servers is greater than the number of submitted decoy URLs. This is assumed to be 

because the systems conduct multiple accesses to the server with different environments, such as 

different versions of a web browser, for improving detection capability.  

 

 Disclosing Sandbox Information via Analysis Report 

The sandbox information was able to be disclosed via analysis report in the public MSAS-F, 

with the exception of Systems 1 and 2. In these systems, there is less behavior information of the 

sample included in the analysis report than for other systems, and it is assumed that a decoy sample 

might fail to collect sandbox information. Since the sample can collect sandbox information in a 

normal environment, the attacker has a chance to detect the sandbox by a fact not to be able to 

collect sandbox information. 
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5.6.6 Selecting Sandbox Information for 

Sandbox Detection 

This section assessed the sandbox information shown in Table 5.2 from the perspective of the 

properties described in Section 4.5, and selected suitable sandbox information for a decoy injection 

attack. 

 

 Stability  

First, in all public MSASs with an Internet-connected sandbox, access to the colluding server 

was able to by observed and the IP address was able to be collected every time, with the exception 

of the error in the DNS response in System 6. In addition, in Systems 3, 5, 7, and 9-15, it was 

observed that they used a single IP address or a few IP addresses within a small subnet. Because of 

the above results, it is considered that the IP address has a high level of stability for a decoy 

injection attack. More detailed information about IP addresses used in Systems 4 and 6 are given in 

the results of the sandbox-detection phase. 

On the other hand, for sandbox information except for the IP address, seven types of sandbox 

information – BIOS product name (bn), computer name (cn), CPU product name (cpu), disk drive 

name (dn), Windows OS install date (insd), Windows OS product key (pk), and Windows OS product 

name (pn) – ware able to be collected every time, and the numbers of unique values of the sandbox 

information are very low in all public MSAS-Fs. Thus, the seven types of sandbox information 

apparently have a high level of stability for a decoy injection attack. 

 

 Uniqueness 

.basically unique to each environment, and have a high level of uniqueness. Actually, in this 

experiment, these items were unique to each public MSAS. However, it must be confirmed in the 

future whether the information is actually unique to each environment included in the normal user’s 

environment. 

On the other hand, it is considered here that the information such as the BIOS product name, 

CPU product name, and disk drive name becomes the same value when the systems have the same 

model of such parts. Actually, in this experiment, it was observed that these types of the 

information are sometimes the same between different systems, so it is difficult to use the 

information for identifying public MSASs. In addition, information such as the user name and 

computer name was unique to each public MSAS. However, sandbox information such as the user 

name and computer name apparently does not have a sufficient level of uniqueness since a user can 

easily change the information. 
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 Stealthiness of Collection 

In this experiment, since information was collected using the Windows API except for the IP 

address, the means of collection causes no difference in the level of stealthiness of collection. Since 

the behavior that collects the information of the Windows OS product key from the registry key is 

not usually observed for benign software, the behavior apparently does not have a high level of 

stealthiness of collection. In contrast, the IP address can easily be collected via access to the 

colluding server. Since the behavior that accesses the Internet is often observed in benign software, 

it is considered that such behavior has a high level of stealthiness of collection. 

In consideration of the above results, four types of information were selected – IP address, 

Windows OS product key, MAC address, and Windows OS install date – as the information used in 

sandbox detection. Note that in this experiment about public MSAS-W, since only the IP address 

was collected, an attempt was made to detect a public MSAS-W by only using the IP address. 

 

 

5.7 Sandbox Detection 
This section addresses an experiment conducted to confirm whether the public MSAS can be 

detected by using the information selected in Section 5.6.6 

 

5.7.1 Generating Test Samples for Public 

MSAS-F 

For evaluating the eight public MSAS-Fs, a test sample was first prepared. It was embedded in the 

three types of sandbox information (i.e., Windows OS product key, MAC address, Windows OS 

install date) collected in the disclosing sandbox information phase. The test sample behaved as 

follows. 

 

1) It attempts to collect the Windows OS product key, MAC address, and Windows OS install 

date by using the Windows API. 

 

2) If the sandbox information is collected, the sample base64 encodes the value of the 

sandbox information, and the URL encodes the base64-encoded data. In the following step, 

the sandbox information indicates the data after this encoding. 
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3) The sample creates a registry subkey in HKEY_CURRENT_USER. 

 

4) It compares the sandbox information collected in the run-time environment with the list of 

the embedded sandbox information collected in the disclosing sandbox information phase. 

 

5) If the collected information is not included in the list, the sample creates registry entries 

under the subkey by using the sandbox information code as the entry name and the value of 

sandbox information as the entry value. 

 

6) It attempts to connect to the colluding server. If the server’s domain name is not resolved or 

there is no reply from the colluding server, the sample halts. 

 

7) When connected to the colluding server, it issues an HTTP GET request. The name of the 

requested file represents the unique identifier of the sample and the parameters of the 

request represent the sandbox information. 

 

8) If it receives the requested file from the server, the sample checks whether the file contains 

a keyword ASCII string. 

 

9) If a keyword string is found in the file, the sample proceeds with its hidden behavior; it 

creates a file on the infected system and tries to connect to another server. If a keyword 

string is not found, the sample halts. 

