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Abstract

Recently, the research on Artificial Intelligence has been studied in various fields such as
the autonomous agent control, Job Shop Schedule, data mining, forecasting for time series,
and so on. The research has been focused mainly on complex problem that could not be
simply solved by mathematical algorithms. The common objective is to get an optimal
solution in its search space. However, in an enormous search space, it is hard to get a global
optimization, or to get an optimization quickly. In this thesis, we focus on how to obtain an
optimal solution efficiently for two different complex problems, respectively, and our effort
is put mainly on Classifier System (CS). The solution is originated from Genetic Algorithm
(GA) and Reinforcement Learning (RL), and suitable especially for complex environment.

First, we discuss the autonomous agent control. We consider the benchmark problem of
Grid-Maze with Non-Markov property, and propose an adaptive XCSM system(AXCSM) on
it. As related work, XCS (eXtended Classifier System) is an effective approach for Markov
environment, but not for Non-Markov ones. By introducing a bit-register memory to XCS
to record agent’s experience, XCSM( XCS with Memory ) has been verified to be suitable
for Non-Markov environment. The classifier in XCSM is expanded with constant length of
memory to that of XCS. Combining the current perception with its past experience, the
agent can get optimal action. However, with the memory becoming longer, the search space
will expand rapidly, and the performance of XCSM decreases quickly. Therefore, AXCSM is
proposed by involving a hierarchical structure to adapt to the variable length of memory. In
the first hierarchy, we learn a suitable memory length for a given perception by general XCS.
The optimal action is then achieved in the second hierarchy by XCSM. The experimental
results show that the adaptive XCSM converges the same to optimal policy as XCSM, but
within shortened search space.

Next, we focus on another complex problem, the stock market forecasting. While analyzing

a real stock market, we concentrate in general on qualitative changes first, and then on tracing
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the quantitative changes. Therefore, it is necessary to give an indication of the changing
direction, upwards or downwards, and then get the changed value as precise as possible. In
order to forecast the real stock market, we propose a Hierarchical XCS (HXCS) model, which
is composed of multiple local models. Each local model represents an individual agent. In
the lower levels of the hierarchy, agents are trained by the XCS model to learn and forecast.
These agents are only appropriate for some of the changing patterns in the time series data,
and they fail to describe other changing patterns. For the upper levels of the hierarchy, RL
is used to determine how to shift among those local models for a changing trend. With the
hierarchical learning structure, multiple agents work alternatively and the limitation of a
single agent can be overcome. To evaluate the prediction performance, we mainly adopt the
prediction accuracy of changing tendency of the next time (up or down), which is measured by
changing direction hit-rate. Besides the tendency prediction, we introduce a variable reward
strategy on different prediction accuracy, to provide a value prediction. Experiments have
been performed on several well-known stock indexes and stock markets. The results show
that our proposal can -achieve a higher performance when predicting the changing trend in
the next day, and give a value predication.

In conclusion, two approaches are presented in this thesis. Each of them corresponds to a
different kind of problems. The experiments show that each of them works well in dealing

with the corresponding problems.
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Chapter 1

Introduction

1.1 Background

To be truly helpful to humans, robots must be intelligent and able to function autonomously.
To be considered intelligent, a robot should control in a complex and noisy environment with-
out human aid. However, most of the robots lack both autonomy and intelligence, and they
are either directly controlled by humans or preprogrammed. Therefore, the autonomous
agent control has become an active area of research. Based on Genetic Programming (GP),
the research on game playing [1], object movement [2], and obstacle avoidance navigation [3]
has been pursued on Khepera, a mobile robot. For a simulation environment, [4, 5, 6]
has been proposed based on Neural Network, GP and Reinforcement Learning respectively.
The learning is pursued online by recognizing the environment dynamically, and acquiring
the latest environment information. Then the objective centers on recognizing environment
with dynamic method, and the bottle-neck lies on how to describe the environment with a
knowledge-base as compacted as possible. For a simple problem, it is easy to realize; however,
with the problem complexity increasing, the knowledge base expands rapidly. This will result
in the performance of algorithm decreasing obviously. Despite the enormous approaches have
been proposed, an ideal method on the autonomous agent control is also expected.

On another aspect, as computers, sensors and information distribution channels prolifer-
ate, there is an increasing amount of data created. However, the data is not much valuable
if we just gather the signals without recognizing or analyzing them in advance. This is why
the classification and prediction step in, extracting useful information from raw data. In

this thesis, we mainly focus on prediction of time series. Examples of time series include
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financial data series (stocks, indices, rates, etc.), physically observed data series (volcano
eruption, weather, etc.), and mathematical data series (Fibonacci sequence, integrals of dif-
ferential equations, etc.). The phrase time series refers to any data series, whether the data
is dependent on a certain time increment or not.

Time series forecasting has several important applications. One is to prevent undesirable
events or lessen the danger by forecasting it, as in[7]. It uses a method of SVM (Support
Vector Machine) to forecast the flow of Mississippi River. The other is to benefit those
people primarily in the financial markets from time series forecasting. Now many approaches
and products are available for financial forecasting. In[8, 9], they use approach of SOM
(Self-Organizing Map), NN (Neural Network), kNN (k-Nearest Neighbor) to predict the next
varying trend to make maximum profit.

In this thesis, we focus on financial data forecasting as well. Furthermore, the same ap-
proach is applicable to other time series, directly or indirectly by changing the parameter
setting.

In the two application fields mentioned above, the central technique is to construct a
solution population to adapt to the problem. Thus, it is important to know how to identify
and exploit a problem domain . As more difficult problems are addressed, the size of this
population grows quickly and how to take advantage of the available knowledge becomes
important. LCS (Learning Classifier System) is a machine learning technique which combines
reinforcement learning, evolutionary computing and other heuristics to produce adaptive
systems‘. Recently, LCS has been widely expanded from binary value[10, 11, 12] to real
value environment [13], and has been applied in various fields such as data mining [14], stock
market analysis [15, 16], and so on. The advantage of Classifier System has been approved
greatly, especially for the complex problem. As for the Classifier System, we will introduce
its principle and working strategy in Chapter 2.

In summary, we will discuss how to get the regularities on expressing a given problem, and
define a suitable rule expression for the search space to get higher search efficiency in this
thesis. Apparently, any approach provides a lot of flexibility when applied to a new problem.
While accompanied with this flexibility, it is sometimes difficult to encode all the parameters

perfectly, but just suits for one or a little special kinds of environment.




1.2 Research Procedure

In this thesis, first of all, we center on autonomous agent control. For simplification, we
consider the benchmark problem of Grid-Maze with Non-Markov property, and propose an
adaptive XCSM system (AXCSM) on it. As related work, XCS is an effective approach for
Markov Environment, but not for Non-Markov ones. By introducing a bit-register memory
to XCS to record agent’s experience, XCSM (XCS with Memory) has been verified to be
suitable for Non-Markov environment. The classifier in XCSM is expanded with constant
length of memory to that of XCS. Combining the current perception with its past experience,
the agent can get optimal action. However, with the memory becoming longer, the search
space will expand urgently, and the performance of XCSM decreases as well. Therefore,
AXCSM is proposed by involving a hierarchical structure to adapt to the variable length of
memory. In the first hierarchy, we learn a suitable memory length for a given perception with
general XCS. The optimal action is then achieved in the second hierarchy by XCSM. The
experimental results show that the adaptive XCSM converges the same to optimal policy as
XCSM, but within shortened search space.

Next, we focus on another complex problem, the stock market forecasting problem. When
analyzing a real stock market, we concentrate in general on qualitative changes first, and
then on tracing the quantitative changes. Therefore, it is necessary to give an indication of
the changing direction, upward or downward, and then get the changed value as precise as
possible.

In order to forecast the real stock market, we propose a Hierarchical XCS (HXCS) model,
which is composed of multiple local models. Each local model represents an individual agent.
In the lower levels of the hierarchy, agents are trained by the XCS model to learn and
forecast. These agents are only appropriate for some of the changing patterns in the time
series data, and they fail to describe other changing patterns. With the hierarchical learning
structure, multiple agents work alternatively and the limitation of a single agent can be
overcome. To evaluate the prediction performance, we mainly adopt the prediction accuracy
of changing tendency of the next time (up or down), which is measured by changing direction
hit-rate. Besides the tendency prediction, we introduce a variable reward strategy on different
prediction accuracy, to provide a value prediction. Experiments have been performed on

several well-known stock indexes and stock markets. The results show that our proposal can




achieve a higher performance when predicting the changing trend in the next day, and give

a value predication.

1.3 Organization of the Thesis

This thesis is organized as follows: in Chapter 2, we reviewed the related work, mainly
focused on Classifier System. In this chapter, the principle of Classifier System and its
improvement version LCS, XCS, has been illustrated in detail. Its application and prospect
in future is also outlined. Based on this chapter, we concluded that Classifier System is
effective on learning for complex problem, and its prospect is valuable as well. In Chapter
3, as a benchmark of autonomous agent control, Grid-Maze problem has been involved,
especially for Non-Markov problem. For this kind of problem, we introduced our proposal
of adaptive XCSM for recognizing the Non-Markov problem with higher performance. In
Chapter 4, we focused on a typical prediction problem in real world, stock market forecasting
problem. A Hierarchical XCS has been proposed, and it accuracy is also verified. The last

chapter, Chapter 5 is the conclusion of this thesis.




Chapter 2

Related Work

2.1 LCS; Learning Classifier System

Since the proposal of GA from 1970’s, its improvement and application have been well
known. As one instance, applying GA to the domain of Machine Learning, a predominant
work called Classifier System is spread by involving production rules.

According to the two related but distinct approaches in GA, the LCS is also segmented
into the Michigan approach [17] and Pittsburgh approach [18]. In the former, LCS contains
a single population with limited size of classifiers, and each classifier is a production rule.
In the later, it maintains a number of distinct populations, and each population is a single
genotype. ‘The Pittsburgh approach is more accordant with general GA; however, it is often
computationally expensive and will be problematic when confronted with large populations.
Thus, in this thesis, we involve the Michigan approach.

For a LCS, it composes of Production System, Learning Algorithm and Induction Al-
gorithm generally. In this section, we first introduce the Production System of traditional
LCS[17, 19, 20] by simulating its working process step by step; then the Induction Algorithm

and Learning Algorithm will be explained respectively.

2.1.1 Production System

The LCS works as the following schedule in iteration.
Step1: Receive an input from the environment and translate it into a message.

Generally, the production rule is divided into two parts: a condition and an action, which




represents a simple stimulus-response system. While the classifier in LCS consists of one or
two conditions, the first one represents perception of the environment, and the second one
represents values from other classifiers. This enables one classifier to be triggered by other
classifiers and thereby produces a sequence of classifier from a single input. If two conditions
are provided by the classifier, the classifier can be created with “internal message”. The
action may use an additional tag bit to identify whether the action is to be performed on the
environment or is to be transformed into the “internal message”. Using internal messages,
it is possible to establish a sequence of actions for complex determination. The condition
and action are strings of characters from the ternary alphabet {0,1,#}. The ‘#’ acts as a
wildcard allowing generalization such that the classifier condition ‘1#1’ matches both the
input ‘111’ and the input ‘101’. The symbol also allows feature pass-through in the action
such that, in responding to the input ‘101°, the rule “IF 1#1 THEN 0#0” would produce
the action ‘000°.

