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Chapter 1

Introduction

A first-principles calculation method is becoming a standard tool to predict various

materials properties. There are some different approaches based on first-principles.

Among them, the density functional theory (DFT) [1] as well as Hartree–Fock theory

is widely prevalent and a firm position has been established in the world of quantum

physics and chemistry [2].

The total energy is the most important property of materials in order to discuss a

stability of different conformation of molecules and polymorph of crystals, and the

DFT has achieved a great success in this point of view. However, the DFT is valid

only for the ground state, thus it cannot be used to predict the band gap and optical

properties of materials correctly.

Under these circumstances, a method that can be applicable to the calculations of

excited states is highly desired. The GW method proposed by Hedin [3] is one of

such methods, which is based on the Green’s function method in the many-body

perturbation theory. Within this Green’s function method, the concept of a quasi-

particle is introduced as an apparent particle without an interaction each other but

dressed by an effective interaction. The virtual cloud surrounding the quasiparticle

is represented with the self-energy Σ[G] in Green’s function G. In the GW method,

the effective interaction is given by the dynamically screened Coulomb interaction

W composed of the polarization function P within the random phase approximation

(RPA). This self-consistent GW approach (SCGW) gives quasiparticles wave functions

and energies as a self-consistent solution of Dyson’s equation. The important point of

this approach can be regarded as the conserving approximation proposed by Baym

and Kadanoff [4], and as a consequence, the conservation laws of the number of parti-

cles, momentum, and angular momentum is satisfied. In addition, the virial theorem
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stating that minus of the total potential energy divided by the total kinetic energy is

exactly equal to 2 in any systems interacting only with the Coulomb interaction is

also satisfied within the conserving approximation [5], although there has been no

explicit report confirming it numerically.

So far, the so-called 1-shot GW approximation (1-shot GW) has been successfully

applied to the prediction of the band gap of crystals and the energy gap of clus-

ters and molecules [6–9]. However, 1-shot GW is a non self-consistent method, i.e.,

Dyson’s equation is not solved self-consistently. Thus, quasiparticle wave functions

are not updated, and virial theorem is not satisfied. On the other hand, in the SCGW,

as a well known shortcoming, the band gap and energy gap is overestimated com-

pared to the 1-shot GW [10]. One reason of this overestimation the Ward–Takahashi

identity (WTI) [11] is not satisfied within the SCGW framework. In order to satisfy

the WTI, the vertex correction must be taken into account to the polarization func-

tion and the self-energy, and this method is called the GWΓ method. This is a very

challenging work due to the complexity of the vertex function, and solving the vertex

function as a self-consistent solution of the Bethe-Salpeter equation requires a huge

computational load. As efforts to improve the SCGW method, there have been some

studies to take account of the local field correction with the exchange-correlation ker-

nel fxc [12,13] in the framework of the many-body perturbation theory. The correction

is explicitly included only in the polarization function, and the implicit vertex correc-

tion beyond the RPA should be included in the dynamically screened interaction. In

the sense of the WTI, however, the vertex correction should be explicitly introduced

not only the polarization function but also the self-energy. Thus this approach does

not satisfy the WTI. Moreover, there is arbitrariness for choosing fxc, and it needs to

be determined from other frameworks, e.g., the time-dependent density functional

theory.

For the calculation of the total energy within the GW approximation, Luttinger

and Ward [14] first showed that the total energy is given by the Luttinger–Ward (LW)

functional Φ[G] and some other contributions easily estimated, and the self-energy

Σ[G] is derived from a functional derivative of Φ[G] with respect to Green’s function

G. The important point is that it satisfies the variational principle. Using this fact, the

total energy has been estimated by a robust calculation of the LW functional Φ from

the one-shot GW and other approaches [5, 15, 16].

Another difficulty in the quasiparticle representation is that the quasiparticle wave

functions are non-orthonormal and linearly dependent due to the energy dependence
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of the self-energy. One way to solve this problem is to use Löwdin’s symmetrized or-

thonormalization procedure, but there is a big question how to deal with this energy

dependence when the quasi-particle equation is solved self-consistently.

In this study, I implement the self-consistent GW approaches to our all-electron

mixed basis code, TOMBO. In our mixed basis code, one-particle wave functions are

expanded with atomic orbitals (AO) and plane waves (PW). This approach can de-

scribe any electronic states such as deep core states and plane wave like states above

the vacuum level. The first purpose of this thesis is, therefore, to confirm the validity

of virial theorem in the GW calculation. In order to resolve the problem of the energy

dependence in the self-energy, I propose a linearized self-consistent GW approach

(LGW). The LGW is an improved approach for the GW and I found that the Ward

identity (Ward–Takahashi identity in the q � 0 and ω−ω′ � 0) is satisfied in the LGW.

The second purpose of this thesis is, therefore, to develop this LGW approach and

demonstrate its ability. The third purpose of this thesis is to include the first-order

vertex correction of the electron-electron Coulomb interaction in the self-consistent

GW and LGW approaches.

This thesis is composed of five chapters. In the second chapter, I will give the de-

tailed description of the GW theory and the algorism of the all-electron mixed basis

approach. Here I will show the result of the total energy, the ionization energy, and

virial ratio for isolated atoms and dimers. In the third chapter, I describe the theory of

LGW and the method to calculate the total energy based on the Luttinger–Ward func-

tional within the plasmon-pole model proposed by von der Linden and Horsch. As a

result, I confirm that the LGW improves the ionization potential, the electron affinity,

and the total energy of atoms and dimers of lithium and sodium. In the fourth chap-

ter, I will give the general theory, the relationship between Ward–Takahashi identity,

and the implementation of GWΓ to our code in detail. I calculate the ionization po-

tential and electron affinity for Li and Li2 and optical absorption spectra for sodium

clusters, and confirm the results are greatly improved compared to the GW and LGW.

In the last chapter, I will make a brief concluding remarks for the GW, LGW, GWΓ ap-

proaches.
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Chapter 2

GW Approximation with the
All-Electron Mixed Basis Approach:
Validity of Virial Theorem

2.1 Introduction
The validity of virial theorem plays a crucial role in first-principles calculations

[17, 18]. In electronic systems, the total energy E is composed of kinetic energy T

and potential energy V . The virial theorem asserts that V � −2T under zero pres-

sure. This is a very simple equation satisfied by every system that interacts only with

Coulomb interactions. This theory is of course guaranteed not only in classical sys-

tems but also in quantum systems [19]. Therefore, it is desired to ensure virial theo-

rem to be satisfied in the first-principles methods. It is well known that the Hartree–

Fock (HF) approximation exactly satisfies virial theorem. It is also known that the

local density approximation (LDA) of density functional theory (DFT) satisfies virial

theorem, if the exchange-correlation energy is correctly divided into kinetic and po-

tential energy contributions [20]. Also, there is a firm proof that all the theories in a

conserving approximation exactly satisfies virial theorem.

On the basis of the many-body perturbation theory, Baym and Kadanoff [4] showed

that the theory satisfies macroscopic conservation laws of energy, momentum, and

angular momentum, if the corresponding theoretical system is represented in the

following ways: (1) The Luttinger–Ward functional Φ[G] is approximately given by

some limited sum of diagrams composed of Green’s function G. (2) The self-energy

is given by its functional derivative with respect to G, i.e., Σ � δΦ[G]/δG. (3) Dyson’s
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equation with this self-energy Σ is solved self-consistently with respect to Green’s

function G. Such a theory is called a conserving approximation. One important point

in this theory is that the total energy calculated from the Luttinger–Ward functional

obeys a variational principle with respect to G [14]. Another important point is, as

shown by Dahlen and van Leeuwen [5], that virial theorem holds exactly for a con-

serving approximation. Baym and Kadanoff [4] showed that the HF is a conserving

approximation. The self-consistent GW approximation (GW) [3], which was called

the shielding approximation in the paper by Baym and Kadanoff [4], is also a conserv-

ing approximation and satisfies virial theorem, it would give a good starting point

for better approximations, as well as the HF.

The principal aim of this chapter is to confirm that virial theorem is surely satisfied

in our code within the error of computational inaccuracies under the assumption that

AOs are made by the atomic LDA calculation. Our targets are isolated closed-shell

(noble gas and alkaline earth metal) atoms (He, Be, Ne, Mg, Ar, and Ca) [21] and some

small clusters composed of nonmagnetic atoms which exhibit intrinsic spin magnetic

moments [22]. It is very well known that O2 has a spin-triplet ground state due to the

degenerate bonding π orbitals at the Fermi level. Several other diatomic molecules

such as B2, Al2, and Si2 also have intrinsic spin magnetic moments. So far, the local

density approximation (LDA) and the generalized gradient approximation (GGA)

of density functional theory (DFT) have been applied to study the most stable spin

states of small clusters and molecules [23]. In these approximations, however, the

exchange interaction, which is very important as a major spin-dependent interaction,

as well as the dynamically screened Coulomb interaction between electrons are not

properly treated but drastically approximated as a function of only electron densities

(and their derivatives in the GGA). The Hartree–Fock approximation (HFA), on the

other hand, treats correctly the exchange interaction but does not take into account

at all the electron correlation effect to screen this exchange interaction. One possi-

ble strategy to take into account both of these interactions is to invoke many-body

perturbation theory and to use the GW approximation.
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2.2 Theory

2.2.1 GW Approximation

The GW method was proposed by Hedin [3], in which the self-energy is expanded

with Green’s function G and the dynamically screened interaction W . The Green

function in the many-body perturbation theory is given by

G(r, t , r′, t′) � i〈T[ψ(r, t)ψ†(r′, t′)]〉, (2.1)

where T and ψ(r, t) are the time-ordered operator and the field operator in the Hy-

senberg representation. The self-energy is an effective interaction from the virtual

clouds surrounding a quasiparticle, and is defined as

Σ(r, t , r′, t′) � iG(r, t , r′, t′)W (r, t , r′, t′). (2.2)

The dynamically screened interaction is

Fig.2.1: The Feynman diagrams of the self-energy The solid and wiggly lines

show Green’s function and the dynamically screened Coulomb in-

teraction, respectively.

W (r, t , r′, t′) � ε(r, t , r′, t′)−1v(r − r′), (2.3)

where ε(r, t , r′, t′) and v(r − r′) � 1/|r − r′| are the dielectric function and the bare

Coulomb interaction. The dielectric function can be written as

ε(r, t , r′, t′) � 1 −
∫

v(r, t , r′′, t′′)P(r′′, t′′, r′, t′)dr′′dt , (2.4)

where P is the polarization function. Within the random phase approximation (RPA),

the polarization function can be written as

P(r′′, t′′, r′, t′) � −iG(r′′, t′′, r′, t′)G(r′, t′, r′′, t′′). (2.5)

It is very convenient to consider the self-energy in Fourier space. The Fourier trans-
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Fig.2.2: The Feynman diagrams of the dynamically screened Coulomb in-

teraction.

Fig.2.3: The Feynman diagrams of the polarization function.

form of Eqs.(2.1) and (2.2) are

G(r, r′, ω) �
∑

i

φi (r)φ∗i (r
′)

ω − (εi + iηi )
, (2.6)

Σ(r, r′, ω) �
i

2π

∫
G(r, r′, ω − ω′)W (r, r′, ω′)dω′, (2.7)

where, φi (r), εi are the quasiparticle wave function and energy, and ηi is a infinitesi-

mal (ηi � 0+ for occupied states and ηi � 0− for empty states). There are the following

relation between the self-energy and Green’s function:

G−1(r, r′, ω) � G−1
0 (r, r′, ω) − Σ(r, r′, ω), (2.8)

where G0 is the non-interacting Green function. In the self-consistent GW, it is neces-

sary to evaluate G, P, W , and Σ cyclically until the self-consistent solution is found.

The schematic flow of the GW is shown in Fig.2.4. The self-consistency is a important

point in the GW method, and there are three approaches. First one is called 1-shot

GW (or G0W0), and it is widely used so far due to its simplicity. 1-shot GW is a non-

self-consistent approach, and the quasiparticle wave function is not obtained. Within

1-shot GW, generally, the band gap or energy gap show good agreement with exper-

imental data. Other two approaches are self-consistent approaches. One is the fully
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self-consistent GW, and the other is called the partially self-consistent GW (or GW0).

The difference between them is the self-consistency for the dynamically screened in-

teraction. In the GW0, the dynamically screened interaction is represented by the

polarization function constructed by G0, i.e., the wave function obtained by the local

density approximation (LDA) or the Hartree–Fock (HF) approximations. Here, we

Fig.2.4: The schematic flow of the self-consistent GW approach.

must take the integration of ω′ to evaluate Eq.(2.7) and this needs a lot of compu-

tational time. In order to avoid this frequency integration, the plasmon-pole model

can be introduced. Some plasmon-pole models have been proposed so far [6, 24, 25].

