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Abstract

Optimizing hull form design is playing a more important role in the shipbuilding

industry, especially when regulations on the environmental protection and improvement

of ship energy efficiency become more stringent than ever. Though the studies on design

optimization of ship hull form have a long history and also achieved some significant re-

sults, studies on the stern shape optimization of a ship hull have been still a few due to the

complexity of flow field behind a ship stern. In this study, a numerical method for opti-

mizing the stern shape of a container ship based on a nonlinear programming method and

a Navier-Stokes analysis is proposed. A CFD solver which solves the three-dimensional

Reynolds Averaged Navier-Stokes (RANS) equations for incompressible flows is used

for evaluation of an objective function and analysis of flow fields around ship hulls. The

Sequential Quadratic Programming (SQP) method is utilized as an optimizer which au-

tomatically determines values of the design variables in such a way that the objective

function is minimized subject to the given constraints. Design variables are selected so

that the modified transom shapes are efficiently created through the optimization pro-

cess. Finally, to demonstrate the applicability of the present method, a transom stern of

a container ship is selected for the optimization processes to minimize the pressure resis-

tance coefficient at a model scale. Furthermore, the effects of the initial designs and of

the shape modification functions to the optimized results are also examined in this study.

The optimized results show that the present optimization system is able to create a stern

shape that decreases the pressure resistance coefficient; however, it turns out that special

cares should be taken in the selection of the initial designs and the hull form modification

functions since the optimization results strongly depend on these parameters.
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Chapter 1

Introduction

1.1 Background and Motivation

In some recent years, with the accelerating globalization of the world economy, de-

mands for the transportation especially for the sea transportation have been continuously

increasing. Keeping up with these demands, the shipbuilding industry have been also de-

veloping and now are playing a more important role in the world trade. However, the ur-

gent issues of the environmental protection and increase of fuel cost at the same time make

the shipbuilding industry be facing with many challenges. In order to reduce emission of

the greenhouse effect gas, the International Maritime Organization (IMO) have released

and amended the mandatory measures of Energy Efficiency Design Index (EEDI) applied

for new ships, Ship Energy Efficiency Management Plan (SEEMP) applied for all ships

and benchmarks of enhancing ship energy efficiency [1, 2]. In these circumstances, design

optimization of a ship hull is acknowledged to be one of the most effective and efficient

solutions to improve ship efficiency as well as to satisfy the environmental protection cri-

terion. In general, it can be said that study on the hull form design optimization has a long

history with many interests of ship designers and researchers. It has also achieved some

important results that have been being utilized in the practical designs such as bulbous

bow [3], Kawasaki Stern End Wedge [4], ducktail waterline extension [5] and so forth.

With much progress has been made in the development of robust and efficient com-

putational approaches in the last decade, the current Computational Fluid Dynamic (CFD)

methods can provide a good evaluation of ship resistance and accurate predictions of flow

field that contains both viscous and free-surface effects nowadays. While the development

of CFD methods continues unabatedly, the applications of these methods to real world

problems become industrial practice in the shipbuilding industry. The successful calcu-

1



Chapter 1. Introduction 2

lations and simulations of ship resistances and flow fields can be found in some research

works [6, 7]. Based on achievements of the computational techniques, design a ship hull

by analyzing the simulated results using a CFD method is being considered as another ef-

ficient manner in addition to the conventional towing test based design procedures. There

have been also some studies utilizing the numerical techniques and optimization methods

to minimize the user defined objective functions.

In the hull form optimization using the numerical flow analysis, taking the advan-

tages of fast computation in evaluation of the objective functions, the potential flow solver

is used first. For instance, Suzuki et al. [8] optimized the stern hull form of SR221 and

HTC container ship models to minimize energy of the secondary flows. The optimized

stern hull form reduced 10% of the drag resistance in case of the SRR221B ship model

and depending on each constrain condition, the drag resistance of the HTC container ship

reduced 3% - 7%. In order to minimize wave making resistance around the hull forms,

Zang [9, 10] optimized the Series 60 (S60) hull form and bulbous bow of a container ship.

Though the potential flow solvers can give the evaluated result of the objective func-

tions during the optimization process fast, the potential flow solver itself is not suitable for

simulation of real flows that contain both viscous and free-surface effects. The optimiza-

tion system based on the Navier-Stokes equations that can solve well flows containing

both viscous and free surface effects, therefore, have been also developed. Hino [11]

and Tahara et al. [12, 13, 14] developed successfully the optimization systems based on

solving RANS equations to optimize ship hull forms that reduces significantly the user

defined objective functions.

On the other hand, the optimization studies have also expanded the objective func-

tions from the single objectives to multi-objectives. Tahara et al. [12] developed an opti-

mization system for optimizing the stern shape of a tanker. The selected objective func-

tions are the delivered horsepower and overshoot angle. He also developed an optimiza-

tion system for optimizing hull surface of a combatant model (DTMB-5415). Parsons

et al. [15] developed a method for establishment of the initial parameters of a stern flap in

the preliminary design, which can be a baseline design for use in a subsequent program

and also can be utilized again to provide multi-criterion optimization to establish the final

design parameters for the stern flap.

Recently, the optimization studies have applied not only for mono hull forms but also

for multi-hull forms. Tahara et al. [14] developed an optimization method for minimizing
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the total drag resistance of a high-speed sealift research model (HSSL-B). Kim and Yang

[16] applied the radius basis function interpolation for optimization of the delft-trimaran

model. Saha et al. [17] used the Rankine Source method for optimization of a catamaran

with large bow and stern bulbs installed at the center plane and so forth.

Despite the studies on hull form design optimization have been attracted many in-

terests and achieved some significant results, the optimization study, particularly for the

stern shape of a ship hull has been still limited. In general it can be said that the design

optimization of a transom shape or the aft part is more difficult than these of the fore part

and of the bulbous. Influences of the turbulent flow, effects of transom configurations and

hull propeller interactions make flow field behind the ship stern extremely complicated. It

can also be said that most of the studies on stern shape optimization have widely used the

frameline modification functions which change breadth and modify the frameline curves

of ship hulls [8, 11]. Some experimental studies have shown that the transom configu-

rations and appendages have significant effects on hydrodynamic resistance components

and flow field behind the ship stern [18–21]. The main factors defining the stern shape of

a ship hull are the transom height, bottom profile together with the frameline curves of the

overhang shape. Though determining the transom height and stern shape are an impor-

tant step in the optimization process, numerical studies on determination of the transom

height and the bottom profile by using a CFD method have been still a few. In this study,

a numerical method for finding the transom height, bottom profile and frameline curves

of the stern shape of a container ship hull is proposed.

1.2 Objectives of this study

The main objective of this study is to describe the development of a numerical

method for the stern shape optimization of a container ship hull. As mentioned before,

most of the previous studies on the stern shape optimization have used the modification

functions that modify only the breadth and framline curves of a hull. With the constrains

assigned on the design variables, variations of the framelines somehow are limited. Also

effects of the modified framlines on flow fields around the modified ship hull are not so

much. In this study, the hull form modification function is applied for not only the frame-

line modification but also for determination of the transom height at the stern end and

bottom profile curves. Since the transom height is not fixed, it is expected that the present

hull form modification method has greater flexibility than the previous approaches. The
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optimized hull form is also expected to be more optimized and have better performance.

In order to demonstrate the applicability of the optimization system, the stern shape of a

container ship hull is optimized to minimize the pressure resistance coefficient. Besides,

in order to investigate the effects of the initial design and of the frameline modification

functions to the optimized hull forms, the optimization processes using different initial

designs and modification functions are also carried out and then the optimized results are

compared with each other.

1.3 Organization of the thesis

This thesis is organized as 4 chapters. In the chapter 1, a summary of the previous

studies on hull form optimization, motivation and objectives of this study are presented.

Chapter 2 presents the optimization method used in this study. Brief description on

the mathematical form of the optimization system based on the SQP (Sequential Quadratic

Programming (SQP) method are presented. The details of the hull form modification

function together with CFD solver are also described in this chapter.

Chapter 3 shows the achieved results of the optimization applications. Results of

the investigations on effects of the initial design values and of the hull form modification

functions are also described in details. In addition, results of the grid dependency test for

one representative case are also provided to validate the optimized results.

Chapter 4 is a brief conclusion of this study. Suggestions for future works are also

presented in this chapter.



Chapter 2

Optimization method

In general, the optimization problems are solved systematically by iterative evalua-

tion of the objective functions. It can be briefly described as follows (Figure 2.1):

Figure 2.1: Outline of the optimization process.

1. Determine values of the design variables D. Values of the design variables are

given by user at the beginning then determined by SQP procedure in the following

steps during the optimization process.

2. Define a hull form corresponding to the given values of the design variables. The

computational grid around the new ship hull is regenerated. The hull modification

and grid generator tools are used in this step.

3. The CFD solver is used to compute the flow field surrounding a ship hull by using

the computational grid obtained in 2.

5
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4. Compute the objective function F and constraints by using the flow field Q and the

hull geometry defined by D.

5. The sensitivity coefficients of both objective function and constraints are evaluated

by using the finite difference method.

6. The SQP method is used to determine values of the design variables D for the next

steps.

7. If value of the objective function converges or satisfies certain criteria, the opti-

mization process finishes. Otherwise, return to 2.

Figure 2.2: Three main elements of the optimization problem.

As shown in Figure 2.2, three main components of an optimization system are a

nonlinear optimizer, a CFD solver and a hull shape modification method together with a

grid generator. In the present study, the SQP method is utilized as an optimizer which

automatically determines values of the design variables. A SURF v6.46 which solves the

three-dimensional Reynolds Averaged Navier-Stokes equations for incompressible flows

is used for evaluation of the objective function and analysis of flow fields around ship

hulls. The details of each item are described in the subsequent sections followed by its

applications.

2.1 The Sequential Quadratic Program

The Sequential quadratic programming (SQP) is an iterative method for nonlinear

optimization problems and has proven as one of the most successful methods for the
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numerical solution of the constrained nonlinear optimization problems. It relies on a pro-

found theoretical foundation and provides powerful algorithm for the solution of larger-

scale technologically relevant problems [22]. Assume that the general form of a hull form

optimization problem can be written as follows [11]:

Minimize F [D,Q (D)]

Subject to Ci [D,Q (D)] = 0, i = 1,ME

Ci [D,Q (D)] ≥ 0, i = ME + 1,M

(2.1)

where F is an objective function to be minimized and it is dependent on D and Q. D

is the vector of design variables which is used to define a ship hull. Q is the vector of

flow variables, thus, it is a function of hull geometry D. Ci = 0 and Ci ≥ 0 are equality

and inequality constraints, respectively. Note that, Ci is either the function of D only

(geometric constraint) or the function of D and flow field Q which is determined by the

Navier-Stokes analysis.

When the current design point D(k) is determined, the next design point D(k+1) is

evaluated as follows. First, the following quadratic programming problem is solved to

obtain the search vector d:

Minimize ∇F[D(k)]Td +
1
2
dTB(k)d

Subject to Ci[D(k)] + ∇Ci[D(k)]Td = 0, i = 1,ME

Ci[D(k)] + ∇Ci[D(k)]Td ≥ 0, i = ME + 1,M

(2.2)

In the above equations, objective function F is approximated as the quadratic func-

tion of D(k) and the constraints are approximated as the linear functions of D(k). B is an

approximation to the Hessian matrix of the Lagrange function L[D,u] as follows:

B ≈ ∇2L [D,u] = ∇2

F[D] −
M∑

i=1

uiCi[D]

 (2.3)

where u = (u1, u2, . . .)T are the Lagrange multipliers.

The next design point D(k+1) is obtained by the line search along the vector d. Step

size t is determined in such a way that the following penalty functions:

F[D] + r

 ME∑
i=1

|Ci[D]| +
M∑

i=ME+1

|min (0,Ci[D])|

 (2.4)

becomes smaller than a certain value with r being a parameter. Finally, the next design

point is computed by:

D(k+1) = D(k) + t(k)d(k) (2.5)
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And the design iteration continues until the convergence criterion are satisfied.

In the SQP methods, the gradients of the objective function (∇F) and of the con-

straints (∇Ci) with respect to the design variables which are called the sensitivity coeffi-

cients are required. The sensitivity coefficients can be simply evaluated by using the finite

difference of solutions with a slight perturbation of the design variables. Grid generations

and flow computations, therefore, should be repeated as many times as number of the

design variables.

