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ABSTRACT: Two morphological types (“righfy” and “lefty”) have
been discovered in several fish species and are referred to as a typical
example of antisymmetry. It has been suggested, first, that this di-
morphism (called laterality) is inheritable; second, that the frequen-
cies of laterality in each species fluctuate around 0.5; and third, that
predators mainly exploit prey of the opposite laterality; that is, lefty
and righty predators prey on righties and lefties, respectively. The
latter is defined as “cross predation”; the antonym “parallel preda-
tion” means predation within the same laterality. We hypothesized
that cross predation drives alternation of the survival and repro-
ductive advantages between two morphological types, leading to
frequency-dependent selection that maintains the dimorphism. To
investigate this, we constructed mathematical models of population
dynamics of one prey/one predator systems and three-trophic-level
systems with omnivory. Mathematical analysis and computer sim-
ulations explained the behavior of the laterality frequency in nature
well, insofar as cross predation dominated ‘over parallel predation.

Furthermore, the simulations showed that when only one of the,

morphological types exists in a species, the other type can invade.
This suggests that dimorphism is mamtamed inall 1nteractmgspec1es

Keywords: laterahty, antisymmetry, prey-predator system, omnivory,

dimorphism, frequency—dependent selectlon

Although one of the factors known to maintain poly-
morphism is frequency-dependent selection, this has not
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been clearly demonstrated in field data. Hori (1991, 1993)
found two morphological types in a population of scale-
eating cichlids Perissodus microlepis in Lake Tanganyika:

one type has its mouth opening to the right, causing the.
left side of its head to more or less face the front (termed
“lefty”), while the other type has its mouth to the left,

causing the right side of the head to face frontward
(“righty”). Note that Hori (M. Hori, unpublished man-
uscript) has changed the definitions of lefty and righty to
those . described above; in prevxous works (Hori 1991,

1993), he considered an individual with its mouth opening
to the left to be “left-handed” or “sinistral.” As Mboko et
al. (1998) and Seki et al. (2000) mentioned, this asymmetry
in laterality differs from fluctuating asymmetry (see the

_definition in Van Valen 1962) in that there are no “middle”

or “normal” individuals with little deviation from sym-

.metry. It is a typical example of “antisymmetry” (Palmer

1996), which has a bimodal distribution of signed differ-
ences on both sides (Van Valen 1962).

Hori (1991, 1993) has described several features of this
type of dimorphism. First, the laterality is inheritable in
a Mendelian one locus/two allele fashion, with lefties dom-
inating; second, the proportion of lefties in the population

-over 11 yr showed a periodical oscillation around 0.5; and

third, lefty scale eaters in Lake Tanganyika attacked only

the left flanks of their prey, whereas righty scale eaters

attacked only the right flanks of prey ‘Recently, laterality
has been found not only in populatlons of the scale eaters
P. microlepis and' Perissodus’ straeleni (Hori ‘1993, 2000;
Takahashi and Hori 1998) but also in other Lake Tangan-
yika cichlids - (Telmatochromis temporalis:* Mboko et al.
1998; 19 other species: M. Hori, unpublished manuscrlpt)
and even in a freshwater goby Rhmogobzus flumineus in a
Iapanese river (Seki et al. '2000). In’ addmon, laterality
appears inboth prey and pxedator fish species, and pred-
ators usually attack prey of the opposxte morphologlcal
type (Hori 2000).-Here we define “cross predation” a

predation when predators -exploit prey of: the ‘opposite

. laterality, that is, when, lefties and righties of the same

predator species feed on rxghtles and lefties, respectively,
of the prey species. Conversely, we define “parallel pre-
dation” as a situation in which predators feed on prey of
the same laterality. To explain the mechanism that main-



Table 1: Equilibrid of models 1 and 2
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tains laterality with oscillations of phenotype frequencies
in the population, Hori (1993) proposed that prey might
focus their vigilance toward the left or-right flank when
lefty or righty predators are abundant.

Matsuda et al. (1993, 1994, 1996)- argued that predator—
specific defense provides an advantage to less abundant
phenotypes that attack the unguarded flanks. A minority
advantage in laterality among predators will result in in-
creased reproductive success, which will make this type
dominant in the future (Sih et al. 1998). In addition, Sa-
leem et al. (2003) suggested that this switching of vigilance
can generally stabilize one prey/two predator systems. This
predator-specific defense also maintains polymorphism
among predators (Takahashi and Hori 1994). Therefore,
laterality has been referred to as one of the most typical
examples of frequency-dependent selection (Lively 1993;
Bulmer 1994). Of note, observations of several species have
suggested that the direction of immediate movement (e.g.,
attacking and fleeing) depends on laterality (M. Hori, un-
published manuscript). Righties tend to dash to the left,
while lefties move to the right. Therefore, prey availability
might depend on the laterality of prey and predators. Lat-
eral antisymmetry in these fishes might be a w1despread
feature of predation.

We would expect that cross predation would lead to the

" transition of survival and reproductive advantages between
the two types; when lefty dominates in a predator species;
righty prey would decrease, and then, automatically, lefties
would become dominant in a prey species, followed by
domination of righties in a predator species. To investigate
this hypothesis, first we introduce a mathematical model
of a simple one prey/one predator system, and later we
expand this model to a more complicated food web. Al-
though several studies have indicated that antisymmetry
is important in sexual selection (Rowe et al. 1997; Pope
2000; Pratt and McLain 2002), no investigation has con-
sidered predation.

Model 1: One Predator/One Prey System

This food web includes a predator species y and prey spe-
cies z. We assumed that fish reproduce asexually and that
laterality is inheritable. We denote the population sizes of
lefties and righties of species y and z by y, and y; and z,
and z, respectively: Because laterality is considered anti-
symmetric, the rates of growth, predation, and death must
be symmetric between lefties and righties. The dynamlcs
of two species were described with linear functional re-
sponse: k

;:f = [m(C,.2, + B.z) — d,Jyw (12)
J .

l;/tL = [m(cyzzR ZL) - d ]y'-’ : (1b)
dz z,t 2z |

—dtR = [1‘(1 - _R?—L) - C}’zyL - P)'zyR]ZR’ (IC)
dz i zZp+ 2z |

_dtL = [r(l - 'R—K—'"L) =G~ PyzYL]zL’ - (d)

where C; (=0) and P; (20) are the efficiencies of predation
when predator i preys on prey j with the opposite (ie.,
cross predation) or the same (i.e., parallel predatlon)
laterality, respectively; 71 (<1) is the metabolic rate; d , (1)
is the death rate of the predator; and r (>0) and K (>0)
are the intrinsic rate of population increase and the car-
rying capacity of the prey species, respectively. We assume
that the rates of population increase of z and z, depend
on the total population size of the prey. This assumption
is biologically reasonable while lefty and righty prey use
the same habitat or other resources.

This system has an equilibrium (3, yp 2, z) = (¥,
¥, 2%, ") at which all four populations coexist (see table
1; app. A in the online edition of the American Naturalist
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Figure 1: Diagram of a three-trophic-level food web with lefties (left)
and righties (right) of species x, y, and z. Arrows indicate the directions
of food intake (thick arrows, cross predation; thi'n‘ arrows, parallel pre-
dation). When the top predator is ommvorous, dashed arrows indicate
intake from z to x. e

for details). We confirm the global stablhty of this two-
species system at this equilibrium in appendix A, using a
Lyapunov function. The linearized system surrounding the
equilibrium has a neutrally stable equilibrium (see app.
A). Computer simulations took too long for any trajec-
tories to reach equilibrium and showed periodic oscilla-
tions of laterality frequencies in both prey and predator
that were similar to field observations conducted in Lake
Tanganyika (Hori 1993, 2000). They agreed with our hy-
pothesis of the transition of survival and reproductive ad-
vantages between the two types.

_Model 2: Three-Trophic-Level System

Next, we added a top predator species x, which consumes
species y, to the former y-z food web. We describe righties
and lefties of x as x; and x. As one would expect, the
influence of cross predation is similar to the former model
of equations (1); when x, dominates in species x, y, would
decrease, and hence y, would dominate automatically, fol-
lowed by the decrease of its prey, z. Again, the simulations
took too long for any trajectories to reach this equilibrium.
The Lyapunov function showed that this system is globally
stable (see app. A for details).

The story is more complicated when the top predator
x also preys on the bottom prey z because this omnivory
of species x imposes contradictory selective pressures on
the bottom trophic level (fig. 1). Here “omnivory” is de-
fined as the feeding on nonadjacent trophic levels (Pimm
and Lawton 1978; Pimm 1982). In this food web, when

lefties dominate in bottom prey species, righty consumers
have an advantage, which in turn conveys an advantage
to lefty top predators. If we consider predation on the
bottom prey by the top predator (shown by the dashed
arrows in fig. 1), however, righties dominate among the
top predator when lefties dominate among the bottom
prey. Although it is possible to think that the fitnesses of
both righties and lefties are equal in the top predator,
observations of oscillating frequencies of righties suggest
that advantages are alternately conferred between the two
phenotypes (Hori 1991, 1993). To investigate how this
transition in advantages among the top predators occurs
in the wild, we investigated a mathematical model that
has an additional omnivory term.

