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Dedicated to Professor Shyuichi Izumiya on the occasion of his sixtieth birthday

We introduce map germs of pedal unfolding type and the notion of nor-
malized Legendrian map germs. We show that the fundamental theorem
of calculus provides a natural one-to-one correspondence between Whitney
umbrellas of pedal unfolding type and normalized swallowtails.

1. Introduction

The map germ

(1) f (x, y)= (xy, x2, y)

is known as the normal form of Whitney umbrella, after Whitney’s pioneering
works [1943; 1944]. Compose the germ (1) with the coordinate transformations

hs(x, y)= (x, x2
+ y) and ht(X, Y, Z)= (X,−Z ,−Y + Z),

where (X, Y, Z) are the standard coordinates of the target space R3. This leads to
the map germ

(2) g(x, y)= ht ◦ f ◦ hs(x, y)= (x3
+ xy,−x2

− y, y).

Set

(3) G(x, y)=
(∫ x

0
(x3
+ xy)dx,

∫ x

0
(−x2

− y)dx, y
)

=
( 1

4 x4
+

1
2 x2 y,−1

3 x3
− xy, y

)
.

Compose the map germ (3) with the scaling transformations

Hs(x, y)= (x, 1
6 y) and Ht(X, Y, Z)= (12X, 12Y, 6Z)

to obtain the map germ

(4) Ht ◦G ◦ Hs(x, y)= (3x4
+ x2 y,−4x3

− 2xy, y),
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known as the normal form of the swallowtail [Bruce and Giblin 1992, page 129].
Two C∞ map germs ϕ,ψ : (R2, 0)→ (R3, 0) are said to be A-equivalent if there

exist germs of C∞ diffeomorphisms

hs : (R
2, 0)→ (R2, 0) and ht : (R

3, 0)→ (R3, 0),

such that ψ = ht ◦ϕ◦hs . A C∞ map germ ϕ : (R2, 0)→ (R3, 0) is called a Whitney
umbrella if it is A-equivalent to (1); it is called a swallowtail if it is A-equivalent
to (4). As seen above, the Whitney umbrella (1) produces the swallowtail (4) via
(2) and (3). By the converse procedure, the swallowtail (4) produces the Whitney
umbrella (1).

It is impossible to produce a swallowtail by integrating (1) directly. This is
because the discriminant set of (4) is not diffeomorphic to the discriminant set of

(5) (x, y) 7→
(∫ x

0
xydx,

∫ x

0
x2dx, y

)
.

Note that the form (2) may be written as follows:

g(x, y)=
(
x(x2
+ y),−(x2

+ y), y
)
=
(
b(−x,−(x2

+ y)), y
)
,

where b(X, Y )= (XY, Y ) (b stands for “blowdown”).

Definition 1.1. (i) A C∞ map germ ϕ : (R2, 0)→ (R3, 0) having the following
form is said to be of pedal unfolding type.

(6) ϕ(x, y)=
(
n(x, y)p(x, y), p(x, y), y

)
=
(
b(n(x, y), p(x, y)), y

)
,

where n : (R2, 0)→ (R, 0) is a C∞ function germ, such that

∂n
∂x
(0, 0) 6= 0 and p : (R2, 0)→ (R, 0) is a C∞ function germ.

(ii) For a C∞ map germ of pedal unfolding type

ϕ(x, y)=
(
n(x, y)p(x, y), p(x, y), y

)
,

set

I(ϕ)(x, y)=
(∫ x

0
n(x, y)p(x, y)dx,

∫ x

0
p(x, y)dx, y

)
.

The map germ I(ϕ) : (R2, 0)→ (R3, 0) is called the integration of ϕ.