Step2: Match the message against each classifier.

For any classifier, if its condition matches the current input, or any others on the message
list, it becomes a member of the MatchSet. If no classifier is matched, create a new classifier
to match the input and insert it into population, through the Induction Learning. The detail
will be introduced at Chap. 2.1.3.

Stepd: From the MatchSet, an suitable action is identified through a bidding mechanism
and is pursued to environment.

Step4: If environment feedbacks, the value is assigned as reward, and allocated to those
classifiers that provide the action. Otherwise, classifiers that provide the action in the current
iteration devote payment as payoff, and pay it to those ones in previous iteration. As for the
update detail, refer the Learning Algorithm in Sect. 2.1.2.

Step5: Periodic delete classifiers with poor performance, and create new classifier with GA,

which obeys the operation of Induction Algorithm.

2.1.2 Learning Algorithm

The environment that a LCS learns within can be divided into two classes. The first one
is composed of those environments where an environmental feedback is returned on each
stimulus-response step. These will be termed single-step environments. The second one con-

tains those environments where the agent is only given a reward after a number of stimulus-
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response iteration, where it successes. These will be termed multi-step environments. The
learning procedures for these two kinds of environments are not the exactly same, but with
a slight difference. We will explain them respectively now.

For both single-step and multi-step environment, when a reward is received from envi-
ronment, it will be assigned to the classifiers with the current optimal action, based on a
bidding mechanism [21]. Whilst, in multi-step environment, before receiving a reward, at
each iteration, all classifiers that have been selected to propose an output message will de-
vote a proportion of their strength as bidding as Eq.(2-1). Then the bidding is paid back
to the classifiers that have activated them in the previous iteration. All the classifiers at the
previous iteration and at the present iteration have been identified. This enables the strength
passed back as payoff to those classifiers activated indirectly, avoiding parasite classifiers from
gaining undeserved reward. We call this “Bucket Brigade” algorithm, each classifier is much

like the middleman in a commercial chain.
bidding = B  strength * speci ficity (2-1)

In addition to the reward and payoff values, two kinds of “Tax” are imposed on the popu-
lation. The “Life Tax” is to remove a fixed proportion of the current strength of all classifiers
as Eq.(2-2). The “Life Tax” is introduced so that classifiers which do not match within any

environmental niche have their strength decreased until they come under deletion pressure.
strength = strength * (1 — lifeTax) (2-2)

A “Bid Tax” is applied to classifiers in MatchSet and is to remove a fixed proportion of
strength as Eq.(2-3). The “Bid Tax” increased the rate of strength reduction of classifiers

that propose actions, but produce poor payoff or reward.

strength = strength x (1 — BidT ax) (2-3)

2.1.3 Induction Algorithm

The Learning Algorithm is used to identify the usefulness of one classifier. But it could not
replace poor classifiers with better classifiers or improve upon their usefulness. To realize this,
we use the mechanism of Induction Algorithm. Firstly, the GA was conceived as the primary

rule induction algorithm, by creating a new offspring and deleting a poor one. Beside GA, an
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induction operator has been proposed. When no classifier matches to the current situation, a
new classifier will be created with the appropriate condition and an often randomly created
action.

Apart from this, if the current classifiers have a history of poor performance, a new classifier

from the current classifiers is created and inserted into the population to replace the poor

one.
2.2 XCS
2.2.1 ZCS

Based on the traditional LCS, a more simplified LCS [22] and then ZCS [23] (Zeroth level
Classifier System) have been proposed by Wilson to increase the understandability and per-
formance. ZCS is composed of a simple single condition, a single discrete action, a single
strength measure, and reliance upon an implicit bucket-brigade. It uses ActionSet rather
than individual rules. All members of MatchSet that have the same action as the selected
rules form the ActionSet. Then Learning Algorithm is treated on the ActionSet.

The result of ZCS has been shown that it is capable of deriving optimal performance,
at least in a number of well-known test problems. However, it appears to be particularly
sensitive to some of its parameters as well. Frankly, ZCS has been somewhat superseded by
Xcs.

Deriving form Wilson’s Animate [22] and ZCS [23], XCS [24] has been proposed. Here, we
overview the structure and operation of XCS briefly. The detail implementation has been

provided at [25].

2.2.2 Production System

The classifier in XCS is defined as:

classifierXCS :
¢ : Condition

a : Action




s : Strength

v : Value

n : Numerousity

Condition = (< 0> | <1>| <#>)"

Action=(<0>|<1>)"

Strength ::

p : Prediction

€ : Error
k : Accuracy
f : Fitness

Value ::

e : ActionSetEstimate

8

. Experience

g : GAlteration

Numerosity = Integer

In general LCS, the ‘Strength’ identifies payoff prediction of the classifier. Instead of
that, in XCS a series of parameters have been involved to measure it. First, the measure
‘Prediction’ has been introduced to describe the reward that the classifier system should
expect to receive, if the condition proposed by the classifier is matched and its action is
selected. A second measure ‘Accuracy’(k) is a calculated likelihood of the classifier obtaining
the reward identified by ‘Prediction’. It is derived from a third maintained value ‘Prediction
Error’(e), which is a proportion representing the absolute difference between the prediction
of the classifier and the reward or payoff received over a period of time. Finally, the measure

‘Fitness’ is derived from ‘Accuracy’ and is the accuracy of the classifier relative to that of other
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classifiers that propose the same action in which the classifier fires. Generally, Prediction is
used for action selection, and Fitness is used for selection in GA, with other values being
maintained to effect the calculation of Fitness. The most signification difference between
XCS and most other classifier systems is that rule fitness for the GA is not based on the
payoff prediction but on the accuracy of predictions in payoff.

In XCS, an additional parameter ‘Numerosity’ is introduced as a convenience factor. Be-
cause of the GA and covering operator in XCS, many duplicated classifiers will be created.
Because the classifiers in XCS is reward sharing method(all the classifiers in ActionSet will
receive same reward or payoff value), it is possible to remove these duplicate classifiers and
simply maintain a count of the number of duplicates. Then they represented by a single clas-
sifier instance within the population, with the parameter ‘Numerosity’. On the other hand,
besides the duplicated classifiers, subsumed classifiers also exist frequently in XCS. If con-
dition part of one classifier can be subsumed by another classifier‘s, and they own the same
actions, it is also benefit to remove the more specific classifier, but sum the ‘Numerosity’ to
the general one. Clearly, the overall population size must be calculated in terms of the sum
of the numerosity of all the classifiers, rather than the number of classifier instances. To sim-
plify, we define these duplicated classifiers with ‘Numerosity’ as ‘MacroClassifier’. Henceforth
all the references to ‘Classifier’ will refer to ‘MacroClassifier’ if a distinction is not needed.
Otherwise, the ‘MacroClassifier’ and ‘MicroClassifier’ will be used.

With this structure, a single trial of the XCS is started as an exploration or an exploitation
trial. The exploration/exploitation probability is generally set as 0.5.

Once the mode of operation has been decided, a new message is obtained from the en-
vironment. Then it is compared to all of the classifiers in the current population, and all
the matched classifiers are added to create MatchSet. If no matched classifier exists, a new
classifier lis created with the covering operator, shown in Sect. 2.2.4.

Based on these classifiers in MatchSet, for each possible action that may be performed,
PredictionArray is calculated as Eq.(2-4), as the fitness weighted average of the predictions of
classifiers. This means that the classifiers with higher fitness will contribute more to predict

that action.

YcemP* f
chGM f

And then, XCS chooses an action to perform. The selection method depends upon the

predictionArrayla] = (2-4)

exploration/exploitation strategy adopted. If exploration mode is adopted, XCS selects an
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action at random; otherwise, the action with the highest PredictionArray is selected. Then
the selected action is pursued to environment.

For those classifiers in MatchSet, if its action is the same as the assigned action, it is
identified to form ActionSet.

When a reward is received from environment, the classifier in ActionSet will update its
parameters based on Learning Algorithm, illustrated in Sect.2.2.3. Finally pursue Induction

Algorithm on ActionSet, described in Sect. 2.2.4.

2.2.3 Learning Algorithm

Described as above, classifiers within the ActionSet are credited in one-step or multi-step
environment. In these two kinds of environment, the classifiers in ActionSet of the current
iteration are credited with the reward whenever it is received from environment. While
in multi-step environments, the classifiers in previous iteration are credited with a payoff
amount, which is devoted by the classifiers in the current iteration. The update policy is the
same in both cases, apart from the ActionSet within which the update occurs and the source
of the update value, reward or payoff.

The updated parameters in classifier include Prediction, Error, Accuracy, and Fitness
values. In addition, other parameters, such as the ActionSetEstimate, Experience and the

GATrigger, are updated for Induction Algorithms in Sect. 2.2.4.

Single-Step Problems

For a given reward, the update for all classifiers in ActionSet is as follows. The update of

Prediction, Error, and fitness depends on the standard Widroff-Hoff delta rule as Eq.(2-5).
vi v+ B(V —1y) (2-5)

In detail, the prediction p is updated using the Widrow-Hoff delta rule with learning rate
B:(0<p<1):
p =p+ B(reward — p) (2-6)

The prediction error ¢ is updated with the formulary:

e =€+ B(jreward — p| —€) (2-7)
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The fitness update is slightly more complex. Initially, the prediction error is used to

calculate the accuracy k of each classifier as Eq.(2-8) when € > ¢, else k = 1.

— €0)\° ~
K= Q% ( . > (2-8)
Finally, the fitness are adjusted:
K*MN
— T - - 2#9
F=08 (sren ) 29)

The accuracy is computed directly from the prediction error e parameter, and fitness is
derived from the accuracy of all classifiers within the ActionSet and is therefore updated
using the Widroff-Hoff delta rule.

The “experience” z is maintained by each classifier, which maintains a count of the number
of times the classifier has occurred within an Action Set. The “ActionSetEstimate” e calcu-
lates the number of MicroClassifiers in all the ActionSet (n means the number of classifiers

in a MacroClassifier). The “GAlteration” g is set with the present timer.

r=z+1
e=Yn
cleA

Multi-Step Problems

For a multi-step problem:

1. If a reward value is obtained from environment, invoke the single-step algorithm for the
current ActionSet.

2. If this is not the first step of a trial, calculate the maximum prediction array in the
current ActionSet as payment P, discount it using parameter -y, and then, apply it to classifiers
in ActionSet of previous iteration.

3. Invoke the same algorithm as that of single-step algorithm, but replacing the reward
with the discounted payment P, and the ActionSet is set with that of previous iteration.

The use of the maximum prediction array as the payoff ensures that the route to the highest
rewarding state is selected.

More general classifiers will occur in ActionSet more often than specific classifiers. They

will therefore be given more opportunity to duplicate or breed than an equally accurate
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specific classifier. This mechanism will proliferate the general classifier, and drive out the
equally accurate but less general classifiers from the population gradually, by combining with
the deletion techniques used when new classifiers are introduced by the induction algorithm

Sect. 2.2.4.