In the generalized plasmon-pole model proposed by Hybertsen and Louie [6], the

imaginary part of the inverse of the dielectric function can be approximately written

as

Imε−1
GG′ (ω) � AGG′[δ(ω − ωGG′) − δ(ω + ωGG′)], (2.9)

where ωGG′ is the plasmon-pole frequency. Using the Kramers-Kronig relation, the

real part of ε−1
G,G(ω) can be written as

Reε−1
GG′ (ω) � δGG′ − P

π

∫ ∞

∞
1

ω − ω′ Imε
−1
GG′ (ω′)dω′

� δGG′ − 2AGG′

π
ωGG′

ω2 − ω2
GG′
, (2.10)

where AGG′ is determined to be satisfied with the f -sum rule:

AGG′ � −π
2

Ω2
GG′

ωGG′
, (2.11)
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where the effective bare plasma frequency, Ω2
GG′ is given by

Ω2
GG′ � ω2

pl
G ·G′

|G|2
ρ(G −G′)
ρ(0)

. (2.12)

Here, ωpl is the plasma frequency defined as
√

4πρ(0). The plasmon-pole frequency,

ωGG′ is obtained from the dielectric function in ω � 0 limit:

ω2
GG′ �

Ω2
GG′

δGG′ − ε−1
GG′ (ω � 0)

. (2.13)

Using the generalized plasmon-pole model, we can write the dynamically screened

interaction with ΩG,G′ and ωG,G′ as

WGG′ (ω) � ε−1
GG′ (ω)v(G′) � δGG′v(G′) − Ω2

GG′

ω2 − ω2
GG′

v(G′). (2.14)

Thus, the GW self-energy can be written as

(ν |ΣGW(ω) |μ) �
i
Ω

∑
i

∑
G,G′

∫
dω′
2π

(ν |e iG·r |i〉〈i |e−iG′·r′ |μ)
ω − ω′ − (εi + iηi )

WG,G′ (ω′)

�
i
Ω

∑
i

∑
G,G′

∫
dω′
2π

(ν |e iG·r |i〉〈i |e−iG′·r′ |μ)
ω − ω′ − (εi + iηi )

(2.15)

×
(
δGG′ − Ω2

GG′

ω2 − ω2
GG′

)
v(G′). (2.16)

When we evaluate this self-energy in our self-consistent procedure, the computa-

tional cost is fairly large because the double summation for the reciprocal vectors G,

G′. In order to reduce the computational cost further, we introduce the plasmon-pole

model proposed by von der Linden and Horsch [25]. In the plasmon-pole model, the

eigenvalue problem for the symmetrized dielectric function is solved:

v(G)
∑
G′

|G|
|G′|PGG′ (ω � 0)up (G′) � χp up (G). (2.17)

Note that in the original paper, the eigenvalue problem for the inverse of the sym-

metrized dielectric function is solved. The eigenvalue χp is related to the plasmon-

pole strength zp via

zp � 1 − 1

1 − χp
� 1 − lim

ω→0

⎡⎢⎢⎢⎢⎣1 +
zpω2

p

ω2 − (ωp − iη)2

⎤⎥⎥⎥⎥⎦ . (2.18)
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The plasmon-pole frequency ωp is given by the relation

ω2
p �

4π
zp

∑
G,G′

Θp (G)LGG′Θp (G′), (2.19)

where we put LGG′ � (G) · (G′)n(G−G′) and define the scaled plasmon-pole eigen-

vector as Θp (G) � up (G)/|G|. The self-energy with the vdLH plasmon-pole model

can be written as

(ν |ΣGW(ω) |μ) �
i
Ω

∑
i

∑
G,G′

∫
dω′
2π

(ν |e iG·r |i〉〈i |e−iG′·r′ |μ)
(ω − ω′ − (εi + iηi ))

×
(
δG,G′v(G′) +

∑
p

4πzpω2
p

ω′2 − (ωp − iη)2
Θp (G)Θ∗

p (G′)
)
, (2.20)

where η is a positive infinitesimal. We can divide this self-energy into two terms, i.e.,

the Fock exchange (Σx) and the correlation (Σc) terms:

(ν |Σx |μ) � − 1

Ω

occ∑
i

∑
G

(ν |e iG·r |i〉〈i |e−iG·r′ |μ)v(G) (2.21)

and

(ν |Σc(ω) |μ) �
i
Ω

∑
i

∑
G,G′

∑
p

4πzpω
2
p

×
∫

dω′
2π

Θp (G)(ν |e iG·r |i〉〈i |e−iG′·r′ |μ)Θ∗
p (G′)

(ω − ω′ − (εi + iηi ))(ω′2 − (ωp − iη)2)

�
2π
Ω

∑
p

zpω
2
p

( occ∑
i

βν i
p [β

μ i
p ]∗

ω − (Ei + iη) + (ωp − iη)
(2.22)

+

emp∑
i

βν i
p [β

μ i
p ]∗

ω − (Ei − iη) − (ωp − iη)

)
, (2.23)

where

βν i
p �

∑
G

Θp (G)(ν |e iG·r |i〉. (2.24)

2.2.2 Total Energy

In the LDA, the Kohn–Sham eigenstates |ν〉 and eigen-energies εν are obtained by

solving the Kohn–Sham equation[
T̂ + v̂nuc + v̂H + μxc(n)

]
|ν〉 � εν |ν〉, (2.25)
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where T̂, v̂nuc, and v̂H are the kinetic energy operator, local potential due to nucleus,

and the Hartree potential, respectively; n � n(r) is the electron density, and μxc(n)

is the local exchange-correlation potential, which is related to the local exchange-

correlation energy εxc(n) via the relation μxc(n) � (d/dn)nεxc(n). The exchange-

correlation energy, Exc �
∫

drn(r)εxc(n(r)), is divided into a kinetic energy part Txc

and a potential energy part Uxc. According to Averill and Painter [20], Txc is given by

Txc �

∫
drn(r)[3μxc(n(r)) − 4εxc(n(r))]. (2.26)

Then the true kinetic-energy and potential-energy contributions to the ground-state

total energy is given by T � Ts+Txc and V � Vn-e+VH+Exc−Txc � Vn-e+VH−3Vxc+5Exc,

respectively. Here, Ts is the kinetic-energy of a non-interacting system and Vxc is the

exchange-correlation potential defined as Vxc �
∫

drn(r)μxc(n(r)).

On the other hand, in many-body perturbation theory, the quasiparticle equation,

which is equivalent to Dyson’s equation, is generally written as

[
T̂ + v̂nuc + Σ(εν)

]
|ν〉 � εν |ν〉, (2.27)

where Σ(εν) is the self-energy operator. The self-energy is composed of three parts:

the Hartree potential given by v̂H(r) �
∫

dr′n(r′)/|r − r′|, the exchange part given

by Σx(r, r′) � −∑occ
λ φλ (r)φ∗λ (r′)/|r − r′|, and the correlation part Σc(r, r′; εν) �

〈r |Σc(εν) |r′〉, in the coordinate representation (we put the quasiparticle wave func-

tions φλ (r) � 〈r |λ〉). To avoid the difficulty of the energy dependence in the self-

energy, we simply replace its εν with ω0 � (εHOMO + εLUMO)/2 (for He, we use

ω0 � εHOMO) in this thesis. Here HOMO and LUMO mean the highest occupied

and lowest unoccupied molecular orbitals, respectively. Then, substituting Eq.(2.39)

in Eq.(2.27) and multiplying (ξ′| from the left in the both sides of the equation, we

obtain the generalized eigenvalue equation:

∑
ξ

(ξ′|T̂ + v̂nuc + Σ(ω0) |ξ)cν (ξ) � εν
∑
ξ

(ξ′|ξ)cν (ξ), (2.28)

where (ξ′|ξ) � Sξ′ξ is an overlap matrix. Equation (2.28) can be transformed to the

ordinary eigenvalue equation by using the Choleski decomposition as in the case of

the LDA calculation [26]. The quasiparticle states and the quasiparticle energies are

obtained by solving this generalized eigenvalue problem self-consistently.
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In the HF and GW, the electron density is given by

n(r) � 〈ΨN
G |ψ̂†(r)ψ̂(r) |ΨN

G 〉
�

∑
ν

〈ΨN
G |ψ̂†(r) |ΨN−1

ν 〉〈ΨN−1
ν |ψ̂(r) |ΨN

G 〉

�

occ∑
ν

φ∗ν (r)φν (r), (2.29)

and the total kinetic energy is estimated as

T � 〈ΨN
G |T̂ |ΨN

G 〉
� 〈ΨN

G |
(
−1

2

∫
drψ̂†(r)∇2ψ̂(r)

)
|ΨN

G 〉

� −1

2

∑
ν

∫
dr〈ΨN

G |ψ̂†(r) |ΨN−1
ν 〉〈ΨN−1

ν |∇2ψ̂(r) |ΨN
G 〉

� −1

2

occ∑
ν

∫
drφ∗ν (r)∇2φν (r), (2.30)

where ψ̂†(r) and ψ̂(r) are the creation and annihilation operators; |ΨN
G
〉 and |ΨN−1

ν 〉
are the N-electron ground state and the ν-th (N − 1)-electron states, respectively.

Note that there is only a limited number of the bound (N − 1)-electron states, which

is equal to N accounting for spin duplicity in a system having N protons, and we

take into account these bound states only in the intermediate states. Similarly, the

total energy contributions from the nuclear-electron Coulomb potential, the Hartree

potential, the Fock exchange energy, and the correlation energy are estimated as

Vn-e �

occ∑
ν

∫
drψ∗ν (r)vnuc(r)ψν (r) (2.31)

� −
occ∑
ν

∑
α

∫
drψ∗ν (r)

Zα
|r −Rα |ψν (r), (2.32)

VH �
1

2

occ∑
ν

∫
drψ∗ν (r)vH(r)ψν (r), (2.33)

Vx �
1

2

occ∑
ν

∫
drdr′ψ∗ν (r)Σx(r, r′)ψν (r′), (2.34)

Φc[G] � −1

2
lim
λ→1

∞∑
n�1

λn

n
Tr

[
Σ(n)

c [G] G
]

� −1

2

∫ 1

0

dλ
λ

Tr

⎡⎢⎢⎢⎢⎣
∞∑

n�1

λnΣ(n)
c [G] G

⎤⎥⎥⎥⎥⎦ , (2.35)
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where Φc[G] is the correlation part of the Luttinger–Ward functional [14,15], Σ(n)
c [G]

is the correlation part of the self-energy composed of the n-th order skeleton dia-

grams, and G is Green’s function. Thus the total potential energy is given by V �

Vn-e + VH + Vx + Φc.

The correlation part of the Luttinger–Ward functional can be given by

Φc[G] � −2πi
Ω

∑
ν

∑
ν′

∑
p

1

2

∫ 1

0

dλ
λ

∫ ∞

−∞
dω
2π

e iηω

ω − εν − iην
(2.36)

× λzp (λ)ωp (λ)[Mν′ ν
p ]∗Mν′ ν

p

ω − εν′ + ωp (λ)sgn(μ − εν′) − iην′

�
2π
Ω

occ∑
ν

emp∑
ν′

∑
p

1

2

∫ 1

0

dλ
zp (λ)ωp (λ)[Mν′ ν

p ]∗Mν′ ν
p

εν − εν′ + ωp (λ)sgn(μ − εν′) + iη

− 2π
Ω

emp∑
ν

occ∑
ν′

∑
p

1

2

∫ 1

0

dλ
zp (λ)ωp (λ)[Mν′ ν

p ]∗Mν′ ν
p

εν − εν′ + ωp (λ)sgn(μ − εν′) − iη
, (2.37)

where we put

Mν′ ν
p �

∑
G

〈 ν′ | e−iG·r | ν 〉Θ∗
p (G). (2.38)

The λ-dependent plasmon-pole frequency ωp (λ) and plasmon-pole strength zp (λ)

are analogues of the λ-indepenent ones defined in Ref. [27]. The λ integral in Eq.(3.30)

can be performed analytically. In the next chapter, we describe the Luttinger–Ward

functional and the λ-dependent plasmon-pole model in detail.

2.3 Methodology

2.3.1 All-Electron Mixed Basis Approach

In the all-electron mixed basis approach, the Kohn–Sham or quasiparticle states are

expressed as a linear combination of atomic orbital (AO) and plane wave (PW) basis

functions:

|ν〉 �
∑
G

cν (G) |G) +
∑
jnlm

cν ( jnlm) | jnlm)

�

∑
ξ

cν (ξ) |ξ), (2.39)

where G’s denote reciprocal lattice vectors, and j, n, l, and m are the atom index, the

principal quantum number, the angular momentum quantum number, and the index
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for the cubic harmonics. AOs are numerically generated by the Herman–Skillman

[28] type atomic code in a logarithmic radial mesh with the same LDA functional [29]

as that used in our all-electron mixed basis code.

