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Abstract

Most of the calculations of electronic properties of transition metal oxide have been based
on the local density approximation (LDA) in the density-functional theory (DFT). However,
because of the well-known deficiency of the LDA, there exists a serious discrepancy between
the Kohn-Sham (KS) eigenvalues and the experimental excitation energies. In order to
improve the accuracy of electronic structure calculation of materials, the GW approximation
is introduced on the basis of many-body perturbation theory (MBPT).

Transition metal oxides have unusual and useful electronic and magnetic properties and
are used in wide variety of applications. Since many of these properties strongly depend on
defects or impurities, it is important to study electronic structures of transition metal oxides
with impurities in order to understand the physics of material properties. TiO2 and ZnO are
the most investigated metal oxides for wide variety applications. There exists a quite large
degree of uncertainty in the experimental electronic energy gap. It also has been reported
with much interest that Nb impurities affect the conductivity and optical properties of rutile
TiO2. It is therefore highly desirable to present a systematic theoretical explanation of their
electronic structures.

In this thesis, I used our original all-electron mixed basis code TOMBO to calculate the
electronic structure of ZnO, TiO2 and rutile TiO2 with Nb impurities. Based on these results,
it can be conclude that the GW approximation seems good in describing not highly correlated
transition metal oxide system and with impurities.
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Chapter 1

Introduction

1.1 The transition metal oxide

Because of the unique band structure properties, the transition metal oxides are in a wide
spectrum of electronic and optoelectronic applications. The unusual properties are due to the
unique nature of the outer d-electrons. Therefore there exist strongly electron correlation.

Titanium dioxide (TiO2) is one of the most investigated transition metal oxides for wide
variety of photocatalytic, thermoelectric, solar cell, biosensing and gas sensing applications.
It exhibits serveral phases. The experimental band gap of anatase TiO2 is known to be 3.2
eV [1] or 3.4 eV [2]. The experimental band gap of rutile TiO2 has a quite large degree of
uncertainty: 3.0 eV [3, 4], 3.3±0.5 eV [5], 3.6±0.2 eV [6], and 4.0 eV [7].

Zinc oxide (ZnO) is a II-VI compound transition metal oxide, having wide electronic
and optoelectronic applications, such as light-emitting diodes, solar cells, and so on. The
band gap of cubic zincblende ZnO is 3.44 eV [8, 9] at low temperatures and 3.37 eV at room
temperature [9].

Research on TiO2 and ZnO has continued for many decades, but it is still challenging for
understanding the electronic structures. Transition metal oxides have open d electron shells,
where electrons occupy narrow orbitals. Electrons experience strong Coulombic repulsion
because of their spatial confinement in those orbitals. Most of the calculations of electronic
structure of transition metal oxides have been based on the density-functional theory (DFT)
[10]. However, the Kohn-Sham (KS) eigenvalues underestimate the band gap compared
with the experimental excitation energies, due to the well-known deficiency of the LDA that
Kohn-Sham eigenvalues are not quasiparticle energies.

It has been also reported with much interest that Nb impurities affect the conductivity
and optical properties of rutile TiO2 [11, 12]. In thermoelectric applications, for example,
Ti1−xNbxO2 alloys have attracted experimental interest. Rutile TiO2 has high Seebeck
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coefficient, low thermal conductivity, non-toxicity, and stability at high temperatures, and
possesses potential applications in thermoelectric material field. However, the electronic
conductivity of rutile TiO2 is very low, which limits the thermoelectric conversion efficiency.
With Nb impurities, the electronic structure will be modified. Modifying the electronic
structure is important way to improve physical properties of transition metal oxides. Nb
impurites reduce the band gap, and improves the conductivity and optical properties of rutile
TiO2. Ti1−xNbxO2 alloys can obtain high electronic conductivity, and improve thermoelectric
properties. It is necessarily to stuy the electronic structure of rutile TiO2 with Nb impurities to
explain to physical mechanism. However, DFT results fail and obtain wrong band structure.

To overcome the shortcomings of the standard DFT, many approaches have been intro-
duced, for example the self-interaction correction (SIC)[13], the DFT hybrid approach[14],
and the LDA/GGA + U approach[15]. The first approach has a clear physics but it has
also a serious ambiguity how to treat crystals. The second approach is widely used but the
results strongly depend on the parameter how to mix the DFT and Hartree-Fock functionals.
The last approach modifies the intra-atomic Coulomb interaction, improving the accuracy
of the electronic structure. However, there exits the Hubbard U parameter that adjusts the
band structure. The results with finite U value in the LDA/GGA + U approach sometimes
overestimate the lattice parameters and underestimate the band gap[16]. The calculated DFT
band structures are not improved by the energy-independent nonlocal-density corrections to
the LDA. Therefore, quasiparticle (QP) energies are needed [17]. The GW approximation
[17, 18] is introduced to improve the accuracy of electronic structure calculation of finite
band-gap systems.

1.2 The motivations for the thesis

The one-shot GW approximation, on the basis of many-body perturbation theory (MBPT)
[18, 19], solves the QP equation with the first order perturbative expansion for the self-
energy operator using the many-body Green’s function. It has been successfully applied
for a broad class of materials ranging bulk insulators and semiconductors [18, 19]. Some
one-shot GW calculations of TiO2 and ZnO have been already reported: In anatase TiO2

calculations, Kang and Hybertsen [20] reported the X-Γ indirect band gap of 3.56 eV. Patrick
and Giustino [21] obtained 3.3 eV of GW quasiparticle band gap starting from DFT+U . In
rutile TiO2 calculations, 4.8 eV [22], 3.59 eV [23], and 3.34 eV [20] were reported by the
one-shot GW method. Schilfgaarde et al. [24, 25] performed full-potential LMTO based
self-consistent GW calculation and obtained 3.78 eV for the band gap. Lany [26] used the
self-consistent GW calculation with fixed GGA+U wave function and obtained 4.48 eV for
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the band gap. He also obtained TDDFT-based local-field corrected values of 3.11 eV and
3.4 eV by introducing empirical d-orbital on-site energy. In zincblende ZnO calculation,
Shishkin and Kresse [27, 28] reported 2.12 eV of band gap in one-shot GW method, 2.54 eV
and 3.0 eV in GW0 method, and 3.2 eV in GW method.

These values of the GW band gap are very scattered. There are two main reasons: (1)
Local fields [29, 30] play an important role in the calculation of dielectric function ε(ω), and
can cause a significant reduction of the dielectric function. Within the independent-particle
picture, local fields are often included by calculating the entire dielectric matrix εG,G′(ω) and
evaluating the macroscopic dielectric function from the head of the inverse matrix, ε

−1
G,G′(ω),

here G denotes the reciprocal lattice vectors. Hybertsen and Louie [18, 31] pointed that
local field effects (the off-diagonal elements of the dielectric matrix) strongly influence the
self-energy. von der Linden and Horsch [32] show that neglecting the off-diagonal elements
from the very beginning leads to an almost rigid upwards shift of all valence-band states by
about 0.4 eV relative to the conduction bands. There exit strong local filed effects, so the use
of the generalized plasmon-pole (GPP) model [18] is not suitable for the electronic structure
of transistion metal oxides [20]. In rutile TiO2 case, for example, it leads to too large band
gap. (2) The one-shot GW quasiparticle energy is determined by Kohn-Sham eigenvalues
and wave functions. Therefore different pseudopotential and exchange-correlation functional
may lead to the GW band gap differences.

In Ti1−xNbxO2 system, the Nb orbitals most likely introduce additional structure in the
loss function. In order to obtain an accurate band gap of TiO2, ZnO and Ti1−xNbxO2, we
adopt the full ω integration instead of using the GPP model to evaluate the correlation part of
the self-energy, and we use the all-electron mixed basis GW method, in which wave functions
are accuratedly described by plane waves (PWs) and atomic orbitals (AOs). The present
approach is capable to describe spatially localized states as well as extended states quite well.