 

There are two main features of the test sample. 

・ Attempting host-based detection by comparing the collected sandbox information in the 

run-time environment with the list of the embedded sandbox information collected in the 

disclosing sandbox information phase 

・ Attempting network-based detection by sending the collected sandbox information to the 

colluding server and checking the response from the colluding server 

 

For evaluating the seven public MSAS-Ws, a test URL was prepared by combining the domain 

name of the colluding server and the unique identifier of the sample (e.g., 

http://detecting-server.com/ID.cgi). 
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5.7.2 Preparing Colluding Servers 

A colluding server and CGI files with names corresponding to each test sample ID were prepared. 

The server works as follows. 

 

1) It waits for an incoming TCP connection request from a client. 

 

2) If an HTTP GET request arrives from a client, the server checks whether the name of the 

requested file is in the list of valid identifiers. 

 

3) The server collects the parameters of the request, acquires the sandbox information by URL 

decoding and base64 decoding the parameters. 

 

4) It compares the received sandbox information with the list of the sandbox information that 

was collected in the disclosing sandbox information phase. 

 

5) If the received sandbox information is not included in the list, the server sends the response 

that includes a keyword string or HTMLmalicious. Note that this experiment used benign 

content as HTMLmalicious. 

 

5.7.3 Procedure 

An experiment on the sandbox-detection phase was performed during a one-week period in 

November 2010. Five test samples/URLs per day per system were submitted to the 13 target 

systems, with the exception of Systems 1 and 2. All submitted samples/URLs contained a distinct 

identifier. 

 

5.7.4 Results 

Table 5.3 shows a summary of experiments about the sandbox-detection phase. It includes the 

number of received analysis reports, number of accesses to the colluding servers, and results of the 

host-based sandbox detection and network-based sandbox detection. The results were represented 

in the form of number of successful detections / number of successful collections of sandbox 

information. When multiple values of the sandbox information were collected, the lists were 

compared, and if they matched exactly, they were regarded as the same. 
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 Host-based Sandbox Detection  

All public MSASs were able to be detected by host-based sandbox detection, but detection 

with the Windows OS product key failed four times in System 6, and detection with the MAC 

address never succeeded in System 3. In addition, in System 7, the Windows OS install date 

between all of the experiment periods was not able to be collected. 

In System 6, since the sample collected the information not observed in the disclosing sandbox 

information phase, the system was not able to be detected in four of 10 times. But the number of 

unique values of the new information is only one, and it is considered here that if the period of the 

disclosing sandbox information phase is lengthened, all of the values of Windows OS install date 

can be disclosed. In System 3, the MAC address was able to be collected every time in the 

disclosing sandbox information phase and sandbox-detection phase, but the MAC address values 

differed. This characteristic clearly differs from other systems. For this reason, it is considered here 

that the MAC address is changed at every analysis or using the API hooking in System 3 for 

evading sandbox detection changes the return value of the Windows API. 

 

 Network-based Sandbox Detection 

In Systems 3-7, the results of network-based sandbox detection with the information except 

for the IP address are the same as those of host-based detection. Since System 8 used an isolated 

sandbox, network-based sandbox detection against that system never succeeded. In Systems 5, 7, 

and 10-15, the systems were always able to be detected based on their IP address. However, 

detection sometimes failed with the IP address in Systems 3, 6, and 9. In addition, System 4 was 

never able to be detected. 

In Systems 3 and 9, since the newly observed IP addresses are within /28 subnet, it is 

considered that the system could easily be detected using /28 subnet. Next, in System 4, since the 

IP address was changed every other day within /28 subnet, it was never detected using the list of IP 

addresses observed in the disclosing sandbox information phase. The IP addresses were 

investigated and it was found that they are part of the IP address space assigned to a certain Internet 

service provider (ISP). It was therefore considered that System 4 uses a dynamic IP address 

assignment by the ISP for Internet connection, and changed the IP address every other day by 

stopping and reinitiating a Point-to-Point Protocol over Ethernet (PPPoE) session for evading 

sandbox detection with the IP address. Finally, in System 6, many IP addresses that varied in both 

country and area were observed. The IP addresses were investigated and it was found that they 

were included in the IP address list of Onion routers [93]. It was therefore considered that System 6 

uses TOR [79] for Internet connection in order to evade sandbox detection based on the IP address. 
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5.7.5 Summary 

This experiment confirmed that disclosing sandbox information via an analysis report is effective 

against the existing public MSASs, and against not only public MSASs with an Internet-connected 

sandbox but those with an isolated sandbox. It was also clarified that analysis of public MSASs can 

be evaded by using the sandbox information that has properties described in Section 4.5, such as 

the IP address, Windows OS product key, MAC address, and Windows OS install date. 

It was also confirmed that some systems made countermeasures against sandbox detection 

based on the IP address and MAC address. However, in these systems, we were able to detect by 

using other sandbox information, and it is insufficient as a countermeasure against a decoy injection 

attack. 

