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Abstract

Magnetic and chemical interactions of the nearest neighbor transition
metal impurity pairs in semiconductors have been studied over the past
few decades in order to understand, and ultimately control magnetic
properties of transition metal doped semiconductors in the search for
novel magnetic materials. For the mechanisms of these pairwise inter-
actions, several pictures based on conventional phenomenological models
have been presented. However, these pictures can only partially capture
trends in these pairwise interactions and have not even given a congru-
ous view of these pairwise interactions for the very same materials. This
thesis tackles the issues of the mechanisms of these pairwise interactions
based on density functional theory calculations.

Density functional theory calculations are among the most widely
used ab initio electronic structure approaches today, particularly in the
condensed matter physics community. By using such calculations, one
can obtain electronic structure as solution to the fundamental many-
electron-ion Hamiltonian instead of presupposing the preferred type of
electronic interactions. Therefore, the calculations may allow us to iden-
tify the important factors for the mechanisms of these pairwise interac-
tions that are omitted in the formulation of the conventional phenomeno-
logical models, and may unveil the true mechanisms underlying the ob-
served different types of magnetic interactions.

We first reveal that a peculiar ferromagnetic coupling of the Cr im-
purity pairs in AlN that cannot be interpreted by conventional magnetic
models is mainly due to d-d interactions that are usually assumed to be
negligible. Next, we reveal for what kind of materials d-d interactions
become important in the description of pairwise magnetic and chemical
interactions of the TM impurities in III-V semiconductors.
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1 Introduction

Spintronics is an emerging technology that exploits both the spins of an
electron and the fundamental charge of an electron. This new branch
of technology may lead to completely new devices that adopt merits of
both conventional electronic and magnetic devices. Conventional elec-
tronic devices, which exploit only the charge of an electron, are usually
used for manipulation and transfer of information (e.g, transistors manip-
ulate information by amplifying, rectifying and controlling the electron
flow). Conventional magnetic devices rely on (ferro) magnetic metals,
and exploit only the spin of an electron in the magnetized metal. The
conventional magnetic devices are usually used for storage of information
(e.g, magnetic tape records information by magnetizing the tape, and
reads information by utilizing inductive current in a conductor induced
between the conductor and magnetized tape). In magnetized conductor,
electrons scatter differently depending on whether they are spin up or
spin down, and the conductivity is, thus, different between spin up and
spin down electrons. The current whose conductivity is different between
spin up and spin down electrons is called spin-polarized current. Some
spintronic devices have been used in industry exploit this spin-polarized
current in the magnetized conductor to storage information (e.g, hard
disk drive (HDD) ). In industry, more and more interest has been at-
tracted to new materials for spintronic devices.

As materials with great hope for novel spintronics devices, diluted
magnetic semiconductors (DMSs) have vigorously been studied over the
past few decades. In these DMSs a small amount of magnetic ions
(∼ 1021cm−3) are introduced into non-magnetic semiconductors in order
to make them magnetic. Some of DMSs show novel magnetic properties
(e.g., In GaAs:Mn , the strength of ferromagnetism can be controlled by
the amount of charge carriers [1]). Such novel magnetic properties are
envisioned to yield new spintronic applications (e.g., when one changes
carrier concentration by some external means as in conventional elec-
tronics, and one can thus change the magnetic interactions between the
localized spins). One of the requirements of the practical realization of
DMSs for spintronic applications is to manufacture DMSs with high Curie
temperatures Tc over room temperature. Although high Tc (or blocking
temperatures Tb) over room temperature have been reported in a num-
ber of DMSs since the first reported on TiO2:Co [2], the practical use of
DMSs has still not been achieved due to low reproducibility in manufac-
ture of DMSs with higher Tc above room temperature. For improving the
reproducibility, it is required to study the magnetic properties of DMSs
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in more detail.
In order to understand the origin of the magnetic properties of DMSs,

density functional theory (DFT) calculations are often used. DFT cal-
culations are among the most widely used ab initio electronic structure
approaches today, particularly in the condensed matter physics commu-
nity. By using such calculations, one can obtain electronic structure as
solution to the fundamental many-electron-ion Hamiltonian instead of
presupposing the preferred type of electronic interactions. Therefore,
the calculations allow us to screen systematically a large range of sys-
tems and properties to identify underlying relations and hidden rules.
Indeed, the calculations suggested that a key factor to affect the mag-
netic properties of DMSs is TM distribution (i.e., TM clustering and/or
phase separation) [3], before the TM distribution has been recognized as
the key factor only recently owing to the development of element-specific
nano-characterization tools (e.g., synchrotron x-ray diffraction) [4].

In this thesis, we investigate the magnetic and chemical interactions
of a range of the nearest neighbor substitutional TM impurity pairs in
various semiconductors by using DFT calculations. Understanding these
pairwise interactions is a minimum requirement to understand the re-
lation between the magnetic properties and TM distribution. For TM
impurities in semiconductors, TM impurities preferentially substitute the
host cation sites as reported in both experiments (e.g., GaN:Mn [5]) and
theories (e.g., GaAs:Mn [6]), and the probability of two or more TM im-
purities on one of the sublattices in a zinc blende, wurtzite, or rock salt
crystal occupying nearby sites is > 50% (neglecting TM-TM attractions)
as for a real TM concentration [7].