1.3 The aim of the thesis

The aim of the thesis is to achieve an accurate description of the electronic structure of
transition metal oxides, and understand how atom doping affect the band gap, using our
original all-electron mixed basis code TOMBO.

1. To obtain accurate electronic structures of ZnO and TiO2

There exist strong electronic correlation in transition metal oxides. DFT results fail
to describe the electronic structure. Electronic structure of pure ZnO and TiO2 will be
calculated by GW method. QP energy will also be discussed, which contributions from
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the LDA exchange-correlation potential, V LDA
xc , and the exchange (Σx) and correlation

(Σc) parts of the self-energy ΣGW .

2. To study how the Nb impurity affects the band structure of Ti1−xNbxO2

In rutile TiO2 with Nb impurities case, the DFT results obtain wrong band structure.
It is necessary to improve the band structure by GW method, and discuss how the Nb
impurity affects the band structure.

3. To perform GW calculation using TOMBO

All calculations will be based on our original all-electron mixed basis code TOMBO
[33–36]. In particular we use the new parallel version of TOMBO which includes
both the GW cluster calculation routine [37] and the GW crystal calculation routine
[38, 39]. The code is fully parallelized using MPI and openMP with distributed memory
architechture. Our method may help understanding the change in the electronic
structure of highly correlated transition metal oxide without and with impurities. It is
hoped TOMBO will be used by many scientists and engineers in the world and a lot of
important results will be obtained by using TOMBO in various fields.

1.4 Outline of the thesis

The outline of the thesis is as follows:

1. Chapter 1: Introduction

In this chapter, it contains an introduction of transition metal oxide, and the motivations
of this thesis.

2. Chapter 2: The GW Approximation

In this chapter, the GW approximation is introduced, in order to improve the accuracy
of electronic structure calculation of transition metal oxide.

3. Chapter 3: Calculation Method

A short introduction of TOMBO is presented. The mixed basis formulation and
all-electron charge density are also introduced.

4. Chapter 4: Electronic Structure of anatase TiO2 zincblende and ZnO

I perform calculations for pure TiO2 and ZnO, and discuss the quasiparticle (QP)
energy contributions from the LDA exchange-correlation potential, and the exchange
and correlation parts of the self-energy.
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5. Chapter 5: Electronic Structure of rutile TiO2 with and without Nb impurities

In this chapter, I calculate the Nb impurities case, and found an impurity level well
localized in the middle of the band gap of the host rutile TiO2, and discuss how the Nb
impurity affects the band structure.

6. Chapter 6: Conclusions and Outlook

Based on above results, I outlook GW approximation in calculation of band structure,
and the TOMBO used in describing not highly correlated transition metal oxide system.



Chapter 2

The GW Approximation

The calculated DFT band structures are not improved by the energy-independent
nonlocal-density corrections to the LDA, in any case, quasiparticle energies are needed [19].
In order to improve the accuracy of electronic structure calculation of materials, the GW
approximation is introduced on the basis of many-body perturbation theory (MBPT)[17].

2.1 The quasiparticle band gap

In the N-particle many-body neutral system, eigenstates and total energies are denoted
|ψ⟩ and EN , respectively. The electron quasiparticle (QP) energies are defined by

ε
QP
ck = EN+1 −EN

0 (unoccupied) (2.1)

and the hole QP energies are defined by

ε
QP
vk = EN

0 −EN−1 (occupied) (2.2)

These are excitation energies of the (N ± 1)-particle system relative to the N-particle
ground-state energy EN

0 and thus correspond to the electron addition and removal energies. It
is clear that ε

QP
ck > εF and ε

QP
vk 6 εF , where εF is the Fermi level. The quasiparticle energy

gap is given by
Egap = ε

QP
{CBM}− ε

QP
[V BM]

= EN+1 +EN−1 −2EN
0 (2.3)

where . . . and [. . . ] indicate the energetically minimum and maximum k points of . . . , and,
at each k point, the CBM and VBM refer to the conduction band minimum and the valence
band maximum, respectively.
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2.2 The Green function

The propagation of one particle through the system is described by the one particle
Green function. The one particle Green function is defined as:

G(x1, t1,x2, t2) = i
〈

ΨN

∣∣∣T [
ψ(x1, t1)ψ†(x2, t2)

]∣∣∣ΨN

〉
(2.4)

It contains the information on energy and lifetimes of the quasiparticle, and also on the
ground state energy of the system and the momentum distribution. Here, x = (x, t) = (r,σ , t).
ΨN is the Heisenberg ground state vector of the interacting N-electron system satisfying
the engenvalue equation H|ΨN⟩= E|ΨN⟩,ψH and ψ

†
H are respectively the annihilation and

creation field operator and T is the Wick time ordering operator.

ψ(x, t) = eiHt
ψ(x)e−iHt (2.5)

ψ
†(x, t) = e−iHt

ψ
†(x)eiHt (2.6)

and the field operator satisfy the anti-commutation relation:{
ψ(x),ψ†(x′)

}
= δ (x−x′) (2.7)

{
ψ(x),ψ(x′)

}
=
{

ψ
†(x),ψ†(x′)

}
= 0 (2.8)

and:

T [ψ(x1, t1)ψ†(x2, t2)] =

{
ψ(x1, t1)ψ†(x2, t2) if t1 > t2
ψ(x2, t2)ψ†(x1, t1) if t1 < t2

(2.9)

Therefore, the Green function describes the probability amplitude for the propagation
of an electron (hole) from position r2 at t2 to r1 at time t1 for t1 > t2 (t1 < t2) (See Fig.2.1).
Insert a complete set of N+1 and N-1 particle states, ∑ j |ψN±1

j ⟩⟨ψN±1
j |= 1, we perform a

Fourier transform in energy space we obtain:

G(x1,x2;ω) = ∑
s

fs(x1 f ∗s (x2)

ω − εs + iηsgn(εs − εF)
(2.10)
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(a) add an electron (b) remove an electron

Fig. 2.1 Add/Remove an electron in the N-particle many-body system

where εF is the Fermi level,

εs =

{
E(N+1)

s −E(N)
N for εs ≥ εF

E(N−1)
N −E(N−1)

s for εs < εF
(2.11)

The subscript s indicate the quantum label of the states of the N ±1 system. The amplitudes
fs(x) are defined as:

fs(x) =

{
⟨ΨN |ψ(x)|ΨN+1,s⟩ for εs ≥ εF

⟨ΨN−1,s|ψ(x)|ΨN⟩ for εs < εF
(2.12)

The Green function has the poles at the electron addition (removal) energies and describes
quasiparticles. So we can obtain the quasiparticle band gap information from Green function.

2.3 The self-energy

From the definition of Green function (G) and the equation of motion for ψ(r, t) :
i ∂

∂ t ψ(r, t) = [ψ(r, t),H]. we can show:

i
∂

∂ t1
G(1,2) = δ (1,2)+H0(1)G(1,2)− i

∫
ν(1+,3)G(1,3,2,3+)d3 (2.13)

Here, H0 = T +Vext +VH , the number n stands for (rn, tn), ν(1+,3) is the Coulomb interaction
between electrons. There exists 2-particle Green function, describes the motion of 2 particles:
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G(1,2,3,4) =−
〈

Ψ
N
0

∣∣∣T [
ψ(1)ψ(2)ψ†(4)ψ†(3)

]∣∣∣Ψ
N
0

〉
(2.14)

In frequency Fourier space:

[ω −H0]G(ω)+ i
∫

νG2(ω) = 1 (2.15)

Instead of introducing a 2-particles Green function, we introduce the self-energy operator,
Σ . The self-energy allows to close formally the hierarchy of equations of motion of higher
order Green functions. Equation (2.15) is tranformed to 1-particle Green function.