This three-trophic food web with omnivory was intro-
duced by Holt and Polis (1997). This kind of food web
exists among the cichlids in Lake Tanganyika (Hori 1987,
1997), and oscillation in the frequency of the righty phe-
notype has been observed at each trophic level (Seki et al.
2000; M. Hori, unpublished manuscript). With reference
to this food web, the scale eater is considered the top
predator (x), piscivores are intermediate predators (y), and
algal feeders are the bottom prey (z). The frequency dy-
namics of each laterality of this food web are given as

(2a)

7 = [”1(CA)yL + R () + Cez+ Puzp) — dJxe

dx, o v
'E = ['n(cxyyll + Py + Cozp + P.z)—dJlx, (2b)
%—[ C,.2, + P.zy) — Cx, — Boxp— d)] (29
ar = (mil.z, v 2R ay XL x)"‘l‘? ¥l Voo

fiﬁ—[ Cpuz + Pzy) = Cyita — B, Qd (2d)
at = [m( 2 ZR ! ;~:ZL) xyXR XL )']y”

dz 2z + 2,

7: = [f(l = = Cuxy — Buxp — G~ y:)k}z\v (2e)
d + '
% = [r(l e Cextn = Pux,— Cuya = P)':}'L]zl»’ (2f)

where d, (<1) is the death rate of the top predator and
the other parameters are the same as in equations (1).
Note that equations (2) are equal to equations (1) when
xz = x, = 0. We should also mention. that the system
loses omnivory when C,, = B, = 0.

We describe xg, X, Yo V1> Zoo and z asavector E = (xR,
%, Yo Yo Zr 2)- There are four equilibria that consist of
equal populations of both types in each species: first, the
top and intermediate predators become extinct, denoted
by E* = (0, 0, 0, 0, z}, K — z}); second, the top predator
becomes extinct, E* = (0, 0, y', ¥, 27, z"); third, the in-
termediate predator becomes extinct, E* = (x%, x% 0, 0,
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Figure 2: Sixteen out of 33 equilibria for equations (2). Each circle in an equilibrium indicates each -of the six populations, that is, lefties (leff) and
righties (right) of all three species (bottom, z; middle, y; top, x). Lines indicate cross predation. In equilibria 0-11 that contain monomorphic species,
the other laterality can invade the system, which changes the food web structure in the direction of the arrows. We have not shown the other 18
equilibria that mvolve parallel predation only (for example, mvasxon of y, to equilibrium 0) to avoid congestlon We omltted the mlrror unages of

food webs 0-11."

PAN z*), and fourth, the three spec1es coexist, E* = (x s
x* y* 9 2 z*),wherey Z', x¥, 2%, x%, y*, and z* are
given by equations in table 1. Note that equlhbrlum E'is
equal to 'the equilibrium of equations (1).

The population size of righty and lefty in a species differs
in 28 other equilibria in model 2. We show the principal
ones in figure 2. These and one trivial equilibrium (0, 0,
0,0, 0,0) are mvadable by other species or types of species;
thus, the system converges on the symmetric equilibrium,
that is, E§ E* E', or E*. Figure 2 illustrates which pop-
ulation can mvade which equxhbrmm if equilibrium exists.
For example, because wé assume that foraging ability, mor-
tality, and fecundity are 1dent1cal between lefties and right-
ies, on the basis of field observatlons by Hori (1993), it
is clear that a righty top predator can invade the equilib-
rium (0, %, 0, 0, 2, z), that is, equ1hbr1um 3 in figure 2,
and the system may transit to equilibrium E* after inva-
sxon As another example, an asymmetric equlhbrmrn

= (0, x", y*, 0, 2%, z), that is, equilibrium 8 in figure
2,’ might be misunderstood as the. finish at first glance,
Lefties and righties are included in both predators and

prey, although each of the two ‘predator specxes holds either
laterality. We investigated two aspects of the stablhty of
this equilibrium: first, whether the absent type in species
x or y invades equilibrium E, that is, whether
(de/dt)/xR> 0 or (dy,/dt)ly, >0 are satisfied at E7, and
second, whether this equlhbnum is locally stable for any
perturbation of existing populations, X Yoo Zp and 7. In
the numerncal analysis, either one of the mvadablhty in-
equalities is satisfied whenever E* is locally stable if the
efficiency of cross predation exceeds that of parallel pre-
dation (C;> P)), as shown in appendix B in the online
edition. of the American Naturalist. Therefore, this asym-
metric equilibrium is not mamtamed but moves to another
state (equilibrium 10 or 11 in fig. 2) at that time. We also
note that the invadability graph (fig. 2) has no cycles that
allow a return to the asymmetric equilibrium from the
symmetrxc, dimorphic one.

We examined the dynamic behavior of six populatlons
(eqq. [2]) using computer simulations because the equi-
librium E* = (x5}, x}, ¥x» ¥1» 21 21) is complex and dif-
ficult to analyze mathematically. With many parameter sets
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of various values of predation efficiencies, the frequencies

of laterality in each population fluctuated significantly;

they converged on periodic oscillations (fig. 3) in a manner

similar to field data (H0r1 1993; M. unpubhshed manu-
script) as long as no spec1es became extinct. The simu-

lations described well the oemstence of lefties and nghnes
in all three species on a 1 nit cycle. If omnivory exists, the

dynamics of three species are unstable when the total pop-
ulation sizes of each species are constant’ (app. C in the .

online edition of the American Natumhst) The oscﬂlatxon
of each of the three species had the sanie period, but they
were not synchronized. The laterahty frequencxes of pred-
ators were always followed. by those of their prey (e.g,
xz and yp followed z (=
(=1—9) and z in ﬁg;"} )i

The simulation result dxffered when the assumptlon
C; > P; was not satisfied. When parallel predatlon dorti-
nates in all predators, that is, C; < Py:the; Iaterahty fre-
quencies did not oscillate around E * permanently for any
of the parameter values :we investigated; it changed to

various monomorphic states (equilibrium 8, .10, or 11 in:

fig. 2) or two-species systems ‘(equilibrium E' or E¥).

Discussion

This work shows the importance of lateral antisymmetry
and cross predation in maintaining two morphological
types, which leads to. alternation in the survival and re-
productive advantages of the two types. Antisymmetry en-
abled us'to set symmetric parameter values for lefties and
righties. Such symmetry simplifies the mathematics and
lets the minority advantage alter equally, increasing the
p0531b111ty of coexistence, as compared with population
models that include six monomorphxc species. Under
frequency-dependent selection for lateral dlmorphlsm, the
lefty predator has a selective advantage over the righty
when the former’s resource (righty prey) is more abundant
and vice versa. Thxs is to be expected because each mor-
phological type has common ecological parameters Be-
cause the prey abuindance again depends on ‘the predator’s
density, it is very unlikely that either laterahty dominates
permanently. It is also notable that the frequency-
dependent selection for lateral dimorphism has a time lag
because the response of the predator to an increase in its
prey is ‘delayed. Our simulation supported the idea that
the lateral frequencies of prey and predator oscillated but
were not synchronized as in prey-predator cycles.

In the computer simulations of model 2, the frequency
of a morphological type among predators always oscillated;
moreover, the frequency of a morphological type in both
predator species followed that of their major prey, that is,
prey of the opposite laterality (fig. 3). This is in contrast
to the peak in predator density that follows the peak in

1— zR) and xR followed yL‘

. specxes (sohd line, xy; dashed liné, y,; and dotted line,

follows:

Righty frequ;ency‘

070 20 30 40 50 60 70
;Time

Figure-3: Simulationi of the population dynamics (eqq. [2]) of three
2). We obtain the
trajectory using numerical calculations of Euler’s approximation of dif-
ference équations with the.time step At = 0.001. Parameters used are as
C,=10, P, =015 C,=03, P,=00525 C,=06
P,=04,m=08d =4 =05K=10,andr =1,

prey densities in most models of homogenous predator

+ and prey populations that cycle. This is not surprising

because righty predators feed mainly on lefty prey, con-
sequently. benefiting righty prey. In addition, the inter-
mediate predator, y, was always delayed in comparison
with the top predator, x, in our computer simulations (fig.
3). This delay must be due to omnivory by the top predator

“because an increase in x, might have a great impact on

the population s size of its prey, enough to reduce the
response to the increase in the prey of y,, that is, z, The
impact must also be strong enough to reduce the advantage
of y,, which has few competitors (x,) for the common prey
(2). Hence, y; continued to increase even after its prey
started to decrease because its predator had less of an
impact. In the simulation, excessive values made the six-
popula’uon system unstable, which led to the extmctlon
of some populations.