The sensitivity coefficients, (∇F) and (∇Ci) can be analytically expressed as follows

(only the objective function F is used in the following discussion, the fluid dynamic con-

straints can be treated similarly):

∇F =

(
∂F
∂D1

,
∂F
∂D2

, . . . ,
∂F
∂D j

, . . .

)T

(2.6)

where D =
(
D1,D2, . . . ,D j, . . .

)
is the vector of design variables. The gradient of the

objective function F with respect to the design variable D j is evaluated by the central

finite difference approximation as follows:

∂F
∂D j

=
F[D1, . . . ,D j + ε j, . . .] − F[D1, . . . ,D j − ε j, . . .]

2ε j
(2.7)

with ε j being the step size of the design variable D j. The procedure for estimation of the

gradient of the constraints is carried out in the similar way.

2.2 Navier-Stokes solver

2.2.1 Governing Equation

The CFD code used in this study is SURF1 v6.46 that has been developed at National

Maritime Research Institute - Japan. SURF is an advanced CFD code that has been de-

veloped as a practical ship design tool and now being used in many shipyards in Japan.

Successful computations and simulations of ship resistances and free-surfaces by using

SURF could be found in some research works [6, 7, 23].

In the SURF code, the governing equations to be solved are the three-dimensional

Reynolds averaged Navier-Stokes (RANS) equations for incompressible flows. The fi-

nal vector form using non-dimensional variables of the flow equations in the Cartesian

1Solution algorithm for Unstructured RANS with FVM.
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coordinate system can be written as follows [24, 25]:

∂~q
∂t

+
∂(~e − ~ev)

∂x
+
∂( ~f − ~f v)

∂y
+
∂(~g − ~gv)

∂z
= 0 (2.8)

where ~q = [p, u, v, w]T is the vector of flow variables which consists of pressure p

and (u, v,w) - the velocity components in the (x, y, z) directions. Note that, to achieve the

above final form, the artificial compressibility is included into the continuity equation to

couple pressure with a velocity field. And, to exclude the gravitational acceleration term

in the z-momentumn equation, pressure p is modified as

p = p∗ +
z

Fn2

where p∗ is the original pressure and Fn is the Froude number.

The inviscid fluxes ~e, ~f and ~g are defined as:

~e =



βu

u2 + p

uv

uw


, ~f =



βv

vu

v2 + p

vw


, ~e =



βw

wu

wv

w2 + p


where β is a parameter for artificial compressibility. ~ev, ~f v and ~gv are the viscous fluxes

defined as follows:

~ev =



0

τ11

τ12

τ13


, ~f v =



0

τ21

τ22

τ23


, ~gv =



0

τ31

τ32

τ33


where

τi j =

(
1

Rn
+ νt

) (
∂ui

∂x j
+
∂u j

∂xi

)
with (x1, x2, x3) = (x, y, z) and (u1, u2, u3) = (u, v,w). In the above expressions, all the

variables are made dimensionless using the reference density ρ, velocity U and length L.

Rn is the Reynolds number defined as UL/ν where ν is the kinematic viscosity. νt is the

non-dimensional kinematic eddy viscosity determined by a turbulence model.
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2.2.2 Spatial Discretization

2.2.2.1 Spatial Discretization

Spatial discretization of the solution scheme is based on a finite-volume method for

an unstructured grid. Cell shape of the present solver that can cope with are tetrahedron,

prism, pyramid or hexahedron and face shapes are either triangular or quadrilateral as

shown in Figure 2.3 [24, 25]

Figure 2.3: Cell shapes

These four types of cells give better flexibility in handling complex geometries. In

particular, it is suitable for a hybrid grid approach in which prisms and hexahedra are

placed in the region close to a solid wall for the efficient resolution of boundary layers

while tetrahedron and pyramids are used in handling the remaining region in a flexible

manner. A cell centered layout is adopted which means flow variables ~q are defined at the

centroid of each cell and a control volume is a cell by itself.

Integrating form of the Equation (2.8) over a cell volume Vi yields [24]:$
Vi

∂~q∂t
+
∂(~e − ~ev)

∂x
+
∂( ~f − ~f v)

∂y
+
∂(~g − ~gv)

∂z

 dV = 0 (2.9)

The first term in the integral can be expressed as the product of the cell volume Vi

and the time derivative of the cell averaged value of flow variables ~qi, since the grid is

stationary in the current applications. The remaining terms are converted into surface

integration over cell faces using the divergence theorem. This yields the semi-discrete

form of the governing equation as follows:

Vi
dqi

dt
+

∑
j

Fi+ j/2 −
∑

j

R(i+ j)/2 = 0 (2.10)

where i is a cell index and j is the index of next cells of the cell i. Subscript (i + j) /2

denotes the face between cells i and j as shown in Figure 2.4. Equation (2.10) is solved
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using 2nd order upwind scheme based on flux difference splitting in space and Euler

implicit scheme in time [24].

Figure 2.4: Schematic sketch of cell and face indices.

F and R are the inviscid and viscous fluxes and be defined as:

F = eS x + f S y + gS z (2.11)

R = evS x + f vS y + gvS z (2.12)

where (S x, S y, S z) are the (x, y, z)-components of the area vector of a cell face in the di-

rection from the cell i to the cell j.

2.2.2.2 Discretization of the inviscid fluxes

Components of the inviscid fluxes F can be written as [24, 26]:

F (q) =



βacU

uU + pS x

vU + pS y

wU + pS z


(2.13)

where U = uS x + vS y + wS z. The inviscid fluxes are evaluated by the upwind scheme

based on the flux-difference splitting of Roe [27]. In this scheme, the numerical fluxes are

computed as

F(i+ j)/2 =
1
2

[
F(qR) + F(qL) − |A|(qR − qL)

]
(2.14)

where qR, qL are the flow variables on the right and left sides of a cell face, respectively.

|A| is defined in the following way. First, let A be the Jacobian of the inviscid flux F at a

cell face:

A =
∂F

∂q
(2.15)
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where the flow variables at the cell face q(i+ j)/2 are evaluated by using simple average of

the right and the left side values, i.e.,

q(i+ j)/2 =
1
2

(qR + qL) (2.16)

The eigenvalues of A are U,U,U + c,U − c where c is the pseudo-speed-of sound

and be as defined as

c =

√
U2 + βac(S 2

x + S 2
y + S 2

z ) (2.17)

By using the right-eigenvector R,A can be expressed as

A = RΛR−1 (2.18)

where Λ is

Λ = diag(U,U,U + c,U − c) (2.19)

Finally, |A| is given by

A = R|Λ|R−1 (2.20)

with

|Λ| = diag(|U |, |U |, |U + c|, |U − c|) (2.21)

To archive the second order accuracy in space, the MUSCL approach is used in

which the flow variables q is reconstructed as a linear polynomial function inside each

cell using the cell centroid values. Let the scalar quantity q be a component of q and q is

assumed to be linearly varying in the vicinity of the cell i, i.e.,

q(x) = qi + ∇qi(x − xi)) (2.22)

where ∇qi = (∂qi/∂x, ∂qi/∂y, ∂qi/∂z)T is the gradient of q at the cell i and xi is the coor-

dinates of the cell centroid i. This equation is applied to the cell j which is adjacent to the

cell i, which yields

q j = qi + ∇qi(x j − xi) (2.23)

or

(x j − xi)∇qi = q j − qi (2.24)

A similar equation can be written for all the neighbor cells of i, thus,

∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2
...

...
...

∆x3 ∆y31 ∆z3





∂qi

∂x
∂qi

∂y
∂qi

∂z


=



q1 − qi

q2 − qi

...

qm − qi


(2.25)
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where

∆x j = x j − xi

The above equation gives the overdetermined system for ∇qi and the least squares

solution can be obtained by solving it via QR decomposition. Finally, qR and qL are

extrapolated using the gradient with the limiter function as follows

qL = qi + Φ∇qi(x(i+ j)/2 − xi) (2.26)

qR = q j + Φ∇q j(x(i+ j)/2 − x j) (2.27)

where x(i+ j)/2 is the coordinates of the center of face (i + j)/2.

The limiter function Φ is used to enforce the monotonicity of the reconstruction. The

form proposed by Barth [28, 29] is used in the present scheme which is written as:

Φ =


min

(
1,

qmax − qi

q(i j)/2 − qi

)
if q(i+ j)/2 − qi > 0

min

1, qmin − qi

q(i j)/2 − qi

 if q(i+ j)/2 − qi < 0

1 if q(i+ j)/2 − qi = 0

(2.28)

where qmax and qmin are the maximum and minimum values of q at the cell i and its

neighbors.

2.2.2.3 Discretization of viscous fluxes

The viscous fluxes components can be briefly described as [24, 30]:

R(q) =



0

S xτxx + S yτxy + S zτxz

S xτyx + S yτyy + S zτyz

S xτzx + S yτzy + S zτzz


(2.29)

The computation of R(i+ j)/2 requires velocity gradient on a cell face. These are com-

puted again by applying the divergence theorem to another control volume surrounding a

cell face as shown in Figure 2.5.



Chapter 2. Optimization method 14

Figure 2.5: Control volume for the evaluation of velocity gradient.

The values of q at the centroids i and j as well as at the nodes surrounding the face

(i+ j)/2 (k, k+1, . . .) are used for the surface integration. For example, ∂u/∂x is computed

as:

∂u
∂x(i+ j)/2

=
1

V∗
∑

Faces
uS x

=
1

V∗

(ui + uk + uk+1

3
S x,i,k,k+1 +

u j + uk + uk+1

3
S x, j,k,k+1

) (2.30)

where V∗ is the volume of the current control volume and S x,α,β,γ is the x-component of

the outward area vector of the face formed by the nodes α, β and γ. This formulation is

equivalent to centered differencing in the structured grid case and is second order accu-

racy.

The velocity values at the nodes k, k + 1 etc. are computed from the values at the cell

centroids by the Laplacian weighted average as follows [31]:

qk =

∑
j w jq j∑

j w j
(2.31)

where the summation is for all the cells that share the node k. The weight w j is computed

as:

w j = 1 + λx(x j − xk) + λy(y j − yk) + λz(z j − zk) (2.32)

where λx, λy and λz are the solution of
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz



λx

λy

λz

 =


Rx

Ry

Rz

 (2.33)
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with

Ixx =
∑

j

(x j − xk)2 Iyy =
∑

j

(y j − yk)2 Izz =
∑

j

(z j − zk)2

Ixy =
∑

j

(x j − xk)(y j − yk) Iyz =
∑

j

(y j − yk)(z j − zk) Izx =
∑

j

(z j − zk)(x j − xk)

Rx =
∑

j

(x j − xk) Ry =
∑

j

(y j − yk) Rz =
∑

j

(z j − zk)

This formulation gives the exact values for linearly varying functions and is second order

accuracy.

2.2.2.4 Time integration

With the introduction to the artificial compressibility into the governing equations,

incompressible flow fields then can be obtained only as a steady state limit. Therefore,

transient solutions are not physically valid. The time integration in the present scheme is

thus the way to drive solutions to a steady state and time accuracy of the scheme is not

important [24, 26].

The first order backward Euler scheme is used for the time integration in which the

governing equation is written as

Vi
∆qi

∆ti
+

∑
j

Fn+1
(i+ j)/2 −

∑
j

Rn+1
(i+ j)/2 = 0 (2.34)

where

∆q = qn+1 − qn

and the superscripts denote the time step. ∆ti is time increment in local time stepping

in which ∆ti is determined cell by cell in such a way that the CFL number is globally

constant as follows

∆ti = CFL
Vi∑

Faces
(|U | + c)

(2.35)

where CFL is the CFL number. The summation of the denominator is taken over all faces

of the current cells.