[ω −H0]G(ω)+ i
∫

Σ(ω)G(ω) = 1 (2.16)

The self-energy is a non-local and energy dependent operator. From the equation of motion:

[h̄ω −H0(r)]G(r,r′;ω)−
∫

Σ(r,r′′;ω)G(r′′,r′;ω)d3r′′ = δ (r− r′) (2.17)

Introducing the Lehmann representation for G. The QP energies and QP wave functions
can be obtained as solutions of a Schrödinger-type QP equation [40]

Hoψnk(r)+
∫

dr′Σ(r,r′;ε
QP
nk )ψnk(r′) = ε

QP
nk ψnk(r) (2.18)

A practical approximation to calculate Σ is the GW approximation proposed by Hedin [17],
who wrote the self-energy as

ΣGW (r,r′;E) =
i

2π

∫
dωe−i0+ωG(r,r′;E −ω)W (r,r′;ω) (2.19)

The GW self-energy can be separated into two terms ( ΣGW = Σx+Σc ). The exchange
part is given by

Σx(r,r′) =
i

2π

∫
dωeiω0+G(r,r′;ω)ν(r− r′) =−

occ

∑
nk

ψnk(r)ψ∗
nk(r)

|r− r′|
(2.20)

and the correlation part,

Σc(r,r′;ω) =
i

2π

∫
dω

′e−iω0+G(r,r′;ω −ω
′)
[
W (r,r′;ω

′)−ν(r− r′)
]

(2.21)

In equation (2.20), the symbol occ in the sum means that the summation is taken over the
occupied states only. Σc(r,r′;E) is evaluated by using the full ω integration [41]. In Equation
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Fig. 2.2 Contour C of the ω ′ integration in Equation 2.22

(2.21), it is difficult to perform the ω ′ integral along the real axis, since W and G have a
strong structure on this axis. In order to avoid this difficulty, Godby et al.[42–45] restricted
the values of ω to small imaginary numbers and changed the contour of the ω ′ integral from
real axis to imaginary axis [19]. Then, by analytic continuation, the resulting Taylor series
is used to estimate the matrix elements for real values of ω . Ishii and Ohno et al. [41, 46]
suggested that this intergration method employed by Godby et al. [19] can be extended rather
easily to real number of ω by slightly modifying the contour. The contour along the real ω ′

axis from −∞ to +∞ for the integral Equation (2.21) can be replaced by the contour C shown
in Fig.2.2 . Here we further use the symmetry W (ω) =W (−ω) to reduce the contour to the
positive real and imaginary parts only. The correlation part of self-energy’s diagonal matrix
element becomes〈

n,k
∣∣Σc(r,r′)

∣∣n,k
〉
=∑

n′
∑
q

∑
G,G′

〈
n,k

∣∣∣ei(q+G)·r
∣∣∣n′,k−q

〉〈
n′k−q

∣∣∣e−i(q+G)·r
∣∣∣n,k

〉
× i

2π

∫
dω

′ [WG,G′(q,ω ′)− (4π/ΩG2)δG,G′
]

× (
1

ω +ω ′− εk−q,n′ − iδk−q,n′
+

1
ω −ω ′− εk−q,n′ − iδk−q,n′

)

(2.22)



2.4 Hedin’s equations 11

with the help of W (ω) =W (−ω).This term represents the contribution related to the electron
correlation.

Instead of solving equation (2.18) self-consistently, we adopt here the so-called one shot
GW approximation first proposed by Hybertsen and Louie [18]. The Green’s function (G)
is replaced by the LDA Green’s function G0 and constructed in a non-self-consistent way
from the KS wave functions ψKS

nk (r) and eigenvalues εKS
nk (r). It will be discussed in the next

section.

2.4 Hedin’s equations

It is possible to calculate energy and lifetimes of quasiparticle excitation solving Eq.
(2.18). A formally exact way of calculating the self-energy is given by a set of coupled
equations,known as Hedin’s equations [18]:

Self-energy:

Σ(1,2) = i
∫

d(34)G(1,3)Γ(3,2,4)W (4,1+) (2.23)

Screened potential:

W (1,2) = ν(1,2)+
∫

d(34)ν(1,3)P(3,4)W (4,2) (2.24)

Polarization:
P(1,2) =−i

∫
d(34)G(1,3)G(4,1+)Γ(3,4,2) (2.25)

Vertex function:

Γ(1,2,3) = δ (1,2)δ (1,3)+
∫

d(4567)
∂Σ(1,2)
∂G(4,5)

G(4,6)G(7,5)Γ(6,7,3) (2.26)

Dielectric function:
ε = 1−νP (2.27)

The screened potential W can also be written as

W (1,2) =
∫

d(3)ε−1(1,3)ν(3,2) (2.28)

From Hedin’s equations, we know how to calculate the self-energy. But it is still difficult
to do in practice. So the GW approximation is needed.
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2.5 The GW approximation

In GW approximation, the vertex function Γ in its zeroth-order form as:Γ(1,2,3) =
δ (12)δ (13). So the Hedin’s equations become:

Σ(1,2) = iG(1,2)W (1+,2) (2.29)

G(1,2) = G0(1,2)+
∫∫

d(3)d(4)G0(1,3)Σ(3,4)G(4,2) (2.30)

P(1,2) =−iG(1,2)G(2,1) (2.31)

W (1,2) = ν(1,2)+
∫∫

d(3)d(4)ν(1,3)P(3,4)W (4,2) (2.32)

Using the GW approximation, the quasiparticle equation (Eq. 2.18) can be solved. The
quasiparticle spectrum is calculated with Eq. (2.18) using the first-order perturbation theory
in ( ΣGW −V LDA

xc ), where V LDA
xc is the LDA exchange-correlation potential. Usually, the KS

wave functions ψKS
nk are sufficiently close to the true quasiparticle wave function ψnk(r), so

that the first-order estimate of the self-energy correction to the LDA eigenvalues in adequate
[18]. The GW quasiparticle energy εGW

nk is then obtained as

ε
GW
nk = ε

KS
nk +Znk

〈
ψ

KS
nk

∣∣∣ΣGW (r,r′;ε
KS
nk )−V LDA

xc (r)δ (r− r′)
∣∣∣ψ

KS
nk

〉
(2.33)

with a renormalization factor as

Znk =

[
1− ∂ΣGW (E)

∂E

]−1

|E=εKS
nk

(2.34)

2.6 One-shot GW approximation

In practice, Kohn-Sham orbitals and eigenvalues from a DFT calculation are often used as
input for a GW calculation and the quasiparticle spectrum is evaluated non-selfconsistenly
from Eq.(2.33) without updating the Green’s Function or the screened potential, that means
only one iteration is made. This is known as the “one-shot” GW or G0W0 approximation
[18, 19] and has become a standard tool in electronic structure theory. W0 is hereby equal to
the RPA screened potential.
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The Scheme of the one-shot GW is shown in Fig.(2.3). In this thesis, electronic structures
are calculated by one-shot GW method. Firstly, Kohn-Shan equation is solved by DFT
and LDA, it obtain Kohn-Sham eigenvalues and wave fuctions. Then using one-shot GW
approximation, we can get polarization, dielectric function, screened potential, et. al..
From Hedin’s equations, we obtain the self-energy. Finally, we calculate the QP energy by
Eq.(2.33).

Fig. 2.3 Scheme of the one-shot GW calculation



Chapter 3

Computational Method

TOMBO[35, 36], all-electron mixed-basis code, is short for "TOhoku Mixed Basis
Orbitals ab initio program". In this thesis, electronic structures of transition metal oxides are
calculated by our original all-electron mixed basis code TOMBO developed by Prof. Kaoru
Ohno, et al..