(iii) A C∞ map germ8 : (Rm, 0)→ (Rm+1, 0) is called a Legendrian map germ if
there exists a germ of C∞ vector field ν8 : (Rm, 0)→ T1Rm+1 along 8 such
that

∂8

∂x1
(x1, . . . , xm) ·ν8(x1, . . . , xm)= · · · =

∂8

∂xm
(x1, . . . , xm) ·ν8(x1, . . . , xm)= 0
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and the map germ L8 : (Rm, 0)→ T1Rm+1 defined by

L8(x1, . . . , xm)=
(
8(x1, . . . , xm), ν8(x1, . . . , xm)

)
is nonsingular. L8 is called a Legendrian lift of8. (Here the dot stands for the
scalar product of two vectors of T8(x,y)Rm+1, and T1Rm+1 is the unit tangent
bundle of Rm+1.) The C∞ vector field ν8 is called a unit normal vector field
of 8.

(iv) A Legendrian map germ 8 : (R2, 0)→ (R3, 0) is said to be normalized if it
has the form

(7) 8(x, y)= (81(x, y),82(x, y), y)

with

(8)
∂82

∂x
(0, 0)= 0

and if, furthermore,

(9) ν8(0, 0)= ∂

∂X
or ν8(0, 0)=− ∂

∂X
.

(v) For a normalized Legendrian map germ 8(x, y) = (81(x, y),82(x, y), y),
set

D(8)(x, y)=
(
∂81

∂x
(x, y),

∂82

∂x
(x, y), y

)
.

The map germ D(8) : (R2, 0)→ (R3, 0) is called the differential of 8.

We showed in [Nishimura 2010] that any germ ϕ : (R2, 0)→ (R3, 0) of a one-
parameter pedal unfolding of a spherical pedal curve has the form (6). Hence, a
map germ ϕ having the form (6) is said to be of pedal unfolding type. As shown in
[Nishimura 2010], not only nonsingular map germs, but also Whitney umbrellas
may be realized as germs of one-parameter pedal unfoldings of spherical pedal
curves. For more information on Legendrian map germs, see [Arnold et al. 1985;
Izumiya 1987; Zakalyukin 1976; 1983]. Note that both (3) and (10) are normalized
Legendrian map germs.

Proposition 1.2. (i) If ϕ : (R2, 0)→ (R3, 0) is a C∞ map germ of pedal unfolding
type, I(ϕ) is a normalized Legendrian map germ.

(ii) If8 : (R2, 0)→ (R3, 0) is a normalized Legendrian map germ, D(8) is a map
germ of pedal unfolding type.

Set

W= {ϕ : (R2, 0)→ (R3, 0) Whitney umbrella of pedal unfolding type},

S= {8 : (R2, 0)→ (R3, 0) normalized swallowtail}.
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The main purpose of this paper is to show the following:

Theorem 1.3. (i) The map I :W→ S defined by W 3 ϕ 7→ I(ϕ) ∈ S is well-
defined and bijective.

(ii) The map D : S→ W defined by S 3 8 7→ D(8) ∈ W is well-defined and
bijective.

Incidentally, we show Theorem 1.4. A C∞ map germ 8 : (R2, 0)→ (R3, 0) is
called a cuspidal edge if 8 is A-equivalent to the following:

(10) (x, y) 7→
( 1

3 x3, 1
2 x2, y

)
.

Set

N= {ϕ : (R2, 0)→ (R3, 0) nonsingular map germ of pedal unfolding type},

C= {8 : (R2, 0)→ (R3, 0) normalized cuspidal edge}.

Theorem 1.4. (i) The map I : N→ C defined by N 3 ϕ 7→ I(ϕ) ∈ C is well-
defined and bijective.

(ii) The map D : C → N defined by C 3 8 7→ D(8) ∈ N is well-defined and
bijective.

Any stable map germ (R2, 0)→ (R3, 0) is either a Whitney umbrella or nonsin-
gular, and any Legendrian stable singularity (R2, 0)→ (R3, 0) is either a cuspidal
edge or a swallowtail (see [Arnold et al. 1985], for example). Theorems 1.3 and
1.4 can thus be regarded as a “fundamental theorem of calculus” for stable map
germs (R2, 0)→ (R3, 0) and Legendrian stable singularities (R2, 0)→ (R3, 0).