We use a spherical cut-off technique truncating the Coulomb interaction to avoid

the effect of neighbouring unit cells [30]. We use the fcc unit cell of edge length 10 Å

for He, 12 Å for the other isolated atoms, and 16 Å for the dimers. and use 13.38 (for

He), 9.29 (for the other isolated atoms), and 5.23 (for the dimers) Ry cut-off energies

for PWs and the correlation part of the self-energy, and 99.50 (for He), 44.22 (for the

other isolated atoms), and 24.87 (for the dimers) Ry cut-off energies for the exchange

part of the self-energy. For PWs, we use the fast Fourier transformation (FFT) divid-

ing the unit cell by 192×192×192. For the AOs, we use all the core and valence AOs

in the calculation, although the valence AOs are confined inside the atomic sphere

of radius 4 Bohr (2.1167 Å) by subtracting a smooth parabolic function that satisfies

the matching condition on the atomic sphere. Then, this parabolic function smoothly

connecting to the true AO outside the atomic sphere can be well represented by a lin-

ear combination of PWs in Eq. (2.39). For each dimer, we compare the total energies

of the singlet and triplet states at the same bond length, because we want to avoid

any complication caused by the difference of the dimer structure in our discussion.

Therefore, in our study, the bond length is fixed at an optimized value for the triplet

state determined by the LDA calculation using the DMol3 package program [31, 32]

in Materials Studio; 1.614 Å, 2.453 Å, and 2.151 Å for B2, Al2, and Si2, respectively.

We have checked that the total energy is almost flat (maximum change in the energy

is only about 0.045 eV) within ±0.05 Å around the assumed bond length both for the

triplet and singlet states, and that virial theorem under zero pressure is well guaran-

teed in our system.

2.4 Results and Discussion

2.4.1 Isolated Atoms

The total energy EN
G

, its components (T, Vn-e, VH, Exc / Vx, and Vxc / Φc), and virial

ratio of He, Be, Ne, Mg, Ar, and Ca are summarized in Table.2.1. Virial ratio of the

LDA is strikingly almost perfectly equal to 2 for all elements, and virial ratios of the

HF and GW are also almost 2, although little bit off from the exact value 2. The reason

of this inaccuracy in our HF and GW calculations is that AOs are generated by the
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atomic (Herman–Skillman-type) LDA code; they are not necessarily conformable to

the AOs of the HF or GW. In this sense, the quasiparticle wave functions are described

with slightly worse basis set in the HF and GW than in the LDA. In the HF, if we use

the AOs generated by an atomic HF calculation code [33], our results for virial ratio

become in fact drastically improved: we obtained the excellent values 1.999938 for

He and 2.000005 for Be in our all-electron mixed basis code. On the other hand, in

the LDA, if we use the original energy division, Ts → T and Vn-e + VH + Exc → V ,

virial ratio becomes somewhat worse: 2.0249 for He, 2.0096 for Be, and 2.0040 for Ne,

2.0023 for Mg, 2.0019 for Ar, and 2.0016 for Ca.

For all atomic species, as expected, the absolute value of the total energy of the GW

is larger than that of the HF, and is almost the same as that of the HF plus the corre-

lation energy (Φc), although it is interesting to note that the total energy components

are significantly different between the HF and GW results, i.e., these differences are

much larger than Φc.

The eigenvalues of the HOMO and LUMO levels are summarized in Table.2.2 as

well as the available experimental data [34–40]. The minus of these energies corre-

sponds to the ionization potential (IP) and electron affinity (EA). In the last column

(LUMO of Expt.) of this table, – means a negative EA [41]. The results of the LDA

(even for the HOMO level) are not comparable to the experimental data, although

Janak’s theorem is known to hold for the HOMO level in the exact DFT [15]. This is

because the LDA is not the exact DFT. The absolute value of the HOMO energy of the

HF overestimates the experimental IP for noble gases and underestimates it for Be

and Mg, while that of the GW is in excellent agreement with the experimental IP for

all elements. The LUMO energy of the GW is smaller than that of the HF, reflecting

the fact that the energy gap is generally overestimated in the HF.

For He, Be, and Mg, the positive LUMO energies are consistent with the negative

EA in the experiments. For Ne and Ar, the LUMO energies obtained by the GW are

slightly below the vacuum level, although they should correspond to the negative EA.

In our all-electron mixed basis calculation, however, even if the LUMO quasiparticle

energy is negative, the calculated LUMO level may correspond to a resonating virtual

bound state [42], which have a large amplitude around the atom and continuously

continues to a PW far apart from the atom. The LUMO quasiparticle wave functions

of He, Ne, and Ar calculated by the GW are shown in Fig.2.5 in an isosurface view.

The graphics of the wave functions are generated with Materials Studio provided.

They all spread out in the unit cell, and apparently correspond to resonating virtual
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Table.2.1: Total energy, its components in a.u., and virial ratio (−V/T). In

the components, T is the kinetic energy given by Ts + Txc in the

LDA (see Eq. (2.26)) or by Eq. (2.30) in the HF and GW, Vn-e is the

nucleus-electron Coulomb energy, VH is the Hartree energy, Exc is

the LDA exchange-correlation energy including Txc given by Eq.

(2.26), Vx is the Fock exchange energy in the HF and GW, Vxc is

the LDA exchange-correlation potential, and Φc is the correlation

energy in the case of the GW.

EN
G

T Vn-e VH Exc / Vx Vxc / Φc −V/T
LDA −2.8344 2.8348 −6.6240 1.9953 −0.9725 −1.2740 1.9998

He HF −2.8616 2.8639 −6.7511 2.0511 −1.0256 – 1.9992

GW −2.8958 2.7869 −6.6555 2.0155 −1.0077 −0.0350 2.0391

LDA −14.4463 14.4467 −33.3561 7.1140 −2.5138 −3.3060 2.0000

Be HF −14.5728 14.5731 −33.6325 7.1517 −2.6650 – 2.0000

GW −14.6166 14.5890 −33.6715 7.1804 −2.6704 −0.0441 2.0019

LDA −128.2280 128.2139 −309.9639 65.7176 −11.7040 −15.4414 2.0001

Ne HF −128.5414 128.1462 −310.7470 66.1422 −12.0828 – 2.0031

GW −128.6087 127.9716 −310.3223 65.8538 −12.0407 −0.0710 2.0050

LDA −199.1340 199.1300 −477.8793 95.6547 −15.4482 −20.4005 2.0000

Mg HF −199.6069 199.2132 −478.6790 95.8478 −15.9708 – 2.0020

GW −199.6424 199.2118 −478.7424 95.8966 −15.9726 −0.0358 2.0022

LDA −525.9396 525.9131 −1253.0800 231.4329 −29.2340 −38.6549 2.0001

Ar HF −526.8091 526.1114 −1254.4943 231.7399 −30.1661 – 2.0013

GW −526.9716 525.5884 −1253.4500 231.1687 −30.1122 −0.1674 2.0026

LDA −675.7430 675.7085 −1601.3530 285.1102 −34.1292 −45.1467 2.0001

Ca HF −676.7603 675.7283 −1602.1591 284.8580 −35.1747 – 2.0015

GW −676.7899 675.6615 −1602.0841 284.8330 −35.1705 −0.0298 2.0017

bound states; note that because of the fcc unit cell, the spherical wave is folded at the

cell surfaces.

In a detailed analysis of noble gas atoms, we found that the LUMO wave functions

of the GW spread wider than that of the LDA and thinner than that of the HF. For

example, for He, the LUMO wave function of the GW, Fig.2.5(a), is depicted at the iso-

surface value of 0.36, while similar profiles in the LUMO wave functions of the LDA

(Fig.2.6) and HF (Fig.2.7) appear at the isosurface values of 0.23 and 0.50, respectively.

(The units are such that the isosurface value of unity corresponds to the wave func-

tion everywhere flat inside the fcc unit cell.) The isosurface values are therefore LDA

< GW < HF, which indicates the above-mentioned tendency.

If we enlarge the unit cell of the system, the PW region becomes larger than the

atomic region, and thus the relative norm of the PW part of the LUMO wave func-
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tion becomes dominant and the relative norm of the atomic localized part becomes

negligible. In fact, for Ar, if we enlarge the unit cell size from 12 Å to 14 Å and 16 Å us-

ing the same cut off energies, the PW region enlarges and the atomic region shrinks,

resulting in the LUMO energy changing from the value −0.1919 eV listed in Table.2.2

to−0.1427 eV and−0.1046 eV, asymptotically approaching to +0.157 eV (see Fig.2.8) in

the HF, while the change of HOMO energy is negligibly small compared to that of the

LUMO energy. (Note that this kind of calculation is only possible in the all-electron

mixed basis approach, because it can handle a PW-like state of an isolated atom in an

all-electron formalism and determine its absolute energy value.) That is, if there is an

isolated atom in an infinite vacuum space, the wave function becomes a pure PW that

resonates with the atomic part. Therefore, our result for the positive LUMO level is

reasonable (even if it is negative, it is acceptable) in a sense that it may become some

positive value by an extrapolation to the infinite unit cell size, although we have not

done this extrapolation for every case because this is not the main purpose of this

thesis. It would be interesting in the future to compare such extrapolated data with

the old experimental data [41].

Typically, the self-consistent GW has a tendency to overestimate the energy gap.

However, the energy gap of Ca obtained by the GW is very slightly underestimated

compared to the experimental data. We think that this is an exceptional case. In fact,

we obtained the GW energy gap, which is larger than experimental values, for Li2 and

Na2 clusters [43]. Anyway, in order to improve the GW result, the vertex correction [3]

should be taken into account. Such a work is left for the future study.

Fig.2.6: The Kohn–Sham (LDA) wave function of the LUMO level of He. The

isosurface value is 0.23.
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(a)

(b)

(c)

Fig.2.5: The GW quasiparticle wave function of the LUMO level of (a) He,

(b) Ne, and (c) Ar. The atom is located at the center of the fcc unit

cell. The isosurface values are 0.36, 0.39, and 0.47, respectively. Here

and hereafter, the isosurface value of unity corresponds to the (nor-

malized) wave function everywhere flat inside the fcc unit cell.
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Table.2.2: Eigenvalues of the HOMO and LUMO levels in eV obtained by the

LDA, HF and GW calculations. The minus of the experimental IP

corresponding to HOMO and the minus of the experimental EA

corresponding to LUMO ("–" means a negative EA [41]) are also

listed in the last column (Expt.) for comparison.

LDA HF GW Expt.

HOMO LUMO HOMO LUMO HOMO LUMO HOMO LUMO

He −15.5114 −0.1136 −24.9711 0.0932 −24.5707 0.0789 −24.587a –

Be −5.6103 −1.8207 −8.4134 0.2142 −9.3187 0.1110 −9.3227b –

Ne −13.5402 −0.2886 −23.1354 0.0078 −21.5566 −0.0123 −21.5645c –

Mg −4.8084 −1.4321 −6.8915 0.2369 −7.6666 0.08264 −7.646d –

Ar −10.3988 −0.6383 −16.0671 −0.1919 −15.1695 −0.2453 −15.7596e –

Ca −3.9701 −1.6442 −5.4067 0.1717 −6.0776 −0.1701 −6.113f −0.043±0.007g

a See Ref. [34]
b See Ref. [35]
c See Ref. [36]
d See Ref. [37]
e See Ref. [38]
f See Ref. [39]
g See Ref. [40]

Fig.2.7: The HF quasiparticle wave function of LUMO level of He. The iso-

surface value is 0.50.
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Fig.2.8: The LUMO energy (in eV) of Ar estimated by the HF versus the in-

verse of the unit cell size (in Å−1) and its extrapolation to the infinite

unit cell size.

2.4.2 Spin polarized dimers

The total energy EN
G

and its components (T, Vn-e, VH, Vx, and Φc) as well as virial

ratio of B2, Al2, and Si2 are summarized in Table.2.3 for both singlet and triplet states.

As seen from Table.2.3, the total energy of the triplet state is lower than the total en-

ergy of the singlet state. The triplet-singlet energy difference is 0.25 eV, 0.16 eV, and

0.20 eV, respectively, for B2, Al2, and Si2. The exchange-correlation energy, Vx + Φc,

is all negative, and has larger absolute values for the triplet state than for the singlet

state. The difference in the exchange-correlation energy, Vx + Φc, between the triplet

and singlet states is 0.23 eV, 0.07 eV, and 1.00 eV, respectively, for B2, Al2, and Si2.

These values roughly correspond to the total energy difference between the triplet

and singlet states written above. Such a correspondence is not observed, however, in

all the other contributions (T, Vn-e, and VH); the sign in the difference in each con-

tribution between the triplet and singlet states is the same among B2 and Al2, but

different from Si2.

Virial ratio is within the error of 0.5 % for B2 and 0.1 % for Al2 and Si2. These values

are at a first glance not acceptable to guarantee the accuracy of the total energy of
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Table.2.3: Total energy and its components in Hartree as well as virial ratio

(−V/T). In the components, T is the kinetic energy, Vn-e is the

nucleus-electron Coulomb energy, VH is the Hartree energy, Vx is

the Fock exchange energy, and Φc is the correlation energy.