3.1 Short introduction of TOMBO

Density funcitonal theroy (DFT) [10] and local density approximation (LDA) [47]
have been used in numerous electronic structure calculations and firt-principles molecular
dynamics (MD) simulations. To perform those calculations, Kohn–Sham (KS) equation
needs to be solved self-consistently such that the input potential is identical to the output
potential [47]. The electronic wave function has to be described by appropriate functions to
solve the KS equation. Among the plane wave (PW) expansion approach has been applied to
the ab-initio molecular dynamics (MD) simulations with reasonably high accuracy [33].

However, it is difficult to treat phenomena (hyperfine interaction, XPS, Xanes, etc.)
related to core electrons by this method. One problem in generating good pseudo potentials
is related to the fact that the core contribution to the exchangecorrelation potential is not
simply an additive quantity. Moreover, it is not easy to create efficient pseudopotentials,
which require only small number of plane waves.

On the other hand, linear combination of atomic orbitals (LCAO) approaches can enable
us to treat all electrons. However, these methods have an intrinsic problem of incomplete
basis set, and therefore there is a problem in applying them in perturbation theory or spectral
expansion, which requires a description in the complete Hilbert space. It is also difficult to
consider a negative affinity problem by these methods. Related but slightly different problem
inherent to these methods is a basis set superposition error (BSSE) [48, 49]. There is also
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some trouble in the Gaussian basis method [50] to describe cusp in the wave-funcion at the
nuclear position.

In these respects, it is highly desirable to develop new method, which combines the
PW expansion technique with the LCAO technique to remove pseudopotentials in the PW
expansion methods and to make the basis set complete in the LCAO methods. This is
the main idea to introduce the all-electron mixed basis approach. TOMBO [35, 36] is the
program package using this approach. Therefore, TOMBO is the all-electron firstprinciples
method, which can be applicable to both isolated and periodic systems with complete basis
set. It is not the overcomplete basis set because only limited number of PWs is used in the
computation.

The powerfulness of TOMBO is not only based on these features but also based on the
fact that it enables us to perform the state-of-the-art calculations such as GW approximation
and Bether–Salpeter equation. Using these methods, TOMBO can treat the problems related
to electron correlations, electronic structure around the band gap, excitation spectra, and so
forth.

The all-electron mixed basis approach has the following advantages:
1. The number of basis functions can be significantly reduced.
2. In Hamiltonian matrix elements, it is not necessary to store PW-PW part because it is

given simply by the Fourier components V (G−G′).
3. It is possible to accurately treat core states because we determine AOs by using

Herman–Skillman code with logarithmic radial mesh.
4. There is no complexity to generate and treat pseudoptentials. There is also no problem

of transferability.
5. The overlap between AOs and PWs is calculated accurately by first performing

angular integral analytically and then performing radial integral of spherical Bessel functions
numerically in logarithmic radial mesh.

6. Because AOs are confined inside non-overlapping atomic spheres, there is no BSSE
problem, and it is not necessary to calculate overlap integrals between AOs centered at
different atoms, which might produce unnecessary computational errors. Simultaneously,
this reduces the overcompleteness problem.

3.2 Mixed basis formulation

TOMBO is short for "TOhoku Mixed Basis Orbitals ab initio program". The “mixed-
basis” indicates the method using both plane waves and Bloch sums made of atomic orbitals
as the basis set.
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For an isolated atom, it is possible to solves the Kohn–Sham equation very rigorously,
because of the system has a spherical symmetry. In this case, the Kohn-Sham wave function
is expressed as a product of radial function R jnl(r) and spherical harmonics Ylm(r) as

φ
AO
jnlm = R jnl(r)Ylm(r) (3.1)

Here, j, n, l, and m are atomic species, principal quantum number, angular momentum
quantum number, and magnetic quantum number.

In the mixed basis code, the KS wave function is expressed as a linear combination of
PWs and AOs as follows [35]

ψv(r) =
1√
Ω

∑
G

cPW
v (G)eiG·r +∑

j
∑
nlm

cAO
v ( jnlm)φ AO

jnlm(r−R j) (3.2)

Here, φ is the volume of the unit cell, G is the reciprocal lattice vector, c is the expansion
coefficients.

The formulation presented in the previous section based on MBPT requires summing
over large number of empty states. The PW basis set can most accurately describe the empty
states. In contrast, to describe the electrons in the core region accurately, the AO basis set
works better then the PW basis set. The all-electron mixed basis approach, using both PWs
and AOs as a basis set in a combined way, is able to meet the requirements to describe both
spatially extended and localized states. In our code, AOs are numerically described inside
the non-overlapping atomic spheres and the radial part is treated using the logarithmic mesh.

3.3 All-electron charge density

In the all-electron mixed basis approach, all-electron charge density ρ(r) is made of
three contributions: PW-PW, AO-PW,and AO-AO.

ρ(r) = ρ
PW−PW (r)+∑

j
ρ

AO−PW
j (r)+∑

j
ρ

AO−AO
j (r) (3.3)

In the all-electron mixed basis approach, the charge density is made of the three contributions,

ρ
PW−PW (r) =

2
Ω

occ

∑
v

∑
G

∑
G′

cPW∗
v (G′)cPW

v (G)ei(G−G′)·r (3.4)
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ρ
AO−PW
j (r) =

2√
Ω

occ

∑
v

∑
nlm

∑
G

cAO∗
v ( jnlm)cPW

v (G)×φ jnlm(r−R j)ei(G)·r + c.c.. (3.5)

ρ
AO−AO
j (r) = 2

occ

∑
v

∑
n′l′m′

∑
nlm

cAO∗
v ( jn′l′m′)cAO

v ( jnlm)×φ jn′l′m′(r−R j)φ jnlm(r−R j) (3.6)

where c.c. in equation (3.5) means the complex conjugate of the previous term. The first
PW-PW contribution can be conveniently treated in Fourier space. The rest two AO-related
contributions are confined only inside the non-overlapping atomic spheres, and can be written
together as

ρ
AO
j (r) = ρ

AO−PW
j (r)ρAO−AO

j (r) (3.7)

This can be divided into two parts: one is spherical symmetric part and the other is asymmetric
part.

3.4 Input parameters

In the GW calcualtion using TOMBO code, it needs 5 input files: INPUT.inp, COOR-
DINATES.inp, KPOINT.inp, QPOINT.inp, and SPOINT.inp. INPUT.inp is the central input
file of TOMBO. It determines "what to do and how to do it", and can contain a relatively
large number of parameters. The variables related to both the unit cell and AOs should be
written in COORDINATES.inp: the lattice constant, lattice vectors, coordinates of the nuclei
and the number of orbit-type AOs for each atom.

In GW calculation, Self-consistent field (SCF) loop with special-point sampling (
SPOINT.inp ) is performed within LDA and then one-shot GW crystal calculation is per-
formed. To calculate the polarization function PGG′ , k-point sampling is performed for
the points in the whole Brillouin Zone (BZ) assigned as “sum” in KPOINT.inp. Then the
correlation part of the self-energy, Σc is calculated within the full ω integration by taking
q-point sampling in the irreducible BZ by using QPOINT.inp. Finally, the expectation values
of the exchange (Σx) and correlation (Σc) parts of the self-energy are evaluated for the k
points (typically at symmetry points in the irreducible BZ) assigned as “out” in KPOINT.inp.



Chapter 4

Electronic Structure of anatase TiO2 and
zincblende ZnO

4.1 Computational details

(a) anatase TiO2 (b) 1st BZ of anatase TiO2

Fig. 4.1 Crystal structure and the first Brillouin zone and special k-points of anatase TiO2.
Red and gray atoms stand for oxygen and titanium atoms, respectively.