The results of computer 51mu1at10ns in Wthh the ef-
ficiency of cross predation was less frequent than that of
parallel predation, that is, C; < P;, differed from those thh
C;> P; and/or the observed data for Lake Tanganyxka
Wlth the unnatural assumption C;< B, when the ]efty
dominates in z y, has the advantage and o, too, does o
which prey on both z, and y,. Therefore, the opposne
selective pressure’ on the bottom prey from the omnivorous
top predator dissolves at this time. This confirmed the
idea that especially in three- trophic-level food webs with
omnivory, cross predation causes a transition in the ad-
vantage between righties and 1eftxes, which in tirn causes
the pers;stence and fluctuation of dimorphism.

Note that our models include two or three species that
have both morphological types, lefty and righty, although’



coexistence and oscillation in the frequencies of laterality
of all species have been observed in fish communities in
Lake Tanganyika (M. Hori, unpubllshed manuscript). It
is not clear whether the monomorphxc state "(e.g., all in-
dividuals are lefty) is always unstable for some species in
more complex food webs. In addmon, we have not yet
examined the oscillation and coexistence of dlmorphlsm
in food webs containing more than three species. To ex-
amme mterspeaﬁc or interguild relatlonshlps in laterahty,
contmuous field observations of a multispecies food web
(e.g., in Lake Tangariyika; Hori 1997) are requlred

Here we have shown a very sxmple maodel describing
the basic ecology of lateral antisymmietry, wh1ch in nature,
would be more comphcated By way ‘of reahzmg such com-
plemty, we attem ¢d to adopt a nonlmear, Type 11, func-
tional response that contains the’ handhng time of pre-
dation (see Murdoch and Qaten 1975; Hofbauer and
Sigmund 1998). The parameter range of species extinction
was larger than that of the linear functional response mod-
els (M. Nakajima, H. Matsuda, and M. Hori, unpublished
manuscript). In addition, we simulated models including
demographic stochasticity. The results did not change sig-
nificantly from those in figure 3, although the oscillations
were serrated and not perfectly periodic (M. Nakajima, H.
Matsuda, and M. Hori, unpublished manuscript). The
model could be expanded when the detailed ecology and
inheritance of laterality are revealed to make it more re-
alistic; this might result in new findings. Several problems
with laterality remain unresolved: the influence of anti-
symmetricity on interactions other than predation, for ex-
ample, competition and mating; the influence of the mag-
nitude of laterality between and within species; and the
origin of antisymmetry in laterality and how it is inherited.
We need to explore effective sampling methods or devise
practical experiments that will illuminate the mechanism
in nature.
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Online Appendix

Online Appendix A: Stability of the y-z Community and 3-trophic-level system

- .. Equilibrium E' exists when (C,, + P,;)Km —2d,>0. The Jacobian matrix used
for the local stability analysis of (v, y&, z1, zr) = r(yT, yT, 2", z") in Model 1 is:

(O dy 0 d 0 du 0 dy
Oyp dt Oy, dt Oz dt 0z, dt
Ody ody Ddy 0dn)|
Oyp dt Oy, dt 0Oz dt 0z dt
ody 0dy 0dy 04
Oyp dt Oy, dt Oz, dt 0Oz, dt
od, 0dy 0y 04y
| Oy At Oy, dt Oz dt Oz, dt |

(AD

where an asterisk indicates that partial derivatives are taken at the equilibrium ET,

Then the eigenvalues of this Jacobian matrix are:

(Cye=Pe) Edyr  |(Crz—Py) Edyr
~(Cr+B Y Km  \~(CpetPs) Km

(A2A,B)
where Ek = (Cyz +Pyz)Km—2dy. Thls equilibfjuln ex:ists whenl E > 0. '"_Ll“‘he
eigenvalues (A2A, B) are always purely imaginary. .

To analyze the global stabvili‘ty of this 2-species system, we introduce a
Lyapunov function, L (see Nisbet and Gurney 1982 for a detailed explanation). We

set m = 1, which does not cause a loss of generality for this model. We define L, as:

L=y [yp/y" —1-log(yp/y 1+ y" Ly, /y" =1=Tog(y, /y" )]+
(A3)

2V [z, 120 —1-log(z; /2" ]+ 27 [2z /27 —1-log(zp /2" )]



where Ly 2 0 for any point (yz, yi, zg,.z1 are positive) and equality must hold at
equilibrium. We should note that:

i"ﬁ:;r[(cy'z +P,)(z +-zR)-2dy}2

, (Ad)
dt (C.+B.) K

dLy/ dt < 0 for any point, and equality holds at (z; + zz) = 2d,/(Cy, + Py;). ~ Therefore,

Il

no population diverges. The total prey population (z; + zz) changes when (z, + zr)

2d,/(C,, + P),), except at equilibrium. Therefore, this system is globally stable.

l

The dynamics of a 3-trophic-1evel“systevm w(itvhout: omnivory (substituting C:
Py, =0 into Eq. 2) has a Lyapunov function as the y-z system when m = 1:
Ly = x*[xp / x*~1-log(xg /y*)]+x.*[xL')x*—l—log(xL /x*)]+
y*Dm/y*-1-log(yp/y*)+ y* vy / y*-1-log(y,/ y*)]+ (A5)

z*[zL/z*~1—log(zL/z*)]+z*[zR /z*—1~log(zR /z*)],

i __ [(Cyz * e )de +(ny + ny)(ZR +2z7 “,K)":r
dr ( ny + ny )2 Kr

, g (A6)

L, > 0 and dLy/dt < 0 at any point, and the equalities hold at the equilibrium E* (details
of ‘the equilibrium are in Table 1, substituting C,, = P, = 0 into E*). We should

mention that this function is not applicablle to the omnivorous model (Eq. 2) if m <1.

" Online Appendix B: Invadability of the 3—77’ophic-Level System E* by Lefties and

Righties

Equilibrium E* can be written as:

v =r(C, -P_,,z)[(cxzcyz -P.P.)Kkm-d, (C, -P,)-d,(C.-P, )]/D,

zl yz ¥



Y =r(C =P )[(CuxCpe ~ P ) Km=d, (Cpe = B, ) =dy (o = B )]/ D
={C, ),Kml: szd)+C d -C mr:|+PP Km[Pd C . +C, r:l
+'(CXZ—P )C,d,mr+(C,, ~P, )C dr-C_P.C_Kmr(l- m)}/mD

7y xy X xy* xz ™~ yz

(A7)

zz#z{szCJ;fiim’[Clld -P,dx+C r1+B.P Km[ —c, d +Cd —C m;]

xzt yz yzx

—(Cc,~PB,)C,d,mr—(C,-P, )c dr-C,C.P, _Kmr(1—m)}/ mD,

xy xp X Xy xz
where
D=(C.C,~P.P, ) Km+C,r(1- m)(c -P, )(Cyz—Pyz).

Note that D > 0 when C; > Py, and Cyz > Py,. ThlS equlllbrlum exists when all x*, 7,

zi" and z," take positive values. Either of the absent type in species x or y can invade
equilibrium E* Wheﬁ (dxi/dt)/xy >0 or (de/dt)/xR >0 at E, ‘réspectively. Therefore,
thlS asymmetrlc equlhbrlum is not malntamed but may move to another state
(equlhbrlum 10 or 11 in Fig. 2). Note that when predators mamly attacked prey of the
same laterahty (P> Cy) this equlhbrlum was locally stable and was un1nvadab1e for
certain parameter sets. This is not surprising bec;ause the lqain prey of the two

predators do not overlap.

Online Appendix C:

Linear Stability Analysis of 3 Species Djmamics of Laterality‘Freq‘u‘enc’ies

Since the equilibrium E* = (xg*, x.*, yr*, yL*, 2r*, 2.*) is complex and difficult
to analyze mathemétically, we adopt laterality frequency dynamic models, instead of
population dynamics, to investigate the behavior of a system containing all three species
with both types of laterality.