The remainder of this thesis is organized as follows. Chapter 2 pro-
vides the theoretical background of the electronic structure calculations
used. In Chapter 3, the study of the magnetic and chemical interactions
of Cr impurity pairs in AlN for charge neutral condition is presented. In
Chapter 4, the study of the magnetic and chemical interactions of TM
impurity pairs in III-V semiconductors for charge neutral condition is
presented. In Chapter 5, the study of the magnetic and chemical inter-
actions of TM impurity pairs in insulators for various charged conditions
is presented. Finally, a short summary of the whole thesis and the outlook
for the future research direction is presented. Supplemental materials to
this thesis are included in the appendices.
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2 Ab initio calculation of electronic struc-

ture

In this chapter, our ab initio approaches for calculating electronic struc-
ture of a many-body system is introduced. In Section 2.1, the funda-
mental theoretical background of calculating the electronic structure is
introduced. In Section 2.2, the density-functional theory (DFT) is intro-
duced for calculating the electronic structure. In Section 2.3, a practical
approach to DFT is presented. In Section 2.4, a class of approaches and
necessary approximations are introduced. Section 2.5 describes the ba-
sis set for wave functions. In Section 2.6, a summary of this chapter is
presented.

2.1 Electronic structure calculations

A major goal of electronic structure calculations is to solve the non-
relativistic timeindependent Schrödinger equation;

ĤΨ = EΨ , (1)

where Ĥ is the Hamiltonian operator, Ψ is a certain wave function, and E
is the energy corresponding to Ψ, respectively. For a system consisting of
N electrons and M nuclei (or ions) within the Born-Oppenheimer (BO)
approximation that is usually used in quantum chemistry and related
fields, the Hamiltonian operator can be written (using Hartree atomic
units) as

Ĥ = T̂ + V̂int + V̂ei + V̂ii

= −1

2

N∑
i=1

∇2
i +

1

2

N∑
i̸=j

1

|ri − rj|
−

N∑
i=1

M∑
I=1

ZI

|ri − RI |

+
1

2

M∑
I ̸=J

ZIZJ

|RI − RJ |
, (2)

where T̂ , V̂int, V̂ei, and V̂ii are the kinetic energy, Coulomb electron–
electron potential, electron–ion potential, ion–ion potential operators re-
spectively, with ZI the charge of the nuclei and ri (RI) the position
vectors of the electrons (ions). Here, the final term, the repulsion be-
tween ions, can be treated as a constant for a fixed configuration of the
ions. For this system within the BO approximation, the wave function
can be written as

Ψ = Ψ(r1, σ1, . . . , rN , σN) , (3)
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where the ri and σi are the position of the electron i and the z-component
of spin angular momentum of the electron i, respectively. The total
energy is the expectation value of the Hamiltonian,

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

= 〈Ψ|T̂ |Ψ〉 + 〈Ψ|V̂int|Ψ〉 +

∫
Vei(r)n(r)d3r + Eii , (4)

where n(r) is the total electron density and Eii is the electrostatic ion-ion
interaction. The ground state energy E0 is obtained from minimizing it
with respect to all the parameters in Ψ, with the constraint that Ψ must
obey the particle symmetry and any conservation laws.

2.2 Density-functional theory

In the preceding section, we see that many body wave functions that
depend on 4N variables are required for calculating the total energy of
the N electron system. This severely limits the system sizes in the cal-
culation. The theory that allow us to use the total electron density that
always depends on 3 variables for the calculation is the density functional
theory (DFT) [8–10]. DFT is consist of the theorem by Hohenberg and
Kohn (HK) and the theorems by Levy and Lieb (LL).

Theorem by HK: If n′
0(r) ̸= n0(r), v′(r) ̸= v(r)+const, where n0(r)

and n′
0(r) are densities associated with ground states in the external

potentials v(r) and v′(r), respectively.
Proof : Let v(r) and v′(r) respectively have the manifold of ground

state wavefunction {Ψ0} with energy E0 and the manifold of ground
state wavefunction {Ψ′

0} with energy E ′
0. Clearly, no nontrivial function

in {Ψ0} can belong to {Ψ′
0}, since {Ψ0} satisfy different Schrödinger

equations than {Ψ′
0}. Let us assume that a ground state Φ that are

linear combination of some wavefunction Ψ0 of {Ψ0} and a ground state
Φ′ that are linear combination of some wavefunction Ψ′

0 of {Ψ′
0}) have

the same density n0(r). Let us write the two Hamiltonian operators
associated, respectively, with v(r) and v′(r) as

Ĥ = T̂ + V̂int + V and Ĥ ′ = T̂ + V̂int + V̂ ′ , (5)

where V and V ′ are the different external potential operators. By the
Rayleigh-Ritz principle we have

E0 = 〈Φ|Ĥ|Φ〉 < 〈Φ′|Ĥ|Φ′〉 = E ′
0 +

∫
(v(r) − v′(r))n′

0(r)dr (6)
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and

E ′
0 < E0 +

∫
(v′(r) − v(r))n0(r)dr ; (7)

hence, E0 + E ′
0 < E ′

0 + E0 showing that the initial assumption was false.
Note that the variational estimates are strictly larger than the corre-
sponding eigenvalues, because, {Ψ0} ∩ {Ψ′

0} is empty.
Theorem 1 by LL:

∫
v(r)n(r)dr+Q[n] ≥ E0, where Q[n] = 〈Ψn

min|T̂+

V̂int|Ψn
min〉 and Ψn

min is the wavefunction that minimizes 〈Ψn|T̂ + V̂int|Ψn〉
for a fixed n.