The Crystal structure, the first Brillouin zone (BZ) and special k-points of TiO2 and
ZnO are shown in Fig. (4.1) and Fig.(4.2). The GW calculation using TOMBO requires
the following settings to ensure the convergence of QP energy: The correlation part of
the self-energy, Σc, is calculated by performing the full ω integration using 201 points at
0.1+ 0.2n (eV) and 20.1+(1+ 2n)i (eV) for n = 0, 100 along the positive real axis and
then rotated 90◦ parallel to the positive imaginary axis[41] (here we utilize the relation
W (ω) =W (−ω)). We use 1s, 2s and 2p valence AOs (confined within the radius of 0.65 Å)
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(a) zincblende ZnO (b) 1st BZ of zincblende ZnO

Fig. 4.2 Crystal structure and the first Brillouin zone and special k-points of zincblende ZnO.
Red and black atoms stand for oxygen and zinc atoms, respectively.

for oxygen, 1s, 2s, 2p, 3s, 3p, and 3d AOs (confined within the radius of 0.8 Å) for titanium
and (confined within the radius of 0.85 Å) for zinc[35].

In anatase TiO2 calculation, the cut-off energies are set as 18.29 Ry for plane waves,
73.14 for Fock exchange, and 9.33 Ry for correlation. To calculate the polarization function,
k-point sampling is performed for the (3×3×3) points including the Γ point in the whole
Brillouin zone (BZ). The number of levels used in the summation is 500. Exchange and
correlation parts of the self-energy are evaluated by taking 4 q-points (Γ grid) sampling in
the irreducible BZ.

In zincblende ZnO calculation, 3×3×3 k-points including the Γ point are used. The
cut-off energies of plane waves, Fock exchange, and correlation are set as 105.41 Ry, 421.62
Ry and 105.41 Ry , respectively. 5 q-points, and 1000 levels are used in zincblende ZnO
calculation.

4.2 Results and discussion

Table 4.1 summarizes the band gaps of anatase TiO2 and zincblende ZnO calculated with
the LDA and GW methods. The band gaps of anatase TiO2 and zincblende ZnO are 1.70 eV
and 1.46 eV in the LDA calculation; the GW band gaps are 3.44 eV and 2.83 eV, respectively.

Comparing with the experiment data, the LDA results seriously underestimate the band
gap. Due to 3d orbitals, there exist local electron correlations in TiO2 and ZnO. In the LDA
calculation, the band structures are not improved by the energy independent nonlocal-density
corrections. Compared to the LDA results, the self-energy ΣGW enlarges the band gap in the
GW calculation, and the results are close to experiment data well.

Several band gap values of the preexisting GW calculations are also listed in Table
4.1. Comparing the one-shot GW results, there exists a quite large degree of differences.
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Table 4.2 Contributions to the quasiparticle energies of anatase TiO2 (eV).

State Σx Σc ΣGW V LDA
xc εLDA εGW

CBM+1 -12.63 -4.34 -16.97 -22.56 9.86 13.57
CBM -11.98 -3.84 -15.82 -21.23 9.10 12.88

VBM -21.43 2.72 -18.71 -21.21 7.40 9.44
VBM-1 -21.87 2.63 -19.24 -21.72 7.37 9.36

Table 4.3 Contributions to the quasiparticle energies of zincblende ZnO (eV).

State Σx Σc ΣGW V LDA
xc εLDA εGW

CBM+1 -6.39 -2.89 -9.28 -13.17 21.89 24.93
CBM -8.47 -2.73 -11.20 -13.88 9.34 11.91

VBM -27.29 2.20 -25.09 -26.35 7.88 9.08
VBM-1 -27.62 2.44 -25.18 -26.35 7.88 9.02

In practice, Kohn-Sham orbitals and eigenvalues are used as input for a GW calculation.
Pseudopotential or the choice of the exchange-correlation functional (including the use of
DFT+U) may affect the quasiparticle energies in GW calculation. In our results, we used
the all-electron mixed basis, and described wave functions by plane waves (PWs) and atomic
orbitals (AOs), which would improve the accuracy of quasiparticle energies. Our results are
certainly much closer to the experimental values.

In the GW calculation of anatase TiO2 , QP energy contributions form the LDA exchange-
correlation V LDA

xc , the exchange(Σx) and correlation (Σc) parts of the self-energy ΣGW are
listed in Table 4.2. The values of the LDA exchange-correlation V LDA

xc in CBM and VBM
are very close (-21.23 eV in CBM, and -21.21 eV in VBM). The self-energy ΣGW values
of anatase TiO2 is -15.82 eV in the CBM; this value becomes -18.71 in the VBM. The
difference ΣGW −V LDA

xc becomes relatively larger from the VBM to the CBM. Consequently
the GW method increases the gap between the valence and conduction states, and improves
the underestimated LDA results.

Table 4.3 lists QP energy contributions in the GW calculation of zincblende ZnO. The
LDA results also underestimate the band gap, the GW approximation enlarges the band
gap, resulting in better results. The Σx value of zincblende ZnO in the CBM is -8.47 eV.
Comparing with Table 4.2 , the Σx value of anatase TiO2 in the CBM is -11.98 eV. The Σx

absolute values of ZnO in the CBM are much smaller than that of TiO2. From Eq. (2.20), the
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Σx value is estimated with the following equation:

〈
ψnk

∣∣Σx(r,r′)
∣∣ψnk

〉
= −

occ

∑
n′k′

∫∫
ψ∗

nk(r)ψn′k′(r)ψ∗
n′k′(r′)ψnk(r′)

|r− r′|
drdr′. (4.1)

Since the summation runs over the occupied states only, if |ψnk⟩ is an occupied state, the Σx

value becomes large negative; On the other hand, if |ψnk⟩ is an empty state, there is no large
overlap between ψnk and ψn′k′ , leading to a small negative value of Σx. The correlation part
Σc of the self-energy has an opposite tendency against this exchange part Σx, reflecting the
effect of the electron screening.

There is much less overlap of ZnO than that of TiO2 with the unoccupied states in the
CBM. This is because the electron configuration is 1s22s22p63s23p63d24s2 for Ti atom and
1s22s22p63s23p63d104s2 for Zn atom, and 3d orbitals are fully occupied in Zn atom but not
in Ti atom.

4.3 Conclusions

The quasiparticle band structure of anatase TiO2 and zincblende ZnO were calculated
using the all-electron mixed basis GW method. The LDA gives too small band gap. In
the GW calculation, the difference ΣGW −V LDA

xc in the CBM becomes larger than that in
the VBM, which leads to a large change of quasiparticle energy between the VBM and
CBM. Consequently the GW method increases the gap between the valence and conduction
states, and improves the underestimated LDA results. By comparing the electronic structure
calculated by DFT or other GW methods, our results of the electronic structure calculation
using the one-shot GW approximation with the all-electron mixed basis approach, in anatase
TiO2 case, the results are in reasonable agreement with experiments. The present GW method
may help understanding the electronic structure of not heavily correlated transition metal
oxides.



Chapter 5

Electronic Structure of rutile TiO2 with
and without Nb impurities

It has been also reported with much interest that Nb impurities affect the conductivity
and optical properties of rutile TiO2 [11, 12]. It is therefore highly desirable to present a
systematic theoretical explanation of their electronic structures. The band gap calculated by
the LDA is less than 0 eV, which conflicts with the experimental observation [51]. The GW
method corrects the band structure well. In this chapter, the electronic structures of both pure
rutile TiO2 and Ti1−xNbxO2 are calculated by the GW method.