 

 

5.8 Discussion 
 

5.8.1 Countermeasures Against Decoy Injection 

Attacks 

In order to prevent sandbox detection based on an IP address, the IP address of the sandbox should 

be changed frequently. However, since the operation costs of decoy injection attacks are so low, it 

can be assumed that attackers conduct them frequently enough to disclose and blacklist all used IP 

addresses. For preventing such straightforward blacklisting by the attacker, a time-sharing of the IP 

addresses can be deployed with real production systems. If an attacker mistakenly blacklists an IP 

address of a production system infected by malware, it will lose an opportunity to control that 

system. In fact, from the evaluation results it can be assumed that System 4 is leveraging a dynamic 

IP address assignment by a commercial ISP; thus, in this experiment, it was never possible to detect 

System 4 by using the sandbox’s IP address. However, there are drawbacks in using the 

ISP-provided addresses. First, ISPs may also filter specific traffic and since the means of filtering 

cannot be controlled the analysis results may not be as reliable. Another solution is use of 

anonymity networks like TOR. In fact, in this experiment it was observed that System 6 used TOR, 

and the sandbox sometimes was not detected. However, while this seems to be a perfect solution 

for a decoy injection attack with an IP address, as mentioned in Section 4.6.1, careful consideration 

needs to be taken from the attacker’s viewpoint. 
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In order to prevent sandbox detection based on sandbox information such as MAC address, 

Windows OS product key, and Windows OS install date, the sandbox information should also be 

changed frequently. One solution is use of API hooking for changing the return value of the 

Windows API which collects the sandbox information. 

 

5.8.2 Possibility of Disclosing Sandbox 

Information via Analysis Report 

A previous study only revealed the possibility of disclosing sandbox information via network 

access. This study evaluated the possibility of disclosing sandbox information via not only network 

access but also analysis report. The simple countermeasure against disclosing sandbox information 

via analysis report is to reduce the information about malware behaviors included in the analysis 

report. However, care needs to be taken because the reduction leads to a decrease in users’ 

observability. 

 

5.8.3 Comparison with Other Sandbox Detection 

Methods 

In comparison with decoy injection attacks and other sandbox-detection methods such as virtual 

machine detection and debugger detection [58] [59] [60] [61], the advantage of other 

sandbox-detection methods is that they can detect all sandbox systems that have target 

characteristics such as the existence of a virtual machine or debugger. However, not only sandbox 

systems but also normal users’ environments use virtual machines, and the case leads to a false 

positive. On the other hand, the decoy injection attack’s advantage is that because it uses the 

sandbox information of a specific public MSAS, if using information that has a high level of 

uniqueness, the false positive rate becomes lower than with other methods. Recently, because using 

public MSASs has grown more popular, the ability to evade their analysis is a big advantage for 

attackers. The decoy injection attack’s disadvantage is that it never detects sandbox systems that an 

attacker does not know. But decoy injection attacks can still be used not only on public MSASs but 

also other services. For example, online scanning service [43] and malware sample-sharing services 

[44] can also be attack targets.  
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Chapter 6  
 
Malware Detection Based on 
Behavioral Differences Between 
Multiple Executions 
 

 

6.1 Introduction 
Recently, malware authors have been embedding malware with functions for countermeasures 

against malware analysis and detection. For example, when certain malware is executed, it detects 

debuggers or virtualization systems that are typically used in malware analysis, and changes or 

stops their behaviors in order to disrupt analyses. Another example is when malware attacks 

another computer it obfuscates exploit codes for avoiding detection by an intrusion detection 

system (IDS). Among them is a type of malware that changes its runtime behaviors in each 

execution to evade malware analysis and detection. For example, when malware copies itself on a 

file system, it can randomly determine its file name in order to avoid detection. Another example is 

that when malware tries to connect its C&C server, it randomly creates or chooses a domain name 

from a hard-coded domain name list to avoid being blocked via a static blacklist of malicious 

domain names. The most well-known example of this type is Conficker, a pandemic malware since 

2009, which generates a to-be-accessed domain name by using a pseudorandom number generator 

[94]. It was assumed that such evasive behaviors are unnecessary for benign software. Therefore, 

these behaviors can be clues for distinguishing malware from benign software. 

In this chapter, we propose a novel behavior-based malware-detection method that focuses on 

such characteristics. The proposed method conducts dynamic analysis on an executable file 



64 
 

multiple times in the same sandbox environment so as to obtain multiple logs of API call and traffic, 

and then compares them to find the difference between the multiple executions. If attackers try to 

evade the proposed detection method, they have to use deterministic malware, and then (especially 

dynamic) analysis is made easier. In experiments with 5,697 malware samples captured in the wild 

and 819 benign software samples collected from a Windows 7 host, Windows XP host, and 

free-software download site, about 70% of malware samples can be detected and the false positive 

rate is about 1%. In addition, about 50% of malware samples that the antivirus software engines did 

not detect can be detected. The possibility of the proposed method being able to improve the 

accuracy of malware detection utilized in combination with other existing methods is therefore 

confirmed. 

The rest of this chapter is organized as follows. Section 6.2 gives related works. Section 6.3 

first covers the proposed method and then the situation in which the method can be deployed. 