The variables (xz, Xz, V&, YL, 2R, ZL) are,<_:onvérted to (pxx, (1 - p)x, pyy, (1 = py)y,



pz, (1 — p;)z), where p;, py, and p, are the frequency of righties of species x, y,.and z,
respectively; x, y, and z are the population sizes of these species. We assumed that the
logarithmic fitness of righties and lefties in ¢ach of the three species, denoted by f; and
gi, respectively, is determined by th¢ efficiencies of cross and parallel predation, as in
population Model 2, -asy ’sﬁ‘own in Table Al. T_he mean populétién fitness, denoted by

Wi, 18 pifi + (1-p;)g:.  Therefore, the frequency dynamics are given by:
dpi/dtzpi[f;_Wi]:pi(l_pi)(ﬁ—gi)' (AS)
Therefore, the frequency dynamics are written:

dpe/ dt=pe (1 p) m [ (G~ Po)(1 = 2p)+ (Cua— Pu(1 ~ 22

dpy! dt=py (1 -py) [;n(éyz —le;)(l - 2pz)Z —(G: = Py)(1 - 21%))6]; (A9)

dp/dt=p:(1-p) FCamPa1-2p—(GamP(1-2p))

I?iére, wé in\vyfes‘[igalte”th‘:eI condltlons resulting in tvﬁe. sttablzeA coeXisfencé ‘of the

three species. The one énd only dﬁn01j3hic equilibrium is (px, py; p) = (1/2, 172, 1/2),
Wthh we 'dénote by p*. | | 4 | | |

‘W'We analyze tﬁe local stability of p* under the assumption that the population
size reacheé eéluilibrium: G, y, 2) = (2x*, 2p%, 22*). We express the eigénvélﬁe

equation of the Jacobian matrix taken at the dimorphic equilibrium p* of the frequency

dynamics (A9) as A’ +a,A’ +ad+a, =0, where the coefficients are: -

a, =0, (A10A)
@ =[x*y;1<(ny —Px},)2+x*z*(sz—1§.z)2 +y*z*(Cyz —f;,z)z]m/i6 (A10B)
to=(Coy =By )(Ce = B )(Ce = B ) (1= m)mx* y 2%/ 64. (A10C)

At least one of the eigenvalues has a positive real part when this equilibrium is an

unstable focus. The dimorphic equilibrium is locally unstable when @, < 0, a; <0, or



aa; —ap<0. Since dz = 0, at least one of the eigenvalues has a non-negative real part
and the sign of aa; - ao is always opposite that of ap. Moreover, all the 6oefﬁéients
are always positive or zero (Cy > P; and m < 1); therefore, ara; — ao < 0 is satisfied. If
Cjj < Py for 1 or 3 combinations, aq is negative, and the equilibrium is a saddle.

If m=1 and a§ = 0, the eigenvalues of the Jacobian matrix at p* are 0 and

+.J-a, . Therefore, this linearized system has a neutrally stable equilibrium, and the

stability property is determined by higher-order analysis. A Lyapunov function (Eqg.

A5) shows the global stability of this equilibrium (Online App. A).
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Online Table

Table A1. Logarithmic fitness of righties (f;) and lefties (g;).

Parameter  Definition

fx m[Cx),y(l—py)+ny)¥7y +szZ(1_pz)+szsz:|_dx

2 mI:ny)gUy+P),},y(l~py)+szzpz +BCZZ(1—pz)]“dx

> m[ Cyez(1=pz)+ Bezpz |- Cox(1-pe) - Popr=dy
g m[Cyzzpz‘ +P,z(1-p, )J— CiyXDx —BCJ,x(l'—px)—dy‘

£ f‘(l —%) - Cx;x‘(}— Px) —szxpx - Cyzy(l - py)l"Pyzypy )
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Role of omnivory for fluctuation of lateral dimorphism in fishes
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Introduction . ,

Two morphological types, lefty and righty, have been found in several fish species. A lefty fish
has its mouth oiaening to the right, causing the left side of its head to face the front, while a righty has
its mouth to the left, causing the right side of the head to face frontward'®. This lateral dimorphism is
a typical example of “antisymmetry’”’. Lateral antisymmetry in fishes has genetic bases and bimodal
distribution of signed differences®. It differs from fluctuating asymmetry which distributes normally
and caused by stochastic events in developmental stages.

Several featureé of the lateral dirhafphiSm have been described: ﬁ;st, the laterality is inheritable
in a Mendelian 1-locus-2-allele fashion with lefties dominating®’; second, the proportion of lefties in
the cichlid population over 11 years showed a periodical oscillation around 0.5% and third, laterality
appears in both prey and predator fish species, and predatdi's usually attack prey of the opposite
morphological type’. Nakajima et al.” called “cross predation” as predation when predators exploit
prey of the opposite laterality, that is, lefties and righties of the same pfédator speci‘és”respeéti\/ely feed
on righties and lefties of the prey species. Nakajima et al.” also defined “parallel predation” as a
situation in which predators feed on prey of the same laterality. Cross predation would lead to the
transition of survival and reproductive advantages between the two types: when lefty dominates in a
predator species, righty prey would decrease; then, lefties would become dominant in a prey species,
followed by domination of righties in a predator species’. Nakajima et al.’ investigated this
hypothesis, introducing a mathematical model of a simple 1-prey-l-predator system and three

trophic level systems with and without omnivory.

Model 1: 1-Preator-1-Prey sttem

This food web includes a predator épecies x, and prey species z. Nakajima et al.’ assumed that
fish reproduce asexually and that laterality is inheritable. We denote the population sizes of lefties
and righties of species y and z by y; and yg, and z; and zg, respectively. Since laterality is considered
antisymmetric, the rates of growth, predation, and death must be symmetric between lefties and

righties. The dynamics of two species were described with linear functional response:

dyp /dt = [m (CyzzL + f;,zZR)— dy:lyR dy, /dt = [m(CyzzR + B,z )~ dy]yL (AB)



de _ ZR +ZL ‘ ‘ dZL ’ ZR +ZL S ’ 1
_dt‘_'[r(l_T)_cyzyL_%zyR}zR 71'7= - K _CyZyR‘_PyZYL Z (ICD)

where Cj; (20) and P;; (=0) are the efficiencies of predation when predator i preys on prey j with the
opposite (i.e., cross predation) or the same (i.e., parallel predation) laterality, respectively; m (<1) is
the metabolic rate; d, (<1) is the deatﬁ rate of the predator; and . (>0) and X (>0) are the intrinsic rate
of population increase and the carrying capacity of the prey species, respectively.  This system has an
equilibrium (v, yr, 21, zz) = ol 2, ,zT),‘ at which all four, populations lcoexist, - Nakajima et al?
éonﬁrmed the global stability of this 2-species system at this equilibrium using a Lyapunov function.
The linearized system surrounding the equilibrium has a neutrally stable equilibrium.  The computer
simulations using Eular method shoygd pgr_,ipdi‘_vc_. Qscjllations of laterality frequencies,in both prey and
predafqr. , ,Nékajima et a}.g also investigated the effects of demographic stochasticity using computer
simulations. The oscillations of laterality frequeﬁcies were nea;ly periodié, that were similar to field

observations?

Model 2: Three-Trophic-Level $ystém ‘

Next, Nakajima et al.” added a top predator species x, which consumes species y, to the former
y-z food web. 'We describe righties and lefties of x as xz and x;, respectively.. As one would expect,
the influence of cross predation is similar to the former model Eq. 1: when xx dominates in species X,
yi, would decréase and hence yz would _QOminate automatically, followed by. the decrease of its prey, z;.
The Lyapunov function showed that this system is globally stable. ‘

The story is more complicated when the top predator x also preys on the bottom prey z, because
this “omnivory” of species.x imposes contradictory seléctive pressures on the bottom trophic level
(Fig. 1). In this food web, when lefties dominate in bottom prey species, righty consumers have an
advér;tage? which in turn conveys an advantage to lefty top predators. If we consider predation on the
bottom prey by the top predator (shown lby the dashed arrows in.
Fig. 1), however, rigﬁties dominate, among, the top predator
when lefties dominate amoﬁg the bottom prey. ; Although it is
possible to think that the fitness of both righties and lefties is
equal in the top predator, observations of oscillating frequencies

of righties. suggest that advantages are alternately conferred.

between the two phenotypes'”. To investigate how this

transition in advantages among the top predators occurs in the Fig. 1.  Arrows indicate the

i . 5 . . i directions of food intake; thick

wild, Nakajima et al.” investigated a mathematical model that arrows: cross predation;  thin

~amows: parallel predation, When

o “the top predator is omnbvorous,

Each frequency dynamics of six populations is similar to dashed arrows indicate intake
fromziox

has an additional omnivory term.