The linearization of the inviscid flux Fn+1 with respect to time is made as follows

F n+1 = F n +
∂F

∂q
∆q (2.36)
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When the Jacobian ∂F /∂q is evaluated, the flux F is computed with the first order upwind

scheme by setting

qL = qi

qR = q j

i.e., the inviscid flux is approximated by

F(i+ j)/2 ≈
1
2

[
F (q j) + F (qi) + |A|(q j − qi)

]
(2.37)

Thus, ∂F /∂q.∆q is expressed as

∂F

∂q
∆q =

1
2

[
A j · ∆q j + Ai · ∆qi − |A| · (∆q j − ∆qi)

]
(2.38)

where

Ai =
∂F (q)i

∂qi

In the similar manner, the viscous flux is linearized in time as

Rn+1 = Rn +
∂R

∂q
· ∆q (2.39)

For the evaluation of the Jacobian ∂R/∂q, the velocity gradients are approximated

by neglecting the contribution from the values at the nodes qk, etc. Equation (2.30) is

replaced by

∂u
∂x(i+ j)/2

=
1

V∗

∑
Faces

uS x

≈
1

V∗

(ui

3
S x,i,k,k+1 +

u j

3
S x, j,k,k+1 + . . .

)
=

S x

3V∗
(u j + ui)

(2.40)

where S x is the area vector component of the face (i + j)/2 as defined above. Using the

similar approximation for the other velocity gradients, R can be written as

R ≈ B · (q j − qi) (2.41)

where

B =
(1/R + νt)

3V∗
×



0 0 0 0

0 S 2 + S 2
x S xS y S xS z

0 S yS x S 2 + S 2
y S yS z

0 S zS x S yS z S 2 + S 2
x


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Thus, ∂R/∂q · ∆q becomes

∂R

∂q
· ∆q ≈ B(∆q j − ∆qi)

And, Equation (2.34) now becomes

Vi
∆qi

∆ti
+

∑
j

Fn
(i+ j)/2 −

∑
j

Rn
(i+ j)/2 +

∑
j

1
2

[
A j · ∆q j + Ai · ∆qi − |A| · (∆q j − ∆qi)

]
(2.42)

The ∆ terms are rearranged into a form as follows Vi

∆ti
I +

∑
j

(
Ai + |A|

2
+ B

)·∆qi+
∑

j

[(
A j − |A|

2
−B

)
· ∆qi

]
= −

∑
j

Fn+1
(i+ j)/2 −

∑
j

Rn+1
(i+ j)/2


(2.43)

The above equation is a linear equation with respect to ∆q. In order to solve this

equation, the Symmetric Gauss-Seidel (SGS) iteration is adopted. And, to improve con-

vergent speed, the cells are ordered from upstream to downstream in the preprocessing

stage. The Gauss-Seidel sweep is carried out form the upstream cell to the downstream

first, then the second sweep follows in the reverse order. The following sweeps change

the direction alternately.

2.2.3 Boundary Condition

The cell faces on the boundaries are classified as the boundary faces. The boundary

conditions are implemented by giving the approximate fluxes on the boundary faces based

on the following conditions [24, 25]:

Solid wall:
∂p
∂n

= 0, u = v = w = 0

Inflow:
∂p
∂n

= 0, (u, v,w) = (Uniform flow)

Outflow:

p = 0,
∂u
∂n

=
∂v
∂n

=
∂w
∂n

= 0

Side:
∂p
∂n

=
∂u
∂n

=
∂v
∂n

=
∂w
∂n

= 0

Symmetry:

Symmetric Conditions
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In case of the Dirichlet conditions, the fluxes can be computed using given values,

while in case of the Neumann conditions, that flow variables on the faces is set equal to

those at the cell that contains the current faces. In the time integration process, all the

boundary conditions are treated implicitly.

2.2.4 Turbulence Model

A turbulence model is indispensable for simulation of the high Reynolds number

flows from the practical point of view. There are a number of turbulence models ranged

from simple algebraic models or one-or two equations models for the eddy viscosity con-

cept to Reynolds stress models for the second order closure. However, no model has been

proved to be universally applicable to general fluid engineering problems. In practice, a

turbulence model should be selected based on the characteristics of a flow field of each

problem. Ship flows, particularly stern flows, are extremely complicated because they are

essentially three dimensional separated flows with strong longitudinal vortices and free

surface effects can not be neglected in some cases. These extremely complicated ship

flows are beyond the capability of most of existing turbulence models [24, 32].

Since the original Spallart - Allmaras turbulence model is known to be relatively

simple and yet produce reasonable predictions for ship flows, especially flows at bow and

stern. To cope with these difficulties, SURF code has adapted a newly proposed evalu-

ation of the vorticity component in production term and has obtained Modified Spalart-

Allmaras turbulence model which has proven better than original model in simulation

flow field at bow and stern [33]. In the present study, the Modified Spalart-Allmaras tur-

bulence model is utilized for simulation of the free surface flow and analysis of effects of

transom shape on the stern waves. The original Spallart-Allmaras model is a one equation

model which solves a transport equation for a viscosity - like variable ν̃ and be described

mathematically as below [32, 34].

The eddy viscosity νt is defined by:

νt = ν̃ fv1, fv1
χ3

χ3 + C3
v1

, χ :=
ν̃

ν

with ν is the molecular viscosity, ν̃ is determined by solving the transport equation defined
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as following:

∂ν̃

∂t
+ u j

∂ν̃

∂x j
=Cb1

[
1 − ft2

]
S̃ ν̃ +

1
σ

{
∇ ·

[(
1

Re
+ ν̃

)
∇ν̃

]
+ Cb2 |∇ν|

2
}

−

[
Cw1 fw −

Cb1

κ2 ft2

] (
ν̃

d

)2

+ ft1∇U2

(2.44)

Here

S̃ = |ω| +
ν̃

κ2d2 fv2, fv2 = 1 −
χ

1 + χ fv1

where ω is the magnitude of the vorticity, and d is the distance to the closet wall. The

function fw is:

fw = g
[

1 + c6
w3

g6 + c6
w3

]1/6

where

g = r + cw2

(
r6 − r

)
, r ≡

ν̃

S̃ κ2d2

ft1 = ct1gt exp
(
−ct2

ω2
t

∇U2

[
d2 + g2

t d2
t

])
, gt ≡ min (0.1,∇U/ωt∇xt)

The function ft2 is:

ft2 = ct3exp
(
−ct4χ

2
)

The constants are:

cb1 = 0.135, σ = 2/3, cb2 = 0.622, κ = 0.41, cw1 = cb1/κ
2 + (1 + cb2)/σ,

cw2 = 0.3, cw3 = 2, cv1 = 7.1, ct1 = 1, ct2 = 2, ct3 = 1.2, ct4 = 0.5

The right hand terms of the Equation (2.44) represent the production, diffusion, de-

struction and trip.

The original Spalart-Allmaras turbulence model over-predicts the level of eddy vis-

cosity in the core of a vortex and thus produce excessive diffusion. In order to reduce the

eddy viscosity calculated from the original model in the stern area, the vorticity compo-

nent |ω| is modified as follows:

|ω| → |ω| + C min (0, |S | − |ω|)

where |S | is the magnitude of the strain - rate tensor. The advantage of this formulation

is that the eddy viscosity is reduced in the regions where the magnitude of the vorticity

exceeds that of the strain rate, such as in the vortex core. On the other hands, the axial

vortex correction is passive in thin shear layers where |S | and |ω| are very close. C is an

arbitrary constant and set to 20 in the SURF code [33].
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2.2.5 Free Surface Treatment

In the ship hydrodynamic applications, the free surface is an interface between air

and water. Free surface conditions consist of dynamic and kinematic conditions and they

are implemented in the interface capturing framework [7, 30].

The kinematic condition is the condition that fluid particles on a free surface remain

on an interface. This is written in a mathematical form as follows [7]:

DH
Dt
≡
∂H
∂t

+ u
∂H
∂x

+ v
∂H
∂y

+ w
∂H
∂z

= 0

where a free surface shape is defined as:

H (x, y, z, t) = 0.

In the present scheme, this kinematic condition is formulated based on the localized

level set method which improves the efficiency of the original level set approach [35].

The level set function φ is defined as the signed distance from the interface, i.e.,

φ


> 0 in water,
= 0 on the interface,
< 0 in air.

Since φ (x, y, z; t) = 0 defines the free surface shape, the kinematic condition can be

satisfied if the following equation is used to update φ:

Dφ
Dt
≡
∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
= 0 (2.45)

In the localized version of the level set method, the two parameters γ1 and γ2 where

0 < γ1 < γ2 are introduced. The signed distance function is rewritten as d(x, y, z; t) and

the definition of the level set function is modified as:

φ =


γ2 if d > γ2,

d if |d| ≤ γ2,

−γ2 if d < −γ2.

Thus, the level set function is localized within the bandwidth 2γ1 from the interface.

The transport Equation (2.45) is also modified as:

∂φ

∂t
+ C (φ)

(
u
∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z

)
= 0 (2.46)
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where C(φ) is the cut - off function defined as [7]:

C (φ) =


1 if |φ| ≤ γ1,

(|φ| − γ2)2 (2|φ| + γ2 − 3γ1)
(γ2 − γ1)3 if γ1 ≤ |φ| ≤ γ2,

0 if γ2 < |φ|.

is such a way that the update of φ is performed only in the region where |φ| ≤ γ2.

The numerical solution for Equation (2.46) is identical to the one for the flow (2.8).

The cell centered finite volume discretization applied for the cell i yields:

Vi
∂φi

∂t
+

∑
j

C (φi)
(
φ(i+ j)/2U(i+ j)/2

)
= 0 (2.47)

where

U(i+ j)/2 ≡ uiS x,(i+ j)/2 + viS y,(i+ j)/2 + wiS z,(i+ j)/2

Vi is the cell volume and j is the neighbor cells of the cell i. The subscript (i + j)/2 means

the cell face between the cells i and j and (S x, S y, S z) are the area vectors of the cell faces.

φ(i+ j)/2 is the value of φ on the cell face, is extrapolated from the cell centered values in the

second order upwind manner. The gradient of φ at the cell center used in the extrapolation

above is obtained by the least squares method. The time integration is carried out by the

Euler backward scheme.

The discrete Equation (2.47), however, does not necessarily gives ∂φ/∂t = 0, unless∑
j

(
φ(i+ j)/2S x,(i+ j)/2

)
= 0

is satisfied. Since the current function φ = −z is a linearly varying function, the extrap-

olation of the face value φ(i+ j)/2 from the cell centered values can be performed to give

the exact values. The approach taken here to remedy this problem is to introduce a new

variable φ̃ which is defined as φ̃ = φ + z and to solve φ̃ instead of φ. Thus, the Equation

(2.45) is modified as [7]:

∂φ̃

∂t
+ C

(
φ̃
) (

u
∂φ̃

∂x
+ v

∂φ̃

∂y
+ w

∂φ̃

∂z
− w

)
= 0 (2.48)

and in the discrete form as follows:

Vi
∂φ̃i

∂t
+

∑
j

C (φi)
(
φ̃(i+ j)/2U(i+ j)/2

)
−C (φi) Viwi = 0 (2.49)

In order to avoid the reflection of free surface waves in the outer boundaries of a

computational domain, the wave damping method which has been proved to be effective
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in the interface fitting approach is also applied to the level set method. The damping term

which makes φ̃ approach to zero is added to the level set equation (2.49) as follows:

Vi
∂φ̃i

∂t
+

∑
j

C (φi)
(
φ̃(i+ j)/2U(i+ j)/2

)
−C (φi) Viwi + ViWφ̃i = 0 (2.50)

with W(x, y, z) is weight function defined as:

W(x, y, z) =A ×max
(
Wx(x),Wy(y)

)
Wx(x) =


(

x − xd

x0 − xd

)2

if xd ≤ x ≤ x0

0 otherwise

Wy(y) =


(

y − yd

y0 − yd

)2

if yd ≤ y ≤ y0

0 otherwise

where xd, yd are the coordinate from which the damping region starts and x0, y0 are the

location of outflow and side boundaries. The parameter A controls the amount of damping.

The added term ViWφ̃i is proved to effectively make φ̃ approach to zero in the damping

region and thus dissipates outgoing waves.

There is a singular behavior of the interface in the region closed to a solid wall. The

no - slip condition imposed on a wall prevents the interface movement there, while the

interface in the outer region moves following the fluid motion. It causes the large defor-

mation of φ near a solid wall. The extrapolation approach is employed here to remove this

singularity, in which the value of φ for the cells closed to the wall is extrapolated from the

outer cell.