Proof: The minimum total energy for an arbitrary density n is given
by ∫

v(r)n(r)dr + Q[n] = 〈Ψn
min|T̂ + V̂int + V̂ |Ψn

min〉 . (8)

By the Rayleigh-Ritz principle we have

〈Ψn
min|T̂ + V̂int + V̂ |Ψn

min〉 ≥ E0 . (9)

Finally, combining eq. 8 and eq. 9 completes the proof.
Theorem 2 by LL:

∫
v(r)n0(r)dr + Q[n0] = E0, where Q[n0] =

〈Ψn0
min|T̂+V̂int|Ψn0

min〉 and Ψn0
min is the wavefunction that minimizes 〈Ψn0 |T̂+

V̂int|Ψn0〉 for the ground state density n0.
Proof: By the Rayleigh-Ritz principle,

〈Ψ0|T̂ + V̂int + V̂ |Ψ0〉 ≤ 〈Ψn0
min|T̂ + V̂int + V̂ |Ψn0

min〉 , (10)

or∫
v(r)n0dr+ 〈Ψ0|T̂ + V̂int|Ψ0〉 ≤

∫
v(r)ngs(r)dr+ 〈Ψn0

min|T̂ + V̂int|Ψn0
min〉 ,

(11)
which leads to

〈Ψ0|T̂ + V̂int|Ψ0〉 ≤ 〈Ψn0
min|T̂ + V̂int|Ψn0

min〉 . (12)

But, the definition of Ψn0
min dictates that

〈Ψ0|T̂ + V̂int|Ψ0〉 ≥ 〈Ψn0
min|T̂ + V̂int|Ψn0

min〉 . (13)

The last two equations hold simultaneously if and only if

〈Ψ0|T̂ + V̂int|Ψ0〉 = Q[n0] . (14)

Now,

E0 =

∫
v(r)n0dr + 〈Ψ0|T̂ + V̂int|Ψ0〉 . (15)
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Finally, substitution of eq. 14 into eq. 15 completes the proof.

In summary, DFT allows us to state the following.

a The energies E in eq. 4 can be explicitly written as a function of the
electron density n(r), i.e., E[n].

b The ground state energy E0 and density n0(r) correspond to the min-
imum of the functional E[n].

2.3 Kohn-Sham equations

The density functional theory shows it is possible to use the ground state
electron density to calculate the ground state energy, but it does not
provide a way of finding the ground state density. A practical approach
to this is provided by Kohn and Sham [11].

For introducing a fictitious non-interacting system that generates the
same density as the interacting system, the energy functional E[n] intro-
duced in the preceding section can be rewritten as

E[n] = Ts[n] + EH[n] + Exc[n] +

∫
Vei(r)n(r)d3r + Eii[n] . (16)

Here, n(r) =
N∑
i

|ψi(r)|2 , Ts[n] =
N∑
i

∫
ψ∗

i (r)(−1
2
∇2)ψi(r)d

3r, EH[n] =

1
2

∫ ∫ n(r)n(r′)
|r−r′| d3rd3r’ , Exc[n] = 〈Ψ|T̂ |Ψ〉 − Ts[n] + 〈Ψ|V̂int|Ψ〉 − EH[n].

Writing the functional in eq. 16 explicitly in terms of the density built
from noninteracting orbitals ψ(r) and applying the variational theorem
as introduced in the preceding section, we find that the orbitals, which
minimise the energy, satisfy the following set of equations (the Kohn-
Sham equations);

(−1

2
∇2

i + veff (r))ψi(r) = εiψi(r) , (17)

where the effective potential veff (r) is Vei(r)+
δExc[n]
δn(r)

+
∫ n(r’)

|r−r′|d
3r’ . Since

veff (r) depends on the density n(r) which is then computed from the
(Kohn-Sham) orbitals ψ(r), this equation should be solved self-consistently.
Finally, the total energy can be determined from the resulting density
via eq. 16.
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2.4 Exchange-correlation functionals

The formulation of the Kohn-Sham (KS) equations is in principle exact,
but the exchange-correlation functional Exc is unknown. There are many
approaches to the functional Exc with varying levels of complexity. We
now introduce some of the common types of the approaches.

The local density approximation (LDA) is the simplest approximation
to the functional;

ELDA
xc [n] =

∫
n(r)f(ρ)d3r , (18)

where ρ and f(ρ) are the local values of electron density n(r) and a
function of the local densities, respectively.

A more sophisticated approximation is the generalized gradient ap-
proximation (GGA) in which also gradients of the local densities are
taken into account;

EGGA
xc [n] =

∫
f(ρ,∇ρ)d3r , (19)

where f(ρ,∇ρ) is a function of the local densities and their gradients.
In this study, the GGA functional by Perdew et al. (GGA-PBE [12]) is
used.

The +U correction is a correction to the LDA/GGA functional for
obtaining an accurate description of localized electronic states via using
parameters;

ELDA/GGA+U
xc [n, gs] = ELDA/GGA

xc [n] + fU(gs) − fdc(gs) . (20)

Here, gs, fU(gs), and fdc(gs) are the occupation numbers of a particular
shell of orbitals, and a function of the occupation numbers that depends
on the Coulomb U and exchange J parameters, a function of the oc-
cupation numbers for removing the energy contribution of the orbitals
included in the LDA/GGA functional in order not to count twice their
contributions, respectively. In this study, the LDA/GGA+U functional
by Dudarev et al [13] is used.

2.5 Projector-augmented wave (PAW) method

For practically solving the KS equations, basis functions are required
to represent the KS orbital ψ(r) that oscillates rapidly around atomic
nuclei and runs smoothly in the interstitial region (away from the nuclei).
There are many approaches to the basis functions with varying levels
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of complexity. We now introduce an accurate and numerically efficient
approach.