2.2.4 Induction Algorithm

The Induction Algorithm provided in XCS consists of covering operator and GA.

Covering Operator

The covering operator is invoked whenever no classifiers exist within the population that
matches the input message. It creates a new classifier which condition is copied from the input
message, but replaces selected bits with wild-card with generality probability, and action is

set at random. Then set the initial parameter.

GA

The GA is triggered in explore trial. The classifiers involved in GA will be only those
within the ActionSet. This means that the GA does not explore actions using the crossover
operator, but rather explores conditions. Thus, the XCS is not seeking to create correct
responses, but a complete concise mapping of state action payoff with maximally general
accurate classifiers. The working schedule is as follows.

Stepl: GATrigger.

GA is triggered when the interval from last occurrence of GA is greater than a const
parameter 6. Here, we set 6 to 25. The interval is calculated by the distance between the
present timer and the averaged GAlteration of all classifiers in ActionSet.

Step2: Select Classifier with Roulette Wheel Policy.

Select two parents using Roulette Wheel Selection over the fitness values of the classifiers
within ActionSet. The parents are selected without removal so that the same classifier may
be chosen twice to allow the duplication of classifiers.

Step3. Crossover.

If the two parents differ, perform single-point crossover within the condition with the

crossover probability, otherwise copy the parents to the children.
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Step4. Perform mutation on both the condition and action.

Mutation within the condition operates at the level of the ternary digits. The ternary
digits to be changed are chosen using the mutation probability. The specification of action
mutation has been deliberately left as general.

Steps: Initialize child classifier.

If the child classifier is performed with crossover, set its initial prediction to the mean
of parental prediction; otherwise, copy from that of its parent. Set the prediction error
to one quarter of the population mean error, fitness to one tenth of the population mean
fitness, ActionSetEstimate to the population mean, numerosity to 1, and experience to zero
respectively.

Step6. Insert child into population.

For a new classifier, no matter it is created by coving operator or by GA, it must be inserted
into the population. To do this, another classifier may need to be deleted if the population
is already full.

Delete: Once a classifier is selected for deletion, the numerosity of the selected classifier
is decreased by one and if the numerosity has become to zero, the classifier is removed from
the population. Then it will create one free micro-classifier location within the population
for the new classifier.

Here we use Roulette Wheel Selection to select the deleted classifier based on ActionSetEs-
timate: Because the ActionSetEstimate reflects the number of micro classifiers occurring in
the ActionSet that a classifier occurs within, the larger ActionSet will be more likely to have
a classifier selected for deletion.

Insert: A new classifier may be a duplicate of an existing classifier, or it may already be
covered by a more general classifier that has already been evaluated as accurate. Then the
numerosity and ActionSetEstimate of the duplicate classifier is increased by one and the new
classifier is discarded.

Since more general classifiers will occur in more ActionSet, they will therefore be updated
more regularly and therefore have more breeding opportunities. Then, more accurate general

classifiers will increase, whilst less general accurate classifiers will gradually diminish.
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Figure 1: Woodsl.

2.3 Application and Recent Work

2.3.1 Demonstration of XCS

Generally, to demonstrate the performance of Classifier System, the Multiplexer [24] and
Grid-Maze were used as single-step problem and multi-step problem respectively. In this
section, we mainly focus on multi-step.

For simplification, we use Woodsl as the left part in Figs. 1 for test, which is one of the
usually used test environments to evaluate the Classifier System. The agent is placed on a
random free starting position and allowed to move in the eight directions. An attempt to
move into a position of Wall ‘B’ will result it remaining in the original position. An attempt
to move onto a position food ‘F’ will result a success with a reward value, and then start the
next episode.

The perception of agent consists of the encoded contents of its eight surrounding positions.
We enpode each grid position as: Wall ‘111°, Free ‘000’, Food ‘001’. Then the perception
is encoded in a 24-bits string. For example, if the agent is placed in the top left corner in
Woodsl, it will perceive the environment as “111,111,000,111,000,111,111,111”. Here, we set
its perception from North direction, and running in a clockwise direction. Action is encoded
using integer value. For the agent in this instance, its optimal action is “go east”, then we
set it as 2. The other parameters are set as in Table 1.

The performance of XCS is defined by number of steps taken to achieve a reward within
each trial. The measure of System Error and Population Size is kept as additional perfor-
mance. System Error is the absolute difference between the average Prediction value for the
chosen action and the actual payoff that the action results. Population Size is the number
of Classifiers within the population. The smaller the Population Size, the higher compacted
search space has been obtained. Here ten experimental results have been averaged.

Those trials that cause a step immediately to a food grid position will receive an immediate
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Table 1: Parameter Value.

paraName value

N(popSize) 800
6(GA experience) 25

X (crossover probability) 0.8
p(mutation probability) 0.01
B(learning rate) 0.2
y(discount rate) 0.71
€o(minimum error) 0.01
P, (initial prediction) 10.0
fi(initial fitness) 0.01
¢;(initial error) 0.0
P, (explortion/exploitation) 0.5
P, (# probability) 0.66

reward of 1000. While those that are two grid positions away will receive the discounted
maximum prediction of the directly rewarded classifiers, with a discount value~y. One further
step away will obtain a less discounted value.

The graph, shown in Figs.2, demonstrates that this version of XCS is able to solve the
Woodsl problem. The average number of steps to a reward from a random starting position
is 3, and the System Error is near to 0. The Population Size grew to approximately 350,
while the whole population size(micro-classifier) is 800. Apart from this, an analysis of the
population showed that the accurate classifiers had converged to stable payoff predictions of
1000, 710 (-y * 1000), and 504 (7 * 710), where there was no error, as predicted. The results
of the current implementation give a confidence that this implementation of XCS produces a
similar outcome as we have designed, and it is comparable with the previous LCS in multi-
step problem domains. It is therefore concluded that the XCS is a sufficient implementation

for further studies.
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Figure 2: Performance of XCS applied on Woodsl.

2.3.2 Recent Work about Classifier System

Since LCS was proposed in 1978, XCS was first proposed in 1995 and identified in its

present form in 1996, they have been widely expanded from binary value [10, 11, 12] to real

value environment [13], and applied in various fields, such as data mining [14], stock market

analysis [15, 16], and so on. This section surveys the major devotion on Classifier System,

and expands a list of areas of their work for further investigation.

1)

(2)

DataMining; Real-World Application of XCS
Besides the research on virtual-world problems, [26] describes an application of XCS

to a Data Mining task, based on Classifier System and XCS. Given a set of attributes

from a data set, XCS would be applied to learn the relationship among the plural

independent attributes, and analyze the changing regularity to that of one single
dependé,nt attribute. Using a well-known sample data set from the UCI Data set
Repository, this work showed that XCS was able to produce a better classification
performance. It also confirmed that XCS can converge in single-step problem not only

the Multiplexer.

On the other hand, LCS is also pursued on many real-world applications [27], divided

into three main sections: data mining, modeling and optimization, and control.

Extensions of XCS to Real Value Environment

In [28], Wilson modified XCS so that the condition consisted of a vector of intervals,
where each interval was represented by a pair of real number values. One represents
the central point and another represents the spread on either side of the central point.

In order to assess the ability of XCS for real value environment, he applied this vector
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to six-multiplexer test, and six real number intervals between 0.0 and 1.0 were
provided in the condition. The result showed that the performance close to 1.0, and
the classifiers in the population with the highest fitness, but with low numerousity for
each classifier. This is mainly because the real vector results a huge search space, and

it prevents precise classifier required for subsumption.

In [13], a detail analysis of the real value XCS has been pursued. The further
experiments showed that mixed binary/real number conditions are also able to find

and establish the optimal sub-populations.

(3) Applying Memory for Non-Markov Problem
In[29], a ZCS with bit memory has been proposed to complement the lack of a
message list. Their work demonstrated that ZCS was able to utilize the memory bits
to solve problems in Non-Markov environments, although the learning became
unstable when the number of bits was expanded. In[30], Lanzi utilized the idea of
memory bits on XCS (XCSM) to provide a solution to the “aliasing problem”. As for

the detail, we will introduce in Chapter 3.

2.3.3 Future Work

From these analysis and experiments, we concluded that the XCS is a satisfactory platform
for the further research, as a reliable robust Machine Learning architecture. And as we have
demonstrated, considerable progress has been achieved within a short time. Clearly there is
much more work to be done, and some further work is possible on the use of internal state,
or on hierarchical invocation of classifiers.

In addition, the RL community has gained considerable benefits, and similar benefits would
be seen for XCS investigations. Then a possible alternative avenue would be to apply RL
approaches to XCS.

It is clear that the real world provides many opportunities for research work, and it will

attract more workers to use the Classifier System.
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Chapter 3

Adaptive XCSM for Aliasing

Problems

3.1 Introduction

Due to the limitation of agent’s sensor, it maybe result in an agent failing to obtain
enough information to distinguish between two different situations, which appear identical
to the agent, but require two different actions to behave. Such an environment is said to be
Non-Markov and the agent is suffering from a perceptual aliasing problem [31], which disturbs
the agent’s learning capability seriously. To overcome this problem, generally, we endeavor
to expand agent’s sensation to convert the Non-Markov environment into a Markov one.

In[24], an improved classifier system, XCS has been introduced, which is based on the
accuracy of the classifier’s payoff prediction instead of the prediction itself. It has been shown
to reach optimal performance in Markov problem, but failure in Non-Markov problem.

Based on ZCS [23] and ZCS with a temporary memory [29], XCSM [30] has been proposed
by adding bit-register memory to XCS. For the pre-assigned fixed-length memory, there are
two flaws. One is how to define the fixed length. Generally, we set it by counting the aliasing
positions in a given environment. For a simple map, it is easy. But for a harder one, it is
not always so exactly to realize. The second problem is that, assume that we have gotten a
suitable memory length for the maximum aliasing positions, but for any other positions, it
is not necessary to use so much long memory. This results in the space waste.

Therefore, we proposes an adaptive XCSM (AXCSM), in which only the maximum memory

length is set beforehand, and the appropriate length for each classifier varies from 0 to the

—-19 -




ERE
A
L

Figure 3: Woods101.

maximum. AXCSM is realized through a hierarchical structure. The first hierarchy is to learn
a suitable memory length for any given position, using general XCS. In the second hierarchy,
action is obtained by XCSM. Experiment is pursued to verify the validity of AXCSM.

The remainder of the chapter is organized as follows. Section 3.2 presents the perceptual
aliasing problem and XCSM. Section 3.3 describes the adaptive memory implementation.
Experiments are presented and analyzed in Sect.3.4. In Sect. 3.5, the future work has been

prospected.

3.2 Related Work

3.2.1 Perceptual Aliasing Problem

A typical perceptual aliasing problem is shown in Figs.3. In this thesis, we indicate that
the agent perceives environment by means of Boolean sensors that report the contents of
its .eight surrounding squares. And the agent moves into eight adjacent directions, encoded
using integer value. The learning objective is to find a shortest path to goal position from
random start.