EN
G

T Vn-e VH Vx Φc −V/T

B2
Singlet −49.1638 48.6847 −126.4018 29.3884 −7.4439 −0.1548 2.010

Triplet −49.1730 48.6877 −126.4079 29.4079 −7.4558 −0.1516 2.010

Al2
Singlet −483.8782 482.8470 −1184.4510 239.8146 −36.1241 −0.1432 2.002

Triplet −483.8840 482.8405 −1184.4662 239.8309 −36.1290 −0.1409 2.002

Si2
Singlet −577.8886 576.5609 −1423.6989 286.8815 −40.5261 −0.1889 2.002

Triplet −577.8963 576.3775 −1423.4503 286.6898 −40.4778 −0.2003 2.003

order −578 Hartree (of Si2) in the discussion of the total energy difference of order 0.2

eV. However, this inaccuracy is mainly caused by the usage of the AOs determined by

the Herman–Skillman-type atomic LDA code. If we could use the GWA-based AOs

instead of the LDA-based AOs, virial ratio would become much closer to the exact

value 2. This can be seen, for example, from the fact that, if we use the atomic HFA

code in place of the atomic LDA code to determine the AOs, the resulting virial ratio

of the all-electron mixed basis HFA calculation improves from 1.9992 to 1.999938 [21].

Therefore, this inaccuracy in the present calculation mainly affects to the calculation

of core states only, because the valence AOs can be well supplemented by the PWs

but the very localized core AOs cannot be supplemented so much by the PWs, i.e., the

core states are described by slightly worse basis functions. Therefore, we can expect

one order higher accuracy if we could exclude the core contribution from the total

energy.

We find that the kinetic energy contribution from the core states (1s-2p) of Si2 is

566.9033 Hartree for the singlet state and 566.9397 Hartree for the triplet state, and

their difference is only 0.0364 Hartree, which is much smaller than the difference

0.1834 Hartree in the total kinetic energies (576.5609 and 576.3775 Hartree) given in

Table.2.3 This suggests that, because the total energy difference between the singlet

and triplet states is 0.2 eV, its core component in the difference would be estimated

as 0.004 eV, which is a negligible order in our discussion. Therefore, we can subtract

the core contribution from the total energy and discuss its residue only. Since the

core contribution is 566.9033/576.5609 = 98.32 % of the total energy, just 1.68 % of the

total energy, i.e., 9.7 Hartree for Si2, is this residue. Since one order higher accuracy

is expected for virial ratio in this residue, i.e. the relative error is estimated as 0.01 %,
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the error in this residue is estimated to be 0.00097 Hartree, which is equal to 0.026 eV.

Thus we can conclude that the present calculation has an enough accuracy to discuss

the total energy difference of the order of 0.2 eV.

The eigenvalues of the HOMO and LUMO levels calculated with the GWA are sum-

marized in Table.2.4 as well as the available experimental data [44–49]. The minus of

these energies corresponds to the ionization potential (IP) and electron affinity (EA).

The results are fairly in good agreement with the experimental data, although they

have a common tendency to overestimate the experimental energy gap.

Table.2.4: Eigenvalues of the HOMO and LUMO levels in eV obtained by

the GWA calculation. The minus of the experimental IP corre-

sponding to HOMO and the minus of the experimental EA cor-

responding to LUMO are also listed in the last column (Expt.) for

comparison.

GWA Expt.

B2

HOMO −9.698 −10.30a

LUMO −1.827 > −1.3 ± 0.4b

Al2
HOMO −6.886 −5.4 ± 1.0c

LUMO −1.392 −1.460 ± 0.060d

Si2
HOMO −8.642 −7.9e

LUMO −1.881 −2.230 ± 0.010f

a See Ref. [44].
b See Ref. [45].
c See Ref. [46].
d See Ref. [47].
e See Ref. [48].
f See Ref. [49].

In Fig.2.9, we show the quasiparticle energy spectra for the triplet state calculated

by our GWA calculation. Here, the quasiparticle energies mean the total energy dif-

ference between the N-electron ground state and the (N ± 1)-electron excited states.

In this figure, the levels with up and down arrows (indicating electron spins) denote

hole (occupied) levels and those without arrows denote electron (unoccupied) levels.

The topmost level with an arrow corresponds to the HOMO level and the lowermost

level without an arrow corresponds to the LUMO level (their absolute values cor-

respond to IP and EA, respectively, and their difference corresponds to the energy
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gap). All the other levels refer also to the true quasiparticle energies, which can be

directly measured by the photoemission and inverse photoemission spectroscopy. A

quasiparticle wavefunction, which characterizes the electron or hole amplitude in the

difference between the N-electron ground state and a (N±1)-electron excited state, is

associated with each level, and its characterization is indicated in a standard fashion

as σg(2s) in the figure (asterisk (*) denotes an antibonding orbital, and PW denotes a

plane-wave-like extended state associated with p orbitals). Note that there is a large

energy gap between the occupied and unoccupied states even though their character-

izations of the quasiparticle wavefunctions are the same as, e.g., πu(2p); this situation

cannot be realized within the LDA or the GGA. In the GWA, if one of the levels is oc-

cupied, a large exchange interaction separates it from the other, leading to a large

energy gap.
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Fig.2.9: Quasiparticle energy diagrams of (a) B2, (b) Al2, and (c) Si2 obtained

by the GWA calculation. The quasiparticle wave functions are only

drawn for Si2, but they are similar for all the other dimers. The lev-

els with up and down arrows (indicating electron spins) denote hole

levels and those without arrows denote electron levels. The topmost

level with an arrow corresponds to the HOMO level and the lower-

most level without an arrow corresponds to the LUMO level; their

absolute values correspond to IP and EA, respectively. Their differ-

ence corresponds to the energy gap.
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Chapter 3

Linearized GW Approach Satisfying
the Ward Identity: Total Energy
Calculation Based on the
Luttinger–Ward Functional

3.1 Introduction
The Green’s function method in the many-body perturbation theory plays a pow-

erful role in first-principles calculations of excited states of materials. The poles and

residues of the one-particle Green’s function G directly give the quasi-particle en-

ergy spectrum and the corresponding partial density matrix composed of a product

of quasi-particle wavefunctions, respectively. Within this framework, electronic states

are described by quasi-particles, and many-body interactions are represented by the

self-energyΣ, which is expanded with Green’s function and the Coulomb interaction

v. Quasi-particles can be regarded as apparent independent particles dressed by a

self-energy cloud. Almost 50 years ago, Hedin [3] proposed a closed set of equations

for Green’s function, the dynamically screened Coulomb interaction W (composed

of the polarization function P), and the vertex function Γ. Its simplest approximation

is called the GW approximation or the self-consistent GW approach, where the ver-

tex function is replaced by unity. In this approximation, P and W become those of

the random phase approximation (RPA) and the self-energy Σ is given by iGW sym-

bolically. Furthermore, its non-self-consistent approach, which is called the one-shot

GW or G0W0, provides a tractable scheme requiring only a moderate computational
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time. This approach is justified as a first-order perturbation theory with respect to

the dynamically screened Coulomb interaction W , and has been successfully applied

to various solids and nano-particles, and the band gap of semiconductors and insu-

lators as well as the ionization potential and electron affinity of atoms and molecules

have been shown in good agreement with experiments [6–8].

Luttinger and Ward [14] first showed that the total energy is given by the Luttinger–

Ward (LW) functional Φ[G] and some other contributions easily estimated, and the

self-energy Σ[G] is derived from a functional derivative of Φ[G] with respect to

Green’s function G. The important point is that it satisfies the variational principle.

Using this fact, the total energy has been estimated by a robust calculation of the

LW functional Φ from the one-shot GW and other approaches [15, 16, 50]. The

self-consistent GW approach is identical to the shielding approximation proposed

earlier by Baym and Kadanoff [4], who showed that any LW functional Φ[G] given

by a restricted sum of diagrams constitutes a theory satisfying macroscopic conser-

vation laws for the number of particles, momentum, and angular momentum, if the

self-energy is given by Σ[G] � δΦ[G]/δG. Such a theory including the shielding

approximation is called the conserving approximation. It can be shown that in

the conserving approximation, the virial theorem is exactly satisfied [5]. However,

as a deficiency of the self-consistent GW approximation, the Ward–Takahashi

identity [11], which is derived from gauge invariance, is not satisfied. Consequently,

the band gap of crystals is overestimated compared with the one-shot GW. In order

to satisfy the Ward–Takahashi identity, the vertex function must be included in the

self-energy and the polarization function, which is a very difficult task.

Another difficulty in the quasi-particle representation is that the quasi-particle

wavefunctions are non-orthonormal and linearly dependent due to the energy

dependence of the self-energy. One way to solve this problem is to use Löwdin’s

symmetrized orthonormalization procedure, but there is a big question how to

deal with this energy dependence when the quasi-particle equation is solved

self-consistently.
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3.2 Theory

3.2.1 Linearization

The quasiparticle equation can be written as(
T̂ + v̂nuc + Σ(εn )

)
| n 〉 � εn | n 〉, (3.1)

where the eigenstates | n 〉 are the quasiparticle states, the eigenvalues εn are the

quasiparticle energies, T̂ is the kinetic energy operator, T̂ �
∫ | r 〉(−∇2/2)〈 r | dr,

v̂nuc is the nucleus Coulomb potential, and Σ(εn ) is the self-energy operator. Note

that the self-energy operator is energy dependent, and therefore the quasiparticle

states are non-orthonormal and linearly dependent. This fact makes the subsequent

formulation very difficult. To avoid this difficulty, we expand the self-energy with

respect to the eigenvalue εn to obtain

H | n 〉 � εnΛ | n 〉, (3.2)

H � T̂ + v̂nuc + Σ(μ) − μ∂Σ(ω)
∂ω





ω�μ, (3.3)

where Λ is defined by

Λ � 1 − ∂Σ(ω)
∂ω





ω�μ. (3.4)

Here, μ can be set, for example, at the mean eigenvalue of the highest occupied molec-

ular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels.

Although Shishkin et al. [12] introduced n-dependent μ and Λ, and transformed H

as Λ−1/2HΛ−1/2 for each n (this is the reason why they had to introduce the ma-

trix orthonormalization additionally), here we use n-independent μ and Λ, and the

Cholesky decomposition with the lower triangular matrix L as

Λ � LL†. (3.5)

Then we can naturally define the orthonormalized quasiparticle states and the corre-

sponding Hamiltonian as

| ñ 〉 � L† | n 〉, H̃ � L−1HL−1†. (3.6)

As a consequence, we have the linearized quasiparticle equation:

H̃ | ñ 〉 � εn | ñ 〉. (3.7)
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The orthonormalized states satisfy the following orthonormality and completeness

conditions:

〈 ñ | m̃ 〉 � δnm ,
∑

n

| ñ 〉〈 ñ | � 1. (3.8)

The occupation number of these states is purely zero or one according to whether the

corresponding quasiparticle energy is above or below the Fermi level. In contrast, the

original quasiparticle states satisfy the following equations:

〈 n |Λ | m 〉 � δnm ,
∑

n

| n 〉〈 n | � Λ−1. (3.9)

Since | n 〉 do not satisfy the completeness condition, Green’s function defined in this

linearized framework,

G(ω) �
∑

n

| n 〉〈 n |
ω − εn − iηn

�

∑
n

Λ

(ω − iηn )Λ − H
| n 〉〈 n | , (3.10)

does not have a “resolvent" form. This is because Eq.(3.10) corresponds only to the

coherent part of the total Green’s function (See Eq.(4-15) of Ref. [51]). In fact, this

Green’s function does not satisfy the charge conservation. It is readily seen from

−i
�

〈 r | G(ω) | r 〉dr dω
2π
� N. (3.11)

This violation of the charge conservation is related to the existence of the incoherent

part in Green’s function. In order to avoid this difficulty, we introduce the renormal-

ized Green’s function as:

G̃(ω) � L†G(ω)L �

∑
n

| ñ 〉〈 ñ |
ω − εn − iηn

�

∑
n

| ñ 〉〈 ñ |
ω − iηn − H̃

. (3.12)

In this representation, since the quasiparticle states are orthonormal, Eq.(3.11) with

G̃ in place of G satisfies the charge conservation;

∫
ρ(r)dr � −i

�
〈 r | G̃(ω) | r 〉dr dω

2π
� N. (3.13)

Note that the coherent part of the original Green’s function is given by G(ω) �

L−1†G̃(ω)L−1, and the matrices L−1† and L−1 correspond to the square root of the
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renormalization factor Z � Λ−1 (See Eq.(4-63) of Ref. [51]). Then we should write the

Hartree term as

ΣH(r) � −i
∫

v(r − r′)G̃(r, r′;ω)dr′ dω
2π

�

∫
v(r − r′)ρ(r′)dr′, (3.14)

where v(r − r′) is the bare Coulomb interaction.