In order to carry out the extrapolation, the distance to the closet wall di (where i is

the cell index) is computed and stored for each cell first. In the region where extrapolation

is needed, φ is extrapolated from outside in such a way that it is constant in the direction

normal to the wall. Thus, the pseudo convection equation:

∂φ

∂τ
−
∇d
|∂d|
· ∇φ = 0 (2.51)

is solved in the pseudo time τ in the extrapolation region. Note that the convection ve-

locity ∇d/|∇d| is the unit vector normal to the wall from outside to a wall. It ensures the

extrapolation from outside when an upwind scheme is used for the discretization. Upon

convergence, φ becomes constant in the direction normal to the wall as desired.
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2.2.5.1 Re-initialization

The re-initialization of the level set function is an important step in the level set

method, since the level set function is no longer a distance function after convection. The

re-initialization process can be done using the partial differential equation.

The equation to be solved has form as:

∂φ

∂τ
+ S (φ0) (|∇φ| − 1) = 0 (2.52)

where φ0 is the initial value and S is the sign function [7]:

S (φ) =


−1 if φ < 0
0 if φ = 0
1 if φ > 0

Upon the convergence, φ becomes the distance function again, since |∇φ| = 1.

In a numerical process, S (φ) is approximated as:

S ε (φ) =
φ√

φ2 + ε2

where ε is a typical grid spacing. Then, Equation (2.52) is rewritten as:

∂φ

∂τ
+ S ε (φ0)

∇φ

|∇φ|
· ∇φ = S ε (φ0) (2.53)

which can be viewed as the convection equation with the convection velocity being S ε (φ0)∇φ/ |∇φ|.

The numerical procedure for Equation (2.53) is similar to the convection Equation

(2.49). First, ∇φ is computed using the least squares method for each cell center. The con-

vection velocity S ε(φ0)∇φ/ |∇φ| is then evaluated. The second term ∇φ in Equation(2.53)

is discretized by the first order upwind scheme in a finite volume framework. The pseudo

time integration is made by the Euler implicit scheme [35].

2.2.5.2 Flow Variable Extrapolation

Since almost hydrodynamics applications require a flows field of water region only,

a one-phase flow approach is used, i.e., the flow equations are solved only in a water

region. Flow variables in air region are extrapolated from a water region in way so that

the dynamics condition on the free surface boundary is satisfied. This method also has an

advantage that it is not necessary to cope with the large density difference between air and

water. At this point, the present method differs from the original level set method where

a two phases flow approach is employed [35].
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The dynamics free surface condition can be approximated by the two following con-

ditions. First, the velocity gradients normal to the free surface are zero. Second, the

pressure on the free surface is equal to the atmospheric pressure. In order to satisfy the

first condition, the velocity components are extrapolated in the direction normal to the

interface. Following the localized level set method, it can be achieved by solving the

following equation in an air region where φ < 0 for the pseudo time τ.

∂~q
∂τ
−
∇φ

|∇φ|
· ∇~q = 0 (2.54)

Note that the quantity −∇φ/|∇φ| is the unit vector normal to the interface and whose

direction is from water to air. In the region away from the interface where φ is constant,

Figure 2.6: Pressure condition on free surface

−∇φ/|∇φ| is replaced by the vector (0, 0, 1)T .

The pressure boundary condition is written as:

p =
ζ

Fn2 on the free surface (2.55)

where atmospheric pressure is assumed to be zero and ζ is the z-coordinate of the inter-

face. For an air cell which is next to a water cell, pressure is extrapolated in the following

way. Suppose that the cell i is the air cell for which the pressure must be extrapolated and

the cell j is the neighboring water cell as shown in the Figure 2.6. From the definition,

|φ| is the distance to the interface with φi < 0 and φ j > 0. The interface is supposed to be

located between the cell centers i and j.

As shown in Figure 2.6, the interface is locally approximated by a flat surface (a

straight line in 2D) and the closet point on the interface from the cell center i (point I in

Figure 2.6) is denoted as A and the closet point from the cell center j (point I in Figure

2.6) is denoted as B. Also the intersection of the interface and the line connecting the cell
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centers i and j is denoted as C. Since the triangle IAC is similar to the triangle JBC and

the length IA = |φi| and JB = |φ j|. The ZC, z− coordinate of the point C, is given by:

ZC =
|φi|Z j + |φ j|Zi

|φi| + |φ j|
.

Thus pressure is extrapolated as:

pi =

(
ZC/Fn2

) (
|φi + φ j|

)
− p j|φi|

|φ j|

in such a way that:

pC =
ZC

Fn2

Note that this procedure uses only the value of φ and the actual free surface shape does

not need to be constructed.

In case that an air cell has several adjacent water cell, the pressure values is obtained

by taking the average of the extrapolated values from each water cell. In the remaining

air region, pressure is extrapolated by using Equation (2.54).

2.3 Hull form modification method

The role of shape modification is to provide a link between the design variables and

a hull form which should be defined geometrically. In the optimization system whenever

the design variables are determined, the corresponding hull form should be created effi-

ciently. Therefore, the modification method should be flexible enough to cover the wide

range of the design variables. Moreover, to enhance the efficiency of the optimization

process, number of the design variables should be as small as possible and the hull form

modification should be as simple as possible at the same time [11].

As mentioned in the Chapter 1, most of the previous studies on the stern shape opti-

mization have frequently used the user defined modification functions which change the

width of the frameline curves to optimize the given hull form [8, 11]. With the constraints

assigned on the design variables, variation of the framelines somehow is limited (Figure

2.7(a)). In this study, the hull form modification method is applied for not only the modi-

fication of the frameline but also for determination of the transom height at the stern end

of a ship hull. Since the transom bottom is not fixed, the hull form modification method

is expected to give a greater flexibility (Figure 2.7(b)) and the modified hull form is also

expected to have better performance.
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(a) Former modification method

(b) New modification method

Figure 2.7: Comparison of the modification methods.

In this study, the Cartesian coordinate system is used in the grid generation in which

x, y, z are the streamwise, lateral and vertical with upward positive directions, respectively.

Since only the stern overhang region is concerned, the other parts are kept fixed during

the optimization process. Two design variables named xst and dz are used to define a new

stern shape in which xst is the x-coordinate of the starting point of the modified region and

dz is the vertical displacement of the bottom profile at the stern end with positive upward

direction (Figure 2.8(a)). Since xst and dz are used to define the transom stern only, the

constraints upon xst and dz should be assigned to make sure that the main hull form is

preserved throughout the optimization process.



Chapter 2. Optimization method 27

(a) The modification of bottom profile

(b) The modification of frameline

Figure 2.8: The hull form modification method.

When the design variables are given, new transom shape is redefined as follows:

Firstly, the straight line connecting the upstream point (xst, zst) to the ending point

(xend, zend) of ship hull is determined by using the following equation (Figure 2.8(a)):

z = ax + b (2.56)

in which a and b are determined by simply solving the system of linear equations as

follows: zst = axst + b
zend = axend + b

(2.57)
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where (xend, zend) are the coordinates of centreline profile at the stern end. zst is the z-

coordinate of the starting point in the symmetry plane where x = xst. Since dz is the

vertical translation of the centerline profile at the stern end, zend is calculated as follows:

zend = z0(end) + dz (2.58)

with z0(end) being the z-coordinate of the original bottom profile at the stern end.

New z-coordinate of the grid points along the modified bottom profile can be com-

puted simply by substituting its x-coordinate into Equation (2.57). The vertical translation

d of each grid point on the bottom profile from its initial is evaluated as:

d = zn − z0 (2.59)

Following the changes of the bottom profile, the overhang surface of the modified

hull form is also regenerated to keep the smoothness of hull surface. Framelines of the

modified hull form are redefined by using the vertical displacement d determined in Equa-

tion (2.59) as follows (Figure 2.8(b)):

zn = z0 + d
(
|y2| − |y|
|y2| − |y1|

)
(2.60)

where z0, zn are the original and new z-coordinates of grid points on the framelines. y1, y2

are the lower and upper bounds of frameline used in the modification process. Since only

a half of hull form in the port side with y1 = 0 being the symmetry plane used in the grid

generation, the Equation (2.60) can be rewritten as:

zn = z0 + d
(
1 −

|y|
|ymax|

)
(2.61)

where ymax is the y-coordinate of the ship breadth at each modified station.

In this study, effects of the frameline modification functions to the final optimized

results are also included in the examination. For this purpose, the linear form of the

modification function in Equation (2.61) is replaced by a sine form as follows:

zn = z0 + d × sine
[
π

2

(
1 −

|y|
|ymax|

)]
(2.62)
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Figure 2.9: Comparison of framelines by using different modification functions.

The modified framelines by using the linear and sine functions are compared in Fig-

ure 2.9. Obviously, the differences of the modified framelines are very small, i.e., curve

breadth of the framelines modified by the sine function is wider a little compared to that

of the linear form under the still water level. However, it is narrower on the air region.

It is important to note that, in the optimization process whenever a hull form is

redefined following the changes of the design variables, the computational grid around

the modified ship hull itself should be regenerated to get accurate CFD analysis. In this

study, the coordinates of grid points X along the grid lines in the direction from the hull

surface to outer boundary are modified as follows:

Xnew
k = Xold

k + wk

(
Xnew

1 − Xold
1

)
(2.63)
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Application

3.1 The initial hull form and computational conditions

In order to demonstrate the applicability of the present method, transom stern of a

container ship is optimized for minimizing the pressure resistance coefficient. The initial

hull form is based on the original KRISO Container Ship (KCS) ship hull [36] with a

slight modification in such a way that transom bottom of the modified one is on the still

water level at rest as depicted in Figures 3.1 and 3.2. Following the changes of the bottom

profile, framelines in the overhang domain of the modified hull form are also redefined as

shown in Figure 3.2(b). The principal particulars of the original KCS and of the modified

hull form are compared in Table 3.1. The modified hull form is selected as the initial hull

form of the optimization processes because the original KCS is a practical ship hull based

on a professional design and therefore its hull form has been already optimized by some

ways.

(a) Initial KCS. (b) Modified ship hull.

Figure 3.1: Overhangs of the initial KCS and modified ship hull.

30
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(a) Centerline profiles.

(b) Frame lines at the stern end plane.

Figure 3.2: Bottom profiles and frame lines at the stern plane
of the KCS and modified hull forms.

Table 3.1: Principal paticulars.

Principal particulars
Full scale

KCS Modified ship hull

Length L(m) 230.0 230.0

Breath B(m) 32.2 32.2

Depth D(m) 19.0 19.0

Draft T (m) 10.8 10.8

Block coefficient Cb 0.65 0.65

S/L× L 1.785 × 10−1 1.788 × 10−1
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As shown in Table 3.1, most of the principal particulars of the modified hull form

are the same as those of the original KCS hull. There is only the wetted surface area of

the modified hull larger a little compared to that of the KCS hull form.

It is also important to note that the CPU time for solving a hull form optimization

problem is mostly spent for solving a flow field around a ship hull to evaluate the ob-

jective functions, therefore in order to get the optimized results quickly, the CPU time

needed for one CFD computation should be as short as possible, which means that size

of the computational grid should be small. In this study, the computational grid is gen-

erated based on the structured grid of an O-O type in which the grid numbers in the

longitudinal, girth and outward directions are 121 × 25 × 41, respectively (Figure 3.3).

The corresponding CPU time for one CFD computation by using a computer with 8 CPU

I7-3770 and 8GB of RAM is approximately 0.9 hours. The solution domain is set as

−1.5 ≤ x/Lpp ≤ 2.5,−1.5 ≤ y/Lpp ≤ 0,−1.472 ≤ z/Lpp ≤ 0.028 in which ship hull is

located at −0.53 ≤ x/Lpp ≤ 0.526. Reynolds number is set Rn = 1.4 × 107 and Froude

number Fn = 0.26 which corresponds to a model scale of a ship model having length L

= 7.2 [m]. Flow field around ship hull is computed in the free trim condition.

Figure 3.3: Computational grid.
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3.2 Optimized results and Discussions

3.2.1 Verification and Validation for CFD solver

Verification and validation are important for CFD solver, especially in hull form

optimization problem. If the computational grid and the CFD solver are good enough and

reliable, the optimized results are significantly meaningful. Therefore, in this study, the

author has verified the SURF solver for the case of KCS hull form first. The computed

results of wave profile and simulated wave pattern around ship hull are compared to those

of experimental data are shown in Figure 3.4 and Figure 3.5, respectively.