5.1 Computational details

Rutile TiO2 has a tetragonal primitive cell with two formula units [see Fig. 5.1(a)]
and its symmetry is described by the space group P42/mnm. The lattice parameters are
a= b= 4.594Å and c= 2.959Å at room temperature. The Ti and O atoms reside at the 2a and
4 f Wyckoff positions, the latter characterized by the single internal parameter u = 0.305.[52]
The first Brillouin zone (BZ) of rutile TiO2 is shown in Fig. 5.1(b).

In the GW calculation of TiO2 with impurities, a larger supercell improves the accuracy
of the results. However because the GW calculation is very heavy and there is a limitation in
the computational resources, we have to use a rather small supercell.

FIG. 3(a) of Ref. [12] clearly shows the occupied impurity band about 1.3 eV below
the conduction band and the location of this impurity level does not significantly depend
on the impurity concentration (See Fig. 5.2). Moreover, there is no ESR signal in the Nb
doped TiO2 samples, which indicates that the there is no unpaired electron localized at the
Nb impurity atom. From these experimental observations, we have noticed that Nb impurity
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(a) crystal structur (b) the first Brillouin zone

Fig. 5.1 The crystal structure (a) and the first Brillouin zone (b) including symmetry k points
of rutile TiO2. Red and gray atoms stand for oxygen and titanium atoms, respectively.

Table 5.1 Total energy of Ti0.75Nb0.25O2 at different position

Position Total energy (eV)
A(0.75, 0.75, 0.5) -236.32
B(0.5, 0.5 ,0) -235.98
C(0.25, 0.75, 0.5) -236.20
D(0, 0.5, 0) -235.80

atom (which has odd number of electrons) does not show spin magnetic moment. In order to
realize these experimental situations, Nb impurity chain is assumed instead of an isolated
Nb impurity atom, which suppresses the local spin magnetic moment. In our model, we
consider a relatively high impurity concentration. Ion channeling experiments suggest that
Nb atom substitutes a Ti site [51]. Therefore, we use a 2×2×1 supercell, and two Ti atoms
are replaced by two Nb atoms.

To determine the impurity position of Nb atom, we compared total energies of the four
possible positions [(0.75, 0.75, 0.5), (0.5, 0.5, 0), (0.25, 0.75, 0.5), and (0, 0.5, 0)] of one Nb
atom with the other Nb atom fixed at the position (0.25, 0.25, 0.5); see Fig. 5.3. The atomic
positions are optimized by the geometric optimization using the VASP (PAW) code,[53, 54]
which is converged when all forces are smaller than 10−3 eV/Å and allowed 10−6 eV error
in the total energy using an LDA approach, the plane-wave cut-off energy is set as 350 eV,
and a k-point grid of 3×3×8 is used for BZ integrations.

As seen from Table 5.1, when the Nb atom substitutes the Ti atom at the position (0.75,
0.75, 0.5), the total energy is the lowest, and the crystal structure is most stable. The lattice
parameters are slightly changed, a = b = 9.12Å, c = 2.92Å; α = β = 90◦, γ = 89.56◦. So,
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Fig. 5.2 Valence-band x-ray photoemission spectra of Ti1−xNbxO2 ceramics for the differing
x values indicated. Binding energies are relative to the Fermi energy of a calibrant silver foil.
[This figure is taken from D. Morris et al., Phys. Rev. B 61, 13445 (2000).]
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Fig. 5.3 Crystal structure of Ti0.75Nb0.25O2. Red, gray, and green atoms stand for oxygen,
titanium and niobium atoms, respectively.

we performed the GW calculation using Fig. 5.4(a) structural model. Its first BZ is shown in
Fig. 5.4(b).

The GW calculation using TOMBO requires the following settings to ensure the conver-
gence of QP energy: The correlation part of the self-energy, Σc, is calculated by performing
the full ω integration using 201 points at 0.1+0.2n (eV) and 20.1+(1+2n)i (eV) for n =

0, 100 along the positive real axis and then rotated 90◦ parallel to the positive imaginary
axis[41] (here we utilize the relation W (ω) =W (−ω)). We use 1s, 2s and 2p valence AOs
(confined within the radius of 0.65 Å) for oxygen, 1s, 2s, 2p, 3s, 3p, and 3d AOs (confined
within the radius of 0.8 Å) for titanium, and 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d AOs (confined
within the radius of 1.0 Å) for niobium[35]. For rutile TiO2, the cut-off energies are set as
33.58 Ry for PWs, 170.01 Ry for Fock exchange, and 13.12 Ry for correlation. To calculate
the polarization function, k-point sampling is performed in the Γ grid (3×3×5) in the whole
BZ, while we used 6 q-points in the irreducible BZ, although we found that 3×3×5 k-points
and 3×3×3 k-points give only 0.03 eV difference in the resulting absolute QP energies.
The number of levels used in the summation is 400. For Ti0.75Nb0.25O2, the cut-off energies
are set as 13.28 Ry for PWs, 34.01 Ry for Fock exchange, and 13.28 Ry for correlation. The
Γ grid 3×3×3 k-points, 1 q-point, and 400 levels are used; leading to a convergence of the
absolute QP energy to about 0.02 eV.
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(a) (b)

Fig. 5.4 The crystal structure (a) and the first Brillouin zone (b) including symmetry k points
of Ti0.75Nb0.25O2. Red, gray, and green atoms stand for oxygen, titanium and niobium atoms,
respectively.

5.2 Results and discussion

5.2.1 Pure rutile TiO2

We first performed calculations for pure rutile TiO2. The resulting GW and LDA band
structures are shown in Fig. 5.5. The zero of energy is placed at the [VBM]. As anticipated,
LDA predicts too small band gap. The values of the energy gap calculated by the LDA and
GW methods are 1.68 eV and 3.30 eV, respectively. The top of the valence band [VBM] is
located at the Γ point and the bottom of the conduction band CBM is located at the R point.
Compared to the LDA band structure, the self-energy ΣGW enlarges the band gap in the GW
band structure. The indirect band gap between the Γ and R points of 3.30 eV accords with
the experiment data (3.3 ± 0.5 eV)[5] well. Although some of previous reports of the GW
calculations have referred to the experimental value 3.05 eV,[3, 55] this value is the optical
gap including the excitonic effect and not the true energy gap defined by Eqs. (2.1)-(2.3).
The experimental band width below the VBM[12] is about 6 eV, and our GW band width is
5.7 eV, which are also comparable each other.

There have been several GW calculations reported for the band gap of the pure rutile TiO2

as listed in Table 5.2. Oshikiri et al.[22] used LMTO-ASA based one-shot GW calculation
to obtain about 4.8 eV for the band gap. Schilfgaarde, Kotani et al.[24, 25] performed
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Table 5.2 The band gap of rutile TiO2 calculated by GW methods (eV).

Band gap Calculation methods References
3.30 one-shot GW this work
4.8 one-shot GW Ref. [22]

3.78 self-consistent GW Refs. [24, 25]
3.59 one-shot GW Ref. [23]
3.34 one-shot GW Ref. [20]
4.48 GW with GGA+U Ref. [26]

3.3 ± 0.5 Experiment Ref. [5]
3.6 ± 0.2 Experiment Ref. [6]

full-potential LMTO based self-consistent GW calculation and obtained 3.78 eV for the
band gap. Chiodo et al.[23] reported 3.59 eV by using the plane-wave based QUANTUM-
ESPRESSO. Kang and Hybertsen[20] reported the Γ-R indirect band gap of 3.34 eV by
using the plane-wave based one-shot GW code, pointing out that the use of the GPP model
of Hybertsen-Louie[18] overestimates the band gap by 0.6 eV compared to the results using
the full ω integration or the plasmon-pole model (PPM) of von der Linden–Horsch.[3] In our
all-electron mixed basis code, we found a similar energy gap difference of 0.7 eV between
the GPP model and the PPM of von der Linden–Horsch [56](or the full ω integration). This
is due to the complex structure in the loss function, i.e. −Imε−1, in the TiO2 crystal, which
makes difficult to apply the PPMs, as discussed in Ref. [20]. More recently Lany[26] used
the GW calculation with self-consistent quasiparticle energies but with fixed GGA +U wave
function using VASP and obtained 4.48 eV for the band gap. They also gave TDDFT-based
local-field corrected values of 3.11 eV and 3.4 eV by introducing empirical d-orbital on-site
energy. These values of the GW band gap are very scattered, but our all-electron one-shot GW
result of 3.30 eV using the full ω integration is close to the result of Kang and Hybertsen[20].