The projector augmented wave (PAW) method [14] is a calculation
method which utilizes linear transformation from the pseudo (PS) wave
function ψ̃ that is numerically conveniently representable in a plane-wave
basis to a full one-electron KS wave function ψ;

|ψ〉 = τ |ψ̃〉 . (21)

On the basis of the assumption that ψ can be represented by ψ̃ in the
interstitial region, the transformation should be of the form,

τ = 1 +
∑

a

τa , (22)

where a and τa are an atom index and a local operator that acts only
within sphere around the atom a, respectively. Here, the spheres do not
overlap each other.

Inside the spheres, ψ can be expanded in partial waves φa
i and for each

of the partial waves a corresponding atom-centered pseudo functions φ̃a
i

that are numerically conveniently representable in a plane-wave basis is
defined such that,

|φa
i 〉 = (1 + τa)|φ̃a

i 〉 ⇐⇒ τa|φ̃a
i 〉 = |φa

i 〉 − |φ̃a
i 〉 , (23)

for all i, a. This completely defines τa, given φ and φ̃.
For introducing the projector functions p̃a

i that act within spheres
around the atoms and obey the bi-orthogonality condition 〈p̃a

i |φ̃a
i 〉=δi,j,

the local operator τa can be rewritten as,

τa =
∑

i

(|φa
i 〉 − |φ̃a

i 〉)〈p̃a
i . (24)

The final expression for the PAW wave functions is obtained by in-
serting eq. 22 and eq. 24 into eq. 21;

|ψ〉 = |ψ̃〉 +
∑

a

∑
i

(|φa
i 〉 − |φ̃a

i 〉)〈p̃a
i |ψ̃〉 . (25)

2.6 Summary

In this chapter, the concept of the density functional theory that is a
useful theory for calculating electronic structure of a many-body system
and practical approaches to the theory are introduced. The calculations
in the Chapters 3, 4, and 5 are based on the concept and approaches
introduced in this chapter.
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3 The charge neutral Cr impurities in AlN

Cr-doped AlN, AlN:Cr henceforth, is one of transition metal (TM)-doped
III-V semiconductors and reported to be ferromagnetic with sensationally
high Curie temperatures [15–22] or not ferromagnetic at all [23,24]. The
”ferromagnetism” has been attributed to either phase separation [15–17])
or the lack of thereof [18–22]. To describe the magnetic properties of
AlN:Cr, models for pairwise magnetic interactions that are constructed
or formulated with the electronic states of the isolated TM atom based
on point symmetries may be useful. For applying such models to de-
scribe the magnetic properties of TM-doped semiconductors that have
deep defect levels such as AlN:Cr [5], open shell ”p-d exchange” or ”dou-
ble exchange” models [25–28], or closed shell ”superexchange” models
[29–31] are usually quoted (e.g., double exchange model is quoted for
description of the magnetism of AlN:Cr [20]). However, the pairwise
magnetic interaction of TM-doped III-V semiconductors are reported to
deviate strongly in the behavior expected from double exchange model
or superexchange model [3]. This calls for a more appropriate model to
describe the pairwise magnetic interaction of TM-doped III-V semicon-
ductors. We report a case study of the pairwise magnetic and chemical
interactions of Cr impurities in AlN for a charge neutral condition by
using ab initio methods.

This chapter is structured as follows. The computation details are in-
troduced in Section 3.1. Structural parameters of bulk AlN are discussed
in Section 3.2. The atomic and electronic structures of an isolated charge
neutral Cr impurity in AlN are discussed in Section 3.3. The magnetic
and chemical interactions of the charge neutral Cr impurity pairs in AlN
are discussed in Section 3.4. Finally, we sum up all results, draw a con-
clusion, and present the outlook for future studies in Section 3.5.

3.1 Computational details

We consider AlN with an isolated Cr impurity and the respective nearest
neighbor pair. We carry out total energy calculations within generalized
gradient approximation (GGA-PBE) [12] with and without the on-site
potential +U [13] to the density-functional theory together with projec-
tor augmented wave methods [14], as implemented in the VASP pack-
age [32, 33]. In the latter +U calculations, we use moderate values of
U = 3 eV and J = 1 eV that are determined in such a way that it cor-
rectly reproduces relative stability of competing binaries as described in
Appendix B.1. The defect-containing systems are modeled with wurtzite-
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structured supercells of 64-96 atoms, with one or two cations replaced
by a TM atom, representing the isolated impurity and nearest-neighbor
pair, respectively. The plane-wave cutoff is set at 460 eV, k-point meshes
of 3×2×2 for the 64 atom supercells and 2×2×2 for the 96 atom super-
cells. The values of these parameters are determined on the basis of the
convergence criteria as described in Appendix B.2.

3.2 Bulk AlN

AlN is a wurtzite structure semiconductor. The basal lattice parameter
is a and the axial lattice parameter is c. The internal parameter u defined
as the anion-cation bond length along the (0001) axis in units of c. The
equilibrium lattice constant of bulk AlN were computed and compared
to experiment and previous theory as given in Table 5. The agreement
with experimental and theoretical data is very good, with deviations from
both experiment and theory below 1%.

Table 1: Lattice constant a, axial ratio c/a, and internal parameter u of
AlN

a (Å) c/a u
GGA-PBE (present) 3.13 1.60 0.382
Experiment [34] 3.110 1.601 0.3821
LDA [35] 3.144 1.605 0.381
GGA-PW91 [36] 3.1095 1.6060 0.3819

3.3 An isolated charge neutral Cr impurity in AlN

An isolated Cr impurity in AlN induces deep defect levels in the forbid-
den band gap of the host that may trap carriers (electrons or holes) as
shown by the calculated density of states given in Fig. 1. From Fig. 1, we
see that the defect levels are non-degenerate levels and there are not any
partial occupied states in the levels within both the GGA and GGA+U
functionals. Moreover, we see that the 1st, 2nd, 3rd, 4th, and 5th defect
levels in order of increasing energy respectively have dzx, dzy, dxy, dx2−y2 ,
and dz2 characters within both the two functionals. The 1st and 2nd
levels can be described as nonbonding levels and the 3rd, 4th, and 5th
levels can be described as antibonding levels according to the descrip-
tion of an isolated TM-derived defect levels in the gap as introduced in
Appendix C.1.