The most important fact here is that the vertex function is related to Λ via the Ward

identity , i.e., the Ward–Takahashi identity in the q � 0 and ω − ω′ � 0 limit,

Γ(ω � μ, ω′ � μ; q � 0) � 1 − ∂Σ(ω)
∂ω





ω�μ � Λ. (3.15)

This relation can be also written as the well-known formula ΓZ � 1. The formulation

up to here is very general and can be applied to any Green’s function-based frame-

work. Now, according to the Hedin’s set of equations, the exact self-energy Σxc(ω)

except for the Hartree term is approximated as

Σxc(ω) � i
∫

G(ω′)W (ω − ω′)Γ(ω, ω′) dω′
2π

≈ i
∫

G̃(ω′)W (ω − ω′) dω′
2π
, (3.16)

where we used the relation Tr[GWΛ] � Tr[L†GLW] � Tr[G̃W]. The dynamically

screened Coulomb interaction W is described by the polarization function P and the

interaction kernel δΣH/δG as

W �

[
1 − i

δΣH

δG
P
]−1

v. (3.17)

Since the exact polarization function P is given by P � −iGGΓ and the interaction

kernel is given by

δΣH

δG
�
δΣH

δG̃

δG̃
δG

� −ivΛ, (3.18)

we find that W is equal to

W � [1 − vP̃]−1v , (3.19)

where we defined the renormalized polarization function as

P̃ � ΛP � −iΛGGΓ ≈ −iΛGGΛ � −iG̃G̃. (3.20)
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Fig.3.1: The schematic flow of the linearized self-consistent GW approach.

ThereforeΣxc and W are functionals only of G̃. The flow of the present computational

scheme is very simple and is shown in Fig.3.1. Thus, our formulation is identical to

that of the non-linearized self-consistent GW approach with G replaced by G̃.

3.2.2 Total Energy

The Luttinger–Ward functional Φ[G̃] with the renormalized Green’s function G̃ is

given by

Φ[G̃] � −1

2
lim
λ→1

∞∑
n�1

λn

n
Tr

{
Σn[G̃] G̃

}

� −1

2

∫ 1

0

dλ
λ

Tr
⎧⎪⎨⎪⎩

∞∑
n�1

λnΣn[G̃] G̃
⎫⎪⎬⎪⎭ , (3.21)

where λ is a virtual parameter corresponding to the interaction strength that becomes

unity when the full Coulomb interaction is switched on, Σn[G̃] represents the con-

tribution of the n-th order skeleton diagrams to the self-energy. This functional is

diagrammatically represented by Fig.3.2. According to the general theory [51], the

total energy of the ground state EN
G

with the LW functional is given by

EN
G � E0 + Φ[G̃] + Tr

⎡⎢⎢⎢⎢⎣
G̃
G0

− 1

⎤⎥⎥⎥⎥⎦ − Tr

⎡⎢⎢⎢⎢⎣ln
G̃
G0

⎤⎥⎥⎥⎥⎦ + EEwald , (3.22)
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where E0, G0, and EEwald are the total energy and Green’s function of the non-

interacting system, and the Coulombic energy between nuclei, respectively. Using

the kinetic energy T and the nucleus-electron Coulomb energy Vn-e, Eq.(3.22) can be

rewritten as follows:

EN
G � T + Vn-e + Φ[G̃] + EEwald , (3.23)

where T and Vn-e are given by

T � −i
∫ [

lim
r→r′

(
−1

2
∇2
)
〈 r | G̃(ω) | r′ 〉

]
dr

dω
2π

�

occ∑
n

∫
〈 ñ | r 〉

(
−1

2
∇2
)
〈 r | ñ 〉dr, (3.24)

Vn-e �

occ∑
n

〈 ñ | v̂nuc | ñ 〉. (3.25)

The Hartree and exchange part of the LW functional (ΦH and Φx) are λ-independent,

and they can be evaluated as

ΦA[G̃] � VA � − i
2

∫
〈 r |ΣAG̃(ω) | r 〉dr dω

2π

�
1

2

occ∑
n

〈 ñ |ΣA | ñ 〉, (A � H or x), (3.26)

where VH and Vx are the Hartree and exchange energy. In the next subsection, we

present a convenient formula to calculate the correlation part of LW functional Φc[G̃]

within a plasmon-pole model.

3.2.3 LW Functional

As shown in Fig.3.2, Φ[G̃] is a sum of the skeleton diagrams, which corresponds to

the sum of the ring diagrams in the random phase approximation (RPA) made up of

G̃. In the case of the non-linearized self-consistent GW or the one-shot GW method,

G̃ can be replaced by G or G0. (G0 is obtained from local density approximation

(LDA) or Hartree–Fock (HF) calculations.) In any case, the parameter λ appears as a

prefactor for the RPA polarization part that diagrammatically corresponds to a ring.

Our idea is to use the von der Linden and Horsch (vdLH) plasmon-pole model [25],

and to solve the λ-independent eigenvalue problem of the symmetrized Hermitian



34 Chapter 3

Fig.3.2: The Feynman diagram of the Luttinger–Ward functional within the

LGW approximation. The solid line and dashed line are the renor-

malized Green’s function and the bare Coulomb interaction, respec-

tively.

product of the Coulomb interaction v(G) � 4π/ΩG2 (Ω is the volume of the unit cell)

and the RPA polarization part

v(G)
∑
G′

|G|
|G′|PGG′ (ω � 0)up (G′) � χp up (G), (3.27)

instead of solving the original λ-dependent eigenvalue problem of the inverse sym-

metrized dielectric matrix. The eigenvalue χp is related to the plasmon strength zp (λ)

via

1

1 − λχp
� lim
ω→0

⎡⎢⎢⎢⎢⎣1 +
zp (λ)ω2

p (λ)

ω2 − (ωp (λ) − iη)2

⎤⎥⎥⎥⎥⎦ � 1 − zp (λ), (3.28)

where η is a positive infinitesimal. The plasmon-pole frequency ωp (λ) is given by

the relation

ω2
p (λ) �

4πλ
zp (λ)

∑
G,G′

Θp (G)LGG′Θp (G′) ≡ λα2

zp (λ)
, (3.29)

where we put LGG′ � G · G′n(G′) and Θp (G) � up (G)/|G|. Therefore, we have

zp (λ) � λ/(λ − χ−1
p ) and ω2

p (λ) � α2(λ − χ−1
p ). Using the λ-dependent formulae

above for the vdLH plasmon-pole model, the correlation part of the LW functional,

Φc[G̃], is given by

Φc[G̃] � −2πi
Ω

∑
n

∑
m

∑
p

1

2

∫ 1

0

dλ
λ

∫ ∞

−∞
dω
2π

1

ω − εn − iηn

× λzp (λ)ωp (λ)[Mm n
p ]∗Mm n

p

ω − εm + ωp (λ)sgn(μ − εm ) − iηm
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�
2π
Ω

occ∑
n

emp∑
m

∑
p

1

2

∫ 1

0

dλ
zp (λ)ωp (λ)[Mm n

p ]∗Mm n
p

εn − εm + ωp (λ)sgn(μ − εm ) + iη

− 2π
Ω

emp∑
n

occ∑
m

∑
p

1

2

∫ 1

0

dλ
zp (λ)ωp (λ)[Mm n

p ]∗Mm n
p

εn − εm + ωp (λ)sgn(μ − εm ) − iη
(3.30)

where we put

Mm n
p �

∑
G

〈 m̃ | e−iG·r | ñ 〉Θ∗
p (G). (3.31)

Here we present the detailed procedure of the λ integral in Eq.(3.30). The λ-

dependent part in Eq.(3.30) is given by

I �
1

2

∫ 1

0

dλ
zp (λ)ωp (λ)
εn − εm ± ωp (λ)

. (3.32)

Here, we put s � (εn − εm )/α (α is the λ-independent constant defined in Eq.(2.19))

and ξ �
√
λ − χ−1

p . The integration above is then evaluated as

I �
1

2

∫ ξ1

ξ0

ξ2 + χ−1
p

ξ(s ± ξ)
2ξdξ

�

∫ ξ1

ξ0

−(s − ξ)(s + ξ) + s2 + χ−1
p

s ± ξ dξ

�

∫ ξ1

ξ0

⎡⎢⎢⎢⎢⎣−(s ∓ ξ) +
s2 + χ−1

p

s ± ξ
⎤⎥⎥⎥⎥⎦ dξ

� −s(ξ1 − ξ0) ± 1

2
±
(
s2 + χ−1

p

)
log







s ± ξ1

s ± ξ0






, (3.33)

where ξ0 �

√
−χ−1

p and ξ1 �

√
1 − χ−1

p . Alternatively, if we ignore the λ-dependence

in ωp (λ), Eq.(3.32) can be evaluated as

I �
1

2

∫ 1

0

dλ
zp (λ)ωp

εn − εm ± ωp

�
1

2

(
1 + χ−1

p log |1 − χp |
) ωp

εn − εm ± ωp
. (3.34)

We checked that the correlation energies with these two formulae do not differ sig-

nificantly. An advantage of using Eq.(3.34) is that the projection operator can be used
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to evaluate the λ-independent part of the Luttinger–Ward functional as follows:

Φc[G̃] �
2π
Ω

∑
p

occ∑
n

emp∑
m

1

2

ωp
(
1 + χ−1

p log |1 − χp |
)

Mm n
p [Mm n

p ]∗

εn − εm + ωpsgn(μ − εm) + iη

− 2π
Ω

∑
p

emp∑
n

occ∑
m

1

2

ωp
(
1 + χ−1

p log |1 − χp |
)

Mm n
p [Mm n

p ]∗

εn − εm + ωpsgn(μ − εm) − iη

�
π
Ω

∑
p

occ∑
n

ωp
(
1 + χ−1

p log |1 − χp |
)

×
∑
G

Θp (G)〈 ñ | e iG·r P̂

εn − ωp + iη − H̃

∑
G′

e−iG′·r′ | ñ 〉Θ∗
p (G′)

+
π
Ω

∑
p

occ∑
n

ωp
(
1 + χ−1

p log |1 − χp |
)

×
∑
G′

Θ∗
p (G′)〈 ñ | e−iG′·r′ P̂

εn − ωp + iη − H̃

∑
G

e iG·r | ñ 〉Θp (G) (3.35)

We also checked that the empty levels taken into account for the summation in

Eq.(3.30) is good enough if it is taken up to about 1500 levels.

3.2.4 Projection Operator

We introduce the projection operator to save a computational time for the evalua-

tion of Eqs.(3.16) and (3.20), in which the summation over infinite unoccupied states

can be exactly projected onto the subspace of only occupied states. The projection

operator P̂ is defined as

P̂ �

emp∑
n

| ñ 〉〈 ñ | � 1 −
occ∑
n

| ñ 〉〈 ñ | . (3.36)

In practice, the quasiparticle states are expanded in terms of a basis set | α ) as

| n 〉 �
∑
α

cn α | α ). (3.37)

In general, the basis functions are non-orthogonal to each other, and we define the

overlap matrix as Sα β � ( α | β ). The quasiparticle equation Eq.(3.2) with Eq.(3.3) can
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be rewritten in this representation as the following generalized eigenvalue problem:

∑
β

( α |
[
T̂ + v̂nuc + Σ(μ) − μ∂Σ(ω)

∂ω





ω�μ
]
| β )cn β

� εn

∑
β

( α |Λ | β )cn β. (3.38)

Consequently, the exchange and correlation terms of the self-energy (Σxc(ω) � Σx +

Σc(ω)) and the renormalized polarization function can be evaluated as

( α |Σx | β ) � −4π
Ω

∑
G

occ∑
n

( α | e iG·r | ñ 〉〈 ñ | e−iG·r′ | β )
G2

, (3.39)

( α |Σc(μ) | β ) �
2π
Ω

∑
p

occ∑
n

zpωp[Ξn α
p ]∗ 1

μ + ωp − εn − iη
Ξ

n β
p

+
2π
Ω

∑
p

zpωp[Παp ]† P̂

μ − ωp + iη − H̃
Π
β
p , (3.40)

P̃GG′ (ω) �
occ∑
n

〈 ñ | e−iG·r P̂

εn + iη − ω − H̃
e iG′·r′ | ñ 〉

+

occ∑
n

〈 ñ | e iG′·r′ P̂

εn + iη + ω − H̃
e−iG·r | ñ 〉, (3.41)

where we put

Ξ
n β
p �

∑
G

〈 ñ | e−iG·r | β )Θ∗
p (G), (3.42)

Π
β
p �

∑
G

e−iG·r | β )Θ∗
p (G). (3.43)

Here, ωp � ωp (λ � 1), zp � zp (λ � 1), and Θp (G) are the plasmon-pole frequency,

strength, and the scaled plasmon-pole eigenvector, respectively, as defined in the pre-

vious subsection. The summation over the plasmon-pole frequency ωp in Eq.(3.40)

should be taken afterwards. The number of ωp ’s is equal to the number of G’s, and

is quite large. However, it is generally enough to preserve only about a first hundred

of the plasmon-pole frequencies in ascending order.

3.3 Methodology
We chose simple isolated Li and Na systems (atoms and dimers) to validate our

approach, because clusters composed of more than two atoms have an ambiguity of
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their shape, but dimer does not have such an ambiguity. For Li and Na atoms, we

performed the spin-dependent calculation.

We used the all-electron mixed basis approach, where the one particle wave func-

tions are expanded with the combination of plane waves and atomic orbitals. This

approach can describe both deep core states and plane-wave-like continuous states ef-

ficiently and appropriately compared to the approaches which use only plane waves

or only localized orbitals as basis functions.