To simplify, the encoding for each grid position is listed in Table2. The agent perceives
from North direction, and running in a clockwise direction. And the action is encoding as in

Table 3.

Table 2: Perception encoding for environment.

Symbol | Meaning | Encoding
Null Blank 000
‘A Wall 111
G Goal 001
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Table 3: Action encoding for environment.

Action Encoding
North 0
NorthEast
Bast
SouthEast
South
SouthWest
West
NorthWest

N O Ot ox W N

For example, if the agent is placed in position marked with ‘A’ as in Figs. 3, it will perceive
the environment as “111,111,000,000,111,000,000,111”, and its optimal action is “go east”,
which is marked with integer value 2.

As for the Figs. 3, we can see that the agent has an identical perception for two distinct
locations ‘A’ and ‘B’. To reach goal state ‘G’, for position ‘A’, the optimal action is “go
southeast”; while for position ‘B’, it is “go southwest”. The agent couldn’t distinguish the
two locations, simply basing on its sensation of the current position in environment. Learning

for this kind of perceptual aliasing problem is necessary and urgent.

3.2.2 XCSM

We have introduced the principle of XCS and applied it in a traditional Maze test problem
in Chapter 2. With the same setting, we applied it on Woods101 in Figs. 3, and found that
XCS could not obtain the optimal solution to this environment, because of its Non-Markov
property. To behavior optimally in Woodsl101, the agent needs some form of memory to
cope with the lack of information provided by its sensors. We can follow two approaches to
add memory to the agent. One is to use a “history window” to store its previous inputs.
However, in this case, the agent’s input space grows exponentially in the size of the history
window. The other is just using one or a few stored bits, instead of a list of messages,
to make decisions based on past information. In the later, past experience is not stored
explicitly as in the history-based approach, but the agent must learn to use the memory to

solve perceptual aliasing. For example, let’s consider an agent with a one bit memory register
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to solve Woods101 optimally. If the agent is in the left side of the maze, it sets register to 0;
if the agent is in the right side of the maze, it sets register to 1. When entering an aliased
position, the agent selects the action to perform depending on the value of the register: if
it contains 0, the agent performs “go southeast”; if it contains 1, the agent performs “go
southwest” .

Based on this analysis, Lanzi propose XCSM in [30] for Non-Markov environment, adding
a memory of bit-string on XCS. In XCSM, an additional register with m bits is added to XCS
architecture. And the classifier is extended with an internal condition and an internal action
from the condition and action of XCS, respectively, to sense and modify the contents of the
additional register. internal condition and internal action consist of m bits of characters in
the ternary alphabet {0,1,#}. For internal condition, the symbols retain the same meaning
as they have for the external condition, but they are matched against the corresponding bits
of the register. For internal action, ‘0’ and ‘1’ set the corresponding bit of the additional
register to ‘0’ and ‘1’, respectively; ‘#’ leaves the corresponding bits unmodified.

Then, the classifier in XCSM is defined as follows. Here, the classifierXCS is illustrated in
Sect. 2.2.2.

classifierXCSM ::
subclassifier : classifierXCS
inCon : internal condition

inAct : internal action

internal condition = (< 0> | < 1> | < # >)

internal action = (< 0> | <1>| < #>)*

As for the learning procedure, XCSM works similar as XCS. At each trial, the register
is initialized by setting all m bits to zero. The difference lies in that in XCSM, internal
condition must also matches with register when building MatchSet, and each combination of
an external and an internal action results in a distinct system prediction. The ActionSet is
created, but all classifiers in it have the same external/internal action. The external action
is set to the environment, while the internal one modifies the content of register. Those

parameters update and GA operation work as in XCS.
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The experiment has shown that the XCSM utilizes the memory bit to disambiguate the
aliasing positions effectively. At the same time, we found that, for two aliasing positions,
XCSM can achieve an optimal solution with one bit of memory; but for four aliasing positions,
just two bits of memory is not enough. We must increase the memory length. However, the
problem would be exacerbated as the number of internal bits increases.

Considering a limitation situation, when involving internal condition and internal action of
m bits, the search space of internal memory will be a maximum of 3™. With the m becomes
larger, the search space will increase urgently. Therefore, adaptive XCSM (AXCSM) is
proposed in this thesis. Our objective is to get a smaller classifier set, and a shorter memory

for each single classifier as far as possible.

3.3 AXCSM

3.3.1 Architecture of A XCSM

In AXCSM, agent perceives its present position, and records its past experience by a
register the same as that of XCSM. But additional parameter memLength and inStrength,
inValue, inNumerousity have been added to classifier, and defined as below.

classifierAXCSM ::
subclassifier2 : classifierXCSM
memULength : memorylength(Integer)
S : inStrength
inN : inNumerousity

inV :inValue

inStrength ::
inP : inPrediciton
ine . inError
ink : inAccuracy

inF . inFitness
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Figure 4: Framework of AXCSM.

inValue :
inFE : inActionSetEstimate
inX : inEzperience

inG : inGAlIteration

These parameters are defined the same meaning as those corresponding ones in XCS. While,
the length of bit-string of internal condition and internal action are not fixed, but varying
with memLength from 1 to the assigned maximum in advance.

" The framework of AXCSM is outlined as Figs. 4.

Continue this loop until termination criteria is met.

(1) Hierarchy 1: get suitable memLength by general XCS.
In this heirarchy, for learning with XCS, set condition part as the pair of external
condition and internal condition, and set action as memLength. The parameters
inStrength, inValue and inNumerousity are appointed for getting an optimal action,

which is defined as memLength here.

(a) Set starting position and Register content randomly.

(b) Generate inMatchSet.
Form inMatchSet with classifiers from PopulationSet, whose condition and
internal condition matches with agent’s perception and register respectively.

Here, because the register is m bits length, and the length of internal condition
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is variable, we just match them within effective range. If no matched classifier
exists, a new classifier is created using the Covering Operator. The external and
internal condition matches with agent’s perception and content of register
respectively. External and internal action are set randomly. While the internal
condition and internal action are limited with the memLength, which is set

randomly well.

Get suitable action (memory length).

In an explore approach, we set the memLength randomly; otherwise, we
calculate PredictionArray for each memory length as Eq.(3-1), and then set the
maximum one as the optimal one. At last, those classifiers in inMatchSet, which
have the same memLength with the optimal memory-length, are devoted to

composing inActionSet.

S einga inP % inF

predictionArray[memLength] = -
2 aeinas F

(3-1)

(2) Hierarchy 2: get optimal action and internal action by XCSM.

(a)

(b)

Get MatchSet.
The MatchSet is composed of all classifiers in inMatchSet, whose memLength
equals to the selected memory length at the first hierarchy.

Get action and internal action.
The combination of action and internal action is determined by the max
PredictionArray. Those classifiers in MacthSet, which include the selected action

and internal action, are identified to form ActionSet.

Execute action and internal action.
Pursue action to environment, and update agent’s perception. At the same time,

the internal action is used to update content of Register.

Pursue Learning Algorithm and Induction Algorithm.
When receiving a reward from environment, we pursue Learning Algorithm as

general XCS for multi-step problem, and involve the Induction Algorithm.

(3) Pursue Learning Algorithm and Induction Algorithm on the first hierarchy.
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Figure 5: Discounted reward of AXCSM.

To update inValue, inStrength and inNumerousity with learning algorithm, the
discounted reward or payoff, obtained from the second hierarchy, has been involved.

This will be illustrated in Sect. 3.3.2.

3.3.2 Discounted Reward Strategy

As mentioned in the previous section, the parameters in inMatchSet will be updated with

discounted reward or payoff, according to Eq.(3-2) and Figs. 5. Here,  means memLength.

(6—-1)xz +mam—mz’n*5> (3-2)

r=payof fx f(z) = payof f « (mam — min maz — min
In Eq.(3-2), payoff is reward value received from environment, or payoff obtained from the
classifiers of next iteration. minLength and maxLength is the pre-set minimum and maximum
.memory length. J is a constant ranging from 0 to 1(we set it 0.5 here). When receiving a
payoff, if the memory length is minLength bits the whole value is paid; if the memory length
is maxf,ength bits, the allocated payoff will be discounted according to 4. The really received

reward value decreases with memLength linearly.

3.3.3 Delete Seldom-~Accessed and Low-Fitness Classifiers

By analyzing the PopulationSet in XCSM, we found that there exist some classifiers, which
are generated at the beginning of the learning process, and are seldom accessed, although

we have involved the Induction Algorithm. Then we delete those classifiers that are satisfied

with Eq.(3-3).
T, (1nX)
(t—g) (t—inG)
Here, for each classifier, ¢t is the present timer value; x is the accessed times, g is last

< pl *p2 (3-3)

accessed time in ActionSet of second hierarchy by XCSM; inX is accessed times, inG is
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last accessed time in inActionSet at the first hierarchy by XCS; pl and p2 are discounted
coefficient, set 0.01 here.

Meanwhile, there are also some classifiers with low fitness that contributes less to the
learning procedure. They are deleted if Eq.(3-4) is satisfied. « is set as 0.05. Therefore, if

fitness of a classifier is smaller than the probability of the average fitness, it will be deleted.

>aep(f * num)
>_cs(num)

f<ax

(3-4)

3.4 Experiment and Result

3.4.1 Experimental Design

The first experiment entails the implementation of a simple environment Maze3, shown as
in Figs.6. The agent perceives eight squares adjacent to itself as WALL (‘®’), Free (Blank)
or Goal (‘G"), by means of three Boolean sensors for each cell. The action consists 8 directions
movement (North, NorthEast, East, SouthEast, South, SouthWest, West, NorthWest). The
learning objective is to get the shortest path to the goal position.

[ FET LI LLIT ]
3] 1] EE ol
"

Figure 6: Environment Maze3(marked with two aliasing states and start coordinates).

In Maze3, the two positions marked with ‘A’ are aliasing ones. The agent perceives identical
sensation from these two different positions, but it needs two different optimal actions to reach
goal ‘G’ within the shortest steps. Similarly, the agent perceives a single sensation for the two
positions marked with ‘B’, and needs two different actions as well. To recognize these two
aliasing states, we let the agent start from two corner positions (2,1) and (10,1) randomly.

To explain clearly, we refer AXCSM which has m-bit minimum and n-bit maximum memory
length as AXCSM-m-n. If the discussion is independent of the memory length, we refer to
AXCSM simply.

During the learning procedure, action selection strategy alternatives between explore and

exploit policy. In the final 2000 trials, the explore strategy is turned off, and only the exploit
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one is used to monitor the learning result. Other parameters are set the same as those of

[30]. The learning strategy for each hierarchy is summarized in Table 4 in detail.

Table 4: Learning strategy during the learning procedure.

Explore Exploit

XCS memDLength randomly | determinely

XCSM | externalaction | randomly | determinely

XCSM | interanl action | determinely | determinely

For the first hierarchy, XCS, the memory length is set randomly in explore procedure,
and is set determinately in exploit. At the second hierarchy, XCSM, the external action is
set randomly and determinely in explore and exploit procedure respectively. However, the
internal action is determined by the maximum PredictionArray in both explore and exploit
procedure.