Section 6.4 explains experiments for the evaluation. Section 6.5 discusses the challenges of the 

proposed method, and Section 6.6 summarizes the chapter. 

 

 

6.2 Related Works 
Balzarotti et al. [6] proposed a method for detecting malware when it behaves differently in an 

emulated analysis environment and on an un-instrumented reference host. A malware sample is 

executed in a reference host in which all system calls and their return values are logged. Second, 

the malware sample is executed again in a different analysis system in which every system call 

returns the previously logged values to precisely replay the execution of the malware sample. The 

analysis system then compares the runtime behaviors of the malware sample in the analysis system 

and the reference host for detecting their difference. 

Kolbitsch et al. [95] proposed a behavior-based malware-detection method at the end host. 

They first analyze a malware program in a controlled environment to build a model that 

characterizes its behavior. Such models describe the information flows between the system calls 

essential to the malware mission. Then, they extract the program slices responsible for such 

information flows. For detection, these slices are executed to match the models against the runtime 

behavior of an unknown program. 

Yoshioka et al. [96] proposed a network-based detection method of malware-infected hosts. 

They focus on malware that continues listening on a port to communicate with other hosts. Their 

method generates signatures by sending test inputs to the port to which malware executed in a 

sandbox is listening and observing its response. 

Sakai et al. [97] focused on detecting malware with repetitive behavior in its infection and 
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propagation. They detect the repetitive infection behavior (e.g., copying itself and registering it for 

auto run) of malware when its execution environment is recovered to the pre-infection state. 

Matsuki et al. [68] proposed an anti-malware technique in which they focus on malware that 

kills processes of antivirus software and firewall for avoiding detection. In the proposed method, 

they execute decoy processes and when detecting a process that tries to kill the decoy processes, 

they consider it a malware process and kill it. 

 

 

6.3 Proposed Method 
Figure 6.1  Flowchart of Proposed Method shows the brief procedure of the proposed method. 

 

 

Figure 6.1  Flowchart of Proposed Method 
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First, a sample (i.e., executable file) and the number of executions are input. There is a 

trade-off between accuracy and efficiency. Although accuracy will improve by increasing the 

number of executions, efficiency will also degrade because of the longer inspection time. 

Second, dynamic analysis is conducted on the samples multiple times in the same sandbox 

environment to obtain the lists of API calls. 

Third, lists of parameters used for a predefined set of API calls in Table 6.1 are generated. The 

table shows the set of API calls and their parameters used in the proposed method. 

 

Table 6.1  APIs and Their Parameters 

 
 

Based on experiences with malware analysis, the following behaviors are regarded as possibly 

randomized behaviors. 

 

 File-related behaviors (i.e., file name at the time of creating/moving/copying a file) 

 Registry-related behaviors (i.e., entry name at the time of registration of the Run key) 

 Network-related behaviors (i.e., domain name/IP address of remote host at the time of network 

access) 

 

Then, APIs are selected and their parameters, as shown in Table 6.1, related to the above 

behaviors. The following Run keys related to automatic program execution on Windows XP are 

also selected. 

 

 HKEY_LOCAL_MACHINE¥Software¥Microsoft¥Windows¥CurrentVersion¥Run 

 HKEY_CURRENT_USER¥Software¥Microsoft¥Windows¥CurrentVersion¥Run 

 HKEY_LOCAL_MACHINE¥Software¥Microsoft¥Windows¥CurrentVersion¥RunOnce 

API Parameter

RegSetValueEx Subkey Name

RegSetValue Subkey Name
CreateFile File Name

LZOpenFile File Name
_lcreat File Name

CreateDirectoryEX Directory Path
CreateDirectory Directory Path

CopyFileEx New File Name
CopyFile New File Name
LZCopy New File Name

MoveFileEx New File/Directory Name
MoveFile New File/Directory Name
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 HKEY_CURRENT_USER¥Software¥Microsoft¥Windows¥CurrentVersion¥RunOnce 

 

A related work [6] reports that even if an executable file that has not randomized behaviors in 

the same sandbox environment is executed twice, these orders of the API calls and their duplication 

do not necessarily become the same because of the return value of the API call, etc. To solve the 

problem, this work records the API calls and its parameters of the program and then replays it the 

next time the program is executed. However, because the replay of API calls is a complex operation, 

there is a concern about versatility. Therefore, the proposed method simply ignores the order of the 

API calls and network accesses and their duplication. In fact, in the experiments, it is confirmed 

that the false positive rate increased when the order of the API calls and network accesses are not 

ignored. The name of the file and directory that is created in the temporary folder (C:¥Document 

and Settings¥{user name}¥Local Settings¥Temp¥) is also ignored. 

 

Finally, the lists obtained from each execution are compared, and if they are an exact match or 

there is a relation of inclusion, the sample is determined as benign software. Otherwise, it is 

determined as malicious software. 

 

 

6.4 Evaluation 
Experiments were conducted to evaluate the proposed method using 5,697 malware samples and 

819 benign software samples. First, Section 6.4.1 explains the samples. Section 6.4.2 then covers 

the malware dynamic analysis system used in the experiments. Section 6.4.3 explains the results. 