Based on Theorems 1.3 and 1.4, it is natural to ask:

Question 1.5. (i) Let ϕ1, ϕ2 : (R
2, 0)→ (R3, 0) be two C∞ map germs of pedal

unfolding type. Suppose that ϕ1 is A-equivalent to ϕ2. Is I(ϕ1) necessarily
A-equivalent to I(ϕ2)?

(ii) Let 81,82 : (R
2, 0)→ (R3, 0) be two normalized Legendrian map germs.

Suppose that 81 is A-equivalent to 82. Is D(81) necessarily A-equivalent to
D(82)?

In Section 2, several preparations for the proofs of Theorems 1.3 and 1.4 and the
proof of Proposition 1.2 are given. Theorems 1.3 and 1.4 are proved in Section 3
and Section 4 respectively.

2. Preliminaries

Function germs with two variables and map germs with two variables. Let E2

be the set of C∞ function germs (R2, 0) → R, and let m2 be the subset of E2
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consisting of C∞ function germs (R2, 0)→ (R, 0). The set E2 has a natural R-
algebra structure. For a C∞ map germ ϕ : (R2, 0)→ (R2, 0), let ϕ∗ : E2→ E2 be
the R-algebra homomorphism defined by ϕ∗(u)= u ◦ϕ. Set Q(ϕ)= E2/ϕ

∗m2E2.
Then, Q(ϕ) is an R-algebra. A special case of [Mather 1969, Theorem 2.1] follows.

Proposition 2.1. Let p : (R2, 0)→ (R, 0) be a C∞ function germ.

(i) The R-algebra Q(p(x, y), y) is isomorphic to Q(x2, y) if and only if

∂p
∂x
(0, 0)= 0 and

∂2 p
∂x2 (0, 0) 6= 0.

(ii) The R-algebra Q(p(x, y), y) is isomorphic to Q(x, y) if and only if

(x, y) 7→ (p(x, y), y)

is a germ of C∞ diffeomorphism.

Definition 2.2 [Mond 1985]. Let T : R2
→ R2 be the linear transformation of the

form T (s, λ) = (−s, λ). Two C∞ function germs p1, p2 : (R
2, 0)→ (R, 0) are

said to be KT -equivalent if there exists a germ of C∞ diffeomorphism

h : (R2, 0)→ (R2, 0)

of the form h ◦ T = T ◦ h, and a C∞ function germ M : (R2, (0, 0))→ R−{0} of
the form M ◦ T = M , such that p1 ◦ h(x, y)= M(x, y)p2(x, y).

Theorem 2.3 [Mond 1985]. Two C∞ map germs ϕi : (R
2, 0)→ (R3, 0) (i = 1, 2)

of the form

ϕi (x, y)= (xpi (x2, y), x2, y), where pi (x2, y) 6∈ m∞2 (i = 1, 2)

are A-equivalent if and only if the function germs pi (x2, y) are KT -equivalent.
Here,

m∞2 =
{

q : (R2, 0)→ (R, 0)
∣∣∣ ∂ i+ j q
∂x i∂y j (0, 0)= 0 for all i, j ∈ {0} ∪N

}
.

From this and the Malgrange preparation theorem [Arnold et al. 1985], we have:

Corollary 2.4. Two C∞ map germs ϕi : (R
2, 0)→ (R3, 0) (i = 1, 2) of the form

ϕi (x, y)= (ni (x, y)pi (x2, y), x2, y),

where pi (x2, y) 6∈m∞2 and (∂ni/∂x)(0, 0) 6= 0 for i = 1, 2, are A-equivalent if and
only if the function germs pi (x2, y) are KT -equivalent.
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Map germs of pedal unfolding type. Let ϕ : I × J → R3 be a representative of a
given C∞ map germ of pedal unfolding type, where I, J are sufficiently small in-
tervals containing the origin of R. We may put ϕ(x, y)=

(
n(x, y)p(x, y), p(x, y)

)
.

Set

8(x, y)= (81(x, y),82(x, y), y)=
(∫ x

0
n(x, y)p(x, y)dx,

∫ x

0
p(x, y)dx, y

)
and

µ̃8(x, y)= ∂

∂X
− n(x, y) ∂

∂Y
.