The agent’s performance is judged by three aspects, averaged steps to goal position in
every 100 trials; averaged number of classifiers in PopulationSet for every 100 problems,
and the memory length for all classifiers in the PopulationSet after one experiment. All the

performance is compared with that of XCSM.

3.4.2 Experiment on Maze3

If the maximum memory length is set by 2 bits or 3 bits, the effectiveness of AXCSM is not
so prominently. Since even if all the classifiers are set with the same memory length as the
maximum length, the internal space is the same as that in XCSM, and is not so enormous.
However if we set a longer memory length, the result is apparent. Here we set AXCSM as
AXCSM-1-4, the max population as 4000, and 20000 trials have been pursued.

The result for AXCSM-1-4 is shown in Figs. 7, and XCSM is set with 4 bits memory length.

Figure 7(a) shows the average steps to the goal position for both AXCS-1-4 and XCSM.
We can see that both of them converge to the same optimum, but the proposal converges
more slowly. The reason is that at the beginning stage, the agent must try to get suitable
memory length for each classifier, so that it could not contribute to a suitable action.

Figure 7(b) shows the macro-classifiers number fluctuating with the learning procedure.
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The macro-classifiers number in AXCSM-1-4 is less than that of XCSM. Then we can conclude

that the proposal searches in a compacted space.
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Figure 7: Performance of AXCSM-1-4 on Maze3, compared with XCSM.

Figure 7(c) shows the memory length of all classifiers in the final PopulationSet after 20000
trials. It is the highlight of this proposal. We have mentioned in Sect.3.3.2 that we allocate
a discounted reward to classifier according to its different memory length. The classifiers
with shorter memory length will be more valuable and will survive with higher opportunity,
even if they receive the same reward from environment, and adversely, the classifiers with
longer memory length will be eliminated more easily. In Figs7(c), the horizontal axis is
the classifier’s serial number, and the vertical axis is memory length for each classifier. We
summary it in Table5.

Firstly, the curve of XCSM ends at about 2373 in horizontal axis. This means that there
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Table 5: Analysis of PopulationSet on Maze3.

populationSize | ave-memLength
XCSM 2373 4 bits
AXCSM-1-4 2091 2.963 bits

are 2373 macro-classifiers in the final population. However, in AXCSM-1-4, the number is
2091. The proposal has less number of classifiers than that of XCSM. The result is consistent
with that of Figs. 7(b).

Secondly, in XCSM all the classifiers have the same memory length which is 4 bits. While in
AXCSM-1-4, the classifiers consist of hierarchical distribution, with memory length ranging
from onebit to four bits, and average to 2.963 bits. Thus the whole memory space becomes

more contractible.

3.4.3 Experiment on Woods102

To further verify the proposal, we apply it to another more complex environment Woods102
shown in Figs.8(a). In Woods102, the positions marked with ‘A’ are aliasing positions need
four different actions, and positions marked with ‘B’ need two actions. In Figs.8 (b), the

data pairs denote the coordinates in a two dimensional space.

Figure 8: Environment Woods102, (a) aliasing states and start coordinates, (b) coordinates.

Here we assume that the AXCSM is set as AXCSM-1-8, and the settings are the same as
those of Sect.3.4.1, except that the max population is 6000. We suppose that agent starts
from four corner positions (1,1), (1,9), (5,1), (5,9) randomly.

The result analysis is similar to those of Figs.7 (not shown here). We show the agent’s
trial track in Figs.9, using the population obtained after one experiment by AXCSM-1-8.

Figure 9(a) describes the agent’s trial track, which starts from four corner positions respec-
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Figure 9: Agent’s track on Woods102 using AXCSM-1-8.

tively, and reaches to the goal position within minimal steps successfully.

In Figs.9(b), the integer value is the memory length of each position on the route to the
goal. This means that when agent reaches to this position, the agent needs this number of
bits memory to remember its past experience. For example, in order to recognize the four
aliasing positions marked with circle, it needs 5 bits register; to recognize the positions (3,2)
and (3,8), 7bits register is necessary. This means that only those classifiers, whose length
of internal condition and internal action are limited with the assigned length can be used
to determine the suitable action. The shorter the memory is, the more compacted space is
obtained.

However, as seen in Figs.8(b), the position (1,1) and (5,1) are not aliasing positions, and
thus we don’t need any additional memory to recognize them theoretically. The same situ-
ation occurs at position (3,2) and (3,8). However, as seen in Figs.9(b), memory space has

been involved to recognize them respectively, which results in the waste of the search space.
To analyze the changing mechanism of the memory length, we set it from 0 bit, and observe

it further.

3.4.4 Further Experiment on Woods102

Based on the analysis in Sect. 3.4.3, we introduce an extension to the initial AXCSM, in
which the memory length varies from 0bit to maximum, instead of from 1bit. Now, we
apply AXCSM-0-8 to Woods102 with the same setting as AXCSM-1-8. The result of both
AXCSM-0-8 and AXCSM-1-8 are shown in Figs.10 for comparision.

Figure 10(a) and Figs.10(b) show that AXCSM-0-8 and AXCSM-1-8 have similar perfor-
mance on Woods102 in terms of the converge speed and the macro-classifiers number fluctu-

ation. The memory length of the final population is summarized in Figs.10(c) and Table6.
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We can observe that the improvement is prominent.

Table 6: Analysis of PopulationSet on Woods102.

populationSize | ave-memLength
AXCSM-1-8 3273 5.125 bits
AXCSM-0-8 2829 3.95 bits

Comparing the agent’s trial track on Woods102 in Figs.9 and Figs.11, we found that the
agent has the identical path to the goal position within minimum steps. However, the memory
length on its route is different. As seen in Figs.11(b), in order to recognize the aliasing position
(2,3), (2,7), (4,3), (4,7), we need 5bits internal memory, the same as that of Figs.9(b).
Nevertheless, to recognize the non-aliasing position (3,2) and (3,8), (1,1) and (5,1), onebit
internal memory is enough, which is greatly shorter than that of Figs. 9(b). This result shows
that AXCSM-0-8 is more effective than AXCSM-1-8, although we still can not recognize all

the non-aliasing positions with optimal policy by now.

3.4.5 Analysis

To verify the variable memory length being more reliable, we fetch the populationSet

during the learning procedure, and apply it as knowledge-base to guide agent’s action. In

this experiment, we fetch populationSet 5 times at generation 5000, 10000, 15000, 18000,

20000 during the 20000 generations learning procedure, and then apply them as knowledge-
base to direct agent’s action respectively. For each population, agent starts from four corner
positions. The average memory length for each trial is listed in Figs.12. The averaged
memory length decreased gradually with the learning procedure going on.

Furthermore, we show the trial result based on populationSet at generation 10000, 18000
and 20000. Their register content is illustrated respectively at Table7. First, we found that
the three settings converged to optimal routine within their trials, the same as that of XCSM.
Second, at each trial, the agent recognizes aliasing positions by involving different register
content and valid register length. For example, at generation 10000, the different registers at
(2,3), (2,7), (4,3), (4,7) are successful to set optimal action, and the same efficiency occurs
to generation 18000 and 20000. With the learning proceeding, the length of valid register
decreases as we have expected( shown in the last row ). Compared with that, for XCSM, the

register is a constant of eight bits. The efficiency of proposed AXCSM is apparent.

-32 -




Table 7: Variable memory length and register content during learning on Woods102 using

AXCSM-0-8.

gen = 10000 gen = 18000 gen = 20000
pos | mLen | reg pos | mLen | reg pos | mLen | reg
(11) 4 0000 (11) 1 0 (11) 1 0
(12) 5 10110 (12) 4 0000 (12) 1 0
(23) 7 1100000 (23) 5 10000 (23) 5 10000
(32) 5 10010 (3 2) 1 1 (32) 1 0
(19) 3 000 (19) 4 0000 (19) 1 0
(18) 5 01100 (18) 4 0000 (18) 4 0000
27) 5 11011 27 5 01010 27 5 01010
(38) 4 0011 (3 8) 1 1 (38) 1 0
(51) 4 0000 (51) 1 0 (51) 1 0
(5 2) 5 10110 (5 2) 4 0000 (52) 4 | 0000
(43) 5 00100 (43) 4 0010 (4 3) 5 00000
(32) 5 00100 (32) 1 0 (3 2) 1 0
(59) 3 000 (59) 1 0 (59) 1 0
(5 8) 5 01100 (5 8) 4 0000 (5 8) 4 | 0000
47) 5 01001 47 4 0110 47 4 | 0110
37) 4 0101 (3 6) 1 0 (3 8) 1 0
(38) 4 0110 (37) 4 0100

(38) 1 0
average memory Length (bits)
4.59 2.81 2.5
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Figure 10: Performance of AXCSM-0-8 on Woods102, compared with AXCSM-1-8.

3.5 Conclusion

We propose an adaptive XCSM (AXCSM) to more complex Non-Markov environment.

The classifier in XCSM has a fixed length of memory to record its past experience. However,
with the fixed length becoming longer, the search space expands as well. Furthermore, we
involved a variable memory length to XCSM (AXCSM), ranging from 1bit or 0bit to the
maximum length which is defined beforehand. Through experiment, we can observe that

by using this proposal, smaller population can be obtained and the memory length for each

classifier can also be decreased.

Based on the above analysis, we can conclude that the AXCSM outperforms XCSM, es-

pecially for complicated maze. However, on one hand, we still need to further analyze the
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Figure 12: Average memory length during learning on Woods102 using AXCSM-0-8.

changing mechanism of the memory length and its content. On the other hand, we can not

foresee how the AXCSM will behave in real-value environment. This will be our concern in

the future.
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Chapter 4

Hierarchical XCS and Its Application
to Stock Market Forecasting

4.1 Introduction

In the past decades, the results of various quantitative forecasting techniques have served
as important tool for strategic decisions or pre-analysis of time-series data in a number of
fields, such as the stock market, weather forecasting and industrial flowing control. The data
consists of a single series, or multiple variables. The objective of forecasting is to find some
kind of nonlinear regularity among these variables involved, and to give a good explanation.

In this thesis, we mainly focus on the forecasting of financial market as a concentricity of
mankind. However, modeling real financial market is not an easy task for financial trading
and investment management. The financial market is influenced by a significant number of
elements whose relationship is complicated. This makes the problem of economic forecasting
very hard, and no actual knowledge can be used to judge what is the right investment

approach. Then we will review these situations in the following sections.

4.1.1 Classical Economic Theories

The Efficient Markets Hypothesis (EMH) is one of the milestone of current financial theory.
In this market, mathematical models of price movements are based on the assumptions of
rational traders, equilibrium analysis and all relevant information possessed by the traders.

Any deviations from these idealized condition are considered to be exogenous effects or un-
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certainty. The hypothesis first appeared in the PhD dissertation of Eugene F. Fama at the
University of Chicago, under the title “The Behavior of Stock Market Prices”. The main
idea of EMH is that in an efficient market the actual price is the good estimate of its intrinsic
value. The stock market prices always reflect all information available to traders. The past
information can not help predicting future prices, and the markets are assumed to be free of
internal dynamics of their own.