 

6.4.1 Malware Samples and Benign Software 

Samples 

The experiments used 5,697 malware samples captured in the wild by using honeypots, client 

honeypots, etc. Table 6.2 is a list of the top 20 malware names of the samples. A total of 448 names 

of the samples were obtained from Symantec, and 881 from McAfee. Table 6.2 summarizes the 

samples into the same families. 

Also used were 819 benign software samples collected from a Windows 7 host, Windows XP 

host, and free-software download site [99]. In the free-software download site, some software is 

provided as an installer, and in such cases the installer was used for evaluation. Note that each 
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sample is imported to the analysis system in the form of a single file and no other related files were 

imported to the analysis system even if they existed. 

 

Table 6.2  Top 20 Names of Malware Samples 

(a) Symantec    (b) McAfee 

    

 

6.4.2 Malware Sandbox Analysis System 

The experiments use the malware dynamic analysis system called the Micro analysis System [12] 

developed at Japan’s National Institute of Information and Communications Technology (NICT). 

The behaviors regarded as possibly randomized are usually observed at an early stage of infection. 

A previous study [100] showed that execution for 60 seconds is sufficient for observing such 

behaviors; so this experiment executed each sample for 60 seconds in the execution environment 

(victim host) with Windows XP SP2 and collected the API call sequence and the traffic log. 

The feature of the Micro analysis System is that it executes a sample on a real machine, and it 

is not disturbed by anti-analysis malware with emulator detection and virtual machine detection 

capabilities. The system is also isolated from the real Internet and only connected to the Internet 

emulator, which provides various network services to the victim host. Using the Internet emulator 

Malware Name # of samples

W32.Virut family 2036
W32.Spybot.Worm 656
W32.Korgo family 508

W32.Rahack family 301
W32.Pinfi 269

Backdoor family 254
W32.Sality family 252

W32.IRCBot 242
W32.Gobot.A 160

Hacktool family 148
Suspicious.IRCBot 67
Infostealer family 50

W32.Bobax!dr 50
Trojan Horse 40

W32.SillyFDC family 34
W32.Pilleuz family 32

Packed.Generic family 29
W32.Sasser family 29
Trojan.Gen family 24

W32.Linkbot family 21
Others 495

Malware Name # of samples

w32/virut family 2293
w32/sdbot.worm family 447

artemis! family 391
w32/rahack 307

w32/pate family 297
w32/korgo.worm family 291

backdoor family 232
w32/sality family 225
exploit-mydoom 152

generic.dx family 137
generic pws family 99
w32/bobax family 98

generic dropper family 65
downloader family 50

generic backdoor family 49
generic malware family 28

w32/gael.worm.a 24
w32/rimecud family 23
w32/ircbot family 21
fakealert family 17

Others 451
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for the proposed method is suitable since it allows a more stable and controlled network 

environment to be provided for precise behavior comparison. 

 

6.4.3 Results 

6.4.3.1 True Positive and False Positive 

Table 6.3 shows the results of the experiment with the malware samples. Note that in Table 6.3 and 

Table 6.4, the All row indicates the result of the proposed method using all API parameters in Table 

6.1 and all hostnames (or IP addresses). The Registry row indicates the result of the proposed 

method using the API parameters related to registry activity (i.e., RegSetValueEx and RegSetValue), 

the File row shows the result with the API parameters related to file activity (i.e., CreateFile, 

LZOpenFile, lcreat, CreateDirectoryEx, CreateDirectory, CopyFileEx, CopyFile, LZCopy, 

MoveFileEx, and MoveFile), and the Network row shows the result with hostnames (or IP 

addresses). 

 

Table 6.3  Experiment with Malware Samples 

 

 

Table 6.4  Experiment with Benign Software Samples 

 

 

As shown in the All row, the proposed method detected 3,962 of the 5,697 malware samples 

(true positive rate = 69.55%). In other words, in the experiment about two-thirds of all malware 

changed its runtime behaviors in each execution. This malware has 220 malware names from 

Symantec and 359 from McAfee. Since the detected samples cover various types of malware such 

as worms, spyware, adware, Trojan horses, and bots, it is shown that randomized behavior focused 

True Positive False Negative TP Rate

 All 3864 1833 67.83

 Registry 478 5219 8.39
 File 3799 1898 66.68
 Network 2018 3679 35.42

False Positive True Negative FP Rate

 All 13 806 1.59

 Registry 0 819 0.00
 File 12 807 1.47
 Network 1 818 0.12
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on here is a common characteristic that a great deal of malware shares. 

More than 66% of the malware samples were detected as having randomized file activity. 

Table 6.5 shows the file extensions of the files the samples created. In the malware samples that 

exhibited randomized behavior in file activity, 96% (3,642) were detected through the name of the 

created executable files. Since they actually copy themselves on a file system with a name that is 

generated in each execution, the proposed method can detect them with a high level of accuracy. 

Some samples also used a benign-looking file name such as firewall.exe, iexplore.exe, or logon.exe. 