Eq. 1, with additional predation terms including several new parameters (Cy;, Py, Cyy, and Py,), and
gquations related to the top predétér. We should also iention that the system loses omnivory when
C.;=P,,=0. We describe xg, x1, yr, y1, zr and z; as a vector E = (xz, X1, ¥z, Y1, Zr, z1). There are four .
equilibria that consist of equal populations of both types in each species: first, the top and intermediate
predators become extinct, denoted by E¥ = (0, 0; 0, 0, z;%, K- z%); second, the top predator becomes
extinct, E'= (0, 0, y", ", 27, 2"); third, the intermediate predator becomes extinct, E*= (%, x%, 0, 0, 2,
zi);‘and fourth, the three species coexist, E* = (x*, x*, y*, j*, z*, z%); where !, z', x¥, 2%, x*, y*, and z*
are given by equations in Nakajima et al®. Note that equilibrium E is equal to the equilibrium of Eq.
*'. . The population size of righty and lefty in a spéiiiés differs in 28 other equilibria in Model 2.
These and one trivial equilibrium (0, 0, 0, 0, 0, 0) are invadable by other species or types of spécies,
thus the systém converges on the ‘syn‘]m'etr‘ib“eduilibrium,‘ ie., "E§,‘ iEI, E' or E*. Although an
asymmetric equilibrium E* =0, x*, %, 0,2,%, 2,%), wheére ¥, *, z,* and z,* are 5 given by Nakajima et al.
®, includes lefties and righties in both predators and prey, it is not maintained, but moves to another
state and finishes at symmetric equilibrium. Nakajima et al.’ investigated two aspects of the stability
of this asymmetric equilibrium E*: First, whether the absent type in species x or y invades equilibrium
E*, i.e., whether (dxz / df) / xz > 0 or (dy, / df) / y, > O are satisfied at E¥; and second, whether this
equilibrium is locally stable for any perturbation of existing populations; X1, Yr, zg and z;. In the
numerical analysis, either one of the invadability inequalities is satisfied whenever E* is ldcall}‘i stable,
if the efficiency of cross predation exceeds that of pafallel'prédatibn (Cyy> Py). '
Nakajima et al.” examined the dynamic behavior of six populations using computer simulations.
With many parameter sets of various values of predation efficiencies, the frequenciés of laterality in
each population fluctuated significantly; they converged on periodic oscillations in a manner similar to
field data®, as long as rio species became extinct. The computer simulations well described the
coexistence of lefties’ and righties in all three Species on a limit cycle. If omnivory exists, the
dyhamics of thrée species is unstable when the total population sizes of each species are constant.
* Simulations with demographic stochasticity showed a not prefect but nearly periddic oscillations.
The oscillatj'éns of each of the three species had the same period, but they were not synchronized.
The laterality frélquénbies of predators were always followed by those of their prey.
The simulation result differed when the assumption C; > P; was not satisfied. When parallel
predation dqrriiha’;és in all predators, i.e., C;; < Py, the laterality frequencies did not oscillate around E*
permanently fof any of the parameter values we investigated; it changed to various monomorphic

states or 2-species systems (equilibrium E' or EF). -

Discussion -+ .. -
In the symposium, we obtained several valuable comments. Fitst comment was-about the

global stability: the audience expected that a Lyapunov function of the 3-species system (Model 2)



must be found as in 1-predator-1-prey fsystem.' Aétually; Nakajima et al’ found a Lyapunov
function of 2-spieces (Model 1) and 3-species system without omnivory (Model 2 with C,, = P,, = 0)
and showed its global stablllty, w1th an assumptlon of the metabolic rates of predators m = 1.
Under the same assumption (m = 1), we also found a Lyapunov functlon L of 3- -species system with
omnivory:
L=x*[xg/x*-1-log(xg /y*)]+x*[x; /x*~1-log(x /x*)]+
y*yp!y*-1-log(yg /y*)1+ y*[y, /y*-1-log(y, /y*)] +
z*[z; /z*-1-log(z, / z*)]+ z*[zg / z*~1 - log(zg / 2 *)],
dar [:(Cyz + Pyz)de—(sz + J'}Z)a’yK+(C)W +ny)(zR +z —K)r:l2

dt 2
(Cy+By ) Kr
where the asterisk indicates the equilibrium E*, d, (<1) is the death rate of the top predator. The

2

function L satisfies L > 0 and dL/dt < 0, each of the equalities holds at the equilibrium. Although,
we hardly think the assumption m = 1 is general because of the omnivorous top predator. Therefore,
Nakajima et al.” did not show the function L but investigated the global stability numerically with
computer simulations.

Second comment was about the effects of demographic stochasticity on population invadability.
As shown above, Nakajima et al.” showed the transitions of equilibria to the symmetric systems
caused by invasions. However, it is not clear whether the monomorphic state (e.g., all individuals
are lefty) is always unstable for some species in more complex food webs, especially when we
consider demographic stochasticity.

Finally we would like to thank the attendance giving us other valuable suggestions.
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. Abstract
Two morphological type;s, 11ghty gnd ’,ljf:_:fty,ﬁgr_e; found in s§veral fish species. Righty
predators mainly prey on lefty prey and vice versa (called “cross predation”). This
dimorphism» j:s heritable in a2 Mendelian one-locus-two-allele fashion. The frequency of
righty‘ individuals in a population oscillates periodically. To determine the effect of cross
prgdatiqn on this oscillati(.)’n,‘ we gon_strucj;ed mathema‘tica‘lmodel's: that describe a genetic
basis of lateral dimorphism assulrning‘.‘ genetic drift in a one-predator-two-prey system and
three trophic Ievels w1th voﬂmnivory’. Both modgls ‘have anguilib;‘ium of both rjghty and
lefty typés at a frequency of 0.5. Mathematical analyses and computer simulations
showed that the dimorphism is maintained and that its frequency oscillated with or
without gepetic drift. Large degr‘ges of drift and high intrinsic grqwtp rates and predation
efficiencies of prey ‘spe\cies.caused the period of frequency Qscillation to be short and
amplified. Wheinjcross’ pre»:dgtionvdecreased' asa proRortion of all predatjop, the righty
frequency of a prey species fluctuated non-periodically. These differences in fluctuation
patterns were observed in natural systems. Our model suggests that both cross predation

and genetic drift dictate the maintenance of dimorphism and the patterns of its

fluctuations.

Key words:
Laterality, gene frequency dynamics, antisymmetry, prey-predator system, dimorphism,

frequency-dependent selection
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Introduction

Two morphological types, righty and lefty, are found in several fish species (Hori
1991, 1993, 2000; Liem and Stewart 1976; Mboko et al. 1998; Seki et al. 2000). In a
righty individual, t»he" right side of its head face front and thus its mouth opens leftward,
due to right joint of mandible to suspensorium taking a position frontward, ventrally, and
outside compared to its left joint. In'a lefty individual, the left side has these
charactéristics. "fhis dimorphism, " called laterality, is a typical example of
“antisymmetry” (Van Valen 1962), which has a bimodally distributed, asymmetric
character frequency. Every" individual is classified as righty or lefty (Hori 1991, 1993,
2000; Mboko et al. 1998; Seki et al: 2000). " Although the shape of the distribution curve
did not change significantly ovet 10 ears in one fish popUIaﬁdn",' the frequency of righty
individuals was unstable, oscillating around 0.5 (Hori 1993, 2000). Interestingly, several
investigations have suggested that this lateral dimorphism is heritable in a Mendelian
one-locus-two-allele fashion with 1efty dominating over righty (Hor}f 19"9’3,‘320'00; Mboko
et al. 1998; Seki et al. 2000). |

Nakajima et al. (2004) suggested a possible maintenance mechanism. They focused
on biased predation related to lateral dimorphism: righty predators mainly prey on lefty
prey and vice versa (Hori 2000). Such “cross predation” is in contrast to predation
between the same morphological types, called “parallel predation.” Their numerical
investigations of population-dynamic models indicated that the transition of survival and
reproductive advantages between the two types occurs because of cross predation.
Domination by lefties in predator species would be followed by a decrease of its righty
prey; then automatically, lefties would become the do;r}inant prey and righty predators

would increase. Thus, the frequency of lateral dimorphism fluctuates. However,
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mathematical analysis showed that the fluctuations eventually converge to a stable

’ equilibrium in a one-predator-one-prey model (Nakajima et al. 2004).

We considered stochasticity as one factor causing the fluctuation. We investigated

the difference between stochastic and non-stochastic dynamics. Because the population

size and community structure of cichlids at the study site in Lake Tanganyika seem to be

stable (Hori 1997), we éonsidergd a genetic basis of lateral dimorphism to introduce

genetic drift into a model with constant population sizes.

’ ' Aone-predator-two-prey system
Consider a one-predator-two-prey food web, as is frequently observed at the

research sites of lateral dimorphism, such as Lake Tanganyika (Hori 1987; Hori et al.

:1993). We denote the population.siz;es“of predator species x and prey species y and z as x,

¥, and z, respectively. We followed the expressions of the population dynamics of x, y, '
and z described in Hutson and Vickers (1983):

du/dt=[m(4,y+4.2)-d,—ex]|x

[ yraz) ]
dyldt= ry(l——k-'— —A4,x |y |
. L Ny 4 ‘ (1B)
r T
dz/dt = rz(l—g—%—}i -A_x|z
N RO (10)

where 4 (> 0) is the efficiency of predation when predator i preys on prey j ;“m (£1)isthe
metabolic rate; d; (< 1) and e are the death rate and the density effect of the predator,
respectively; #; (> 0) and k; (> 0) are the intrinsic rate of population increase and the
carrying capacity of the prey species i, respectively; and ¢; is the competitive effect of

species i on another species in the same trophic level. Equation 1 has the equilibrium

, | | (1A)



1 E= (%,7,Z). Details of the equilibrium and the parameter conditions that allow these

2 species to coexist permanently are shown in App. A anc‘i} 1n Hﬁtsop and Vickefs (1983)
3 We considered a one-locus-two-alleles genetic model of laterality for each of the
4 three species, assuming the persistence of a three-species systemn (Eq. 1). This sifnple
5 assumption of inheritance facilitates the analysis. The assumption is also reasonable:
6 lefty is the dominant allele and righty the recessive allelg in ’seyerral fish species. This
7  situation has been observed in Perissodus spp. (Hori 1993, 2000; Takahashi and Hori
8 1998) and other fish species (Hori unpublished; Seki et al. 2000). When we let L and / be
9 the alleles for lefty and righty, respectively, tfle gehOtype of a léﬂy indivfduél ile{L or Li;
10 that of a righty i§-/. We denote the gene frequeéncy of alléle I in species i as p;. The
11 phenotypic frequencies of LL; LI, and I/ are (1 — p))%, 2p«(1 — py), and p, respectively. We
12 assumed that the logarithmic fitness of righties and-lefties in each of the three species,
13 denoted by £; and g;, respectively, is determined by the efficiencies of cross predation and

e 1 14 parallel predation shown in Table 1. In Nakajima et al. (2004), we defined Cjy and Py as

RE 15 the cross-predation and parallel-predation efficiencies of predator i on prey j, respectively.