The EMH also composes of three hierarchies with the first one being the “Weak” form.
The “Weak” form asserts that in a market, it is impossible to predict the future price on the
basis of its past price because all past market prices and data are fully reflected in prices, so
the technical analysis of past prices is useless. The second one, “Semi-strong” form, refers
to the market reaction based on public information such as news announcements, annual
reports, etc. However, we still don’t have a precise answer to what should be considered
public information. A common guess is that the easier it has been obtained, the more likely
it is to have already been traded upon. Therefore in this point of view, it is impossible to
predict on the basis of publicly available fundamental information. Finally, the third one,
“Strong” efficiency, analyzes whether investors have private information to take advantage
of. The private information includes internal information, such as a personal note regarding
a major financial decision which would have an impact in the stock price. However, most
people don’t believe that the market is strong-form efficient.

EMH became the dominant paradigm used by economists to explain the financial markets.
As an opposite to the EMH, in [32], Andrew W. Lo and A. Craig MacKinlay provided an
important evidence showing that financial market is not completely random. In this volume,
they found out that predictable components did exist in recent stock and bond returns. By
looking at a given historical sequence, it is clear that price tends to move in one direction for
a long time. Another idea against EMH is that “the more people share a belief, the more
that the belief is likely to be true.” Therefore, people transact following the price of each day,
and they will influence price movements. All of these results agree that the market returns
are predictable, although the predictability varies over time. In any case, most stock market

investors seem convinced that they can predict stock price trends.
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4.1.2 Non-Classical Economics Theories

As analyzed in Sect.4.1.1, the prediction of financial market as a time series becomes
feasible to some extent. In the last decade, a number of different methods have been applied
in order to predict stock market movement. These methods can be classified into categories of
technical analysis methods, fundamental analysis methods, traditional statistics method, and
intelligent method. Technical analysts, know as chartists, attempt to predict the market by
tracing patterns from charts of the historic data of the market as described by Malkle [32] for
example. Since this method may depend on psychological factors and technical, occupational
knowledge, it is mainly used by experienced financial professionals and financial groups who
have vast special knowledge. Fundamental analysts study the intrinsic value of a stock. It
is helpful to predict the market on a long-term basis. The traditional statistics methods [33],
such as linear auto-regressive analysis models and principal component analysis models, create
linear prediction models to trace patterns of historical data. Finally, a number of methods
have been developed in the intelligent method category, including Evolutionary Computation
(EC), Machine Learning, as well as Neural Networks (NN), etc.

‘Here, we focus on the Intelligent Method, and, in particular, mainly on EC and Machine
Learning. As effective learning algorithms, Artificial Neural Networks have been widely used
to deal with stock market forecasting [9, 34|, and are able to identify highly non-linear models.
However, the main disadvantage of these methods is the absence of an internal memory, which
makes it difficult to capture the dynamics of large-scale time series data. Although recurrent
ANNSs have been developed employing some form of internal memory [35], several problems
occurred in the application of these methods. The bottle-neck problem is that local over-
fitting is very likely to happen. If this problem does occur, the model is only appropriate for
a specific period. For a large number of data, it is difficult to get optimal results. Moreover,
the limits of readability of NN make it difficult to be analyzed because of its “black box”
property, while the high CPU requirements of NN computational implementations are also
well know.

Aside from NN methods, GA is another popular algorithm used in prediction fields (9,
36, 37]. These evolution inspired computational methods have received widespread use in
financial time series forecasting.

In order to analyze the stock market efficiently, hierarchical learning systems, such as

NXCS[15] and Hybrid Intelligent system [38], are often constructed by combining several

- 38 -




single algorithm together, and obtain better performance than those systems which use one
single algorithm.

In[15], a mixture of hybrid expert consists of a genetic classifier and an associated artificial
neural network. The former is used to find quasi-stationary regimes with the financial data
series, and the latter is assigned the task of making predictions on the market changing
trend of the next day. In [38], it deals with the hybridized techniques used for stock market
forecasting and market trend analysis, by making use of a neural network for the next day
stock forecasting and a new neuro-fuzzy system for analyzing the trend of the predicted stock
values. In this system, a neural network is applied on the stock forecasting. After that, the
deviation of the predicted value from the required value as a fuzzy variable and used a fuzzy
inference system to account for the uncertainty.

Except for the methods involving one identical agent, as mentioned above, many other work
has been focused on Multi-Agent system, which mainly constructs an artificial stock market
to simulate the real market, to analyze its mutual similarity and internal regularity [39, 40], or
to simulate the stock market to acquire the maximum profit by transacting with market [41,
42, 43]. All of these methods involve a Multi-Agent structure to analyze the internal dynamics
of financial markets. Analysis of these agent based systems has shown that simulation of the
real market can be used to explain the working of financial markets. Hence, it becomes
possible to study price dynamics in a more diverse environment that can be closer to reality,
and then analyze its properties.

For all the proposals referred above, they need to predict the trend of future price change
by obtaining either a buy or a sell signal, based on the historical data of given market. Now
we pay great attention to the changing direction forecasting of the next time, rise or fall.
Based on the forecasted changing direction, rise or fall, we can give an indication to the next
investment, sell or buy, to get maximum profit. In this paper, we proposed a Hierarchical
XCS (HXCS), which integrates XCS [24], an GA-based RL algorithm. The HXCS is used to
combine the knowledge of plural agents to remedy the insufficiency of one single agent. In
the higher levels of the hierarchy, RL is used to determine how to shift among those local
models for a changing trend. In the lower levels of the hierarchy, an agent is trained by the
XCS method to learn and forecast.

The remainder of the paper is organized as follows. Section4.2 describes the hierarchical

learning architecture proposed in this thesis. Experiments are presented and analyzed in
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Sect. 4.3, Sect.4.4 and Sect.4.5. Section4.6 outlines a conclusion, and discusses the future

work.

4.2 Hierarchical XCS

4.2.1 Classifier Definition

Generally, the most basic way of preprocessing data is by simple moving average. The
moving average is calculated by taking an average of the last L values. The parameter L
represents the period length for moving average. This kind of simple moving average works
well in simulating and analyzing the financial markets. However, it is difficult to define
the moving average interval L, and difficult to predict whether an agent can recognize real
changes pattern effectively.

Moreover, it is difficult to predict all situations correctly by means of a single agent. It is,
however, more possible to predict certain special situations, for example, an agent may be
successful in situation A, but failure in situation B. We therefore use multiple agents here.
Each agent concentrates on a local changing area. By the cooperation of all these agents, a
complex task can be accomplished to a higher degree of accuracy.

Here, we make use of heterogeneous groups. In each group, there are several agents with
the same learning strategy. Then for all agents, they may be homogeneous or heterogeneous.
Each agent ‘recognizes the environment through its own vision window, and learns by the
XCS method. We now define the structure of each agent.

(1) Condition definition for heterogeneous groups.

We introduce two types of groups in this module, naming them Groupl and Group2. In
order to set the agent’s perception with a bit string, two steps are taken.

Stepl: The agent perceives a series of moving average values.

Figure 13 shows the perception of agents in Groupl and Group?2 at trading time t respec-
tively. MA;,, means the average value from time ¢ back to time t-m. In Figs. 13(a), the agent
recognizes 24 moving average successively, with an interval length of 20. In Figs. 13(Db), the
égent recognizes its vision hierarchically. First, it gets 6 moving average, all with an interval
length of 10. The 6 moving averages are calculated using continuous source data but without

duplication. The agent then gets a further 12 moving average from time t with an interval
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length of 5. These 12 average values are also calculated using continuous and no-duplicated

data.

Step2: The agents’ real value perception is transferred into a bit string for the purpose of
learning by XCS.

In Fig. 13, if the inequality is satisfied, the corresponding bit value is set as ‘1’, otherwise,
it is set as ‘0’.

At this stage, we have thus successfully set an agent’s perception formulated as bit-string.

The agent in Groupl perceives 24 bits, while the agent in Group?2 perceives 18 bits.

Bit Representation
1 MAus9, 10 < MAwso, 10
Bit Representation
1 MAq-24,20 < MAcas, 20 [ MAss, 10 < MAt, 10
2 MAu-23, 20 < MAsag, 20 7 MAcso, 5 < MAvss, 5

8 MAus4, 5< MAcso, 5

i MAcsis1, 20 < MAui, 20

17 MAso, 5 < MAvs, 5
24 MAu1,20 < MAs, 20 18 MAvs, s <MA., 5

(a) Groupl. (b) Group2.
Figure 13: Group setting.

For simplification, we just use two groups with one agent in each group, and we denote
them by Agentl and Agent2 respectively.

(2) Prediction definition of the next changing direction.

In this section, we explain how to transfer the changed price value into integer directions for
learning data. The definition is identical for different groups.

First, we set the direction number as 2 x m. Directions 0...m — 1 denote an ascending
trend, the next price will be greater than the present price. Direction m...2 ¥ m — 1 denote
descending trend. Second, we preprocess the raw data to get the max and min changed value
between any two neighboring data, as given by Eq.(4-1). Third, we get the changed value
between the present data and its next data by Eq.(4-2), and normalize it as in Eq.(4-3),
which must be satisfied together with the inequalities.(4-4). Finally, we get the changing
direction from Eq.(4-5).

mazChange = max( |Z441 — 24| ) for all z;
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minChange = min( |z — 2| ) for all z; (4-1)

realChange = 2441 — (4-2)

_|realChange| — minChange
nChange = mazChange — minChange (4-3)

0 < nChange < 1 (4-4)
0 realChange >0 & nChange € [0, x|
m—1 realChange >0 & nChange € (-1, 1]

direction = ¢ (4-5)

m realChange <0 & nChange € [0, ap)

\ 2xm—1 realChange <0 & nChange € (o1, 1]

For different experiment setting, we can set the parameter m as 1, 2 or 4, etc. Then the
total direction number is two, four, or eight respectively.

We remark that, in the raw data, the changed value is not equally distributed from min-
Change to maxChange, but instead clustering near the minChange, with fewer data adjacent
to the maxChange. To maintain a balance of data across every direction, we use a stepwise

function. For different data sources, different values of the variable ¢ in Eq.(4-8) are defined.

4.2.2 Hierarchical Learning Strategy

In this approach, all agents are identical XCSs, and are combined with a Q-Learning model.
For each classifier in XCS, we make use of a Q-Value parameter in addition to the original
parameters described in Chapter 2. The Q-Value parameter acts like a “guard” that allows
the XCS to be activated. It is used to judge to what extent the agent can devote to recognize
the present change pattern correctly. The parameter of XCS denotes to predict the changing

direction.
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That is to say, the multiple agents first try to identify the current trend of the market, and
then apply locally-sound strategies to decide what action to take. For each region, only one
agent is entrusted to make prediction.

Based on this architecture, we construct a hierarchical learning strategy as depicted in
Figs.14. In the higher hierarchy, we use a Q-Learning algorithm to discern which agent is
more cognitive to the current market’s changing trend. An optimal agent is then assigned
to pursue the next prediction. In fact, the learning procedure is not quite identical to Q-
Learning, but instead employs the Widrow-Hoff delta rule, given by Eq.(4-6). In the lower
hierarchy, the selected agent is assigned to forecast the next up-down trend based on XCS.