Since these samples seem to contain a list of file names from which one was randomly selected, the 

created file name was different in each execution, and the proposed method can highly accurate at 

detecting them. Among the samples that were detected with randomized file activity, 90% (3,419) 

also created a copy of themselves in the directory (c:¥windows¥system32¥), and some created a 

copy of themselves in other directories (c:¥windows¥, c:¥documents, settings¥user¥local 

settings¥application data¥, etc.). Some created a batch file to execute the copied file and delete the 

original file, and the method can also detect the batch files whose names were randomly 

determined. 

 

Table 6.5  File Extensions of Detected Files Named Randomly by Malware Samples 

 

File Extension # of samples

exe 3643

nothing 46
bat 38
ini 35

com 8
dll 6

tmp 4
sys 4
dat 3
zip 1
vir 1
txt 1
rdf 1
log 1
jtp 1
job 1
fon 1
exs 1
exm 1
exk 1
bmp 1
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About 56% of malware samples were detected through random network behavior. Among 

them, 67% (2,140 samples) were detected by their random access toward a private network without 

DNS name resolution. Almost all of them accessed 445/TCP and these seem to have conducted 

network scanning for propagating infection within a private network. Since the target IP addresses 

are randomly selected upon each execution, the proposed method can detect with a high level of 

accuracy. Eighteen percent (579 samples) were detected through their random access to global IP 

addresses without DNS name resolution. Most accessed 445/TCP and these seem to have 

conducted network scanning for propagating infection. Some of them also accessed many hosts by 

using a high port number and these seem to have conduct P2P communication for receiving a C&C 

message. Fifteen percent (472 samples) were detected through their random DNS access. Almost 

all these communications are a name resolution for connecting a C&C server and some 

communication seems to be for sending spam or confirming the connectivity. 

On the other hand, only about 8% were detected through randomized registry activity. 

Table 6.4 shows the results of the experiment with benign software samples. As shown in the 

All row, 13 of 819 benign software samples were falsely detected as malware (false positive rate = 

1.59%). Most of these were detected by using the API parameters related to file activity. These 

software samples created, for instance, an RSA key container and a customized temporary file 

outside the default temporary folder, which caused the false detection. 

 

6.4.3.2 Execution Time 

Figure 6.2 shows the cumulative percentage of detected malware with respect to its execution time. 

The x-axis shows the execution time when the detected behavior was observed. The y-axis shows 

the cumulative percentage. Almost all detected malware showed the randomized behavior within 10 

seconds. This result shows that it is enough to execute each sample for 60 seconds for effective 

detection. 
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Figure 6.2  Cumulative Percentage of Detected Malware with Respect to Their Execution 

Time 

 

6.4.3.3 Increase in the Number of Executions 

Table 6.6 and Table 6.7 respectively show the result of transition of true positive rate and false 

positive rate caused by increasing the number of executions. In three-time executions and four-time 

executions, lists are compared in all possible pairs and a sample is determined as malware if the 

lists are different in even one pair. As shown in Table 6.6, the true positive rates (TP_All, 

TP_Registry, TP_File, and TP_Network) improved slightly as the number of executions increased. 

On the other hand, the false positive rates (FP_All and FP_File) deteriorated as the number of 

executions increased from two to three times. 

Consequently, execution of a sample twice seems suitable for the proposed method because 

the true positive rate increased little even if the number of executions increases to more than two. 

 

Table 6.6  Transition of TP Rate 

 

Twice Three Times Four Times

 TP_All 69.55 70.65 71.27

 TP_Registry 8.39 9.67 10.22
 TP_File 66.68 67.42 67.77
 TP_Network 56.01 58.03 58.57
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Table 6.7  Transition of FP Rate 

 

 

6.4.3.4 Combination with Antivirus Software 

In the above experiments, the proposed method can detect about 70% of malware samples. This 

true positive rate is not sufficient for it to be used alone. Therefore, it seems that using the method 

in combination with existing methods is a good way of improving detection capability. Therefore, 

this section discusses combination with antivirus software in a situation using in-cloud detection 

such as CloudAV. 

File scan reports of about 5,697 malware samples were searched by sending queries to 

virustotal, and Table 6.8 shows the result of the search. Note that since searching was conducted 

not by sending sample files but sending hash values of sample files, the scan reports on malware 

samples that have never previously been submitted to the virustotal were not able to be obtained 

and the scan reports are not up to date. In Table 6.8, each row indicates a scan result when using an 

antivirus software engine. In addition, the Detected column indicates the number of malware 

samples that were detected by the antivirus software, the Not Detected column indicates those not 

detected, and the No Result column indicates the number of malware samples that we were not able 

to obtain the scan report about it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Twice Three Times Four Times

 FP_All 1.59 1.95 1.95

 FP_Registry 0.00 0.00 0.00
 FP_File 1.47 1.83 1.83
 FP_Network 0.12 0.12 0.12
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Table 6.8  Scan Results of virustotal 

 

 

First, a situation was assumed that uses the proposed method with one antivirus software 

engine and confirmation was made on whether the proposed method detects malware samples that 

were not detected by the antivirus software engines. Figure 6.3 shows that the rates of detection by 

the proposed method in the samples of Not Detected. The x-axis shows each antivirus software 

engine, and the y-axis shows the rate of detection. As shown in Figure 6.3, the proposed method 

was able to detect 22% to 74% (average ≈ 50%) malware samples that were not able to be detected 

by the antivirus software engines. 