In the GW calculation, QP energy contributions from the LDA exchange-correlation
potential, V LDA

xc , and the exchange (Σx) and correlation (Σc) parts of the self-energy ΣGW

are listed in Table 5.3. We focus on the band energies of the VBM and CBM. As will be
seen in Section 5.2.3, the VBM is composed of O 2p and Ti 3d orbitals, and the CBM is
mainly composed of Ti 3d orbitals. The difference ΣGW −V LDA

xc is relatively small at the
Γ (2.28 eV) and R (2.11 eV) points in the VBM. Consequently the change in the energy
between the LDA and GW calculations, ∆VVBM, is less than 1.7 eV. One the other hand, the
difference ΣGW −V LDA

xc is rather large at the Γ (4.36 eV) and R (4.11 eV) points in the CBM,
which leads to a large change in ∆VCBM. Consequently the GW method increases the gap
between the valence and conduction states, and improves the underestimated LDA results.
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Fig. 5.5 Band structure of the pure rutile TiO2. (Lines for the LDA, dots for the GW
calculation. The zero of energy is placed at the top of the valence band ([VBM] at the Γ

point).
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Table 5.3 Contributions to the quasiparticle energies of rutile TiO2 at the Γ and R points.

The expectation values of the exchange (Σx) and correlation (Σc) parts of the self-energy ΣGW ,
and the LDA exchange-correlation potential V LDA

xc are listed together with the Kohn-Sham
energy eigenvalues εKS

nk and the GW quasiparticle energies εGW
nk (in units of eV). The top of

the valence band and the bottom of the conduction band are denoted by [VBM] (at the Γ

point) and CBM (at the R point), respectively.

state Σx Σc ΣGW V LDA
xc εKS

nk ε
QP
nk

Γ CBM+1 −13.31 −4.46 −17.77 −21.99 10.78 14.17
CBM −13.06 −4.93 −17.99 −22.35 10.44 14.12

[VBM] −22.21 2.91 −19.30 −21.58 8.76 10.48
VBM−1 −22.38 2.74 −19.64 −21.83 8.36 10.10

R CBM+1 −13.13 −4.64 −17.77 −21.89 10.54 13.80
{CBM} −13.16 −4.63 −17.79 −21.90 10.52 13.78
VBM −21.62 3.09 −18.53 −20.64 7.76 9.34

VBM−1 −21.68 3.14 −18.54 −20.67 7.73 9.32

The reason of this difference between the VBM and CBM is related to the difference between
the occupied and unoccupied states. In this sense, the CBM and CBM+1 have a similar
tendency, while the VBM and VBM−1 have a similar tendency. The characteristic of these
tendencies is explained as follows. In Table 5.3, the Σx (or Σc) values are small negative
(or negative) in the empty CBM and CBM+1 levels, and large negative (or positive) in the
occupied VBM and VBM−1 levels.

5.2.2 Ti0.75Nb0.25O2

The band structure of Ti0.75Nb0.25O2 calculated with the GW method is shown in Fig. 5.6.
There appears a clear occupied impurity band (new VBM) in the middle of the large band gap.
Comparing with the band structure of the pure rutile TiO2 given in Fig. 5.5, the magnitude of
the host band gap is almost unchanged, while, due to the emergence of the occupied impurity
band, the new band gap between the top of the new valence band [VBM] at the A point and
the bottom of the conduction band CBM at the X point becomes smaller. As shown in Fig.
5.6, Ti0.75Nb0.25O2 has an indirect band gap of 1.25 eV from the A point to the X point in
the GW calculation. In the LDA calculation, on the other hand, the KS energy eigenvalue
εKS

nk of the VBM is 12.73 eV at the A point, while that of the CBM is 12.36 eV at the X point.
The energy of the CBM is less than that of the VBM, and therefore the band gap calculated
by the LDA is less than 0 eV, which conflicts with the experimental observation.[51] The
GW method corrects the band structure well. Contributions to the quasiparticle energies at
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the A and X points are listed in Table 5.4. The value of V LDA
xc is almost the same between

the VBM and CBM. Therefore, we have an incorrect band gap in the LDA calculation. In
the GW calculation, because of the large self-energy contribution to the VBM and CBM
energies, the band gap is enlarged, leading to the results in qualitative agreement with the
experiments.[12, 51]
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Fig. 5.6 Band structure of the Ti0.75Nb0.25O2. (Lines for the LDA, dots for the GW calculation.
The zero of energy is placed at the top of the valence band ([VBM] at the A point).

In order to understand how the Nb impurity affects the band structure, we discuss QP
energy contributions listed in Table 5.4 by comparing with Table 5.3. The characteristic
of the values of Σx and Σc is the same between the pure and with Nb impurity systems for
every level except for the VBM. That is, in both tables, Σx and Σc are negative for the CBM
and CBM+1; Σx is large negative and Σc is positive for the VBM−1. But the characteristic
drastically changes for the VBM. With Nb impurities, it is seen from Tables 5.3 and 5.4
that Σc changes sign from positive to negative and Σx changes from large negative to small
negative, i.e., their values become similar to those of the empty states, CBM and CBM+1.
Again from Eq. (4.1), we find that there is only few overlap with the occupied states in the
VBM, which leads to the smaller negative value for Σx, and Σc has the opposite tendency
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Table 5.4 Contributions to the quasiparticle energies of Ti0.75Nb0.25O2 at the A and X points.

The expectation values of the exchange (Σx) and correlation (Σc) parts of the self-energy
ΣGW , and the LDA exchange-correlation potential V LDA

xc are listed together with the
Kohn-Sham energy eigenvalues εKS

nk and the GW quasiparticle energies εGW
nk (in units of eV).

The top of the “impurity” valence band and the bottom of the conduction band are denoted
by [VBM] (at the A point) and CBM (at the X point), respectively. The band gap is positive

in the GW approximation but negative in the LDA.

state Σx Σc ΣGW V LDA
xc εKS

nk ε
QP
nk

A CBM+1 −14.66 −3.47 −18.13 −22.05 13.04 15.69
CBM −14.17 −2.80 −16.97 −20.63 12.87 15.62

[VBM] −17.39 −2.70 −20.09 −21.40 12.73 13.71
VBM−1 −22.63 3.69 −18.94 −20.49 9.49 10.66

X CBM+1 −13.74 −4.05 −17.79 −22.25 12.78 15.92
{CBM} −14.15 −3.13 −17.28 −20.60 12.36 14.96
VBM −16.87 −3.15 −20.02 −20.58 12.34 12.77

VBM−1 −23.32 3.91 −19.41 −21.05 10.25 11.47

(i.e., changing from positive to negative) due to the electron screening effect. This VBM is
a “new" occupied impurity band caused by Nb atom, unlike the occupied states of the pure
rutile TiO2.