16  Note that 4;= C;+ P;and K; =k;/2. We assumed that the comipetitive effect &, carrying
17 capa’city‘ K;, and density effect e are the same between lefty and righfy individuals. These
18 assumptions are simple but may be appropriate for describing the basic antisymmetry in
19 predation. The ‘rﬁa‘rginal fitnesses (Smith 1998) of alleles L and / of species i, denoted by

20 wy;and wy,, are:

2] S ) wri=pgit(-plg : e I : (2A)
22 and
23 wi; =pifi + (1 - p)gi. . (2B)



1 The mean population ﬁtness, denotgd by w;, 18 piwyi + ;( 1- p,-)wL,i. Therefore, the gene
2 frequency dynamics are given by:
3 o dpi/dt = pi [Wl,i fWi] = pi (1 —bpi)(W,"i - W]_’,-) . ‘ (3)

4  From Eq. 3, we obtain.a model for the gene frequency dynamics of the three species:

5 dpx/dt=(l—px)px2ml:(Cn",—Ff\y)(l—Zpyz)y+(sz—sz)(1~2pzz)z],

6 dp,/di=(C,-P,)(2p>-1)z(1-p,) p, %, o
7 and | o | | - | |

8 o dpz/dt=(C}zb—vag)(2px2fi)(l—pz)l;zzx.

9 The one and only dimorphic equilibrium is (py, py, pz) = (V172,172 ,\/1/_2 ), which

10 we denote by p*. From the Hardy-Weinberg law, the numbers of lefties and righties are
no the same (the phenotype ﬁe(iugncieg are both 1/2) at this equilibrium.

12 We linearized and investigated the local stability of gene frequenoy,dynamics (Eq.
i 4), under which the populations of tﬁe three species (including both righties and lefties)
14 converged on the coexisting equilibriumE . The linear approximation suggests that p* is
15 neutrally stable, régardless of the parameterivalues (App.A).

16 ‘ ‘We examined the global behavior of the simultaneous dynamics of gene frequency
17 (Eq. 4) using computer simulations with the Rugg:e-Kutta method of order 4 and many
18 parameter sets with various predation efficiency values. The total population size of each
19  species (x, y, and z) was given as a constant with a value set at equilibriumE | In all cases,

Fig. 1 20  the gene frequencies converged on periodic oscillations for a long time period (Figs. 1A

HERE 51  and 1B; correlogram: 1C). The laterality frequencies were not synchronized among the

22 trophic levels; those of predators were always followed by those of their prey (e.g., righty

23 x was followed by lefty z [= 1 — (righty z)] and lefty y [= 1 — (righty y)]). Laterality



1 frequencies oscillated arourd 0.5 ‘with some value combinations of the initial laterality
2 frequencies of simulations and predation efficiencies (Fig. 1A). At some values of initial
3 laterality l‘requencies; the averages of laterality frequencies in prey species were biased
4 towards 0 or 1 (Fig. 1B), althcugh the laterality frequency of total prey (= Ip/” y + p,22 )y
5  +2z]) oscillated around 0.5 in most cases. These time-series analyses showed that periods
6 were the same among three species and were longer when the intrinsic growth rate was
7 lower (e.g., Fig. 1A vs. Fig. 1B) or the predation efficieficy was greater (not shown).

8 ~ Next, we added the effect of genetic drift (Roughgarden 1979):

9 dp,/dt = p,(l p,)(w,,i—vai)+o-,.g"ip,.(l—pi),‘ N )
10  where é’ denotes white noise and 0', is the magmtude of genetlc dnft of spec1es i, Wthh
1 depends on the absolute populatlon size and the generat1on length (Hakoyama and Iwasa
12 2000). We 1nvest1gated numencally how the range of cr,g’ Values affects the laterahty
13 frequency by usmg spectrum analy51s for computer s1mulat1ons W1th the 4th-order
14 Runge-Kutta method Parameter 4’ took umformly randmn tfanahles .between | l and 1.
15 Slmulatlon results Var1‘ed with time- step W1dth If tlmeystep Atv1s 0 001 gi(?) does not
16 change within each time step Az, although gi (t) does not change throughout 0 002 if time
17 step 4ris 0.0024¢. The 1nagnttude of the noise effect is proportional to the square root of
18 the time step. Therefore we kept oN(4f) constant when we used a different time step 4z.
19 The results showed that stochasticity within some level did not interfere with the cyclic

fig.2 20 fluctuation caused by cross predation (simulation results: Figs. 2A-2D; correlogram: 2E).
"ERE 21 In addition, o; and the amplitude of cyclic fluctuations became larger, and the periods
22 became longer (see Fig. 2A vs. Fig. 2C for simulation results). Also, in prey species with
23 small P;/Cy;, non-periodic fluctuation caused by genetic drift appeared; the center of the

24 cyclic fluctuation was unsettled, although the cyclic period did not change significantly
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(e.g., species z in Fig. 2B vs. Fig. 2A). This fluctuation of periodic oscillation
disappeared when genetic drift was small in species with small P;/Cy compared with the
other prey species (e.g., species z in Fig. 2D). Instability increased when o; was too large

and the duration for which laterality frequency was near 0 or 1 increased (not shown).

A three-trophic-level system with omnivory.
The gene-frequency model (Eq. 3) can also be applied to another food web

introduced in Nakajima et al. (2004): a web composed of an omnivorous predator species

X, an intermediate prey y, and a bottom prey z. Here, “omnivory” is defined as the

feedmg on nonadjacent trophlc levels(lem and Lawton 1978; mem 1982) Spec1es X

preys on spec1es y and z; spemes y also preys on spemes z. Nakajlma et al. (2004)

VS S E

lnvestlgated the stablllty of this food web because the top predator X receives

contradlctory selectlve pressures from the bottom prey z. When lefty dommates in ‘z
rlghty in x and y 1ncreasel Hewever because nghty y increases, theh alse lefty in X must
increase. Laterahty frequenc1es in all spe01es ﬂuctuated as observed in the ﬁeld (Horl
1993, 2000). Therefore, the oppos1te selectlve pressureon the ‘omnlvorous predator
m1ght be balanced and‘i'night' di'séppeér. ‘

"'We confirmed this result with a geﬁ'e4fre<jue11cy dynamics model. The dynalnics of
the population sizes x, 3, and z .we‘re described Wwith the Lotka-Volterra ';cype functional
response as Eq.'3." The details of dynamics and its equilibrium E* = (x*, y*, z*) are
shown in Holt and Polis (1997) and App. B. In our model, we assumed that these three
speeies permanently coexist; we verified this assumption in a three-species population

dynamics model (see App. B). We then considered the dynamics of the gene frequencies

-of two alleles on one locus (Eq. 3). The fitness functious of species x are exactly the same
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as those given in Table 1; they are slightly different in species y and z, as shown in Table

2. The gene-frequency dynamics are then:

do, 1dt=(1-p,) p.2m[(C, = B, )(1-25,2) y+(C.. ~ B.)(1-2p.)z ]

| Lo (64
dpy/dt;(1—py)py2[m(cw—13,2)(1—2p),2)z—(nyf]ij,)(l—2px2)x:], (6B}

and -
o, /e = (1-p,) p [ ~(C. - P (-2p2)x-(C.-R)(1-227)y] g

The one and only dlmorphlc equlllbrlum is again p*. We investigated the local
stab1hty of the gene- frequency dynamlcs (Eq 6) under which the populatlons of three
spec1es (1nclud1ng both nghtles and leftles) are at the coexrstlng equlhbnum E* Local
stablhty analys1s showed p* to be an unstable focus 1egardless of the parameter values

(App A) Note that when sz P = O (no omnlvory) or when m= l (no energetlc loss by
predatron) the llnear approxnnatlon suggests that p is neutrally stable
We examlned the global behav1or of the srmultaneous dynanncs of the gene

frequency (Eq 6) usrng computer snnulatlons agam w1th various values of predatlon
efﬁcrenmes and constant total populatlon sizes set at E*, wlth and w1thout genetw drrft
Computier !’ snnulatlons showed | oscﬂlatlons (F 1g 3A) llke | those 1n | the
one-predator—two prey system The srrnulatlons descrrbed well the coexistence ot leftres
and r1ght1es in all three specres ona hmlt cycle The average laterallty frequenc:les 1n all
three species were about 0 5. However this dlfference drsappeared when we mtroduced
genetrc drift and Pyl C,j was relatlvely large The later ahty frequency of the top predator X
fluctuated w1th1n a smaller range and was b1ased toward a monomorphlc state (Fig. 3B).