The spherical cut technique is used to ignore the interaction with the periodic im-

ages. The atoms and dimers are put in the rhombohedral unit cell with a � b � c � 16

Å and α � β � γ � 60◦. We checked that the total energy, the ionization potential,

and the electron affinity are enough converged with respect to the unit cell size. The

cutoff energy Ecut for the plane waves and G, G′ in Eq.(3.41) as well as the cutoff

energy Ex
cut of G in Eq.(3.39) are carefully determined by convergence tests. Ecut and

Ex
cut are 71 and 339 eV, respectively.

We used the numerical differentiation around μ � (εHOMO + εLUMO)/2:

∂Σ(ω)
∂ω





ω�μ �
Σ(μ + Δ/2) − Σ(μ − Δ/2)

Δ
(3.44)

with Δ � 0.1 eV. We also confirmed that the self-energy does not significantly de-

pend on the choice of μ. We first obtained the well converged electronic states within

LDA, and then proceeded to the GW and LGW calculations. The criterion of the SCF

convergence of LDA, HF, GW, and LGW is 10−6 eV in the total energy.

For the calculations with the hybrid functional B3LYP, we used the all-electron lo-

calized numerical basis program, DMol3 [31, 32] in Materials Studio.

3.4 Results and Discussion
The results for the ionization potential (IP), which is equal to −εHOMO, and the

electron affinity (EA), which is equal to −εLUMO, of Li, Li2, Na, and Na2 calculated

with LDA, HF, the self-consistent GW (GW), and the linearized self-consistent GW

(LGW) are summarized in Tables.3.1 (for Li and Li2) and 3.2 (for Na and Na2) together

with experimental data [52–57] in units of eV.

LDA and B3LYP results of IP and EA are just the absolute values of the eigenval-

ues of HOMO and LUMO as well as HF, GW, and LGW. For both atoms and dimers,

LDA and B3LYP give significantly large EA, and HF gives significantly small EA. In

contrast, GW and LGW improve these results of EA, and LGW gives the best agree-
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Table.3.1: Ionization potentials (IP) and electron affinities (EA) in eV of Li

and Li2.

Li Li2

IP EA IP EA

LDA 3.14 1.83 3.24 1.84

HF 5.34 0.04 4.88 0.08

B3LYP 3.34 1.00 3.30 0.99

GW 5.78 0.22 5.56 0.20

LGW 5.66 0.28 5.32 0.35

Expt. 5.39a 0.62b 5.15a 0.44c

a See Ref. [52].
b See Ref. [53].
c See Ref. [54].

Table.3.2: Ionization potentials (IP) and electron affinities (EA) in eV of Na

and Na2.

Na Na2

IP EA IP EA

LDA 3.08 2.04 3.27 1.97

HF 4.94 0.14 4.53 0.01

B3LYP 3.16 1.09 3.19 1.01

GW 5.32 0.25 5.11 0.32

LGW 5.20 0.31 4.92 0.45

Expt. 5.14a 0.55b 4.93a 0.43c

a See Ref. [55].
b See Ref. [56].
c See Ref. [57].

ment with the experimental data. For IP, on the other hand, LDA and B3LYP give

significantly small values, while HF, GW, and LGW give reasonable values. For Li2

and Na2, LGW gives the best IP if we compare with the experimental data (For Li, HF

accidentally gives the best IP and LGW gives the second best IP). From these tables,

we find also that the energy gap, i.e., IP − EA, of GW overestimates the experimental

energy gap. This is an inherent tendency of GW although there are some exceptions
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such as a Ca atom [21]. That of LGW improves this inherent tendency of GW and

gives smaller energy gap, which is in fairly good agreement with the experimental

energy gap. Therefore, among these methods, we can conclude that LGW gives the

best results comparable to the experimental IP and EA.

The absolute values of the total energy EN
G

in atomic units (a.u.) (1 a.u. � 27.2 eV)

of Li, Li2, Na, and Na2 (at the equilibrium distance for dimers) are shown in Table.3.3

together with virial ratio −V/T and components contributing to the total energy.

Table.3.3: Total energies (EN
G

), their components in units of a.u. (1 a.u. = 27.2

eV), and virial ratios (−V/T) calculated by various approaches.

The components, T, Vn-e, VH, Vx, Exc, and Φc are the kinetic en-

ergy, the nucleus-electron Coulomb energy, Hartree energy, the

Fock exchange energy, the LDA exchange-correlation energy, and

the correlation energy, respectively.

EN
G

T Vn-e VH Vx (Exc) Φc −V/T

Li

LDA −7.3430 7.3457 −16.8770 4.0287 −1.6640 1.999

HF −7.4327 7.4362 −17.1480 4.0588 −1.7798 2.000

GW −7.4419 7.4382 −17.1556 4.0660 −1.7812 −0.0092 2.000

LGW −7.4422 7.4675 −17.1895 4.0750 −1.7856 −0.0097 1.996

Li2

LDA −14.7257 14.7431 −36.1165 9.1904 −3.3625 2.000

HF −14.8723 14.8715 −36.3637 9.2002 −3.5539 2.000

GW −14.9042 14.8819 −36.4281 9.2390 −3.5537 −0.0322 2.001

LGW −14.9065 14.9593 −36.5180 9.2643 −3.5691 −0.0348 1.996

Na

LDA −161.4453 161.4426 −388.6022 79.7772 −13.5275 2.000

HF −161.8534 161.5687 −389.5288 80.1072 −13.9948 2.002

GW −161.8614 161.5600 −389.5304 80.1111 −13.9941 −0.0080 2.002

LGW −161.8616 161.6364 −389.6607 80.1743 −14.0033 −0.0084 2.001

Na2

LDA −322.9698 322.9278 −775.5762 163.8824 −27.0807 2.000

HF −323.7526 323.1599 −777.7621 164.3155 −27.9801 2.002

GW −323.7805 323.1348 −777.7282 164.3387 −27.9772 −0.0281 2.002

LGW −323.7823 323.3651 −787.4844 164.5276 −28.0055 −0.0304 2.001

Here, Exc is the exchange-correlation energy of LDA. Note that T and V in LDA are

not the Kohn–Sham kinetic energy Ts and the potential energy involving Exc as the

exchange-correlation energy, but those estimated as Ts + Txc and Vn-e + VH + Exc −Txc

with Txc given by Averill and Painter [20] who showed the validity of virial theo-

rem in LDA. For GW and LGW, the Luttinger–Ward functional Φc is evaluated with

Eq.(3.30). The correlation energy, i.e., the total energy difference between HF and

GW/LGW is almost the same as the value of Φc. The resulting virial ratio is fairly

good agreement with the exact value 2 in all cases. Concerning the ground-state to-
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tal energy EN
G

, LGW is the deepest and GW is the second deepest, suggesting that

LGW gives the best result for the correlation energy among these approximations in

a sense of the variational principle. This fact can also be directly seen from the value

of the Luttinger–Ward functional Φc in Table.3.3.

The total energy of the ground state measured from the dissociation limit is de-

picted versus the interatomic distance of Li2 in units of eV in Fig.3.3. The equilib-

rium distances and the binding energies are different among LDA, HF, B3LYP, GW,

and LGW. The bond force constant κ can be calculated from a quadratic function

(ΔE � κ(Δd)2/2) fitted to the total energy curve. The equilibrium distances, the bind-

ing energies, the bond force constants, and the corresponding vibrational frequencies

of Li2 calculated with LDA, HF, B3LYP, GW, and LGW are summarized in Table.3.4.
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Fig.3.3: Total energies measured from the dissociation limit of Li2 in eV as a

function of the interatomic distance.

For the equilibrium distance, HF significantly overestimates the experimental

value, and LDA and B3LYP are the best agreement with the experimental value. GW

and LGW give the same value within the estimation error, which is intermediate

between the values of LDA (B3LYP) and HF as expected. For the binding energy,

HF significantly underestimates the experimental value, and LDA and B3LYP show

good agreement with the experimental value. Again the GW and LGW results
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Table.3.4: Equilibrium interatomic distances (d0) in Å , binding energies

(Ebin) in eV, bond force constants (κ) in eV/Å2, and correspond-

ing vibrational frequencies ( f ) in cm−1 of Li2.

d0 Ebin κ f

LDA 2.70 1.08 1.47 340

HF 2.81 0.19 1.40 332

B3LYP 2.70 0.94 1.53 346

GW 2.74 0.56 1.40 331

LGW 2.74 0.60 1.41 332

Expt. 2.67a 1.04a – 351a

a See Ref. [58].

are intermediate between the LDA (B3LYP) and HF results. The binding energy

of LGW is improved than that of GW, although these values are smaller than the

experimental value. For the bond force constant and the vibrational frequency, LDA

gives the smallest value, HF gives the largest value, and HF, GW, and LGW give

almost the same value, although the GW and LGW results are only very slightly

lower than the HF result.

For the bond force constant and the vibrational frequency, HF, GW, and LGW give

almost the same value, while LDA and B3LYP give slightly larger values than this

value. (B3LYP is the best agreement with the experimental value among all.) All these

values are, however, somewhat smaller than the experimental value. One reason

of the underestimation of the binding energy and the vibrational frequency may be

due to the vibrational and rotational contributions to the total free energy at finite

temperatures, although we have not considered such effects because they are beyond

the scope of this thesis. Another reason may be due to the missing contribution to

the total energy in short wave length scales in the GW and LGW approximations. To

improve GW and LGW, it is necessary to take into account the vertex correction Γwith

q � 0 and ω � ω′, which is not included in the present formulation. However, since

the GW and LGW approximations take into account correctly the long wave length

contributions within the RPA, we expect that they will reproduce correctly the long

distance behaviour in a van der Waals regime.
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Chapter 4

GWΓ with the All-Electron Mixed
Basis Approach

4.1 Introduction
As stated in the previous chapters, the GW approximation does not include the

vertex correction. As a consequence of that, the calculated ionization potentials and

electron affinities for molecules and clusters within GW are generally overestimated

and underestimated compared with experimental data. There are some papers to

study the vertex effect for the dynamically screened interaction [12, 13]. However,

the important defect of these approaches is that the Ward–Takahashi identity is not

satisfied, and it is very important to include the explicit vertex function in not only

the self-energy but also the polarization function. We introduce the first-order ver-

tex correction to both the self-energy and the polarization function, and show that

the our GWΓ approach satisfies the Ward–Takahashi identity within the first-order

approximation for the vertex function.

4.2 Theory
In the GWΓ approach, the three-points vertex function Γ(x1 , x2; x′) represented in

Fig.4.1 is included in the polarization function and the self-energy. Here, x is de-

fined as the space coordinates and time: x � (r, t). If we consider the first-order

diagram in Fig.4.1 and replace the dynamically screened interaction W with the bare

Coulomb interaction v, then the lowest order contribution of the vertex correction to
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Fig.4.1: The Feynman diagrams of the vertex function. The solid and dashed

lines show Green’s function and the bare Coulomb interaction, re-

spectively.

the Hartree–Fock self-energy is given by

ΣGVΓ(x , x′) � i2

�
G(x , x1)v(x − x2)Γ(x1 , x2; x′)dx1dx2

� i2

�
G(x , x1)v(x − x2)G(x1 , x2)v(x1 − x′)G(x2 , x′)dx1dx2 , (4.1)

and it can be diagrammatically given as shown in Fig.4.2. The Fourier transform of

Eq.(4.1) is given by

ΣGVΓ(r, r′, ω) � i2

�
G(r, r1 , ω − ω′)v(r − r2)

Γ(r1 , r2 , r
′, ω, ω′)dω′dr1dr2

� i2

�
G(r, r1 , ω − ω′)v(r − r2)G(r1 , r2 , ω − ω′′)

× v(r1 − r′)G(r2 , r
′, ω − ω′′)dω′dω′′dr1dr2. (4.2)



4.2 Theory 45

Fig.4.2: The Feynman diagrams of the second-order exchange. The solid

and dashed lines show Green’s function and the bare Coulomb in-

teraction, respectively.

This diagram is the second-order exchange diagram in the Møller-Plesset perturba-

tion theory (MP2). The second-order direct diagram is already included in the GW

self-energy. The MP2 can well describe the short- or middle-range correlation, while

the GW well describes the long-range correlation. Thus, adding this diagram to the

GW self-energy should improve the description of the electron correlation within the

GW at any range. The Eq.(4.2) can be written with the matrix representation as fol-

lows.