The No Result samples are probably recent malware since they have never been submitted to 

virustotal in the past, and they should be used for evaluation of the proposed method. However, 

because of the policy of malware sample management, only the hash values of the samples, not the 

actual samples themselves, can be sent to virustotal in order to obtain the updated scan reports. 

Consequently, we were not able to confirm whether the samples are detected by those antivirus 

software engines or not. Therefore, we conducted offline scan of the No Result samples using the 

available antivirus software. There are 221 samples that the updated antivirus software was not able 

to be detected, and 118 of them were able to be detected by the proposed method. The result shows 

that the proposed method can improve the accuracy of malware detection when utilized in 

No. Detected Not Detected No Result

1 4644 205 848

2 4563 284 850
3 4527 327 843
4 4453 398 846
5 4449 389 859
6 4446 377 874
7 4407 405 885
8 4394 451 852
9 4384 470 843

10 4380 358 959
11 4303 527 867
12 4282 549 866
13 4234 421 1042
14 4221 631 845
15 4119 103 1475
16 3974 881 842
17 3954 231 1512
18 3866 902 929
19 2905 510 2282
20 2806 705 2186
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combination with antivirus software. 

 

Figure 6.3  Detection Rates by Proposed Method Not Detected Samples 

 

 

6.5 Discussion 
 

6.5.1 Comparison with Other Detection Methods 

Table 6.9 shows a comparison with related works. One related work [6] was omitted from the table 

since it is not a method for distinguishing malware from benign software but for distinguishing 

malware that changes its behaviors in accordance with the execution environment from other 

malware. 

The advantage of the proposed method is that it does not need any training phases for creating 

signatures. Two related works [95] [96] need training phases and have a risk of their detection rate 

being strongly influenced by the quality of training datasets. These learning-based methods also 

usually need relearning and updating of signatures. Though it is difficult to make a fair comparison 

between the detection rates because of the differences of malware sample sets, the method was 

evaluated by using many more malware samples than other related works and successfully detected 

about 70% of them. The disadvantage of the proposed method is that because it conducts dynamic 
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analysis on an executable file multiple times, it is more costly to operate at the time of detection 

than the related works. However, conducting dynamic analysis in parallel and using the whitelist of 

benign software can reduce the operation cost. 

 

Table 6.9  Comparison with Other Detection Methods  

 

 

 

6.5.2 Application 

The proposed detection method is slow since it requires multiple executions of an executable file, 

so it is not suitable for real-time detection at an end host, such as antivirus software. Therefore the 

proposed method seems suitable for in-cloud detection. 

For example, use of public malware dynamic analysis systems that receive online submissions 

of possibly malicious files or URLs from an arbitrary user, analyze their behavior by executing or 

visiting them via a sandbox, and send analysis reports back to the user, have grown increasingly 

popular [2] [18] [27] [32]. In these systems, the proposed method can be utilized for determination 

of whether or not a sample is malicious. 

Another example is Oberheide et al. [98], who proposed an in-cloud antivirus system called 

CloudAV, which contains a lightweight, cross-platform host agent and a network service with 10 

antivirus engines and two behavioral detection engines. Instead of running complex analysis 

software on all end software, they suggest that each end host run a lightweight process to detect 

new files, send them to a network service for analysis, and then permit access or quarantine them 

based on a report returned by the network service. In such a system, the proposed method can also 

be utilized as a behavioral detection engine. A similar system was proposed in [14]. That system’s 

goal is to automatically generate the removal tool that removes/repairs files and registries that 

malware created/modified. In generating a removal tool it is extremely helpful to figure out 

malware evasive behaviors using the proposed method. 

Proposed method Kolbitch [95] Yoshioka [96] Sakai [97] Matsuki [68]

Target
Characteristics

behavioral differences
between multiple

executions

system call
graph

responses from
malware-infected hosts

repetitiveness
of intrusion

killing processes of
security programs

Application
host-based
detection

host-based
detection

network-based
detection

host-based
detection

host-based
detection

Detection Rate
3963 / 5697

samples
168 / 263
samples

121 / 434
samples

107 / 149
samples

19 / 3385
species

False Positive Rate 13 / 806 samples 0 / 7 samples 0 / 33 services 0 / 15 samples -

Training Phase not necessary necessary necessary not necessary not necessary

Operation Cost high low low medium medium
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6.5.3 Temporary File 

The experiments ignore the name of the file and directory created in the temporary folder 

(C:¥Document and Settings¥{user name}¥Local Settings¥Temp¥) because a great deal of benign 

software creates a temporary file in a temporary folder. 