The center of the ﬂuctuatron in spec1es X approached 0.5 when dnft in the bottom prey z

was reduced (Fig. 3C). The other effect of o7 was sumlar to that in the
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one-predator-two-prey model (Eq. 5): when o; increased, so did the amplitudeof the
laterality frequency fluctuation and the fluctuation period.

As in the numerical analysis of population dynamics of Nakajirna et al. (2004), the
local stability of p* depends on whether the assumption of Cy > Pj is satisfied. When
parallel predatiorr "dominates in all predators (i.e., Cy < Py), p*is a saddle point. This
result suggests that the laterality frequencies do not oscillate permanently around p*..-In

simulations in which Cy < Py, some species become monomorphic or extinct.

Discussion

Our mathematrcal mvestlgatrons and numerrcal srmulatrons agreed well especrally

lfor the three-trophrc level food web wrth those of Nakajlma et al (2004) who

[T

‘mvestrgated the populatron dynamrcs of leftres and rlghtres wrthout consrderatron of

genetrc bases Our computer s1mulat10ns showed that some genetrc dnft does not

[ . Sy . ool g
.‘v».urr.‘ i ¥ | i

interfere w1th the marntenance of lateral drmorphrsm and 1ts frequency osclllatlon

Generally, genetrc drrft ina very small populatron reduces genetrc drver51ty (Begon et al
b o 0

1996) Our srmulatrons supported thrs theory gene frequency approached 0 or 1 for a

long trme When the range of drrﬁ was relatrvely w1de in relat1on to the populatron sizes.
Prey spec1es wrth heavrer predatron or smaller mtrrnsrc growth rates or both had larger

osc1llatron amphtudes than drd other specres even wrthout genetrc drift (e g, specres y in

F 1g lB) Such a combmatron of parameters makes the populatron size smaller than that

of the other prey spe01es When the dlfferences of A,J and ¥; are larger between the prey

specres the dlfference in prey populatlon sizes are larger ( y <z when 7y < rz and/or 4, >

Au, see the equatrons of populatlon srzes [Eq Al]) Ther efore genetrc drrft may amplrfy

the 1ntr1ns1c oscillation in the smaller populatron Prevrous studres of laterahty gene
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frequency with time delays in one trophic level showed that when reproductive success is
weakly dependent on phenotypic frequency, dimorphism will be lost owing to genetic
drift (Takahashi and Hori 1994, 1998). In our model, cross predation may play the same
role as frequency dependent selection. Cross predétiori itself maintains dimofphism in
both prey and predator and also might protect dimorphism from genetic drift.

We observed a non-periodic fluctuation of latérality frequenicy in our simulations

only when the three populations experienced génetic drift.” This unstable fluctuation was

......

fluctuated periodically when P,,/Cy; = P/ Cey = 0.06 (Fig. 2A), but it did not when P,,/C,
= 0.06 and Py/Cy; = 0.66 (Fig. 2B and 2C; note that we assumed P;/C; < 1). The rapid
altérnation of maj or laterality ih predator species x amiplifies the oscillation of latérality
frequency in prey v, although its center remains near 0.5. This fluctuation was found in
predator species x in the three-trophic level system with omnivory (Fig. 3B). Although
the same fluctuation was observed when the total predation efficiencies differed among
prey species (i.e., A/, was small), the magnitude of instability was smaller.

These effects were found When genetic drift was present. - Our simulations also
reVealed that the behaviors of lateral dimorphism frequencies in each species depended
on the biological parameters of the species, irrespective of the presence of genetic drift.
The magnitude of the intrinsic growth rates in prey species influenced the periods of
morphological frequency ﬂuctuatibns. When the growth rate was relatively high, the
period was short. This result can be explained by the main morphological type of prey
rapidly recovering its population size to become the dominant type. The periods were
also short when the predation efficiencies were large because of the rapid decrease of the

main prey type. Especially in a food web with three trophic levels, the parameter values

10
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of the bottom prey species z affected the behavior of the whole system more tlian the
middle prey species y did.

The minority advantage of lateral dimorphism is not limited to one species but is
seen among species. It therefore differs from sexual selection, in which any advantage
must be intraspecific. We must emphasjze this difference because the most frequently

cited example of antisymmetry, claw size in male fiddler crabs, might be maintained by

sexual selection (Pope 2000; Pratt and Mclain 2002). . The, crab claw is a male

characteristic, but lateral antisymmetry in fishes .is independent of sex. This sex
independence has, been »ob_}serve’djnhl”efrissodus spp. (Hori_v199l; Takahashi and Hori
1998), T. temporalis (Mboko et al. 1998), R. flumineus (Seki et al. 2000), and other
spggieg LV(EITI;ori‘ufl1pyb1ished)._ T he lateral ant’isymmetry‘o.f fishes may constitute a more

common and more typical example of antisymmetry. .

- Appendix

- Appendix A: Stability of Gene Frequency Dynamics

Model 1 (Eq. 1) has an interior equilibrium E :

Xx=rrd (aa,~1)+r, rm[Axy(Ky~a1Kz)+,‘AH(KZ—az'Ky)]/D, : ~(AlA)

?zszKzr);m(AﬁK;vm—a‘d )+A K rm(d — A, Km)+drr( -azk )/D

"ty , (AlB)
Z=A4,K rm (d —4, Km)+A Krm(A K.m— ad)+drr(K -a,K,)/D,  (AIC)
Where‘D’—“-m[szKzry (sz —‘OIIAW)-I-A)Q,K r, :|+d I"I" 1 alaz)

We linearized the gene frequency dynamics (Eq. 4) and obtained the eigenvalues of

the Jacobian matrix taken at the dimorphic equilibrium p* and the coexistent

equilibriumE :

1
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0, i\ﬁ%ﬁ —3)%[}7(CW—PXY)2+E(CXZ —sz)z] | (A2A, B)

This expression indicates that p* is neutrally stable. Note that this result does not change
even when C; < P

Next, we expressed the eigenvalue equation of the Jacobian matrix taken at the
dimorphic equilibriﬁm p* of the gene frequency dynamics (Eq. 5)
as A’ +a,A> + g A +a, = 0, where the coefficients are:

a,=0, (A3A)
a =(3—2\/5)m[(C@, —ny)zx*y*+(sz—sz)2x*z*+(Cy —PyZ)Zy*z*}, and (A3B)

a0 %[(10_7\5)(@\?‘ny)(cxz-sz)(cyz—Pyz)x*y*z*m(l—m)]/\/i. . (A3C)

At least one eigenvalue has a positive real part when this equilibrium is an unstable focus.

v’fhe dimorphic equilibrium is locally unstable when a; < 0, a; <0, or aza; — ag < 0.

Because a; =0, at least one eigenvalue has a non-negative real part; and the sign of a,a; —
a is always opposite that of ag. If ap < 0, the equilibrium is a saddle point. If ap> 0, it is
an uns‘table focus because axa1 —ap < 0 and a, = 0. All coefficients are always positive or
zeroif Cy>Pyandm<1.

If Cy; = P, =0 (no omnivory) or if m = 1 (no energetic loss of predation), then ag =0,
so one of the three eigenvalues is zero and the other two are purely imaginary numbers.
This case indicates that p* is neutrally stable in the linearized system. If Cy <P; for any

one pair or all three pairs of species (x-y, X-z, and y-z), then a; > 0 and a2a; — a¢ > 0; thus

p* is a saddle point.

Appendix B:

12
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Conditions for Equilibrium Existence and the Permanence of Holt & Polis’ (1997)

System

The dynamics of the three species were described with the Lotka-Volterra type

functional response in Holt and Polis (1997) as:

dx N .

| E=[m(,etxyy+,4xzz)-arx]x, (A4A)
Y _Tmd z— 4 x—d A4B
E"[m yzé T Ay X — y]y: : ( )
dz _ 2 y | A4C
_Jt__ v ‘—7(‘- —A x- .Y (2. ( )

We say that Eq. A4 is permanent when there exists a positive constant §such that -

§ < liminf (x(?), y(£), z(£))
t—>+00 .