Since µ̃8(x, y) 6= 0 for any x ∈ I and y ∈ J , for any fixed y ∈ J we may define
the map germ L8,y : (R, 0)→ T1R2 as

L8,y(x)=
(
(81(x, y),82(x, y)),

µ̃8(x, y)
‖µ̃8(x, y)‖

)
,

where T1R2 is the unit tangent bundle of R2. Then, since ϕ is a representative of a
map germ of pedal unfolding type, we have:

Lemma 2.5. For any y ∈ J , L8,y : (R, 0)→ T1R2 is a Legendrian lift of the map
germ x 7→ (81(x, y),82(x, y)).

This implies:

Lemma 2.6. For any y ∈ J , the map germ 8̃y : (R, 0) → (R2, 0) defined by
8̃y(x)= (81(x, y),82(x, y)) is a Legendrian map germ.

Next, set

ν̃8(x, y)= µ̃8(x, y)−
(
∂81

∂y
(x, y)− n(x, y)

∂82

∂y
(x, y)

)
∂

∂Z
.

Lemma 2.7. For any x ∈ I and y ∈ J ,

ν̃8(x, y) ·
∂8

∂x
(x, y)= 0, ν̃8(x, y) ·

∂8

∂y
(x, y)= 0.

Since ν̃8(x, y) 6= 0 for any x ∈ I and y ∈ J , we may define the map germ

L8 : (R2, 0)→ T1R3

as

L8(x, y)=
(
8(x, y),

ν̃8(x, y)
‖ν̃8(x, y)‖

)
.

Then Lemma 2.7 implies successively:

Lemma 2.8. L8 : (R2, 0)→ T1R3 is a Legendrian lift of 8.

Lemma 2.9. 8 : (R2, 0)→ (R3, 0) is a Legendrian map germ.
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Normalized Legendrian map germs. Let8 :U→R3 be a representative of a given
normalized Legendrian map germ (R2, 0) → (R3, 0), where U is a sufficiently
small neighborhood of the origin of R2. We assume that the origin of R2 is a
singular point of 8. By condition (7) of the definition of normalized Legendrian
map germs, we may assume that 8 has the form

8(x, y)=
(
81(x, y),82(x, y), y

)
.

Since 8 is a representative of a Legendrian map germ, we have the following:

Lemma 2.10. There exists a C∞ vector field ν8 along 8,

ν8(x, y)= n1(x, y) ∂
∂X
+ n2(x, y) ∂

∂Y
+ n3(x, y) ∂

∂Z
,

such that

(i) n1(x, y)
∂81

∂x
(x, y)+ n2(x, y)

∂82

∂x
(x, y)= 0;

(ii) n1(x, y)
∂81

∂y
(x, y)+ n2(x, y)

∂82

∂y
(x, y)+ n3(x, y)= 0;

(iii) the map L8 : U → T1R3 defined by L8(x, y) = (8(x, y), ν8(x, y)) is an
immersion.

Condition (9) in the definition of normalized Legendrian map germs gives:

Lemma 2.11. For the vector field ν8, n1(0, 0) 6= 0 and n2(0, 0)= n3(0, 0)= 0.

By Lemma 2.10(i) and Lemma 2.11, we have the following equality of function
germs:

(11)
∂81

∂x
(x, y)=−

n2(x, y)
n1(x, y)

∂82

∂x
(x, y).

This, together with condition (8) in the definition of normalized Legendrian maps,
implies that

(12) D(8)(0, 0)= (0, 0, 0).

The next lemma is clear:

Lemma 2.12. The function germs n and p given by

n(x, y)=−
n2(x, y)
n1(x, y)

and p(x, y)=
∂82

∂x
(x, y)

are of class C∞, and satisfy D(8)(x, y)=
(
n(x, y)p(x, y), p(x, y), y

)
.