(ν |ΣGVΓ(ω) |μ) �
i2

Ω

∑
i , j,k

∑
G,G′

�
dω′
2π

dω′′
2π

× (ν |e iG·r |i〉〈i |e iG′·r′′ | j〉〈 j |e−iG·r′′′ |k〉〈k |e−iG′·r′ |μ)
ω − ω′ − (εi + iηi )

× v(G)v(G′)
(ω − ω′ − ω′′ − (ε j + iη j ))(ω − ω′′ − (εk + iηk ))

�
1

Ω

∑
G,G′

(ν |e iG·r |i〉〈i |e iG′·r′′ | j〉〈 j |e−iG·r′′′ |k〉〈k |e−iG′·r′ |μ)

×
( occ∑

i

emp∑
j

occ∑
k

1

εi − ε j + εk − ω + iη

+

emp∑
i

occ∑
j

emp∑
k

1

εi − ε j + εk − ω − iη

)
v(G)v(G′) (4.3)

In the same manner as the second-exchange term, the second-order direct term (dia-

grammatically shown in Fig.4.3) can be given by

(ν |Σ2nd Direct(ω) |μ) � − i2

Ω

∑
i , j,k

∑
G,G′

�
dω′
2π

dω′′
2π

(ν |e iG·r |i〉〈 j |e−iG·r′′ |k〉〈k |e iG′·r′′′ | j〉〈i |e−iG′·r′ |μ)
ω − ω′ − (εi + iηi )
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× v(G)v(G′)
(ω′′ − (ε j + iη j ))(ω′′ + ω′ − (εk + iηk ))

� − 1

Ω

∑
G,G′

(ν |e iG·r |i〉〈 j |e−iG·r′′ |k〉〈k |e iG′·r′′′ | j〉〈i |e−iG′·r′ |μ)

×
( occ∑

i

emp∑
j

occ∑
k

1

εi − ε j + εk − ω (4.4)

+

emp∑
i

occ∑
j

emp∑
k

1

εi − ε j + εk − ω
)

v(G)v(G′) (4.5)

The second-order self-energy has a energy dependence as well as the GW self-energy.

Fig.4.3: The Feynman diagrams of the second-order direct. The solid and

dashed lines show Green’s function and the bare Coulomb interac-

tion, respectively.

However, it can be linearized the energy dependece as well as LGW, and the orthog-

onality and the completeness condition are satisfied.

4.2.1 Ward–Takahashi Identity

Ward–Takahashi identity is given by

δ4(x1 − x)G−1(x , x2) − G−1(x1 , x)δ4(x − x2)

� i∇ · Γ(x1 , x2 , x) + i
∂
∂t
Γ(x1 , x2 , x). (4.6)

If we Fourier transform this equation with respect to t − t2 and t1 − t into ε +ω and ε,

respectively, (i.e., if we multiply exp[i(ε + ω)(t − t2) + iε(t1 − t)] and integrate with

respect to t − t1 and t1 − t), this equation becomes

δ(r1 − r)G−1(r1 , r2; ε + ω) − G−1(r1 , r2; ε)δ(r − r2)
� i∇ · Γ(r1 , r2 , r; ε + ω, ε) + ωΓ(r1 , r2 , r; ε + ω, ε). (4.7)
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At the lowest order, the first term in the right hand side is approximately given by

i∇ · Γ(r1 , r2 , r; ε + ω, ε)

∼ 1

2
∇ · (∇1 + ∇2)δ(r1 − r)δ(r − r2)

� −δ(r1 − r)
1

2
∇2δ(r − r2) +

1

2
∇2

1δ(r1 − r)δ(r − r2)

− i
∫ ∞

−∞
dω′
2π

G(r1 , r; ε − ω′)
(
−1

2
∇2
)

G(r, r2; ε + ω − ω′)V (r1 − r2)

+ i
∫ ∞

−∞
dω′
2π

(
−1

2
∇2

1

)
G(r1 , r; ε − ω′)G(r, r2; ε + ω − ω′)V (r1 − r2). (4.8)

Substituting this into (4.7), we have

δ(r1 − r)G−1(r1 , r2; ε + ω) − G−1(r1 , r2; ε)δ(r − r2)

� −δ(r1 − r)
1

2
∇2δ(r − r2) +

1

2
∇2

1δ(r1 − r)δ(r − r2)

− i
∫ ∞

−∞
dω′
2π

G(r1 , r; ε − ω′)
(
−1

2
∇2
)

G(r, r2; ε + ω − ω′)V (r1 − r2)

+ i
∫ ∞

−∞
dω′
2π

(
−1

2
∇2

1

)
G(r1 , r; ε − ω′)G(r, r2; ε + ω − ω′)V (r1 − r2)

+ ωΓ(r1 , r2 , r; ε + ω, ε), (4.9)

which is equivalent to

Σ(r1 , r2; ε)δ(r − r2) − δ(r1 − r)Σ(r1 , r2; ε + ω)

� −i
∫ ∞

−∞
dω′
2π

G(r1 , r; ε − ω′)
(
−1

2
∇2
)

G(r, r2; ε + ω − ω′)V (r1 − r2)

+ i
∫ ∞

−∞
dω′
2π

(
−1

2
∇2

1

)
G(r1 , r; ε − ω′)G(r, r2; ε + ω − ω′)V (r1 − r2)

+ ω[Γ(r1 , r2 , r; ε + ω, ε) − δ(r1 − r)δ(r − r2)], (4.10)

Then, using the self-energy in the linearized GW formulation, we can rewrite the left

hand side of (4.10) as

i
∫ ∞

−∞
dω′
2π

[G̃(r1 , r2; ε − ω′)δ(r − r2) − δ(r1 − r)G̃(r1 , r2; ε + ω − ω′)]W̃ (r1 , r2;ω′)

� i
∫ ∞

−∞
dω′
2π

[
〈r1 | 1

ε − ω′ − H̃ − iδH̃

|r〉〈r |r2〉

− 〈r1 |r〉〈r | 1

ε + ω − ω′ − H̃ − iδH̃

|r2〉
]
W̃ (r1 , r2;ω′)

� i
∫ ∞

−∞
dω′
2π

[
〈r1 | 1

ε − ω′ − H̃ − iδH̃

|r〉〈r | ω

ε + ω − ω′ − H̃ − iδH̃

|r2〉
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− 〈r1 | 1

ε − ω′ − H̃ − iδH̃

|r〉〈r |H̃ 1

ε + ω − ω′ − H̃ − iδH̃

|r2〉

+ 〈r1 |H̃ 1

ε − ω′ − H̃ − iδH̃

|r〉〈r | 1

ε + ω − ω′ − H̃ − iδH̃

|r2〉
]
W̃ (r1 , r2;ω′)

� i
∫ ∞

−∞
dω′
2π

[
ωG̃(r1 , r; ε − ω′)G̃(r, r2; ε + ω − ω′)

− G̃(r1 , r; ε − ω′)
(
−1

2
∇2
)

G̃(r, r2; ε + ω − ω′)

+

(
−1

2
∇2

1

)
G̃(r1 , r; ε − ω′)G̃(r, r2; ε + ω − ω′)

− G̃(r1 , r; ε − ω′)Σxc(r, r′)G̃(r′, r2; ε + ω − ω′)
+ Σxc(r1 , r

′)G̃(r′, r; ε − ω′)G̃(r, r2; ε + ω − ω′)
]
W̃ (r1 , r2;ω′), (4.11)

where we used the fact that the electron-nucleus potential in H̃ commutes with the

operator |r〉〈r |. Equation (4.11) is exactly equal to the lowest order vertex part shown

in Fig.4.1 in the lowest order in the electron-electron Coulomb interaction V , since

G̃ and W̃ (r1 , r2;ω′) can be replaced by G and V (r1 − r2), respectively, in the lowest

order approximation, the second and the third terms cancel with the first and second

terms of the right hand side of Eq. (4.10), and the fourth and fifth terms are clearly

the second order in V and thus can be ignored. Therefore, our formulation satisfies

the Ward–Takahashi identity in the lowest order approximation.

In the GWΓ approach, the first-order vertex correction is included in not only the

self-energy but also the polarization function. The polarization function with the

first-order vertex correction can be written as

PGWΓ(r, r′, ω) � −i2

�
G(r, r1 , ω + ω′)G(r, r2 , ω

′)

× Γ(r1 , r2 , r, ω
′′, ω)dω′dω′′dr1dr2. (4.12)

The dynamically screened interaction W is constructed by the polarization function

P as with the GW approximation:

WGWΓ(r, r′, ω) �
∫
ε−1(r, r1 , ω)v(r1 − r′)dr1

�

∫ (
δ(r − r2) −

∫
v(r − r1)

(
PGW (r1 , r2 , ω) + PGWΓ(r1 , r2 , ω)

)
dr1

)

× v(r2 − r′)dr1dr2. (4.13)
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Fig.4.4: The Feynman diagrams of the polarization function with the first

order vertex correction. The solid and dashed lines show Green’s

function and the bare Coulomb interaction, respectively.

The Fourier transformation of PGWΓ(r1 , r2 , ω) can be evaluate as follows:

PGWΓ
G,G′ (ω) � − i2

Ω

∑
i , j,k ,l

∑
G′′

�
dω′
2π

dω′′
2π

× 〈l |e iG·r |i〉〈i |e iG′′·r′′ | j〉〈 j |e−iG′·r′ |k〉〈k |e−iG′′·r′′′ |l〉
(ω + ω′′ − (εi + iηi ))(ω + ω′′ − ω′ − (ε j + iη j ))

× v(G′′)
(ω′′ − ω′ − (εk + iηk ))(ω′′ − (εl + iηl ))

�
1

Ω

∑
G′′
〈l |e iG·r |i〉〈i |e iG′′·r′′ | j〉〈 j |e−iG′·r′ |k〉〈k |e−iG′′·r′′′ |l〉

×
( occ∑

i

emp∑
l

1

εi − εl − ω + iη
−

emp∑
i

occ∑
l

1

εi − εl − ω − iη

)

×
(emp∑

j

occ∑
k

1

ε j − εk − ω − iη
−

occ∑
j

emp∑
k

1

ε j − εk − ω + iη

)
v(G′′) (4.14)

The GWΓ self-energy can be written as

(ν |ΣGWΓ(ω) |μ) � (ν |ΣGW (ω) |μ)

+
i2

Ω

∑
i , j,k

∑
G,G′ ,G′′

�
dω′
2π

dω′′
2π

× (ν |e iG·r |i〉〈i |e iG′′·r′′ | j〉〈 j |e−iG′·r′′′ |k〉〈k |e−iG′′·r′ |μ)
ω − ω′ − (εi + iηi )

× WGWΓ
G,G′ (ω′)v(G′′)

(ω − ω′ − ω′′ − (ε j + iη j ))(ω − ω′′ − (εk + iηk ))
. (4.15)

This self-energy can be divided into three terms as

(ν |ΣGWΓ(ω) |μ) � (ν |ΣGW (ω) |μ) + (ν |ΣGVΓ(ω) |μ) + (ν |ΣGXΓ(ω) |μ). (4.16)
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Fig.4.5: The Feynman diagrams of the GWΓ self-energy. The solid, dashed,

and wiggly lines show Green’s function, the bare Coulomb interac-

tion, the dynamically screened interaction, respectively. The bubbly

line is defined as Fig.4.6.

Fig.4.6: The bubbly line is defined as the interaction which the dynamically

screened interaction minus the bare Coulomb interaction.

Eq.(4.16) can be diagrammatically represented as Fig.4.5. Here the first term is just

the GW self-energy, the second term is the second-order exchange, and the third term

is the higher-order correction term. In order to evaluate the third term as well as the

first term, we use the von der Linden-Horsch (vdLH) plasmon-pole model. It makes

the calculation of Eq.(4.15) possible within a reasonable computational time. The

third term with vdLH plasmon-pole model can be written as

(ν |ΣGXΓ(ω) |μ) �
i
Ω

∑
i

∑
G,G′ ,G′′

∑
p

∫
dω′
2π

4πzpω2
p v(G′′)

(ω − ω′ − (εi + iηi ))(ω′2 − (ωp − iη)2)

×Θp (G)(ν |e iG·r |i〉〈 j |e−iG′·r′′′ |k〉
×Θ∗

p (G′)〈i |e iG′′·r′′ | j〉〈k |e−iG′′·r′ |μ)

×
( occ∑

j

emp∑
k

1

εk − ε j − ω′ − iη
−

emp∑
j

occ∑
k

1

εk − ε j − ω′ + iη

)

�
i
Ω

∑
i

∑
p

2πzp

∫
dω′
2π

βp ,ν,iβ∗p , j,kUi , j,k ,μ

ω − ω′ − (εi + iηi )
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×
(

1

ω′ − (ωp − iη)
− 1

ω′ + (ωp − iη)

)

×
( occ∑

j

emp∑
k

1

εk − ε j − ω′ − iη
−

emp∑
j

occ∑
k

1

εk − ε j − ω′ + iη

)

�
2π
Ω

∑
p

zpβp ,ν,iβ
∗
p , j,kUi , j,k ,μ

×
[ occ∑

i

occ∑
j

emp∑
k

1

ω − (εi + iη) + ωp

1

(εi + iη) − ε j + εk − ω

+

emp∑
i

occ∑
j

emp∑
k

1

ω − (εi + iη) − ωp

1

(εi + iη) − ε j + εk − ω

−
all∑
i

occ∑
j

emp∑
k

1

εk − ε j − iη + ωp

1

(εi + iηi ) − ε j + εk − ω

−
occ∑

i

emp∑
j

occ∑
k

1

ω − (εi + iη) + ωp

1

(εi + iη) − ε j + εk − ω

−
emp∑

i

emp∑
j

occ∑
k

1

ω − (εi + iη) − ωp

1

(εi + iη) − ε j + εk − ω

+

all∑
i

emp∑
j

occ∑
k

1

εk − ε j + iη − ωp

1

(εi + iηi ) − ε j + εk − ω
]
,

(4.17)

where

Ui , j,k ,μ �
∑
G′′
〈i |e iG′′·r′′ | j〉〈k |e−iG′′·r′ |μ), (4.18)