(a) computed

(b) measured

Figure 3.4: Computational grids around transom stern of KCS Container Ship used in
V&V procedure .

Obviously, as shown in Figures 3.4 and 3.5, the computed wave pattern and wave

profile are reproduced reasonably well in comparison with measured data, although the

waves are dissipated in the region far from ship hull where grid resolution is not fine

enough. The simulated results of wave pattern behind the stern end (Figure 3.4) are not

really good in comparison with experimental data because prediction of wave patterns in

the transom region is known as one of the most difficult problems in the computational

fluid dynamics. On the other hand, getting the accurate flows field at stern by experiment

is also very difficult since the stern region is acknowledged to be much influenced by

turbulent effects. However, the good agreement of results in other sections indicates that
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the SURF solver has a robust and accurate solution scheme for this kind of problems.

Figure 3.5: Comparison of the computed and measured wave profile
along the KCS hull form.

Verification and validation of the computed hydrodynamic resistance are performed

following the recommended procedures of ITTC 7.5-03-02-01 [37] and ITTC 7.5-03-01-

01 [38]. The simulation error δS is defined as the difference between a simulation results

S and the truth T and is composed of additive modeling δS M and numerical δS N error. For

certain conditions, both the sign and magnitude of the numerical error can be estimated

as δS N = δ∗S N + εS N where δ∗S N is an estimate of the sign and magnitude of δS N; and εS N

is the error in that estimate. The simulation value is corrected to provide a numerical

benchmark S C, which is defined as [37, 38]:

S C = S − δ∗S N

For the uncorrected simulation approach, numerical error is decomposed into con-

tributions from iteration number δI , grid size δG, time step δT and other parameters δP,

which gives the following expression for simulation numerical uncertainty:

U2
S N = U2

I + U2
G + U2

T + U2
P

For the corrected simulation approach, the solution is corrected to produce a nu-

merical benchmark S C and the estimated simulation numerical error δ∗S N and corrected

uncertainty US cN are given by:

δ∗S N = δ∗I + δ∗G + δ∗T + δ∗P
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U2
S cN = U2

Ic
+ U2

Gc
+ U2

Tc
+ U2

Pc

Iterative and parameter convergence studies are conducted using multiple solutions

with systematic parameter refinement by varying the ith input parameter ∆xi while holding

all other parameters constant. Convergence study requires a minimum of m = 3 solution

to evaluate convergence with respect to input parameter. Change between medium - fine

εi,21 = Ŝ i,2 − Ŝ i,1 and coarse - medium εi,32 = Ŝ i,3 − Ŝ i,2 solution are used to define the

convergence ratio:

Ri =
εi,32

εi,21

where Ŝ i,3, Ŝ i,2, andŜ i,1 are solutions of coarse, medium and coarse grid. Depending on

the value of Ri, 3 convergence conditions are possible:

(i) Monotonic convergence: 0 < Ri < 1

(ii) Oscillatory convergence: Ri < 0

(iii) Divergence: Ri > 1

For the condition (i), generalized Richardson extrapolation (RE) is used to estimate

Ui or δ∗i and UiC . For condition (ii), uncertainties are estimated simply by attempting to

bound the error based on oscillation maximums S U and minimum S L, i.e.,

Ui =
1
2

(S U − S L)

For oscillatory convergence (ii), the solution exhibit oscillations, which may be er-

roneously identified as condition (i) or (iii). This is apparent if one considers evaluating

convergence condition from 3 points on a sinusoidal curve. Depending on where the three

points fall on the curve, the condition could be incorrectly diagnosed as either monotonic

convergence or divergence. Bounding the error based on oscillation maximum and min-

imum for condition (ii) requires more than m=3 solutions. For condition (iii), errors and

uncertainties can not be estimated.

In condition (i), solution convergence occurs and generalized Richardson extrapola-

tion is used to estimate for error and order of accuracy:

δ∗(1)
REi,1

=
εi,21

rpi
i − 1

pi =
ln

(
εi,32/εi,21

)
ln (ri)
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where ri = 4xi2/4xi1 = 4xi3/4xi2 is the refinement factor which defines the relation

between the considered grid. When δ∗(1)
REi,1

and pi is determined, it is possible to estimate

the grid uncertainty. There are 2 ways to do this depending on whether the solutions are

closed to the asymptotic range or not. If the correction factor defined by:

CG =
rPG

G − 1

rPGest
G − 1

where PGest is the limiting or theoretical accuracy of the applied numerical method, is

closed to unity, the solution are closed to the asymptotic range. The numerical error, δ∗S N ,

benchmark S C and uncertainty UGC can be calculated from [? ]:

δ∗S N = CGδ
∗(1)
REi,1

S C = S − δ∗S N

UGC = |1 −CG|
∣∣∣δ∗S N

∣∣∣
If the correction factor is away from unity only the numerical uncertainty is calcu-

lated:

UG = (2|1 −CG| + 1)
∣∣∣δ∗S N

∣∣∣
Validation is defined as a process for assessing simulation modeling uncertainty US M

by using benchmark experimental data and when conditions permit, estimating the sign

and magnitude of the modeling error δS M itself. The comparison error E is given by the

difference in the data D and simulation S values [37, 38]:

E = D − S = δD − (δS M + δS N)

Modeling errors δS M can be decomposed into modeling assumptions and use of pre-

vious data. To determine if validation has been achieved, E is compared to the validation

uncertainty UV given by:

U2
V = U2

D + U2
S N

If |E| < UV , the combination of all errors in D and S is smaller than UV and validation

is achieved at the UV level. If UV � |E|, the sign and magnitude of E ≈ δS M can be used

to make modeling improvements. For the corrected simulation, equations equivalent to

(3.2.1), (3.2.1) are:

E = D − S C = δD − (δS M + εS N)

U2
Vc

= U2
Ec
− U2

S M = U2
D + U2

S N
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In the present study, three systematically refined grids (coarse, medium and fine)

with refinement ratio of
√

2 are used to estimate the grid uncertainty (Figure 3.6). The

computed resistance coefficients and number of grid cells for each grid are presented in

Table 3.2. The resistance coefficients are defined based on the length between perpendic-

ulars, i.e., total resistance coefficient Ct = Rt/0.5ρU2L2
pp, frictional resistance coefficient

C f = R f /0.5ρU2L2
pp and pressure resistance coefficient Cp = Rp/0.5ρU2L2

pp in which

Rt,R f and Rp are the total resistance, frictional resistance and pressure resistance, respec-

tively. An error (ε) is the difference of the computed results of the coarse and medium

grids compared to that of the fine grid.

(a) coarse (b) medium

(c) fine

Figure 3.6: Computational grids around transom stern of KCS Container Ship used in
V&V procedure .
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Table 3.2: Grid convergence study of resistance coefficients of the KCS model

Coarse (S 3) Medium (S 2) Fine (S 1) Data (D)

No. cells 491520 1383120 3932160 -

Ct 6.92 ×10−4 6.63×10−4 6.46×10−4 6.38×10−4

ε (Ct) 7.12% 2.63% - -

% is referred to S 1

Table 3.3: Verified results of the resistance coefficients

RG PG CG UG δ∗G UGC S C

Cp 1.04

C f -1.33 0.77%

Ct 0.59 1.54 0.71 5.92% 2.63% 1.10% 6.29×10−4

% is referred to S 1

A grid convergence ratio (RG) of each resistance component can be estimated easily

based on the computed resistance coefficients as listed in Table 3.3. For the pressure

resistance, with RG = 1.04 which shows the divergence, the grid uncertainty then cannot

be estimated. The grid uncertainty in case of the frictional resistance is estimated by

simply averaging of the upper (S 2) and lower (S 1) bounds since the grid convergence ratio

RG = −1.33. The Richardson extrapolation is used in the estimation of grid uncertainty

of the total resistance which has convergence ratio RG = 0.59.

In order to validate the computed total resistance, the comparison error and validation

uncertainty need to estimate. The comparison error of the total resistance coefficient is

calculated as follows:

E = D − S = −1.21%D

And the validation uncertainty is calculated by using the following equation:

UV =

√
U2

S N + U2
D = 6.08%D

where US N = UG = 6%D and UD = 1%D [39]. Since |E| < UV it can be said that the

validation has been achieved in this computational scheme for the total resistance with

the uncertainty of 6.08%D.
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3.2.2 Optimized results of the optimization process with xst = 0.51.

In this section, results of the optimization process based on the linear modification

function with the initial values of xst = 0.51, dz = 0.0 are presented. The constraints

assigned for the design variables xst and dz to restrict the modified domain are 0.49 ≤ xst ≤

0.52 and −0.01 ≤ dz ≤ 0.01, respectively. Histories of the objective function (pressure

resistance coefficient that is defined as Cp = Rp/0.5ρU2L2
pp) and of the evaluated values of

the design variables at each iteration step are shown in Figures 3.7 and 3.8, respectively.

Figure 3.7: History of the objective function of the
optimization process with xst = 0.51

Figure 3.8: Design values of the design variables in the
optimization process using xst = 0.51
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As shown in Figure 3.8, the evaluated values of the design variables of the last two

iteration steps are almost the same and the optimization process stops after 8 iterations

when the change in successive values of the design variables became too small (< 1.0 ×

10−6). The final optimized results, thus, can be considered as the optimized solution and

the reduction of pressure resistance coefficient is approximately 5% as shown in Figure

3.7.

Table 3.4: Resistance coefficients of the initial and
optimized ship hulls with xst = 0.51.

Coef.
Total resistance Frictional resistance Pressure resistance

Ct =
Rt

0.5ρU2L2
pp

C f =
R f

0.5ρU2L2
pp

Cp =
Rp

0.5ρU2L2
pp

Initial 8.19 ×10−4 5.14 ×10−4 3.05 ×10−4

Optimized 8.03 ×10−4 5.14 ×10−4 2.90 ×10−4

The computed hydrodynamic resistance coefficients of the initial and optimized hull

forms by using xst = 0.51 are presented in Table 3.4. Obviously, the pressure resistance

coefficient shows significantly reduction from that of the initial one. On the contrary to

the pressure resistance coefficient, the frictional resistance coefficients of ship hulls do

not so big difference. Based on the reduction of pressure resistance coefficient, the total

resistance coefficient of the optimized hull form reduces approximately 1.88% from that

of the initial ship hull.

(a) Initial (b) Optimized

Figure 3.9: Overhangs of the initial and optimized hull forms.



Chapter 3. Application 41

(a) Centerline profiles

(b) Framelines

Figure 3.10: Centerline profiles and framelines of the initial and
optimized hull forms with xst = 0.51

Overhang shapes of the initial and optimized hull forms are compared in Figure

3.9. Centerline profiles and framelines at the stern end plane (x/Lpp = 0.526) of the

initial and optimized ship hulls are compared in Figure 3.10. As shown in Figure 3.10(a),

centerline profile of the optimized ship hull rises up from the still water level making the

flat transom of the initial hull form change to a convex shape. Following the increase of

transom height, framelines of the optimized hull form also rise up and become horizontal

near the bottom as depicted in Figure 3.10(b).

The computed results of trim (t), sinkage (s) and dipping at the fore (d f ) and aft

perpendiculars (da) of the initial and optimized ship hulls are listed in Table 3.5. Though

the computed sinkages of both initial and optimized hull do not show big differences, the

running trims of ship hulls change considerably between each other. The running trim of
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Table 3.5: The computed trim, sinkage and dipping of the fore and aft perpendiculars
of the initial and optimized hull forms with xst = 0.51.

Coef.
Sinkage Trim d f

Lpp

da

Lpps =
da + d f

2Lpp
t =

da − d f

Lpp

Initial 1.91 ×10−3 -3.17 ×10−3 3.41 ×10−3 0.33 ×10−3

Optimized 1.96 ×10−3 -2.62 ×10−3 3.27 ×10−3 0.65 ×10−3

Figure 3.11: Pressure patterns on the hull surface of the fore parts.

the optimized hull form is smaller than that of the initial one. It is due to the fact that

the optimized hull decreases dipping of the fore perpendiculars and also increases the

immersion of the aft perpendiculars from that of the initial hull form making running trim

of the optimized hull form smaller than that of the initial one. The change of running trim

makes the pressure pattern on the optimized hull surface of the fore part slightly different

from that of the initial one despite both main hull forms are identical as depicted Figure

3.11 (since the modification is applied for the ship stern only).