As shown in Hofbauer and Sigmund (1998), this Lotka-Volterra type system is permanent
when there is a vector s = (51, 52, 53) that satisfies the following inequality at all boundary

equilibria:

sl(%/x)+sz(%/)j+s3[%/z)>0. (AS)

Note that the logarithmic fitnesses in this system (i.e., those inside the parentheses in Eq.
A5) are linear functions of population size. We know that this inequality holds at every
equilibrium except for the interior equilibrium E* when all the population sizes in E* are

positive.

13



Acknowledgments

‘The authors thank Drs. P. Abrams, T. Namba, K. Shirakihara, S. Takahashi, Y.
Takeuchi, and Y. Watanabe for their valuable advice. We also thank the members of the
Fish Population Dynamics Laboratory, Ocean Research Institute, University of Tokyo,
and the ‘Maneno’ group for insightful discussions. This work was partly supported by the
Japan Society for the Promotion of Science"grkants to H. M. and M. H. and by
grants-in-aid of Scientific Research on Priority Areas (#14087203) and 21st Century |
| Center of Excellence Research Kyoto University (A2) of the Japan Minisyff;y' of ;Ewdilléalttion,

e

Culture, Sports, Science, and Techholééy toM. H.

14



10

11

13

14

15

16

17

18

19

20

21

22

; Rgferences 7

Begon M, Harper J‘L’, T9Wnsend CR (1996) Ecology, 3rd ed. Blackwell Science, Oxford.

Hakoyama H, lwasa Y (2 000) Extinction risk of a density-dependent population
estimated from a time series of population size. J theor Biol 204:337-359

Hofbaver J, Sigmund K (1998) Evolutionary games and population dynamics.
Cambridge University Press, Cambridge.

Holt RD?_Polis GA (1997) A theoreticgl ﬁamework for iﬁtraguild predation. Am Nat
149:7455764 .

Hori M (1987) Mutualism and commensalism in the fish community of Lake Tanganyika.
In: Kawano S, et al. (eds) Evolution and coadaptation in biotic communities. Tokyo
University Press, Tokyo,‘pp 219-239

Hori M (1991) Feeding relationships among cichlid fishes in Lake Tanganyika: effects of
intra- and interspecific variations of feeding behavior on their coexistence. Ecol Int
Bull 19:89-101

Hori M (1993) Frequency-dependent nétural selection in the handedness of scale eating
cichlid fish. Science 260:216-219

Hori M, Gashagaza M, Nshombo M, Kawanabe H (1993) Littoral fish communities in
Lake Tanganyika: irreplaceable diversity supported by intricate interactions among
species. Conserv Biol 7:657-666

Hori M (1997) Structure of littoral fish communities organized by their feeding activities.

In: Kawanabe H, et al. (eds) Fish communities in Lake Tanganyika. Kyoto University

Press, Kyoto, pp 277-298

15



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Hori M (2000) Gunshuui no tayousei to anteika-kikou (Thé diversities and stabilizing
mechanisms of communities). In: Satou H, et al. (eds) Guns1111u-seitéigaku no genzai

(Current Community Ecology). Kyot6 University Press, Kyoto, pp 257-283 ~

Hutson V, Vickers GT (1983) A criterion for permanent coexistence of species, with an

application to a two-prey one-predator system. Math Biosci 63:253-269

Liem KF, Stewart DJ (1976) Evolution of the’ scale-catifig’ cichlid fishes of Lake
Tanganyika: a generic revision with a description of a new species. Bull Mus Comp
Zool 147:319-350

Mboko SK, Kohda M, Hori M (1998) Asymmetry of mouth-opening of a small
herbivorous cichlid fish Telmatochromis temporalis in Lake Tanganyika. Zool Sci
15:405-408

Nakajima M, Matsuda H, Hoﬁ M (2004) Persistence and fluctuation of lateral
dimorphism in fishes. Am Nat 163:(printing)

Pimm SL, Lawton JH (1978) On feeding on more thaﬁ one trophic level. Nature
275:542-544

Pimm SL (1982) Food webs. Chapman and Hall, NY.

Pope DS (2000) Testing function of fiddler crab waving by manupilating social context.
Behav Ecol Sociobiol 47:432-437

Pratt A, McLain D (2002) Antisymmetry in male fiddler crabs and the decision to feed or
breed. Funct Ecol 16:89-98

Roughgarden J | (1979) Theory of populatidn genetics and evolutionary ecology: an

introduction. Macmillan Publishing Co., NY.

. Seki S, Kohda M, Hori M (2000) Asymmetry of mouth morph of a fresh water goby,

Rhinogobius flumineus. Zool Sci 17:1321-1325

16



Smjth JM (1998) qulqtioqary genetics, 3rd. Oxford University Press, NY.
Talgghashi S, Hori M (1994) Unstable evolutionary stable strategy and oscillation: a
Iﬂodel of lateral asymmetry in ,scale-eating cichlids. Am Nat 144:1001-1020
» Taka}hashi S, Hori M (1998) Oscillation maintains pqumbrphisms - a model of lateral
asymmetry in two competing scale-eating cichlids. J theor Biol 195:1-12

Van Valen L (1962) A study of fluctuating asymmetry. Evolution 16:125-142

17



1 B : Tables
2 Table 1. Logarithmic fitnesses of lefties (f;) and righties (g;) in the one-predator-two-prey

3 model.

o m ,nyy(l—pyz)+nyypy2 +szz(l—p22)+szzpzz:| —-d, ~ex

g m[Cop,+By(1=p)+Cozp, +Pz(1-p})|-d, ~ex

e R R
| & b l_y_;jﬁi\_cv*xsz"vax(l_pxz)

Lo 1—%‘% ~Cox(1-p.7) - Purp,’

g n|1mTg T |- Coml ~Px(1-p))
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1 Table 2. Logarithmic fitnesses of leftie‘s;‘(f,-)' and righties (g;) in prey species in a

2 three-trophic-level food web with omnivory.

f;: =m [Cyzz (1 - pzz ) + ‘Pyzzpzz] - C\j’x (1 - pxz ) - R\'yxpxz - dy
| gy = m[C’yzzp;2 +P. z (l -p.} )} - C.wxsz - nyx(l -p.} ) ~d,
f.=r.(1-2/K,)-C.y(1-p,*)-Bp, - Cox(1-p}?)-Pxp>

4

g.=r(1-2/K,)-C,yp, - P y(1-p,>)-Cop >~ P,x(1-p.})
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10

Figure legends
Fig. 1. Simulations of the gene frequency dynamics of a one-predator-two-prey model
(Bq. 4). In‘panels1A‘and 1B, the righty frequencies of x (p,%: thin solid line), y (p,:
broken line), and z (p/*: thick solid line) are shown when six populations coexist. Pariel
1C shows a correlogram of the whole simulation in 1A (all three species had a same
correlogram). In panels 1A and 1B, predation efficiencies (Cyy, Py, Cxz, Pis) are (0.15,

0.01, 0.15, 0.1) and (0.45, 0.03, 0.45, 0.03), respectively; and population sizes (x, y, z) are

(9.31,5.39, 1.55) and (5.57, 1.04, 1.56), respectively. Other parameters are: m = 0.8, d, =

0.5;e=0, 0= =0.1;7,=1.5,r,=2.0;K,=11.0, and K, =5.0.

20



10

Fig. 2. Simulations of the gene frequency dynamics of a one-predator-two-prey ‘model
with genetic drift (Eq. 5). In panels 2A-2D, the righty frequencies of x (> thin solid
line), y (pyz‘: broken line), and z (- thick solid ﬁne) are shown for the coexistence of six
populations. The genetic drift values (o, 6y, o;) used in panels 2A-2D are (2, 2, 2), (2, 2,
2), (5, 5, 5), and (2, 2, 1), respectively, with the time step Az =0.001. Panel 2E shows a
correlogram of the whole simulation in 2B (species x and y: broken line, z: solid line).
Other parameters used in 2A are C,, = Cz = 0.15, P,, = P, =0.01,m=0.8,d;=0.5,e=0,
a=m=01r =20,7,= 1.0, K, =5.0, and K, = 10.0. The other parameters used in
panels 2B—2D are the same as those used in panel 1A (note that Py, ry, 71, K, and K differ

from those of 2A).
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Fig. 3. Simulations of the gene fréqﬁéncy dynamics of a three-trophic-level system with
omnivory and with and without genetic drift (Eq. 6). The ‘righty frequencies of X (p:
thick solid line), y (pyzz broken line), and z (p,*: thin solid line) are shown for the
coexistence of six populations. The genetic drift valug:s (0%, oj,,‘ o;) used in panels 3A-3C
are (0, 0, 0), (1, 1, 1), and (2, 2, 1), réspeciiklély, w1th the tiine step At = 0.001. Other
parameters are: Cy, = 0.5, Py, = 0.25, C, = 0.2, P, = 0.05, C), = 1‘.0, P,,=0.15,m=0.8, d,

=d,= 0.5,7=1.0,and K=5.0.
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