Using the name of the file and directory created in the temporary folder also increases the false 

positive result rate to about 17%. Malware behavior that creates a file in a temporary folder cannot 

be detected if the temporary file is ignored, but it seems rare for malware to create an important file 

such as a copy of itself in a temporary folder since a file in a temporary folder is usually deleted at 

the time of exiting the program and the Windows OS disk cleanup tool also deletes such files. 
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Chapter 7  
 
Conclusion 

 

7.1 Conclusion 
Recently, malware has played a critical role as the infrastructure of cyber-attacks. With its recent 

explosive increase, it is becoming nearly impossible to manually analyze all malware using reverse 

engineering techniques. Malware sandbox analysis has been studied widely for tackling this 

problem. However, malware authors have been embedding new functions for evading such analysis. 

For example, malware such as bots do not work unless they meet conditions for activation, and it is 

difficult to analyze them sufficiently using traditional sandbox analysis. Another example is 

malware that changes its runtime behaviors in each execution to evade malware analysis and 

detection. In this thesis, we researched countermeasures to such malware with sandbox-evasive 

behaviors. 

In Chapter 3, we described techniques performed by malware and malware authors for 

evading analysis and detection, and categorized evasion techniques against sandbox analysis into 

two approaches: a technique to make comprehension of malware behaviors more difficult and a 

technique to detect a sandbox. 

Against the former techniques, in Chapter 4, we proposed a novel sandbox analysis method 

that realizes better observability and efficiency against malware that possesses techniques to make 

it harder to recognize. The method focuses on a function of malware that changes its behaviors in 

accordance with the behaviors of remote servers with which it interacts, such as C&C and malware 

download servers, and analyzes the server behaviors and corresponding malware behaviors. In the 

proposed method, first, a malware sample is executed in the sandbox that is only connected to the 

emulated Internet. Then the traffic observed in the sandbox is inspected and high-risk 
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communications are filtered out. The dummy client, an automatically generated script to interact 

with remote servers instead of the actual sample, then uses the rest of the traffic data. The dummy 

client is then continually executed in environments with a real Internet connection and effectively 

collects the responses from remote servers. The collected server responses are then fed back to the 

Internet emulator in the sandbox so that the next time the sample is analyzed a dummy server in the 

Internet emulator can respond in accordance with the responses. The proposed method was 

evaluated with samples captured in the wild and was able to observe a greater variety in their 

behaviors, such as receiving C&C commands, downloading new executables, and performing port 

scans. 

In Chapter 5, we clarified targeted sandbox-detection vulnerability in public Malware Sandbox 

Analysis Systems (public MSASs) for pursuing better observability. A previous study pointed out 

the vulnerability of public MSASs against decoy injection attacks, in which an attacker detects the 

sandbox based on its IP address disclosed by submitting a decoy sample. However, the possibility 

of detection using sandbox information other than the IP address was not discussed in detail. 

Therefore, we defined properties of sandbox information for decoy injection attack: stability, 

uniqueness, and stealthiness of collection. Then, we evaluated 16 different kinds of characteristic 

information of the sandbox for its detection. Experiments with real public MSASs in operation 

resultantly found that characteristic information such as the Windows OS product key, MAC 

address, and Windows OS install date can be utilized for sandbox detection. Moreover, besides 

network-based disclosure, we showed that such characteristic information of the sandbox can be 

disclosed via an analysis report provided to the user, which means that the decoy injection attack 

can be performed against a sandbox isolated from the real Internet. Thus, this study confirmed 

broad applicability of the decoy injection attack as well as the need for comprehensive 

countermeasures. We also discussed countermeasures against decoy injection attacks. 

We also indicated a direction on how to develop a countermeasure technique against evasive 

malware without an attacker evading it. Differences between malware and benign software that 

come from the malware’s mechanism of evading analysis/detection should be leveraged; that is, 

when proposing a new analysis method, the means of detecting malware that evades the analysis 

method should be considered in advance. Consequently, the attackers are given fewer choices. As 

an example of the concept, in Chapter 6, we proposed a novel behavior-based malware-detection 

method using sandbox-evasive behaviors. Recently, malware authors have been embedding 

functions for countermeasure against malware analysis and detection. Accordingly, modern 

malware often changes its runtime behaviors in each execution to avert malware analysis and 

detection. The proposed method focuses attention on such characteristics. The method conducts 

dynamic analysis on an executable file multiple times in the same sandbox environment so as to 

obtain multiple logs of API call and traffic, and then compares them to find the difference between 
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the multiple executions. If attackers try to evade the proposed detection method, they have to use 

deterministic malware, and then (especially dynamic) analysis is made easier. Experiments with 

malware samples captured in the wild and benign software samples showed effectiveness of the 

method. 

 

 

7.2 Future Work 
There are many studies on the topics of malware analysis and detection. Unfortunately, malware 

authors have now developed evasion techniques against most existing analysis/detection methods. 

Future work, as indicated in this dissertation, should continue developing countermeasures that 

leverage differences between malware and benign software that come from malware’s methods of 

evading analysis/detection in order to give attackers fewer choices and make creating malware 

more costly. Furthermore, since cyber-attacks have become more complicated and sophisticated 

with wide variety of means such as DBD attack and social engineering, information gained from 

sandbox analysis is not sufficient for grasping the actual state of cyber-attacks. To comprehend 

overall cyber-attacks, we should conduct multimodal analysis based on observations from diverse 

sensors such as sandbox analysis, various honeypots, and network monitoring. 
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