5.2.3 Partial charge density analysis

We show the contour plots of the partial charge density of the VBM and CBM of the pure
rutile TiO2 and the Ti0.75Nb0.25O2 in Fig. 5.7. From Figs. 5.7 (a) and (b) of the pure rutile
TiO2, we see that the [VBM] (at the Γ point) is composed of O 2p and Ti 3d orbitals and
the CBM (at the R point) is mainly composed of Ti 3d orbitals. The O 2p and Ti 3d orbitals
play an important role in the VBM. With Nb impurities, the partial charge density of the
VBM−1 (at the Γ point) is composed of O 2p and Ti 3d orbitals as seen in Fig. 5.7(c), and
that of the CBM+1 (at the X point) is mainly composed of Ti 3d orbitals as seen in Fig.
5.7(f), which is similar to Fig. 5.7(b) of the CBM of the pure rutile TiO2. By comparing
Fig. 5.7(c) with Fig. 5.7(a), we find that the partial charge density of the VBM−1 of the
Ti0.75Nb0.25O2 is similar to that of the VBM of the pure rutile TiO2, except that the intensity
of the partial charge density in particular around some of Ti atoms of the VBM−1 of the
Ti0.75Nb0.25O2 is less than that of the VBM of the pure rutile TiO2. (Note that all Ti atoms
are on the same plane in this figure.) This is because some parts of Ti 3d and O 2p orbitals
are hybridized with Nb 4d orbitals in the VBM. In fact, the [VBM] (at the A point) and the



5.2 Results and discussion 33

(a) (b)

(c) (d)

(e) (f)

Fig. 5.7 Contour plots of the partial charge density of the VBM and CBM of the pure rutile
TiO2 and the Ti0.75Nb0.25O2 on (0 0 1) plane with same magnification.
The two figures: (a) is the [VBM] (at the Γ point) and (b) is the CBM (at the R point), both
for the pure rutile TiO2. The four figures: (c) is the VBM−1 (at the Γ point), (d) is the
[VBM] (at the A point), (e) is the CBM (at the X point), and (f) is the CBM+1 (at the X
point), all for the Ti0.75Nb0.25O2.
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CBM (at the X point) are mainly composed of Nb 4d orbitals, and a few of O 2p and Ti 3d
orbitals as seen in Fig. 5.7(d) and Fig. 5.7(e). It indicates that these VBM and CBM are
the Nb-origin impurity level split off from the VBM−1 and CBM+1 (i.e., the host VBM
and CBM) with Nb impurities. Thus, this occupied impurity band emerges at higher energy
than the host VBM level, and unoccupied impurity band emerges at lower energy. Since the
magnitude of the host band gap is almost unchanged and this impurity band is fully occupied
by electrons, it reduces the band gap. From Fig. 5.7(d), we see that there is a little overlap
between O 2p and Nb 4d orbitals, although O 2p orbitals do not much affect the VBM with
Nb impurities. The previous experimental study[12] has shown that Nb introduces a deep
state lying about 1.3 eV below the conduction band edge, and the new Nb 4d states overlap
the O 2p. Our result is in reasonable agreement with this experimental observation. Indeed,
the UPS observation (Fig. 3(a) of Ref. [12]) clearly shows the impurity band about 1.3 eV
below the conduction band and the location of this impurity level does not significantly
depend on the impurity concentration. Moreover, there is no ESR signal in the Nb doped
TiO2 samples, which indicates that there is no unpaired electron localized at the Nb impurity
atom. From these experimental observations, we have noticed that Nb impurity atom (which
has odd number of electrons) does not show spin magnetic moment. Therefore we think that
our model is reasonable to realize these experimental situations in real TiO2 samples in a
sense that Nb impurity chain instead of an isolated Nb impurity atom suppresses the local
spin magnetic moment and the relatively high impurity concentration would also correspond
to the UPS data mentioned above.

5.3 Conclusion

In this paper, we have discussed the quasiparticle band structure of the pure rutile TiO2

and Ti0.75Nb0.25O2 using the GW approximation. The GW method increases the energy gap
between the valence and conduction states, and corrects the underestimated results of the
LDA. In particular, in the case with Nb impurities, the GW results open up the zero gap of the
LDA. The top of the valence band ([VBM]) at the Γ point of the pure rutile TiO2 is composed
of O 2p and Ti 3d orbitals, and the bottom of the conduction band (CBM) at the R point
is mainly composed of Ti 3d orbitals. With Nb impurities, a new occupied impurity band
appears in the middle of the host band gap as the new VBM. Therefore, the energy level of
VBM increases and the energy gap decreases (but still finite), because the host levels do not
change much. The behavior of the exchange and correlation contributions to the self-energy
is clearly changed in the VBM. The VBM of the Ti0.75Nb0.25O2 is composed of Nb 4d
orbitals, a few of O 2p and Ti 3d orbitals. The CBM+1 and VBM−1 of Ti0.75Nb0.25O2 are
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similar to the CBM and VBM of the pure rutile TiO2, respectively. The occupied impurity
band produced by the Nb impurity atoms certainly reduces the band gap, which increases
electronic conductivity and improves thermoelectric properties. Our results of the electronic
structure are in reasonable agreement with experiments. Our method may help understanding
the change in the electronic structure of not so strongly correlated transition metal oxide with
impurities.



Chapter 6

Conclusions and Outlook

6.1 Conclusions

Transition metal oxides have unusual and useful electronic properties, because of open
d and f electron shells,and are used in wide variety of applications. It is important to
study electronic structures of doped transition metal oxides in order to understand the
physics of material properties. Band gap calculated by DFT is usually underestimated by
30-50%. To achieve accurate electronic structure, electronic structures are calculated by GW
approximation using TOMBO code.

In this thesis, I calculated the band structure of znic oxide and titanium dioxide using
GW approximation, and studied the physcisal mechanism of rutie TiO2 with impurities.

Chapter 4. I calculated the electronic structure of pure TiO2 and ZnO. Compared the
LDA band structure, the self-energy enlarges the band gap in the GW band structure. In the
GW calculation, the difference ΣGW −V LDA

xc is relatively small in the VBM. Consequently
the change in the energy between the LDA and GW calculations, ∆EV BM, is small. One the
other hand, the difference ΣGW −V LDA

xc is rather large in the CBM, which leads to a large
change in ∆ECBM. Consequently the GW method increases the gap between the valence and
conduction states, and improves the underestimated LDA results.

Chapter 5. With Nb impurities in rutile TiO2, it is seen that Σc changes sign from
positive to negative and Σx of the VBM becomes a small negative value from a large negative
value, their values become similar to those of the empty states (CBM and CBM+1). We
find that there is only few overlap with the occupied states in the VBM, which leads to the
smaller negative value for Σx, and Σc has the opposite tendency (i.e., changing from positive
to negative) due to the electron screening effect. This VBM is a “new” impurity level caused
by Nb doping, unlike the occupied states of the pure rutile TiO2.
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In the strongly correlated transition metal oxides system, the LDA approximation gives
too small band gap, even the wrong band gap that the band gap is less than 0 eV for semi-
conductors with impurities. To improve the accuracy of electronic structures, quasiparticle
energies are obtained using GW approximation. By comparing the electronic structure
calculated by DFT, our results of the electronic structure using GW approximation are in
reasonable agreement with experiments. GW method may help understanding the change in
the electronic structure of highly correlated transition metal oxide with impurities.

6.2 Outlook

Our results agree with experiments well, GW method may widely be used in study
transition metal oxides. This thesis is almost exclusively based on GW calculation using our
original all-electron mixed basis code TOMBO developed by Prof. Kaoru Ohno, et al..

The powerfulness of TOMBO is not only based on GW approximation but also based on
the fact that it enables us to perform the state-of-the-art calculations such as time-dependent
DFT, Self-consistent-GW approximation, GW+T-matrix method, Bether–Salpeter equation,
and an estimation of on-site Coulomb energy for molecular Mott insulator. Using these meth-
ods, we expect that TOMBO will solve the problems related to strong electron correlations
of transition metal oxides, electronic structure around the band gap, and so forth.
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