The distributions of pressure on the initial and optimized overhang surfaces with the

views by side and behind the ship stern are compared in Figures 3.12 and 3.13, respec-

tively. Obviously, the flat overhang caused by the reduction of transom height at the stern

end makes flows under the initial transom bottom slightly change its directions following

the hull geometry. Pressure caused by the change of flow directions increases a little at

the inflecting point and decreases at the aft end. On the contrary, the upward shape makes

flows under the optimized transom bottom can rise up when ship runs, whereupon pres-
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(a) Initial

(b) Optimized

Figure 3.12: Pressure distributions on the overhang surfaces

Figure 3.13: Pressure patterns on the hull surface of the aft parts (backview).
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sure acting on the optimized overhang surface decrease. Pressure increases slightly again

at the aft end only. Furthermore, the change of stern shape effects to the pressure distribu-

tions not only in the modified transom but also in the other regions of the optimized hull

form. As shown in Figure 3.13, though the pressure patterns in the skeg region of ship

hulls are the same, pressure on the hull surface ahead of the optimized domain is slightly

different from that of the initial one.

Figure 3.14: The longitudinal distributions of pressure and
frictional components of resistance.

The longitudinal distributions of pressure and frictional component of resistance are

compared in Figure 3.14. Note that the pressure evaluated here is based on the original

pressure, i.e., Cp is integrated without the hydrostatic component by using the following

formula Cp =
∫
girth Cpnxds in which Cp is the original pressure and nx is the normal

vector of the area unit ds. Since reduction of the frictional resistance coefficient is small,

differences of the frictional resistance cannot be seen by this plot. Pressure resistance of

the optimized hull decreases mostly in the aft part before increases little again at the aft

end. Reduction of the pressure resistance in the aft part is consistent with decrease of the

pressure resistance of the optimized overhang surface as shown in Figures 3.12 and 3.13.

Wave patterns around the transom sterns and wave profiles behind the stern end of

the initial and optimized ship hulls are compared in Figures 3.15 and 3.16, respectively.

Obviously, the wave pattern around the optimized hull changes considerably from that

of the initial one, i.e., the hollow which appears just behind the stern end of initial hull

form is not created in case of the optimized one; instead of that, the crest of stern wave

moves toward and closes to the stern end. The movement toward to the stern end of
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the wave peak there is due to the changes of overhang shape and state at rest of the

transom bottoms. It is important to note that while the initial transom bottom is on the

still water level, the optimized one is in the air. Therefore, there is a space between the

still water level and transom bottom of the optimized hull form. The free surface flow

under the optimized transom bottom, thus, can rise up when ship runs. On the other hand,

overhang of the optimized hull form is also smaller than that of the initial one due to the

increase of transom height and decrease of frameline’s width (Figure 3.10). Elevation

of the stern waves near the optimized overhang becomes higher than that of the initial

one. As shown in Figure 3.16, the wave profile behind the optimized stern end is higher

making its transom wet. While, the hollow behind the stern end of the initial ship hull

makes its wave profile lower. The initial transom, thus, is mostly dry.

Figure 3.15: Wave patterns around transom sterns.

Figure 3.16: Wave profiles behind the stern end of ship hulls .
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(a) Initial

(b) Optimized

Figure 3.17: Streamlines in the center plane of ship hulls.

Figure 3.17 illustrates the simulated streamlines in the symmetry plane of ship hulls.

As shown in Figure 3.17(a), the rising up flows under the initial transom bottom change

its direction slightly following the hull form geometry. Streamlines near bottom surface

become horizontal before rise up behind the stern end. On the contrary, streamlines under

transom bottom of the optimized one rise up since its transom bottom is above the still

water level. Flows close to the hull form are separated behind the stern end and create a

small vortex there. It can be also concluded that the higher wave profile and the wetted

transom in case of the optimized hull form are caused by inflection of the ship flows from

the wave crest behind the stern end (Figure 3.17(b)).
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(a) Initial

(b) Optimized

Figure 3.18: Streamlines at the stern end plane and wakes.

Figure 3.18 compares streamlines and the axial distributions of velocity at the stern

end plane of ship hulls. In consistence with the simulated streamlines in the symmetry

plane as depicted in Figure 3.17, streamlines under the initial transom bottom almost

go horizontal near hull surface, while streamlines under the optimized hull form rise up

mostly. The vortex under the optimized ship hull is also smaller (Figure 3.18(a)). In

addition, the boundary layer around the optimized hull is almost the same as that of the

initial one (Figure 3.18(b)). However, the velocity pattern is slightly different, i.e., flow

speed decreases a little around transom bottom. The difference of the velocity pattern

is consistent with the change of streamlines under the transom bottom and increase of

pressure behind the ship stern as shown in Figures 3.17(a), (b) and 3.18(a).
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3.2.3 Effects of the initial design variable value (xst) to the optimiza-
tion results

It is important to note that with the different design values of xst or dz the system

of linear equations (Equation (2.57)) gives different coefficients of the linear equation

used in determination of centerline profile (Equation (2.56)). The bottom profiles of the

modified hull forms, therefore, are not the same. The initial hull forms are then not

identical. The pressure resistance coefficients of the modified hull forms are different,

consequently. Thus, sensitivity coefficients of the SQP analysis makes the line search

procedure give different values for the next design variables. Then the optimized hull

forms is maybe different following the changes of the design values. Effects of the initial

design values, therefore, should be taken into the investigation. In this study, effects of the

different initial values of xst to the final optimized results are included in the examination.

Two different values xst = 0.5 and xst = 0.51 are selected as the initial designs of the

optimization processes to investigate effects of the initial values to the final optimization

results. Note that, the initial and optimized hull forms as well as flow fields surrounding

themselves of the optimization process by using xst = 0.51 has been already presented

and discussed in the previous section.

(a) Initial xst = 0.5 (b) Initial xst = 0.51

Figure 3.19: Overhangs of the initial hull forms with different initial values
of design variable xst.
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(a) Centerline profiles

(b) Framlines at x/Lpp = 0.51

(c) Framlines at x/Lpp = 0.526

Figure 3.20: Comparisons of the centerline profiles and framelines of
the initial hull forms by using xst = 0.5 and xst = 0.51.
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Differences of the initial overhang shapes by using the different values xst = 0.5

and xst = 0.51 are presented in Figure 3.19. Centerline profiles and framelines of the

initial hull forms are compared in Figure 3.20. Obviously, since the starting point of

the modified overhang moves forward, the straight line connecting the starting point to

the ending point of the hull form by using xst = 0.5 is lower than that of the initial

hull form (Figure 3.20(a)). The centerline profile of the hull form by using xst = 0.51,

while, is identical to that of the initial hull form because its starting point is on the flat

bottom profile of the initial ship hull. The initial framelines in the modified domain of

ship hulls are also slightly different (Figure 3.20(b)) due to the vertical translation (d)

(Equation (2.59)) of the grid points along centerline profiles are not the same in each case

though the framelines of the domain before station x/Lpp = 0.5 and at the stern end plane

(x/Lpp = 0.526) are identical (Figure 3.20(c)).

The optimization process by using xst = 0.5 as the initial design value is performed

with the constraints assigned on the design variables are kept the same as those of the

previous case. Histories of the objective function in the optimization processes by using

xst = 0.5 and xst = 0.51 are compared in Figure 3.21. Note that Cp0 is the initial pressure

resistance coefficient of the initial hull form created by using xst = 0.51. Histories of the

evaluated values of the design variables at each iteration step in the optimization process

by using xst = 0.5 are presented in Figure 3.22. As shown in Figure 3.21, pressure

resistance coefficient of the initial hull form by using xst = 0.5 is slightly larger than

that of the initial hull form using xst = 0.51 (approximately 0.0072%). Augmentation

of the initial pressure resistance coefficient comes from the fact that the displacement

volume of the initial hull form generated by using xst = 0.5 increases a little from that

of the hull form generated by xst = 0.51. As shown in Figure 3.20, centerline profile

and the framelines of the overhang using xst = 0.5 are lower and wider than those of

the initial ship hull by using xst = 0.51. The displacement volume of ship hull using

xst = 0.5 increases slightly (approximately 0.168%) compared to that of the initial ship

hull by using xst = 0.51. Furthermore, in contrast with the optimization process by using

xst = 0.51 that stops after 8 iteration steps (Figure 3.7), the optimization process by using

xst = 0.5 reaches convergent after 9 iteration steps. The objective function also reduces

more than that of the previous case with reduction of the pressure resistance coefficient is

approximately 6% from its initial value. Since the solution gets convergent, the evaluated

values of design variables in the last 4 iteration steps are mostly the same as depicted in

Figure 3.22.
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Figure 3.21: Comparison of histories of the objective function of the
optimization process using xst = 0.5 and xst = 0.51.

Figure 3.22: Histories of the design values of the optimization process using xst = 0.5.

Table 3.6: The computed resistance coefficients of the initial and
optimized hull forms using xst = 0.5.

Coef.
Total resistance Frictional resistance Pressure resistance

Ct =
Rt

0.5ρU2L2
pp

C f =
R f

0.5ρU2L2
pp

Cp =
Rp

0.5ρU2L2
pp

Initial 8.21 ×10−4 5.14 ×10−4 3.07 ×10−4

Optimized 8.02 ×10−4 5.15 ×10−4 2.87 ×10−4

Table 3.6 presents the computed resistance coefficients of the initial and optimized

hull forms using the initial design xst = 0.5. On the contrary to the optimization process
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using xst = 0.51 that makes frictional resistance coefficient of the optimized hull form

unchanged, the frictional resistance coefficient of the optimized ship hull by using xst =

0.5 increases a little. However, by the larger reduction of pressure resistance coefficient (

approximately 6%) its absolute resistance coefficient of the optimized ship hull decreases

more than that of the optimized ship hull by using xst = 0.51. Total resistance coefficient

of the optimized one by using xst = 0.5 reduces approximately 2.31% from that of the

initial ship hull (reduction of the total resistance of the optimized hull form by using

xst = 0.51 is approximately 1,88%).

(a) Centerline profiles

(b) Framlines at the stern end plane

Figure 3.23: Centerline profiles and framelines of the optimized ship hulls by
using different initial designs of xst = 0.5 and 0.51.



Chapter 3. Application 53

Figure 3.23 compares centerline profiles and framelines at the stern end of the op-

timized ship hull by using xst = 0.5 and xst = 0.51. Figure 3.24 presents the initial and

optimized overhang shapes by using xst = 0.5. On the contrary to the case using xst = 0.51

that makes the stern end of the initial hull form move up and the optimized transom gets

convex shape (Figure 3.10); with xst = 0.5 the transom height at the stern end of the op-

timized hull is reduced making its transom bottom move down and get a concave shape,

consequently (Figure 3.23(a)). The optimized frame line by using xst = 0.5, therefore, are

also lower than that of the initial one (Figure 3.23(b)).

(a) Initial (b) Optimized

Figure 3.24: Overhangs of the initial and optimized hull forms
by using xst = 0.5.

The distributions of pressure on the overhang surfaces of the initial and optimized

hull forms by using xst = 0.5 with the views by side and from the behind of ship are com-

pared in Figures 3.25 and 3.26, respectively. As shown in Figures 3.12(a) and 3.25(a),

the pressure pattern on the initial overhang surface by using xst = 0.5 changes slightly

compared to that of the initial overhang surface by using xst = 0.51 since transom bottom

of the initial hull form using xst = 0.5 inclines a little from the initial one. However,

following the change of the initial design value xst the pressure distributions on the opti-

mized overhang surfaces are significantly different (Figures 3.12(b) and 3.25(b)). While

pressure on the optimized transom by using xst = 0.51 becomes higher at the aft end,

pressure on the optimized stern by using xst = 0.5 increases at the inflecting point and

decreases at the stern end. And also from Figure 3.13, with the upward transom shape the

pressure distribution in the aft part ahead of the modified domain of the optimized transom

by using xst = 0.51 are significantly different from its initial; however, the distribution of

pressure in same region under the concave shape of the optimized stern by using xst = 0.5

are almost the same as that of the initial hull form (Figure 3.26).
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(a) Initial

(b) Optimized

Figure 3.25: Pressure distributions on the initial and the optimized
overhang surfaces by using xst = 0.5.