Lemma 2.13. The function germ n satisfies n(0, 0)= 0 and ∂n
∂x
(0, 0) 6= 0.
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Proof. By Lemma 2.11, we have n(0, 0) = 0. Assume, for a contradiction, that
∂n/∂x vanishes at the origin; then so does ∂n2/∂x . At the same time, by differen-
tiating both sides of the equality in Lemma 2.10(ii) with respect to x , we have

(13) n1(0, 0)
∂281

∂x∂y
(0, 0)+

∂n3

∂x
(0, 0)= 0.

Because 8 is a normalized Legendrian map germ such that the origin of R2 is a
singular point of 8, we obtain (∂n3/∂x)(0, 0) 6= 0, which together with (13) gives

∂281

∂x∂y
(0, 0) 6= 0.

From (8), (11), and Lemma 2.11 we have a contradiction. �

Definition 2.14. Let 8 : (R2, 0)→ (R3, 0) be a Legendrian map germ, and let ν8
be a unit normal vector field of8 given in the definition of Legendrian map germs.
The C∞ function germ L J8 : (R2, 0)→ R defined by

L J8(x, y)= det
(
∂8

∂x
(x, y),

∂8

∂y
(x, y), ν8(x, y)

)
is called the Legendrian Jacobian of 8.

Note that if ν8 satisfies the conditions of unit normal vector field of 8, then
−ν8 also satisfies them. Thus, the sign of L J8(x, y) depends on the particular
choice of unit normal vector field ν8. The Legendrian Jacobian of 8 is also called
the signed area density function [Saji et al. 2009b]. Although it is reasonable to
call L J8 the area density function from the viewpoint of investigating the singular
surface8(U ) (U is a sufficiently small neighborhood of the origin of R2), it is also
reasonable to call it the Legendrian Jacobian from the viewpoint of investigating
the singular map germ 8.

Let 8 : (R2, 0)→ (R3, 0) be a normalized Legendrian map germ and ν8 a unit
normal vector field of 8. Write

8(x, y)=
(
81(x, y),82(x, y), y

)
,

ν8(x, y)= n1(x, y) ∂
∂X
+ n2(x, y) ∂

∂Y
+ n3(x, y) ∂

∂Z
.

By Lemma 2.11, we may set

ν̃8(x, y)= ∂

∂X
+

n2(x, y)
n1(x, y)

∂

∂Y
+

n3(x, y)
n1(x, y)

∂

∂Z
.

We now give a formula for the Legendrian Jacobian. We start with the cross
product (vector product)

∂8

∂x
(x, y)×

∂8

∂y
(x, y)=

∂82

∂x
(x, y)ν̃8(x, y).
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This gives

(14) L J8(x, y)=
(∂82/∂x)(x, y)

n1(x, y)
.

Proof of Proposition 1.2. (i) Set

I(ϕ)=8(x, y)= (81(x, y),82(x, y), y) .

By Lemma 2.9, 8 is a Legendrian map germ. Thus, it is sufficient to show that (8)
and (9) in the definition of normalized Legendrian map germs are satisfied.

Set ϕ(x, y) =
(
n(x, y)p(x, y), p(x, y), y

)
. By the definition of map germs of

pedal unfolding type, we have n(0, 0)= 0 and p(0, 0)= 0. It follows that

∂82

∂x
(0, 0)= p(0, 0)= 0.

Thus, condition (8) is satisfied. By Lemma 2.8, the germ L8 given by

L8(x, y)=
(
8(x, y),

ν̃8(x, y)
‖ν̃8(x, y)‖

)
is a germ of Legendrian lift of 8, where

ν̃8(x, y)= ∂

∂X
− n(x, y) ∂

∂Y
−

(
∂81

∂y
(x, y)− n(x, y)

∂82

∂y
(x, y)

)
∂

∂Z
.

Since n(0, 0)= 0 and

∂81

∂y
(0, 0)=

∫ 0

0

∂np
∂y

(x, 0) dx = 0,

we have
ν̃8(0, 0)
‖ν̃8(0, 0)‖

=
∂

∂X
.