To describe the Cr-induced defect states on the basis of point symmet-
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Figure 1: Total density of states (DOS) of an isolated Cr impurity in
AlN for majority spin states within the GGA and GGA+U functionals.
The states labeled by each d-orbitals indicate the states with strong each
d-orbital characters estimated from partial charge density analysis. The
energies in (a) and (b) are with respect to the valence band edge (set as
zero), and the vertical dashed line denotes the highest occupied level.

ries, we first investigate the Cr-N nearest neighbor bonds to estimate
the point symmetry of the Cr surrounding environment as given in Ta-
ble 2. If the point symmetry of the Cr-induced defect states is consistent
with the estimated point symmetry of the Cr surrounding environment,
the point symmetry of the Cr-induced defect states would be C2v and
Cs symmetries within the GGA and GGA+U functionals, respectively.
Note however that, a C2v symmetry does not permit that the 3rd defect
levels that can be described as the antibonding level shows dxy char-
acter, because dxy character must be shown in nonbonding level (due to
γ-p(σ)=2 A1⊕B1⊕B2 and γ-d(σ)=2 A1⊕A2:dxy⊕B1⊕B2). This indicates
that the estimation of point groups of the Cr surrounding environment
from the Cr-N nearest neighbor bond lengths lacks accuracy somewhat.
We next investigate symmetry operators in total charge density of the
Cr impurity. In the density, we only identify a mirror plane within both
the GGA and GGA+U functionals as shown in Fig. 2. We conclude th-

Table 2: The Cr-N nearest neighbor bond lengths and the point group
of the Cr surrounding environment estimated from the lengths. Cr and
N atoms are shown as black white balls, respectively.

Sym

GGA

GGA+U

a

b
c [A]d(Cr-N)

ab
[A]d(Cr-N)
c

1.96 1.96 1.97 1.97

1.97 1.99 1.99 2.00

C
2v

C
s

σ-plane

Figure 2: Iso-surface level of the total charge density with σ-plane.
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at the point symmetry of the Cr-induced defect states is Cs symmetry
within both the two functionals and describe the defect levels within
both the two functionals on the basis of the symmetry as schematically
illustrated in Fig. 3.

C
s

VBM

p(σ)

d(Cr3+)

a’
a

a”}
a’
b

}

}

CBM

Figure 3: Schematic energy level diagram of an isolated Cr impurity
in AlN for majority spin states. The horizontal line of CBM and VBM
indicates conduction band minimum and valence band maximum, respec-
tively.

3.4 The charge neutral Cr impurity pairs in AlN

For the nearest neighbor Cr impurity pairs in AlN, there are the two
crystallographically inequivalent pairs labeled ”in-plane” and ”out-of-
plane” depending on whether or not the Cr atoms lie within the a-b
plane of the wurtzite structure as illustrated in Fig. 4.

c-axis

c
-a
x
is

in-plane out-of-plane

Figure 4: The ”in-plane” and ”out-of-plane” atomic configurations. The
blue and white ball spheres denote Cr and N, respectively.

The Cr impurity pairs induce a manifold of defect levels in the gap as
shown by the calculated density of states given in Fig. 5. A wide energetic
range of these levels within both the GGA and GGA+U functionals
corresponds to the ferromagnetic spin configurations in the ground states
as previously reported in Refs. [37,38].

From partial charge density analysis of the defect levels, we can de-
scribe the defect levels for the ”in-plane” configuration due to the inter-
action of two isolated Cr-induced levels as schematically illustrated in
Fig. 6. In the interaction for the in-plane dimer, one can see a clear sign-
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Figure 6: Schematic energy level diagram for the ”in-plane” configuration
within the GGA and GGA+U functionals. The middle insets show the
spatial shape of the Cr-N-Cr three center and Cr-Cr two-center chemical
bonds.

ature of d-d interactions due to the dxy derived orbitals as shown in
the lower inset of Fig 6. The amount of wave function overlap can be
roughly quantified by the absolute value of the ”gap level charge density”
ρgap = Σgapψ

2
i due to the occupied gap levels (i.e., levels above the host

valence band maximum) at the bond centers; we obtain 0.02 e/Å3 for
the in-plane dimer, and roughly half the value for the out-of-plane dimer.
This difference in the absolute value of the gap charge density ρgap for the
two dimers manifests a different type of bonding. Indeed, for the ”out-of-
plane” dimer, the dxy derived orbitals are confined in different wurtzite
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a-b planes with no overlap, and instead, there is a weak overlap of the
dzy and dz2 derived orbitals, which yields a weaker bonding. Both the in-
plane and out-of-plane interactions are slightly reduced by the on-site +U
potential due to an increased localization, but this effect is substantially
smaller than the directional variation of the interaction described above.