Figure 3.26: Pressure distributions on the initial and the optimized hull surfaces
in the aft parts using xst = 0.5.
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The distributions of pressure and frictional components of resistances along the ini-

tial and optimized hull forms using xst = 0.5 are compared in Figure 3.27. Similarly to

the previous case, the difference of frictional resistance cannot be observed by this plot

since augmentation of the frictional resistance are small. The similarity of pressure pat-

terns on the hull surfaces makes the local pressure resistance of ship hulls are almost the

same. Pressure resistance in the aft part of the optimized one increases at the inflecting

point (around x/Lpp = 0.5) before decreases at the aft end that corresponds to the pressure

distributions on the optimized overhang surface as depicted in Figure 3.25(b).

Figure 3.27: The longitudinal distribution of pressure and frictional resistances
of ship hulls using xst = 0.5

Table 3.7: Trim, sinkage and dipping of the fore, aft perpendiculars of the initial
and optimized ship hulls using xst = 0.5.

Coef.
Sinkage Trim

d f da

s =
da + d f

2Lpp
t =

da − d f

Lpp

Initial 1.91 ×10−3 -3.21 ×10−3 3.51×10−3 0.30×10−3

Optimized 1.89 ×10−3 -3.43 ×10−3 3.61×10−3 0.17×10−3

The computed trim, sinkage and the dipping values at the fore (d f ) and at the aft

(da) perpendiculars of the initial and optimized hull forms by using xst = 0.5 are listed

in Table 3.7. Since the differences of hull geometries of the initial hull forms generated

by using xst = 0.5 and xst = 0.51 are only at the transom stern, the computed trim and
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sinkage of these two initial hull forms are almost the same as presented in Tables 3.5 and

3.7. However, the changes of the dipping values at the bow and aft parts make trim angle

of the optimized hull by using xst = 0.5 differ significantly from that of the optimized hull

by using xst = 0.51. The optimized transom by using xst = 0.51 reduces the dip of the

fore part and increases the dip of the aft part making the trim angle smaller than that of

its initial hull form. While, the optimized transom by using xst = 0.5 causes the dipping

value of the fore perpendicular increase and the dipping of the aft perpendicular decrease

from those of the initial one. The running trim angle of the optimized hull form by using

xst = 0.5 is larger than that of the initial one, consequently.

Figure 3.28: Wave patterns around the initial and optimized
transom sterns using xst = 0.5.

Figure 3.29: Wave profiles behind the stern ends of ship hulls using xst = 0.5.

The wave patterns around the transom stern and wave profiles behind the stern end of

the initial and optimized hull forms with xst = 0.5 are compared in Figures 3.28 and 3.29,
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respectively. Obviously, the wave peak behind the stern end of the optimized hull form

moves further downstream and the hollow just behind the stern end become wider and

dipper compared to those of the initial one. The dipper hollow behind the stern end there

also makes the wetted transom of the initial ship hull become dry with the free surface

flow leaves the stern end at the transom bottom (Figure 3.29).

(a) Initial

(b) Optimized

Figure 3.30: The simulated streamlines under initial and optimized
transom bottoms using xst = 0.5.

The simulated streamlines in the symmetry plane of the initial and optimized ship

hulls by using xst = 0.5 are compared in Figure 3.30. Similarly to the optimized stern by

using xst = 0.51, the upward stern shape makes flows under the initial transom bottom can
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rise up. A part of the rising up flows is separated behind the stern end making a vortex is

created there (Figures 3.17(b) and 3.30(a)). However, with the downward stern shape that

makes the transom bottom lower than the still water level and the optimized overhang is

immersed at rest, streamlines near the hull surface of the optimized hull form move down

following the change of hull geometry. The flow separation phenomenon is eliminated

behind the optimized stern end and the vortex which appears in the initial ship hull is not

created there (Figure 3.30(b)). The flow speed behind the optimized stern end plane also

increases.

(a) Streamlines

(b) Velocity

Figure 3.31: Streamlines and the axial distribution of velocity at the stern end plane of
the initial and optimized hull forms by using xst = 0.5.
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Figure 3.31 compares the simulated streamlines and velocity patterns under transom

bottom at the stern end plane (x/Lpp = 0.526) of ship hulls. With the upward stern

shape, flows under the initial transom bottom are risen up. Streamlines under the initial

transom bottom, thus, go up mostly. While, by decrease of the transom height making the

optimized transom bottom lower the still water level, streamlines of the optimized ship

hull go down and meet each other at the wake region. In addition, the velocity patterns

of ship hulls are almost the same. The boundary layer under the optimized hull does not

show big differences compared to that of the initial one.

3.2.4 Effects of the weight function to the final optimization results

As shown in Figure 2.9, following the change of the modification functions (from

linear form to sine form), the modified framelines are slightly different. The final op-

timized results of the optimization process, therefore, maybe differ from each other. In

order to investigate effects of the modification functions on the optimized results, opti-

mization processes by using different modification functions should be carried out and

compared with each other. In this section, the optimized hull form based on the sine form

(Equation (2.62)) are compared to that of the optimized hull form by using the linear form

(Equation (2.61)). The optimization processes are performed with the initial values of the

design variables are set as xst = 0.5 and dz = 0.0, respectively. The constraints assigned

on the design variables are set the same as those of the previous cases.

Figure 3.32: Pressure reduction during the optimization processes using different weight
function.
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Figure 3.33: Histories of the design variable values during the optimization process
using sine weight function.

Histories of the objective function of the optimization processes by using the sine

and linear modification functions are compared in Figure 3.32. The determined values of

the design variables at each iteration step through the optimization process using the sine

function are depicted in Figure 3.33. As shown in Figure 3.32, the minimized values of

the objective functions by using the linear and sine functions are almost the same with

reductions of pressure resistance are approximately 6% from that of the initial one. In

contrast with the linear weight function that makes the iteration process converge after 9

iteration steps, the optimization process using the sine form terminates after 8 iteration

loops when the change in successive values of the design variables became too small.

Values of the design variables determined by the SQP method in the last two iteration

steps are almost the same as shown in Figure 3.33.

Table 3.8: The computed resistance coefficients.

Coef.
Total resistance Frictional resistance Pressure resistance

Ct =
Rt

0.5ρU2L2
pp

C f =
R f

0.5ρU2L2
pp

Cp =
Rp

0.5ρU2L2
pp

Initial 8.21×10−4 5.14 ×10−4 3.07×10−4

Optimized 8.02×10−4 5.14×10−4 2.89×10−4

The computed resistance coefficients of the initial and optimized ship hulls by using

the sine function are compared in Table 3.8. The computed results show the same ten-
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dency as those of two previous cases. The difference of frictional resistance between the

initial and optimized hull forms can be negligible. The decrease of total resistance (ap-

proximately 2.31%) is mostly due to the reduction of pressure resistance (approximately

6%) by the change of stern shape of the optimized ship hull.

Figure 3.34 compared the optimized overhang shape using the linear and sine func-

tions. The centerline profiles and framelines at the stern end plane of the initial hull form

together with the optimized ones by using the linear and sine functions are compared in

Figure 3.35. As shown in Figure 3.35(a), while the linear weight function decreases the

initial transom height at the stern end, the optimized transom height by using the sine

weight function increases making the optimized transom bottom move up and become a

convex shape. Following the reduction of transom height, the optimized frame line also

rises up completely from the still water level (Figure 3.35(b)). The optimized overhang

by using the sine weight function, therefore, is in the air.

(a) Optimized by linear function

(b) Optimized by sine function

Figure 3.34: Comparison of the optimized overhang by using linear and sine functions.
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(a) Bottom profiles

(b) Frame lines

Figure 3.35: Bottom profiles at the center plane and framelines at the stern end plane
(x/Lpp = 0.526) of the optimized hull forms using different functions.

Figures 3.36-3.40 show comparisons of the distributions of pressure on the overhang

surfaces and on the hull surfaces of the aft part, the wave patterns around the transom stern

as well as the velocity pattern and streamlines at the stern end plane of the optimized ship

hull by using the linear and sine modification functions. With the upward stern shape

and also based on the computed and simulated results, it can be concluded that flow field

around the optimized stern shape by using the sine modification function is similar to that

of the optimized ship hull by using xst = 0.51.
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(a) Optimized by linear weight function

(b) Optimized by sine weight function

Figure 3.36: Pressure patterns on the optimized overhang surfaces by using different
modification functions.



Chapter 3. Application 64

Figure 3.37: Pressure distributions on the aft part of the optimized
hull surfaces by using the linear and sine weight functions.

Figure 3.38: Wave patterns around the optimized transom sterns using the linear and sine
weight functions.



Chapter 3. Application 65

(a) Optimized by linear weight function

(b) Optimized by sine weight function

Figure 3.39: Comparison of the streamlines in the center plane of the optimized ship
hulls by using the different modification functions.
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(a) Streamlines function

(b) Wake

Figure 3.40: Comparison of streamlines and wakes at the stern end plane of optimized
hull form using different modification functions.

3.2.5 Dependences of the optimized results on the initial designs and
modification functions

As presented and discussed in the previous sections whenever either the initial value

of xst or the frameline modification functions change, the optimized results are signifi-

cantly different between each other. It can be concluded that the optimized result for all

cases are not unique. Therefore, it is necessary to examine the effects of the initial design



Chapter 3. Application 67

variables as well as of the modification functions to the final optimized results. Fours

optimization cases defined as presented in Table 3.9 are selected in the investigation for

this purpose in this study.

Table 3.9: Optimization cases.

Case I Case II Case III Case IV

Initial −xst 0.51 0.5 0.5 0.51

Initial −dz 0.0 0.0 0.0 0.0

Modification function Eq. (2.61) Eq. (2.61) Eq.( 2.62) Eq. (2.62)

Figure 3.41: Dependence of the optimized results on the initial designs
and modification functions.

Table 3.10: Optimized values of the design variables.

Case I Case II Case III Case IV

Objective function 0.951 0.935 0.936 0.944

Optimized −xst 0.5084 0.515 0.5083 0.494

Optimized −dz 5.865E-3 -2.118E-3 5.183E-3 8.122E-3
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Figure 3.41 shows histories of the objective function together with design values of

xst and dz throughout the optimization processes. The optimized values of the design vari-

ables in each case are presented in Table 3.10. Obviously, the optimized design variables

are significantly different following the changes of the initial values and of the framline

modification functions. While the designed values of dz at each step in the optimization

processes of the Case I, Case III and Case IV are positive, they are negative in the Case

II. The designed values of xst at each iteration step of the optimization processes also

show the different tendencies (Figure 3.41). The differences of the designed variables

values come from the fact that the gradients of the objective function have different signs

between each case. With the same increment step ε of the design value dz, the pressure

resistance coefficient of the hull form created by value of dz + ε of the Cases I, II and IV

is smaller than that of the hull form created by value of dz–ε. The gradient of objective

function in these cases, thus, is negative. The line search procedure then increases value

of the design variable dz for the next iteration steps (Table 3.11). On the contrary, the

pressure resistance coefficient of the ship hull created by value of dz + ε is larger than

that of the hull form created by value of dz − ε during the optimization process of the

Case II. The gradient of objective function in this case is positive and the subsequent line

search procedure decreases value of dz for the next iteration steps (Table 3.12). The final

optimized transom shapes in this case, thus, are completely different from that of the three

other cases, consequently (Figures 3.42, 3.43). In addition, since the optimized solutions

are significantly different, it can be concluded that the optimized solutions in each case

are the local solutions of the present method. A better algorithm such as the Genetic Al-

gorithm that can solve efficiently this kind of problem should be developed for finding the

final optimized solutions.

Table 3.11: Sensitivity analysis the gradient of the objective function of the Case I.

Case I

xst = 0.51, dz = 0.0d0, ε = 1.0E-3

xst, dz ± ε Cp ∂Cp/∂dz d(1)
z

0.51, 1.0E-3 1.514E-4
-2.91E-3 5.424E-3

0.51, -1.0E-3 1.536E-4
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Table 3.12: Sensitivity analysis the gradient of the objective function of the Case II.

Case II

xst = 0.51, dz = 0.0d0, ε = 5.0E-4

xst, dz ± ε Cp ∂Cp/∂dz d(1)
z

0.50, 5.0E-4 1.542E-4
3.180E-4 5.424E-3

0.5, -5.0E-4 -2.025E-4

(a) Profiles.