For each pattern, only one agent is entrusted to be suitable.

ENVIRONMENT

common
learning

individual
learning

Figure 14: Framework of HXCS.

Q(8641, ) = Q(81, 1) + B * (r — Q(54, ar)) (4-6)

In details, for a given scene of the environment, each agent first perceives its own vision, and
then constructs its MatchSet from the population. Next, the averaged Q-Value is calculated
for each MatchSet. The agent with the maximum averaged Q-Value is considered to be the
most accurate agent at recognizing the changing pattern. Thirdly, this assigned agent is then
used to predict the next changing tendency using XCS. Finally, the resultant reward is used
to update the Q-Value and the XCS parameters for this assigned agent.

As we have mentioned in Chapter 2, the environment recognized by XCS can be divided
into single-step and multi-step problem. For these two kinds of settings, the XCS learning

framework is also different. Here this forecasting application is defined as single-step problem.
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After one forecasting step, it receives reward or zero immediately, and then the Learning

Algorithm is pursued.

4.2.3 Improvement for XCS

In this proposal, since we use bit string to label stock changing waveforms, it is difficult
for XCS to recognize all situations perfectly. It is not, however, necessary to match the
changing trend pattern with each classifier perfectly in a prediction system. Thus when
predicting the unknown data, we modify the matching rule from perfect matching to fuzzy
matching, and set the mismatch probability to 10%. Suppose that the bit string is 18 bits in
length, then the mismatch bit will be onebit or twobits. We then get the classifiers which
match the perception bit string perfectly, and also those classifiers which have one or two bits
mismatching. It may appear that some accuracy has been reduced. However, since we only
inquire the trend, one or two bits differing does not greatly influence the overall forecast. At
the same time, the fuzzy matching will lead to a prediction result derived from more related

information.

4.3 Experimentl

In this experiment, we use the hit-rate to evaluate the prediction performance. Because in
XCS we use integer values for changing direction, the prediction accuracy can be distinguished
between perfect hit-rate and direction hit-rate. Asshown in Eq.(4-5) (in Sect. 4.2.1), direction
0 means that the ascending range is smaller, while m — 1 means a larger ascending range.
When calculating the direction hit-rate, both direction 0 or m — 1 mean ascending. The
direction hit-rate means that, for the real changing direction0, all the forecasted directions
from 0 to m —1 are deemed to be correct forecasting. The same situation occurs for directions
m, 2*m — 1. In contrast, a perfect hit-rate means that the integer value of the forecasted
changing direction has to precisely equal the real changing direction. Unless otherwise stated,

in the following, prediction accuracy refers to the direction hit-rate.
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Table 8: Statistic comparison of direction hit-rate among random prediction, trend-following

strategy and HXCS (proposed method) (%).

HXCS trend-following random-prediction
max 87.1 64 61
min 54.5 43 42
average | 67.8 54.5 51.3

4.3.1 Comparison with Trend-Following Strategy

Although a lot of research has proved that stock market tendency is predictable [44, 45],
there are still many people doubt on its feasibility, as reviewed in Sect.4.1. To further ver-
ify the predictability, we firstly compare the forecasting performance of HXCS with that of
trend-following strategy model and the random walk strategy. The raw data is TOPIX index
from Mar.2000 to Jul.2004, obtained from Yahoo!finance. In this section, all the time-series
data is daily closing price. We set the direction number of HXCS as two, then the direction
is identified according to Eq.(4-7). Trend-following strategy model means that if the value of
today is lower (higher) than yesterday’s, then the tomorrow’s price will be lower (higher) than
that of today’s. Random walk means that it does not use any reasonable strategy to forecast
the next trend, up or down, but just sets it randomly. Figure 15 shows the direction hit-rate
of average 100 days of these three models. To compare them clearly, we summarize the dis-
tinctive vériable in Table8. We find that the proposed HXCS outperforms trend-following
strategy significantly, while trend-following strategy outperforms random walk slightly. We
applied the same experiment on several other data, and obtained the similar result. From
this point, we can conclude that forecasting the stock price is valuable to some extent, at
least superior to the random walk. The deeper consideration strategy can obtain better per-
formance. From now on, we will verify that our proposal has a superior level of performance

by a series of experiments followed.

0 realChange >0
direction = (4-7)
1 realChange <0
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Figure 15: Trend comparison of direction hit-rate among random prediction, trend-following

strategy and HXCS (proposed method).

4.3.2 Comparison with Single Agent

In this experiment, we set the prediction direction number as four; directions 0 and 1 are
ascending, while direction 2 and 3 are descending, as given by Eq.(4-8). For a different
data source, a different value of o may also be selected. Then the performance of HXCS
is compared with one single agent(Agentl and Agent2) separately. Each single agent learns
using traditional XCS only.

We pursue our proposal on four indexes, NIKKEI, NASDAQ, TOPIX, HSI (HongKong
Index), and also other eleven stocks, which are randomly selected from the components
of KDDI. This data is taken from the daily closing price from Jan. 2000 to Dec. 2004,
downloaded from Yahoo ! finance. The result is the average of 10 experiments with the same
parameters settings. The population size is 100, learning period is 50 days, generation for
one learning period is 10000, and total data to be forecasted is 1100. Interested readers can

refer to Chapter 2 and [24] for the detailed parameter setting of XCS.

(0 realChange >0 & nChange € [0,¢]
1 realChange >0 & nChange € (a,1]
direction = « (4-8)

2 realChange <0 & nChange € [0,0]

| 3 realChange <0 & nChange € (o, 1]
The average direction hit-rate is listed in Table 9. The columns of “Agent1” and “Agent2”
represent the direction hit-rate using Agentl and Agent2 separately. These are traditional

methods using just a single agent, learning by the XCS algorithm. The column “HXCS”
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Table 9: Comparison of direction hit-rate between single agent and HXCS on 15 financial

data (%).

Agentl Agent2 HXCS
NASDAQ 66.9 70.8 73.8
HSI 68.1 69.7 72.9
TOPIX 63.9 67.2 69.6
NIKKEI 66.4 69.0 72.6
KDDI 64.1 70.0 72.2
HONDA 61.9 64.8 68.0
NEC 70.1 70.7 76.0
TOSHIBA 63.5 66.9 70.1
SONY 64.6 68.8 72.4
TOYOTA 61.7 66.3 68.9
Fuji Jyukou 65.3 68.7 71.3
Shin Nihon Setetsu | 67.1 68.5 7.7
Nihon Express 65.0 68.2 70.3
Sanyo Denki 65.9 68.4 71.9
Shin Nihon Oil 65.9 67.5 71.8

gives the result of the proposed HXCS. From these results, we found that the proposal got
around a 2-3% higher accuracy than that of a single agent.

We now consider why the Hierarchical XCS outperforms a single agent. By analyzing the
final expériment result of the previous 10 experiments on TOPIX index, 1100 data for all, we
summarized the prediction detail in Table 10. ‘O’ means that the agent forecasts successfully,
while ‘X’ means failure. For example, the results of row ‘B’ mean that, when forecasting
a given changing trend, Agentl fails, Agent2 succeeds, while the proposed HXCS also fails.
Among the total 1100 data, 75 data has been forecasted in this situation.

In the upper four rows, HXCS selects Agentl as its optimal agent, while for the lower four
rows, HXCS obeys the strategy of Agent2. For example, in the first row labeled ‘A’, none of
the three strategies could forecast successfully, with this situation occurring 67 times out of
the total 1100 data. The same situation also occurs at row ‘E’. Thus overall, out of the 1100
data to be forecasted, 168 data could not be forecasted correctly by any of the strategies. By
contrast, in row ‘D’ and ‘H’, all of the strategies are successful.

Here we mainly focus on the rows labeled ‘B’ and ‘C’. In row ‘B’, Agent] fails, while Agent2

is successful. Because HXCS declares Agentl more accurate at this position, the final result
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Table 10: Comparison of direction hit amount between single agent and HXCS.

Agentl | Agent2 | HXCS | count
A X X X 67
B X 0 X 75
C ¢ X 0 108
D 0 o 0] 156
E X X X 101
F 0] X X 110
G X o) 0 165
H O 0 0] 323

of HXCS will be consistent with Agentl. This results in a failure in HXCS's forecasting on
75 data. It seems that HXCS has failed at this point, but judgment should not be passed
too early. In row ‘C’, the opposite situation occurs. Because HXCS obeys the policy of
Agentl, it succeeds on 103 data. We can thus say that HXCS outperforms the single agent
at this point. Although HXCS leads to some mistaken forecasts, it recognized more data
successfully. Similar result are obtained by analyzing the lower four rows, where HXCS is
obeying the policy of Agent2.

This is consistent with our objective. Given a changing direction trend, the Hierarchical
XCS tries to determine which single agent outperforms the other. An appropriate suitable
agent will be determined for each different trend.

Based on the same experimental result used above, we consider how the classifiers in
Agentl and Agent2 work. Table11 lists the matched classifiers for a given scene of the two
single agents. For each MatchSet, we first calculate the average Q-Value, and assign the
agent corresponding to the larger value to be the selected agent for HXCS. Here, Agentl is
selected of course. Then for MatchSet of Agentl, the average preReward for each direction is
calculated based on Eq.(4-9), weighted by fitness and given in the last column. The direction
with maximum preReward is selected as the best forecasting direction. Thus direction 3, with
an average preReward 1000, is selected as the optimal direction for this trend. In order to
analyze the effectiveness of HXCS, we also calculate the optimal direction as determined
by Agent2. With the same procedure, direction 1 is determined as the optimal prediction.
Direction 3 means that the next price will decrease greatly, while direction 1 means it will

increase greatly. In fact, from the raw data, we found that the real changing trend for the
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Table 11: Classifier analysis in multiple agents.

condition D preReward fitness Q-Value aPreReward
Agentl

Q¥ FHFFH Rk (hkkok ok 0 185.5319  0.730582 1000
KQHOXQRAKQFHAAAAK 0 319.2584 0.635434 1000 247.7379
0 T Vi Rl B 1 594.3615 0.545388 1000 594.3615
QrFRXIRO QR 10*HF] 2 582.5076 0.540335 1000

Q**1¥*XQ100* LFO*** 2 639.7026 0.542199 1000 611.1543
OFKQLHQO**Q¥HHHk] 3 1000 0.307262 1000
0*1010000*11**111 3 1000 1 1000
0**01*00000*****] 3 1000 0.307262 1000 1000
condition D preReward fitness Q-Value aPreReward
Agent2

0000**00*000*Q0**0**0*** 0 226.9555 0.942317 491.2768
QF*RQERHIKQRRPRQIIRXRO00 0 208.4168 0.941933  664.913 217.688
*QRFRIKQRQRRRQQRROQFHIFX 746.6454 0.612831  794.545
O*QXQ*QO*FQ*QF**FHkHARY ] 213.2756 0.830154 915.4028 439.796
KOIRKQRQIFQOIFFIRQRRQO* 2 453.911 0.927896 362.6214

000000* p***pkt¥*qprk*g 2 226.0137 0.939149  890.559 339.2755
Q***Q00*0**0**0**000**01 3 446.1425 0.924962 8
1X0**0000*0***0**0*0*0*0 3 437.5962 0.927377 8

3

0**Q00***000**Q**00****1 109.7412 0.928018 984.3156 331.0091

next day is a large descent. This result supports that we have obtained correct forecasting

result based on Agentl.