To investigate how such pair interactions contributes to the pairwise
magnetic and chemical interactions, we calculate the pairwise magnetic
coupling energy ∆E and binding energy Eb defined as

∆E = EF[Cra − Crb] − EAF[Cra − Crb], (26)

Eb = Eσ[Cra − Crb] − 2E[Cr] + E[host], (27)

where ECra−Crb , ECr, and Ehost are respectively the total energies of the
Cr pairs, the isolated Cr impurity, and the pure host, and σ denotes the
spin alignment (F for parallel and AF for antiparallel) of the Cr pairs.
The calculated energies ∆E and Eb are given in Table 3. All the Cr-Cr
pairs exhibit ferromagnetic and attractive chemical interactions. These
interactions are stronger for the ”in-plane” configuration than for the
”out-of-plane” configuration and also stronger within the GGA functional
than within the GGA+U functional. The origin of these interactions
can be described due to the pair interactions as schematically illustrated
in Fig. 6. In the pair interactions, each dxy derived a’ orbitals form a
bonding and antibonding level, of which the antibonding level lies at
higher energies than the previously unoccupied dx2−y2 and dz2 derived
a’ orbitals, so the dx2−y2 one will be occupied instead. Thus, only the
bonding dxy derived orbital is occupied, amounting for the brunt of the
energy gain shown in Table 3. The difference in the strength of the
ferromagnetic interaction can be described due to the difference of the
strength of d-d interactions as discussed above.

Table 3: The pairwise magnetic coupling energy ∆E and binding energy
Eb for the ”in-plane” and ”out-of-plane” configurations within the GGA
and GGA+U functionals.

∆E [meV] in out Eb [meV] in out

GGA -496 -239 GGA 813 507
+U -399 -168 +U 510 266

We discuss the ferromagnetic interaction comparing various conven-
tional models for ferromagnetic interactions. Within both the GGA and
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GGA+U functionals, all the Cr-Cr pairs exhibit a strong ferromagnetic
interaction for both the ”in-plane” and ”out-of-plane” configurations,
albeit any partially occupied states do not exist in the isolated Cr impu-
rity in AlN as discussed in Section 3.3. This ferromagnetic interaction
without partially occupied states cannot be described with ”open shell”
model, which usually used to predict the magnetic interaction of the 3d-
3d impurity dimers, where open shell configuration, i.e, partial occupan-
cies, works as driving force for ferromagnetic interaction, as introduced
in Appendix A.1.

Another popular theory of magnetic interactions is that of ”superex-
change”. While it is usually invoked to describe antiferromagnetic inter-
actions, it can yield ferromagnetic interactions without partial occupan-
cies under special circumstances (e. g, the angle between TMa-ligand-
TMb is near 90◦ or one of TMa-ligand and TMb-ligand bonds is more
ionic than the other) as introduced in Appendix A.2. Thus, the present
ferromagnetic interaction without partial occupancies in Cr:AlN might
be yielded by this ferromagnetic ”superexchange” interaction. The nec-
essary imbalance in the bondings can be quantified in terms of a ”gap
level charge” Qgap(q) [39] defined as

Qgap(q) =

∫ R

0

drρ(r) =

gap∑
i

∫ R

0

drψ2
i , (28)

where the sum is taken only over the occupied levels ψi that reside within
the host band gap. R is arbitrarily chosen as 1.323 Å. There gap level
charges measure the ”oxidation state” of each Cr atom, which in turn
quantifies the nature of the Cr-N bonding. Therefore, if Qgap(Cra) =
Qgap(Crb), there is no bonding imbalance, and the larger their differ-

ence ∆Qgap = |QCra

gap − QCrb

gap | is, the more reason one has to expect for a
ferromagnetic ”superexchange”. Likewise, the nature of the bonding is
manifested in the bond lengths a(Cra −N) and a(Cra −N), and to quan-
tify their imbalance, we define and to quantify their imbalance, we define
∆a = |a(Cra − N) − a(Crb − N)|. The angle between Cra-anion-Crb ∠,
∆a, and ∆Qgap are given in Table 4. The angle between Cra-anion-Crb

is roughly larger for parallel spin configuration than for anti-parallel spin
configuration, even though the ground states are parallel spin configura-
tion. Both ∆a and ∆Qgap are roughly larger for the ”out-of-plane” con-
figuration than for the ”in-plane” configuration, even though the pairwise
magnetic coupling energy ∆E is largest for the in-plane configuration.
These are in stark contrast with any prediction from any superexchange
theory, since the more orthogonally arranged and non-equivalently bon-
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Table 4: The angle ∠, ∆a, and ∆Qgap for the ”in-plane” and ”out-of-
plane” configurations for the parallel and anti-parallel spin configurations
within the GGA and GGA+U functionals. F and AF indicates parallel
and anti-parallel spin configurations, respectively.

F in(GGA) out(GGA) in(+U) out(+U)
∠ [◦] 106 106 105 104

∆Qgap [e] 0.00 0.08 0.00 0.32
∆a [Å] 0.00 0.07 0.00 0.07

AF in(GGA) out(GGA) in(+U) out(+U)
∠ [◦] 103 105 106 102

∆Qgap [e] 0.43 0.72 0.17 0.04
∆a [Å] 0.07 0.17 0.00 0.04

ded pairs are less ferromagnetic than the more non-orthogonally arranged
and equivalently bonded pairs, this conclusion holds with either the GGA
or GGA+U functionals.

3.5 Summary

In this chapter, the pairwise magnetic and chemical interactions of Cr
impurities in AlN for a charge neutral condition are theoretically studied.
The main results are summarized below;

• This pairwise magnetic interaction cannot be described with con-
ventional models for the pairwise magnetic interaction of transition
metal doped semiconductors or insulators.

• These pairwise interactions can be described mainly due to d-d
interactions.