βp ,ν,i �
∑
G

Θp (G)(ν |e iG·r |i〉, (4.19)

γp ,k , j �
∑
G

Θp (G〈k |e iG·r | j〉. (4.20)

4.2.2 Bethe-Sapleter Equation

In order to obtain accurate optical spectra, it is neccesarily to include excitonic ef-

fects by introducing two-particle Green’s function for electrons and holes. The Bethe-
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Sapleter equation is given by

Lσ1σ2

σ′
1
σ′

2
(x1 , x′1; x2 , x′2) � Gσ1σ2 (x1 , x2)Gσ′

2
σ′

1
(x′2 , x

′
1)

+
∑
σ3σ′3

∑
σ4σ′4

∫
Gσ1σ3 (x1 , x3)Ξσ3σ4

σ′
3
σ′

4

(x3 , x′3; x4 , x′4)Gσ′
3
σ′

1
(x′3 , x

′
1)

× Lσ4σ2

σ′
4
σ′

2
(x4 , x′4; x2 , x′2)d4x3d4x′3d4x4d4x′4 , (4.21)

where σn is the spin state for the particle at xn , L is two-particle Green’s function apart

from the two one-particle Green’s fucntions, and the integration kernel Ξ is defined

as

Ξσ3σ4

σ′
3
σ′

4

(x3 , x′3; x4 , x′4) �
δΣσ3σ′3 (x3 , x′3)

δGσ4σ′4 (x4 , x′4)
. (4.22)

In the GW approximation, Eq.(4.22) can be given by

Ξσ3σ4

σ′
3
σ′

4

(x3 , x′3; x4 , x′4) � −iδσ3σ′3δσ4σ′4δ
4(x3 − x′3)δ4(x4 − x′4)v(r3 − r4)

+ iδσ3σ4δσ′3σ′4δ
4(x3 − x4)δ4(x′3 − x′4)W′(x3 , x′3). (4.23)

Here, W′ includes the higher-order terms derived from the functional derivative of

G in the ring diagrams of W . Howerver, in general these terms is neglected and W′ is

replaced by the dynamically screened interaction W within the RPA. Equation (4.22)

is diagrammatically given by Solving Eq.(4.21) is equivalent to solve the following

Fig.4.7: The Feynman diagram of the Bethe-Salpeter equation.

eigenvalue problem:

∑
μ′ ,ν′

Hμν;μ′ν′Aμ′ν′ � ΩAμν. (4.24)

For simplicity, the indices for spin states are omitted. Here, the matrix Hμν;μ′ ,ν′ is

given by

Hμν;μ′ν′ � δμ,μ′δν,ν′ (εν − εμ) + 2Vμν;μ′ν′δM,0 −Wμν;μ′ν′ (Ω), (4.25)
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where εμ and εν are the quasiparticle energies of electrons and holes, Vμν;μ′ν′ and

Wμν;μ′ν′ are the exchange and direct term defined as

Vσ1;σ2

μν;μ′ν′ �

∫
φ∗μσ1

(r3)φνσ1 (r3)v(r3 − r4)φμ′σ2 (r4)φ∗ν′σ2
(r4)dr3dr4 (4.26)

W
σ1;σ′

1

μν;μ′ν′ (Ω) � i
∫

dω
2π
φ∗μσ1

(r3)φνσ′
1
(r′3)W (r3 , r

′
3;ω)φμ′σ1 (r3)φ∗ν′σ′

1
(r′3)dr3dr′3

×
[ i
Ω − ω − (εμ′σ1 − ενσ′1 ) + i0+

+
i

Ω + ω − (εμσ1 − εν′σ′1 ) + i0+

]
.

(4.27)

The exchange term appears only for a singlet state (M � 0), and the direct term can

be evaluated with the plasmon-pole models. Finally, the eigenvalues Ω and eigen-

functions Aμν of Eq.(4.24) give the excitation energies and the oscillator strength, re-

spectively.

4.2.3 Total Energy

The Feynman diagram of the Luttinger–Ward functional for the second-order ex-

change is shown in Fig.4.8, and it can be evaluated as

Fig.4.8: The Feynman diagram of the second-order exchange.

Φ2nd exchange[G̃] � −1

2

∫ 1

0

dλ
λ

Tr
[
ΣGVΓ[G̃]G̃

]

� − i
2

∫ 1

0

dλ
λ

∫
dω
2π

∑
n

〈ñ |ΣGVΓ(ω)G̃(ω) |ñ〉

� − i
2Ω

∫ 1

0

dλ
λ

∫
dω
2π

∑
n

∑
G,G′

× 〈ñ |e iG·r |i〉〈i |e iG′·r′′ | j〉〈 j |e−iG·r′′′ |k〉〈k |e−iG′·r′ |ñ〉
ω − εn − iηn
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×
( occ∑

i

emp∑
j

occ∑
k

1

εi − ε j + εk − ω + iη

+

emp∑
i

occ∑
j

emp∑
k

1

εi − ε j + εk − ω − iη

)
λ2v(G)v(G′)

�
1

4Ω

∑
G,G′

〈ñ |e iG·r |i〉〈i |e iG′·r′′ | j〉〈 j |e−iG·r′′′ |k〉〈k |e−iG′·r′ |ñ〉

×
( occ∑

n

emp∑
i

occ∑
j

emp∑
k

1

εn − εi + ε j − εk − iη

−
emp∑

n

occ∑
i

emp∑
j

occ∑
k

1

εn − εi + ε j − εk + iη

)
v(G)v(G′). (4.28)

Therefore, the total energy of GWΓ is given by

EN
G � T + Vn-e + Φ[G̃] + EEwald (4.29)

� T + Vn-e + Φc[G̃] + Φc[G̃] + Φ2nd exchange[G̃] + EEwald (4.30)

(4.31)

where T is the kinetic energy, Vn-e is the nucleus-electron Coulomb energy, the EEwald

is Coulombic energy between nuclei, and Φc[G̃] is the GW correlation part of the

Luttinger–Ward functional given by Eq.(3.30).

4.3 Methodology
We chose simple isolated Li and Na systems to validate the GWΓ approach. For

clusters composed of odd number of atoms, we performed spin-dependent calcula-

tions. The structures of clusters were optimized with the B3LYP functional available

in DMol3 package.

We used the all-electron mixed basis approach, where the one particle wave func-

tions are expanded with the combination of plane waves and atomic orbitals. This

approach can describe both deep core states and plane-wave-like continuous states ef-

ficiently and appropriately compared to the approaches which use only plane waves

or only localized orbitals as basis functions.

The spherical cut technique is used to ignore the interaction with the periodic im-

ages. The atoms and dimers are put in the rhombohedral unit cell with a � b � c � 16

Å and α � β � γ � 60◦. The cutoff energy for the plane waves and G, G′ in the
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correlation term is 4.32 Ry, and the cutoff energy for G in the Fock exchange term is

38.87 Ry.

4.4 Results and Discussion
The absolute values of the total energy EN

G
calculated with GW, LGW, and GWΓ

in atomic units (a.u.) (1 a.u. � 27.2 eV) of Li and Li2 (at the equilibrium distance

for dimers) are shown in Table 4.1 together with virial ratio −V/T and components

contributing to the total energy.

Table.4.1: Total energies (EN
G

), their components in units of a.u. (1 a.u. = 27.2

eV), and virial ratios (−V/T) calculated by various approaches.

The components, T, Vn-e, VH, Vx, and Φc are the kinetic energy,

the nucleus-electron Coulomb energy, Hartree energy, the Fock

exchange energy, and the correlation energy, respectively.

EN
G

T Vn-e VH Vx Φc −V/T

Li

GW −7.4423 7.4408 −17.1581 4.0659 −1.7812 −0.0097 2.000

LGW −7.4427 7.4763 −17.1989 4.0764 −1.7864 −0.0101 1.995

GWΓ −7.4336 7.4858 −17.2018 4.0700 −1.7864 −0.0012 1.993

Li2

GW −14.9051 14.8879 −36.4393 9.2405 −3.5574 −0.0334 2.001

LGW −14.9073 14.9818 −36.5483 9.2705 −3.5715 −0.0360 1.997

GWΓ −14.8867 14.9943 −36.5478 9.2591 −3.5720 −0.0157 1.993

As the contribution of the correlation energy from the second-order exchange term

is positive, The total energy caculated by GWΓ is greater than that of GW and LGW.

However, this result seems reasonable because the second exchange term of the cor-

relation energy for the electron gas is also positive.

The results for the ionization potential (IP), which is equal to −εHOMO, and the

electron affinity (EA), which is equal to −εLUMO, of Li, Li2 calculated with the self-

consistent GW (GW), the linearized self-consistent GW (LGW), and GWΓ are sum-

marized in Table.4.2 together with experimental data [52–54] in units of eV.

The ionization potentials calculated by GWΓ for Li and Li2 are slightly underes-

timated compared to the experimental data, and the electron affinities of that are

improved and show good agreement with the experimental data. As a result, GWΓ

improves the tendency that GW and LGW overestimate the energy gap. The under-

estimation of the ionization potential within GWΓ is probably due to the neglect of

the higher-order vertex correction.
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Table.4.2: Ionization potentials (IP) and electron affinities (EA) in eV of Li

and Li2.

Li Li2

IP EA IP EA

GW 5.78 0.22 5.56 0.20

LGW 5.65 0.28 5.32 0.35

GWΓ 5.13 0.57 4.91 0.46

Expt. 5.39a 0.62b 5.15a 0.44c

a See Ref. [52].
b See Ref. [53].
c See Ref. [54].

The optical absorption spectra for Na2 obtained by LGW and GWΓ are shown in

Fig.4.9.
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Fig.4.9: The optical absorpption spectra for Na2 obtained by LGW (red

line) and GWΓ (blue line) together with the experimental spectrum

(black line).

The shapes of the spectra are similar between LGW and GWΓ, but the peak posi-

tions are fairly different. The spectrum obtained by GWΓ shows excellent agreement
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with the experimental spectrum. As a result of GWΓ improves the energy gap, the

optical spectrum calculated by GWΓ is also improved.
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Chapter 5

Summary

I have implemented the self-consistent GW, the linearized GW, and GWΓ ap-

proaches in the all-electron mixed basis program TOMBO.

In the second chapter, I have shown the total energy as well as its kinetic- and

potential-energy contributions of isolated He, Be, Ne, Mg, Ar, and Ca atoms obtained

by the self-consistent LDA, HF, and GW calculations using the all-electron mixed ba-

sis approach. The resulting virial ratio is in fairly good agreement with the exact value

2 in all the cases. I have compared the resulting HOMO and LUMO energies among

the LDA, HF, and GW calculations and with the available experimental data. I have

found that the HOMO energy, i.e., the negative of the IP, is in excellent agreement

with the experimental data only in the GW calculation. I have depicted the LUMO

wave functions of noble gas atoms and found that they are resonating virtual bound

states. The LUMO wave function of GW spreads wider than that of LDA and thinner

than that of HF. I also have calculated the total energy and their components as well

as the quasiparticle energies of spin polarized or unpolarized diatomic molecules

(dimers), B2, Al2, and Si2. According to our GWA result, the triplet state is more stable

than the singlet state in B2, Al2, and Si2. The difference in the exchange-correlation

energy, Vx + Φc, between the triplet and singlet states roughly corresponds to the

total energy difference, although a correspondence is not observed in all the other

contributions (T, Vn-e, and VH). The resulting quasiparticle energies, corresponding

to the ionization potential and the electron affinity, are comparable with the available

experimental data.

In the third chapter, I proposed a linearized self-consistent GW approach. The

important advantages of this approach are (1) the Ward identity (Ward–Takahashi

identity in the limit of q � 0 and ω − ω′ � 0) is satisfied, (2) the vertex correction
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is included within this identity, and (3) the non-Hermitian problem is resolved by

the renormalization of Green’s function. As a result, I confirmed that this approach

greatly improves the IP and EA of not only LDA, HF, and B3LYP approaches but also

the non-linearized self-consistent GW approach. I also proposed convenient formu-

lae to evaluate the Luttinger–Ward functional and calculated the ground-state total

energy of Li, Li2, Na, and Na2. For Li2, I estimated the equilibrium bond length,

the binding energy, the bond force constant, and the vibrational frequency within

GW and LGW. Although the resulting binding energy and vibration frequency are

somewhat smaller than the preexisting experimental values, I expect that they will

reproduce correctly the long distance behavior in a van der Waals regime.

In the fourth chapter, I give the detailed formulation of the GWΓ approach, where

the lowest order vertex correction is included in the self-energy and the polarization

function. This approach satisfies the Ward–Takahashi identity within the lowest or-

der approximation. As a result, the ionization potential and electron affinity of Li and

Li2 and the optical spectra for sodium clusters are greatly improved compared to the

GW and LGW approaches.
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