>~ (preReward * fitness)
> fitness

avePreReward =

(4-9)

4.4 Experiment2

4.4.1 Variable Reward Strategy

Generally, we use a profit sharing plan as the credit assignment [46], where a constant
reward is paid to each classifier. However, as mentioned in Sect.4.3.2, if the total direction
number is set as four, directions 0 and 1 are appointed to the same changing tendency,

but corresponding to a different changing range. If the real changing direction is 1, then a
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forecasted direction 1 is better than 0, and should have received a higher reward. With this
in mind, we induced a variable reward strategy for different prediction accuracies where the
maximum reward is constant. The real reward for a prediction is in inverse proportion to
the distance between the predicted and real direction. The more accurate a prediction is, the
more effective it will be, and it survive with a high probability.

To analyze this, we apply our method on the NIKKEI, with a total of eight directions.
Directions 0, 1,2, 3 represent an upward prediction for the next value, while directions 4, 5,6, 7
represent a downward. For the learning data, each direction value is derived on the basis of
Eq.(4-10), which is extended from Eq.(4-5). The reward policy is based on Eq.(4-11). When
the maximum reward is set as 1000, a prediction will receive a reward of 500 if a distance
of 1 unit away from the real direction; and will receive a reward of 250 if the distance is 2
units, and so on. The experimental parameters are similar to Experimentl, except that the

population size is changed to 250, and only one experiment has been performed.

,

0 realChange >0 & nChange € [0,0.133]
1 realChange >0 & nChange € (0.133,0.267]
2 realChange >0 & nChange € (0.267,0.534]
3 realChange >0 & nChange € (0.534,1]
direction = j (4-10)
4 realChange <0 & nChange € [0,0.133]
5 realChange <0 & nChange € (0.133,0.267]
6 realChange <0 & nChange € (0.267,0.534]
\ 7 realChange <0 & nChange € (0.534,1]
re reward (4-11)

pow (2, abs(predictionDirection — realDz'rectz'on))

Table 12 displays the effectiveness of variable reward on NIKKEI. The rows describe the
real changing direction, while the columns describe the predicted changing direction. Each
element is the number of direction hit data from the total 1100 data. It may be observed
that the data on the diagonal is slightly larger than that in other positions. The closer the
data is to the diagonal, the larger it is. This is consistent with our reward strategy, for which
the more accurate the prediction, the larger the reward can be obtained, and the larger the

number of data that can be successfully forecasted. The last column is the hit-rate for each
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Table 12: Direction hit detail by HXCS on NIKKEI

o| 1| 2| 38| 4| 5| 6| 7| Hit-Rate (%)

ol17]27|21] 9 29 71.8
1{23|46 32|14 32 78.2
2|18 |22 |41 |43 40 75.6
3112] 62272 28 80

4 48 o1 21|19 | 7 58.6
5 30 21| 22|23 9 71.4
6 27 21 | 27 | 53 | 41 84

7 17 7|15 |20 | 97 89.1

real direction.

4.4.2 Comparison between Multiple Regression Analysis and HXCS

Having included a variable reward in Sec.4.4.1, we plan to forecast the changing value.
Although our proposal in this thesis mainly focuses on changing direction prediction, reverting
the direction prediction to changing value prediction will help us illustrate its efficiency more
clearly. Based on the inversion processing of Eq.(4-10), we can revert integer changing
direction to changing value.

We compare the simulation of HXCS with that of a single agent, and also with that of
Multiﬁle Regression Analysis (MRA) [33], a traditional statistic algorithm. The raw data
is the NIKKEI index from Jan. 2001 to Oct. 2001, with total 200 data. In MRA, multiple
variables like opening, closing, high, and low price have been involved. We use Excel 2003
to calculate the estimators of coefficients for each parameter, which are given by Eq.(4-12).
The simulation curve has been shown in Figs. 16, compared with real value respectively. The

statistics comparison is listed in Table 13 as well.

prediction = —0.06074 % open + 0.351238 * high
— 0.01521 x low + 0.707544 * close + 150.68 (4-12)
From Figs. 16, we found that, the Multiple Regression Analysis outperforms HXCS with
less deviation to real value, and the coherent result appears in Table13. Compared with

HXCS, the MRA has less MAE (Mean Absolute Error), RMSE (Root Mean Square Error)
and MRE (Mean Relative Error) compared with HXCS(defined as Eq.(4-13)). However, the
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Figure 16: Simulations of Multiple Regression Analysis and HXCS (proposed method).

Table 13: Statistics comparison between Multiple Regression Analysis and HXCS.

MRA HXCS
MAE 182 242
RMSE 239 315
MRE 0.015 0.020
Hit-Rate (%) | 54 72

opposite result appears for the hit-rate in agreement with expectation. We recall that our
objective is to get a higher direction hit-rate, rather than perfect simulation accuracy. By
analyzing the prediction data in detail, we obtained the following conclusion. For a real
upward trend‘ with changed value a, we forecast an upward with changed value 3 * a by
HXCS, and a downward trend with changed value 0.5 * a by MRA. The simulation deviation
of HXCS is then 2 * a, while that of MRA is 1.5 % a. Since here we placed emphasis on the
correct forecasting of tendencies, on this basis we confirm that the HXCS is superior to MRA.
Although the deviation of MRA is smaller, it is minor. The results show that HXCS gets a
higher direction hit-rate, but also higher deviation than MRA.

1 X
MAE=N*2|:I:Z-—-§:|

i=1

N
1 -
RMSE = 5 * ;:1 (@ — 7)?

- 52 —




N

DI
Z;

i=1

MRE =

2=

(4-13)

4.5 Discussion

These experimental results verify the effectiveness of HXCS in forecasting the next fluctu-
ation trend. It is superior to not only traditional trend-following strategy, but also a single
agent model. We now discuss some aspects of the advantage and limitations of the proposed
HXCS.

(1) Set suitable learning strategy for an agent.

We use two heterogeneous agents within a hierarchical learning structure, in order to
overcome the shortcoming of one single agent arising from its narrow vision. However, there
are some issues which should be discussed regarding the present setting. First, there are
several variables associated with a real stock market, such as closing, high, low and opening
price, volume, and so on. All these factors affect the whole market. However, here we only
consider daily closing data, which does not completely represent real fluctuations. If the
agent vision expands to other variables, the performance may improve.

Secondly, the perception of present two agents is defined experimentally. We could not
confirm their effectiveness theoretically.

In conclusion, the two problems above focus on how to define an agent’s perception effec-
tively, with fewer agents obtaining as much valuable information as possible. This is the first
area of investigation for future work.

(2) Acquire optimal agent among multiple agents.

In this proposal, we use the Q-Learning method for the upper hierarchy to select the more
appropriate agent from two candidates. If we use more than two agents, how to combine
these agents in order to absorb useful knowledge is another issue which should be considered.

(3) Predict changing tendencies with one single agent.

Based on the foundation of the upper hierarchy implemented with Q-Learning, the optimal
agent can give a more accurate prediction of fluctuating changing trends by means of its local
model employing XCS. This is the highlight of HXCS.

(4) Forecast changing value with one single agent .
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Besides the changing direction prediction, variable reward strategy helps provide an ap-
proximate prediction value. However, HXCS is inferior to MRA when judged on the basis of
statistical analysis. This is because HXCS is orientated toward direction forecasting. Good
direction forecasting may be associated with a larger error in the changing value. As an
improvement, we can further refine the direction forecasting. According to our experience,
the value prediction will then obtain a higher accuracy. However, accompanying this, the
learning complexity of XCS will significantly increase. Thus selecting an optimal compromise

between accuracy and learning complexity is another issue which may be addressed.

4.6 Conclusions

In this proposal, we involve a Hierarchical XCS for time series forecasting problem. Dif-
ferent from general used approaches, in HXCS, we focus on the changing direction forecast,
instead of the quantitative prediction. By experiments, we found that it is superior to not
only traditional trend-following strategy, but also the same strategy with one single agent
and one layer learning.

Based on the advantage and limitation, as we have discussed above, we will focus our
attention on the cooperation of a higher number of agents and changing value prediction in
the future. Finally, applying HXCS on time-series data from another area forms our next

project. It is a wider field that can benefit mankind.
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Chapter 5

Conclusion

Based on the related work, a series of Classifier System has been proved to be a satisfactory
platform, as a reliable robust Machine Learning architecture, which combines RL, EC and
other heuristics to produce adaptive systems. Its advantage has been approved greatly, espe-
cially for the complex problem. In this thesis, we mainly focused on two aspects originating
from XCS. One is to benefit the structure of XCS by adopting adaptive internal space; the
other is based on hierarchical invocation of classifiers. They correspond to multi-step and
simple-step problem respectively.

(1) The first proposal centers on Non-Markov environment confronted with autonomous
agent control.

We proposed an adaptive XCSM system (AXCSM) for the benchmark problem of Maze
with Non-Markov property, which involved a hierarchical structure to adapt to the variable
length of memory space, ranging from 0 bit to the maximum length. The experimental results
show that the adaptive XCSM converges to the same optimal strategy as XCSM, but within
shortened search space. Based on the analysis of experiment result, we found out that the
corresponding register content changed as the agent’s perception varied. As the learning
proceeded, a sub-optimal adaptive memory length has been obtained. The future work will
be continued on more complex problem, even for a real-value environment, in order to observe
the changing mechanism of variable memory, and seek higher efficiency.

(2) The second proposal focuses on the stock market forecasting problem.

When analyzing a real stock market, in general, we pay more attention on qualitative
changes first, and then on tracing the quantitative changes. In order to forecast the stock

market, we propose a Hierarchical XCS system, HXCS. Each agent learns through a hierar-
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chical structure, by applying RL approach to XCS. With the combination of multiple agents,
the narrow vision of one single agent can be overcome in order to predict the next changing
tendency, up or down. Through experiments on several well-known stock indices and stock
markets, the multiple agents can cooperate with each other to acquire higher direction hit-
rate than just using one single agent. We just used two agents in this proposal, based on one
single kind of data in stock market(daily closing price). How to involve more variables from
raw data, or more learning strategy of agents will be the prospect in the future.

Besides the tendency prediction, we introduced a variable reward strategy in different
prediction accuracy, which helped providing a value prediction. However, the proposal is
inferior to Multiple Regression Analysis on statistic analysis, since we pay attention on di-
rection first. The right direction forecast may be followed by a great error in changed value.
By increasing the direction numbers, the value prediction will become more efficient, but
the learning complexity of XCS will increase as well. This is another deficiency in achieving
higher performance.

In summary, for many tasks in Artificial Intelligence, problem solving is to get the regu-
larities on expressing a given problem. As more difficult problems are considered, the size of
search space grows quickly, and it becomes important to summarize regularities into compact
knowledge base. The Classifier System, as a common used intelligent method with compact

representation, will attract more attention in real world.
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