These results leave open the question of whether or not there are other
cases where d-d interactions play an important role in the description. To
this end, we investigate the pairwise magnetic and chemical interactions
of a range of transition metal impurities in III-V semiconductors for a
charge neutral condition as introduced in the next chapter.
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4 The charge neutral TM impurities in III-

V semiconductors

Transition metal (TM) doped III-V semiconductors have exotic mag-
netic properties that are intimately connected with the TM-cluster for-
mation [4,40], and may be described starting from the pairwise magnetic
and chemical interactions among the TM atoms. Usually these inter-
actions are described via the p-d hybridization of a single isolated TM
impurity and the host semiconductor [4,27,28,41–49], assuming that di-
rect d-d interactions of the nearby TM atoms can be neglected [50, 51].
As described in the previous chapter, this assumption has been shown to
break down in some special cases, as the d-d interactions become domi-
nant [52–55]. This calls for careful reassessment of the above assumption:
are there other cases where d-d interactions become dominant, and if so,
for what range of materials can one safely neglect the direct d-d interac-
tions? We report a systematic theoretical study of the pairwise magnetic
and chemical interactions of a range of TM impurities in various III-V
semiconductors for a charge neutral condition by using ab initio methods.

This chapter is structured as follows. The computation details are
introduced in Section 4.1. Structural parameters of bulk III-V semicon-
ductors are discussed in Section 4.2. The electronic structure of isolated
charge neutral TM impurities in III-V semiconductors is discussed in Sec-
tion 4.3. The magnetic and chemical interactions of the charge neutral
TM impurity pairs in III-V semiconductors are discussed in Section 4.4.
Finally, we sum up all results, draw a conclusion, and present the outlook
for future studies in Section 4.5.

4.1 Computational details

We consider the series of host materials of AlX and GaX, where X = N,
P, As, with an isolated TM impurity and the respective nearest neigh-
bor pair. As TMs, we consider Ti, V, Cr, Mn, and Fe. We carry out
total energy calculations within the generalized gradient approximation
(GGA-PBE) [12] to the density-functional theory together with projec-
tor augmented wave methods [14], as implemented in the VASP pack-
age [32,33]. The hosts are modeled with zincblende-structured supercells
of 64 atoms, with one or two cations replaced by a TM atom, represent-
ing the isolated impurity and nearest-neighbor pair, respectively. The
plane-wave cutoff is set at 460 eV, 460 eV, 320 eV, 290 eV, 300 eV, and
290 eV for AlN(:TM), GaN(:TM), AlP(:TM), GaP(:TM), AlAs(:TM),
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and GaAs(:TM), respectively. k-point meshes is set at 3×3×3, 3×3×3,
2×2×2, 2×2×2, 2×2×2, and 3×3×3 for AlN(:TM), GaN(:TM), AlP(:TM),
GaP(:TM), AlAs(:TM), and GaAs(:TM), respectively. These parameters
are determined as described in Appendix B.2.

4.2 Bulk III-V semiconductors

AlN and GaN are stable in wurtzite phase and metastable in zincblende
phase. The other host materials are stable in zincblende phase. For
the sake of generality, we model all materials in zincblende structures.
For zincblende-structured semiconductors, the basal lattice parameter is
a. The equilibrium lattice constant of bulk III-V semiconductors were
computed and compared to experiment and previous theory as given in
Table 5. The agreement with experimental and theoretical data is very
good, with deviations from experiment below 2% and theory below 1%.

Table 5: Lattice constant a of III-V semiconductors

a [Å] AlN AlP AlAs GaN Gap GaAs
PBE (present) 4.40 5.51 5.73 4.59 5.53 5.76
PBE (Refs [56]) 4.402 5.506 5.735 4.546 5.506 5.752
Experiment [57] 4.36 5.4635 5.660 4.50 5.451 5.653

4.3 Isolated charge neutral TM impurities in III-V
semiconducors

An isolated TM impurity in a semiconductor host induces defect levels
in the forbidden band gap of the host that may introduce or trap carriers
(electrons or holes) as shown by the calculated density of states given
in Fig. 7. The defect levels can be classified into e and/or t represented
levels from the projection of the TM local density of states onto the e and
t2 representations. The energies of these e and t represented levels is high
for systems with a small TM atomic number Z (e.g., Ti). These e and t
represented levels are occupied by the electrons due to the TM impurity,
which yield the e1, e2, e2t1, e2t2, and e2t3 configurations respectively
for Ti, V, Cr, Mn, and Fe. Note however that, the e1 states of the
nitrides with Ti falsely hybridize with the conduction band due to the
LDA (GGA) errors [27,58], and thus, are not considered henceforth.

The TM induced defect levels can be described as nonbonding e levels
and/or antibonding t levels in the gap due to p-d (anion-TM) interactions
as introduced in Appendix C.1. The nonbonding and antibonding state-
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Figure 7: Spin polarized densities of states (DOS) of isolated TM impu-
rities. The black and red lines indicate the total DOS and the transition-
metal local DOS, respectively. The states labeled by e (t) indicate the
states with the e (t2) symmetry representation within the gap. The pos-
itive and negative DOS values indicate majority and minority spin DOS,
respectively. The dotted line indicates the position of the host valence
band maximum, and the dash line gives the position of the highest oc-
cupied state.

s around the TM impurity correspond to electronic orbitals with lobes
pointing to the interstitial regionointing to the interstitial region for the
TM atom in a tetrahedral environment, i.e., to the 〈100〉 directions for
the nonbonding e orbitals and the [111] [111][111][111] directions for the
antibonding t orbitals, as shown by their electron densities in Fig. 8.
The directional dependence is strong for all the nonbonding orbitals, as
well as for the antibonding orbitals for systems with a small TM atomic
number Z (e.g., Cr) and a small anion Z (e.g., N) due to the level anti-
crossing [27, 47, 48]. The spatial extent to the interstitial region is large
for the nonbonding orbitals for systems with a small TM Z (e.g., Ti), as
well as for the antibonding orbitals for the nitrides with a small TM Z
(e.g., Cr).