Thus, condition (9) is satisfied, proving part (i) of the proposition.
Proposition 1.2(ii) follows from (12), Lemma 2.12, and Lemma 2.13. �

3. Proof of Theorem 1.3

Suppose that both I :W→S and D :S→W are well-defined. By the fundamental
theorem of calculus, we have D ◦I(ϕ) = ϕ for all ϕ ∈W, and I ◦D(8) = 8 for
all 8 ∈ S. That is, both I and D are bijective. Therefore, in order to complete the
proof, it is sufficient to show that both I and D are well-defined.

Proof that I :W→S is well-defined. Let ϕ(x, y)= (n(x, y)pϕ(x, y), pϕ(x, y), y)
be an element of W. Set 8=I(ϕ). Then 8 is a normalized Legendrian map germ
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by Proposition 1.2. Let g be the Whitney umbrella of pedal unfolding type — see
(2) in Section 1:

g(x, y)= (xpg(x, y), pg(x, y), y)= (x(x2
+ y),−x2

− y, y).

Lemma 3.1. There exists a germ of C∞ diffeomorphism h : (R2, 0) → (R2, 0)
such that h has the form h(x, y)= (h1(x, y), h2(y)) and pϕ ◦ h(x, y) is x2

+ y or
−(x2

+ y).

Proof. Since ϕ is a Whitney umbrella of pedal unfolding type, we have

Q(pϕ(x, y), y)∼= Q(ϕ)∼= Q(g)∼= Q(x2, y).

Thus, we may set pϕ(x, 0) = a2x2
+ o(x2) (a2 6= 0) by Proposition 2.1. By the

Morse lemma with parameters [Bruce and Giblin 1992], there exists a germ of C∞

diffeomorphism h : (R2, 0)→ (R2, 0) such that h has the form

h(x, y)= (h1(x, y), h2(y)) and pϕ ◦ h(x, y)=±(x2
+ q(y))

by a certain C∞ function germ q : (R, 0)→ (R, 0). Since ϕ is A-equivalent to g,
by Corollary 2.4, ±(x2

+q(y)) is KT -equivalent to pg and thus q : (R, 0)→ (R, 0)
is a germ of C∞ diffeomorphism. Lemma 3.1 follows. �

Set G=I(g). Then, G has the form of (3) from Section 1, which is a normalized
swallowtail. Since G is normalized, ∂/∂x is the null vector field for G defined in
[Kokubu et al. 2005; Saji et al. 2009a], that is,

∂G
∂x
(x, y)= 0

holds for any (x, y) which is a singular point of G. Since G is a swallowtail, we
have, by [Saji et al. 2009a, Corollary 2.5],

L JG(0, 0)=
∂L JG

∂x
(0, 0)=0,

∂2L JG

∂x2 (0, 0) 6=0, Q
(

L JG,
∂L JG

∂x

)
∼= Q(x, y).

On the other hand, by (14) and Lemma 3.1, there exists a germ of C∞ diffeo-
morphism h : (R2, 0)→ (R2, 0) and a C∞ function germ ξ : (R2, 0)→ R, such
that h has the form h(x, y)=

(
h1(x, y), h2(y)

)
, ξ(0, 0) 6= 0 and we have

L J8 ◦ h(x, y)= ξ(x, y)L JG(x, y).

Because ∂/∂x is the null vector field for 8 (this is because 8 is normalized), L J8
satisfies

L J8(0, 0)=
∂L J8
∂x

(0, 0)= 0,
∂2L J8
∂x2 (0, 0) 6= 0, Q

(
L J8,

∂L J8
∂x

)
∼= Q(x, y).

Hence,8 is a swallowtail by [Saji et al. 2009a, Corollary 2.5], and we have proved
that I :W→ S is well-defined. �
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Proof that D : S → W is well-defined.. Let 8 be an element of S. Then, by
Proposition 2.1, D(8) is of pedal unfolding type; we must show that it is a Whitney
umbrella.