(b) Framelines

Figure 3.42: Comparison of the initial and optimized overhangs
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(a) Initial

(b) Optimized Case I (c) Optimized Case II

(d) Optimized Case III (e) Optimized Case IV

Figure 3.43: Comparison of the initial and optimized overhangs.

Figure 3.44 show contour of the pressure resistance coefficient of the hull forms

following the changes of the design variables values. The computed pressure resistance

coefficients are presented in Tables A.1 and A.2 of the Appendix A. For some cases with

short distance from the xst to the xend and deep values of dz, i.e., for instance xst = 0.525

and dz = −0.003 that makes the negative skewness of the computational domain, the

computed pressure resistance coefficients could not be estimated. Then, the corrected

data are used in approximation of contour as shown in Figure 3.44. Obviously, for both

the linear and sine functions the pressure resistance coefficients of the corresponding hull

forms show the same tendency, i.e., the lower zone of pressure resistance coefficient is in

the ranges of 0.51 ≤ xst ≤ 0.525,−0.003 ≤ dz ≤ 0.0 or 0.49 ≤ xst ≤ 0.52, 0.003 ≤ dz ≤

0.009. This is consistent with the optimized results of all 4 cases as shown above. In order
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to get the best optimized hull form, a better algorithm such as the Genetic Algorithm that

can solve efficiently this kind of problem should be developed.

(a) Contour of the pressure resistance coefficients of ship hulls generated
by the linear function

(b) Contour of the pressure resistance coefficients of ship hulls generated
by the sine function

Figure 3.44: Contours of the pressure resistance coefficient of the hull form generated by
different design variables values.
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3.2.6 Grid dependency study

Grid dependency test is essential for CFD analysis, especially in the hull form op-

timization problem, since the CPU time needed for one computation is expensive, the

computational grid is usually made as coarse as possible to obtain the objective function

fast. Thus, the computations based on the fine grids should be carried out to validate the

optimized results. In the present study, the optimized result of the Case III is selected as

a representative one for the grid dependency test. The fine grids are generated based on

the coarse grids used for the optimization process. The comparisons of grid dimensions

of the fine and coarse grids are shown in Table 3.13. Partial views of the computational

domains around the ship stern of the coarse and fine grids are depicted in Figure 3.45.

(a) Initial coarse (b) Optimized coarse

(c) Initial fine grid (d) Optimized fine grid

Figure 3.45: Computational grids around the ship stern.
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Table 3.13: Comparison of the grid dimensions

Coarse Fine

Dimensions 121×25× 41 241×51× 81

No.Cells 115200 960000

No.Nodes 123041 991521

The computed hydrodynamic resistance coefficients based on the coarse and fine

grids are compared in Table 3.14. Obviously, the absolute values of the fine grids are

smaller than those of the coarse grids. The fine grid solutions are closer to the actual

value since the measured data of the original KCS hull form is 6.38×10−4 [40]. While re-

duction of the pressure resistance coefficient in case of the coarse grids is approximately

6.2%, the computed pressure resistance coefficient of the optimized fine grid reduces

approximately 5.7% from that of the initial fine grid. Furthermore, since the frictional re-

sistance coefficients do not change between the initial and optimized hull forms for both

grids, reduction of the pressure resistance coefficients yields the total resistance coeffi-

cients decrease. Reductions of the total resistance coefficients of the fine and coarse grids

are approximately 1.6% and 2.4%, respectively. In summary, although the absolute values

are different, the trends due to hull form modification are the same between the coarse and

fine grids. Therefore, it can be concluded that the optimized results are validated through

the grid dependency test.

Table 3.14: The computed resistance coefficients.

Total resistance
Frictional
resistance

Pressure
resistance

Ct =
Rt

0.5ρU2L2
pp

C f =
R f

0.5ρU2L2
pp

Cp =
Rp

0.5ρU2L2
pp

Initial (coarse) 8.21×10−4 5.14 ×10−4 3.07×10−4

Optimized (coarse) 8.02×10−4 5.14×10−4 2.89×10−4

Initial (fine) 6.87×10−4 4.95 ×10−4 1.92×10−4

Optimized (fine) 6.76×10−4 4.95×10−4 1.81×10−4
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Concluding Remarks

The system of the stern shape optimization has been developed in this study. The

system is the combination of a nonlinear optimizer by using the SQP method, a Navier-

Stokes solver together with the hull shape modification method. The shape deformation

is carried out by using modification function in such a way that the design variables are

able to define efficiently new transom shapes which can minimize the objective function.

The present system has also been used for optimizing a stern shape of a hull form

that is based on the original KCS to demonstrate the applicability of the present method

with the pressure resistance coefficient is selected as the objective function. The opti-

mized results decrease significantly from its initial values with the reductions of pressure

resistance coefficient are more than 5% depending on the initial design values and the

frameline modification functions.

The effects of the initial design variable values and of the modification functions to

the final optimized results have been examined in this study. By the change of initial

values xst and the modification function from a linear form to a sine form, the final op-

timized results are significantly different in both reduction of pressure resistance and the

optimized stern shapes. The difference of the final optimization result comes from the

fact that the gradient of the objective function have different sign in each case whereupon

the subsequent line search procedure carried out the search of vector dz in the different di-

rections. Therefore, it can be concluded that the optimized results are the local minimum

solutions by using the present optimization method. An optimization method based on

a better method such as the Genetic Algorithm (GA) method, therefore, should be taken

into account to improve the present system.

The grid dependency test have also carried out for one representative case (Case III)

74
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in the present study. The test results show good agreement with the optimization results.

Then, it can be concluded that the optimized results are validated.

Further investigations on the transom shape optimization in combination with effects

of the propellers, rudders, etc., should be taken into account to investigate the applicability

of the present method in the practical design of a hull form.
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Computed pressure resistance
coefficients

A.1 The computed pressure resistance coefficients using
linear function

Table A.1: Computed pressure resistance coefficient using
the linear modification function

Linear function

xst dz Computed Cp Corrected Cp

0.49 -3.00E-03 1.60E-04 1.60E-04

0.49 0 1.56E-04 1.56E-04

0.49 3.00E-03 1.45E-04 1.45E-04

0.49 6.00E-03 1.45E-04 1.45E-04

0.49 9.00E-03 1.45E-04 1.45E-04

0.495 -3.00E-03 1.60E-04 1.60E-04

0.495 0 1.54E-04 1.54E-04

0.495 3.00E-03 1.45E-04 1.45E-04

0.495 6.00E-03 1.46E-04 1.46E-04

0.495 9.00E-03 1.45E-04 1.45E-04

0.5 -3.00E-03 1.59E-04 1.59E-04

0.5 0 1.52E-04 1.52E-04

0.5 3.00E-03 1.45E-04 1.45E-04
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0.5 6.00E-03 1.45E-04 1.45E-04

0.5 9.00E-03 1.45E-04 1.45E-04

0.505 -3.00E-03 1.58E-04 1.58E-04

0.505 0 1.53E-04 1.53E-04

0.505 3.00E-03 1.45E-04 1.45E-04

0.505 6.00E-03 1.45E-04 1.45E-04

0.505 9.00E-03 1.47E-04 1.47E-04

0.51 -3.00E-03 999.9 1.58E-04

0.51 0 1.52E-04 1.52E-04

0.51 3.00E-03 1.46E-04 1.46E-04

0.51 6.00E-03 1.46E-04 1.46E-04

0.51 9.00E-03 1.48E-04 1.48E-04

0.515 -3.00E-03 999.9 1.58E-04

0.515 0 1.52E-04 1.52E-04

0.515 3.00E-03 1.47E-04 1.47E-04

0.515 6.00E-03 1.47E-04 1.47E-04

0.515 9.00E-03 1.51E-04 1.51E-04

0.52 -3.00E-03 999.9 1.58E-04

0.52 0 1.50E-04 1.50E-04

0.52 3.00E-03 1.46E-04 1.46E-04

0.52 6.00E-03 1.54E-04 1.54E-04

0.52 9.00E-03 1.62E-04 1.62E-04

0.525 -3.00E-03 999.9 1.58E-04

0.525 0 1.52E-04 1.52E-04

0.525 3.00E-03 1.51E-04 1.51E-04

0.525 6.00E-03 1.66E-04 1.66E-04

0.525 9.00E-03 1.94E-04 1.94E-04

0.49 -2.12E-03 1.57E-04 1.57E-04

0.495 -2.12E-03 1.57E-04 1.57E-04

0.5 -2.12E-03 1.54E-04 1.54E-04
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0.505 -2.12E-03 1.56E-04 1.56E-04

0.51 -2.12E-03 1.51E-04 1.51E-04

0.515 -2.12E-03 1.46E-04 1.46E-04

0.52 -2.12E-03 999.9 1.46E-04

0.525 -2.12E-03 999.9 1.46E-04

A.2 The computed pressure resistance coefficients using
sine function

Table A.2: Computed pressure resistance coefficient using
the sine modification function

Sine function

xst dz Computed Cp Corrected Cp

0.49 -3.00E-03 1.61E-04 1.61E-04

0.49 0 1.54E-04 1.54E-04

0.49 3.00E-03 1.45E-04 1.45E-04

0.49 6.00E-03 1.45E-04 1.45E-04

0.49 9.00E-03 1.45E-04 1.45E-04

0.495 -3.00E-03 1.60E-04 1.60E-04

0.495 0 1.54E-04 1.54E-04

0.495 3.00E-03 1.46E-04 1.46E-04

0.495 6.00E-03 1.45E-04 1.45E-04

0.495 9.00E-03 1.45E-04 1.45E-04

0.5 -3.00E-03 1.59E-04 1.59E-04

0.5 0 1.55E-04 1.55E-04

0.5 3.00E-03 1.46E-04 1.46E-04

0.5 6.00E-03 1.44E-04 1.44E-04

0.5 9.00E-03 1.46E-04 1.46E-04

0.505 -3.00E-03 1.59E-04 1.59E-04

0.505 0 1.51E-04 1.51E-04
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0.505 3.00E-03 1.45E-04 1.45E-04

0.505 6.00E-03 1.45E-04 1.45E-04

0.505 9.00E-03 1.44E-04 1.44E-04

0.51 -3.00E-03 999.9 1.59E-04

0.51 0 1.51E-04 1.51E-04

0.51 3.00E-03 1.46E-04 1.46E-04

0.51 6.00E-03 1.45E-04 1.45E-04

0.51 9.00E-03 1.49E-04 1.49E-04

0.515 -3.00E-03 999.9 1.59E-04

0.515 0 1.52E-04 1.52E-04

0.515 3.00E-03 1.46E-04 1.46E-04

0.515 6.00E-03 1.48E-04 1.48E-04

0.515 9.00E-03 1.50E-04 1.50E-04

0.52 -3.00E-03 999.9 1.59E-04

0.52 0 1.53E-04 1.53E-04

0.52 3.00E-03 1.48E-04 1.48E-04

0.52 6.00E-03 1.54E-04 1.54E-04

0.52 9.00E-03 1.67E-04 1.67E-04

0.49 -2.12E-03 1.59E-04 1.59E-04

0.495 -2.12E-03 1.58E-04 1.58E-04

0.5 -2.12E-03 1.57E-04 1.57E-04

0.505 -2.12E-03 1.54E-04 1.54E-04

0.51 -2.12E-03 1.52E-04 1.52E-04

0.515 -2.12E-03 1.48E-04 1.48E-04

0.52 -2.12E-03 999.9 1.48E-04

0.525 -2.12E-03 999.9 1.48E-04

0.49 -1.58E-03 1.57E-04 1.57E-04

0.495 -1.58E-03 1.57E-04 1.57E-04

0.5 -1.58E-03 1.56E-04 1.56E-04

0.505 -1.58E-03 1.55E-04 1.55E-04
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0.51 -1.58E-03 1.50E-04 1.50E-04

0.515 -1.58E-03 1.50E-04 1.50E-04

0.52 -1.58E-03 1.48E-04 1.48E-04

0.525 -1.58E-03 999.9 1.48E-04

0.525 -3.00E-03 999.9 1.59E-04

0.525 0 1.51E-04 1.51E-04

0.525 3.00E-03 1.51E-04 1.51E-04

0.525 6.00E-03 1.65E-04 1.65E-04

0.525 9.00E-03 1.93E-04 1.93E-04
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