Lemma 3.2. For the Legendrian Jacobian L J8, we have

L J8(0, 0)=
∂L J8
∂x

(0, 0)= 0,
∂2L J8
∂x2 (0, 0) 6= 0, Q

(
L J8,

∂L J8
∂x

)
∼= Q(x, y).

Proof. Since8 is normalized, ∂/∂x is the null vector field. Since8 is a swallowtail,
Lemma 3.2 follows from [Saji et al. 2009a, Corollary 2.5]. �

Since D(8) is of pedal unfolding type, there exists a C∞ function germ n :
(R2, 0)→ (R, 0) such that

∂n
∂x
(0, 0) 6= 0 and

∂81

∂x
(x, y)= n(x, y)

∂82

∂x
(x, y),

where8(x, y)= (81(x, y),82(x, y), y). Set pϕ = ∂82/∂x . By (14), Lemma 3.2,
and the Morse lemma with parameters, there is a germ of C∞ diffeomorphism
h : (R2, 0) → (R2, 0) such that h has the form h(x, y) = (h1(x, y), h2(y)) and
pϕ ◦ h(x, y)=±(x2

+ y). Then, by Corollary 2.4, D(8) is A-equivalent to g. �

4. Proof of Theorem 1.4

As with Theorem 1.3, it is sufficient to show that both I : N→ C and D : C→ N

are well-defined.

Proof that I :N→C is well-defined. Let ϕ(x, y)= (n(x, y)pϕ(x, y), pϕ(x, y), y)
be an element of N. Set 8= I(ϕ). Then, since ϕ is of pedal unfolding type, 8 is
a normalized Legendrian map germ by Proposition 1.2. Let g be the nonsingular
map germ of pedal unfolding type defined by g(x, y)= (x2, x, y).

Lemma 4.1. There exists a germ of C∞ diffeomorphism h : (R2, 0) → (R2, 0)
having the form h(x, y)= (h1(x, y), h2(y)) and such that pϕ ◦ h(x, y)= x.

Proof. Since ϕ is nonsingular and of pedal unfolding type, we have

Q(pϕ(x, y), y)∼= Q(ϕ)∼= Q(g)∼= Q(x, y).

Thus, (pϕ(x, y), y) is a germ of C∞ diffeomorphism by Proposition 2.1. From
the form of (pϕ(x, y), y), its inverse map germ h : (R2, 0)→ (R2, 0) has the form
h(x, y) = (h1(x, y), h2(y)). Since h is the inverse map germ of (pϕ(x, y), y), it
follows that pϕ ◦ h(x, y)= x . �

Since 8 is normalized, ∂/∂x is the null vector field for 8. By Lemma 4.1 and
(14), we have

∂L J8
∂x

(0, 0) 6= 0.
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Thus, the null vector field ∂/∂x is transverse to {(x, y) | L J8(x, y)= 0} at (0, 0)∈
R2. Hence, 8 is a cuspidal edge by [Kokubu et al. 2005, Proposition 1.3], showing
that I : N→ C is well-defined. �

Proof that D :C→N is well-defined. Let8 be an element of C. By Proposition 1.2,
D(8) is of pedal unfolding type.

Lemma 4.2. The Legendrian Jacobian L J8 satisfies

L J8(0, 0)= 0 and
∂L J8
∂x

(0, 0) 6= 0.

Proof. Since ∂/∂x is the null vector field for8 and8 is a cuspidal edge, Lemma 4.2
follows from [Saji et al. 2009a, Corollary 2.5]. �

Since D(8) is of pedal unfolding type, there exists a C∞ function germ n :
(R2, 0)→ (R, 0) such that

∂n
∂x
(0, 0) 6= 0 and

∂81

∂x
(x, y)= n(x, y)

∂82

∂x
(x, y),

where 8(x, y) = (81(x, y),82(x, y), y). Set pϕ = ∂82/∂x . By Lemma 4.2 and
(14), the map germ (x, y) 7→ (pϕ(x, y), y) is a germ of a C∞ diffeomorphism.
Thus, D(8) is nonsingular. Since D(8)(0, 0) = (0, 0, 0), we have proved that
D : C→ N is well-defined. �
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