To understand the mechanism for the trends in the spatial extent of
the isolated TM-derived orbitals, we investigate the spatial extent of the
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Figure 8: Electron density in the (110) plane of isolated TM impurities.
The electron densities due to the occupied (a) nonbonding e levels and
(b) antibonding t levels in the gap. The black filled, gray filled, and open
circles indicate the TM, host cations, and host anions, respectively. The
dash and dotted lines indicate the [100] and [111] directions, respectively.
The contours start from 0.001 e/Å3 (cyan), increase by a factor of

√
2,

and end to 0.064 e/Å3 (red).

nonbonding e and/or antibonding t levels along the interstitial directions
shown by dashed and dotted lines in Fig. 8. To quantify this extent,
we evaluate the distance l from the TM site to the points where the
electron density essentially vanishes, i.e., reaches a value of 10−3 e/Å3,
which is about one hundredth or less of the values observed close to
nucleus. We wish to probe how sensitive this extent l is on the TM-
anion hybridization, which can be artificially altered by adiabatically
varying the lattice constant a. The spatial extent l is plotted against a
in Fig. 9. This spatial extent of the nonbonding orbitals depends on the
TM species and is large for systems with a small TM atomic number Z.
This spatial extent of the antibonding orbitals depends on both the TM
species and the lattice constant, i.e., the TM-anion bond length, which in
turn is correlated with the TM-anion hybridization. The spatial extent
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Figure 9: Spatial extent of the isolated TM-derived orbitals from the
TM nucleus to the interstitial region. The distance l from the TM site
to the point with the value of the electron density due to the occupied
non-(anti-)bonding levels in the gap = 10−3 e/Å3 along the [100] ([111])
direction while varying the lattice constant a (without atomic relaxation).
The grey, red, green, blue, and purple colored triangles (circles) indicate
the d for the non-(anti-)bonding gap states for Ti, V, Cr, Mn, and Fe,
respectively. The underlined values indicate the calculated equilibrium
lattice constant.

of the antibonding orbitals is large for systems with a small TM Z and
a short TM-anion bond length, i.e., systems with strong p-d interac-
tions [59]. We conclude that the large spatial extent of the nonbonding
orbitals for systems with a small TM Z is due to the weak electron-
nucleus Coulomb attraction for a small TM Z, and that of the anti-
bonding orbitals for the nitrides with a small TM Z is due to the weak
electron-nucleus Coulomb attraction for strong p-d interactions.

4.4 The charge neutral TM impurity pairs in III-V
semiconductors

The nearest neighbor TM pairs in a semiconductor or insulator host
induce a manifold of defect levels in the gap as shown by the calculated
density of states given in Fig. 10. These levels can be classified as e-e
and/or t-t levels due to the interaction of two isolated impurity e or t
levels as introduced in Appendix C.2. The wide energetic range of these
levels for Ti, V, Cr, and Mn and the narrow energetic range of these levels
for Fe respectively correspond to the ferromagnetic spin configurations
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Figure 10: Spin polarised densities of states (DOS) of the nearest neigh-
bor TM impurity pairs. The black and red lines indicate the total DOS
and the transition-metal local DOS, respectively. The levels labeled by
e-e (t-t) indicate the levels due to the two e (t) levels within the gap.
The positive and negative DOS values indicate majority and minority
spin DOS, respectively. The dotted line indicates the position of the
host valence band maximum, and the dash line gives the position of the
highest occupied state.

for Ti, V, Cr, and Mn and the anti-ferromagnetic spin configuration for
Fe in the ground states as previously reported in Refs. [45–49,54].

The electron density distributions corresponding to these levels are
shown in Fig. 13. The pair interactions may further be classified as an
interaction due to the overlap of the isolated TM-d orbitals, i.e., d-d
interactions, or an anion mediated p-d interaction due to the overlap of
TM-d states with host anion states. As seen in Fig. 13, the e-e levels for
Ti and the t-t levels for the nitrides with Cr show a clear signature of d-d
interactions. These systems exhibit a covalent bond, which is completely
different of any superposition of the respective isolated defect electron
densities. Such dominant d-d interactions in the defect pair electron
densities are due to the interaction of two isolated TM-d orbitals with
both a strong directional dependence to the interstitial region and a large
spatial extent to the region.

The pairwise magnetic and chemical interactions of TM impurities in
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Figure 11: Electron density in the (110) plane of the nearest neighbor
TM impurity pairs. The electron densities due to the occupied bands (a)
due to the two nonbonding levels (b) due to the two antibonding levels
in the gap. Black filled and open circles indicate the TM and anions,
respectively. The contours start from 0.001 e/Å3 (cyan), increase by a
factor of

√
2, and end to 0.064 e/Å3 (red).

III-V semiconductors can be attributed to the interaction of two non-
bonding or antibonding orbitals corresponding to whether the highest
occupied states of the isolated TM impurity are nonbonding or antibond-
ing orbitals [27,28,45–49,54]. Therefore, we conclude that these pairwise
interactions can be defined as d-d interactions for systems with a small
TM atomic number Z where the highest occupied states of the isolated
TM impurity are nonbonding orbitals (e.g., Ti in III-V semiconductors)
and systems with a small TM Z, small anion Z, and short TM-anion
bond length where the highest occupied states are antibonding states
(e.g., Cr in III-N semiconductors).

4.5 Summary

In this chapter, the pairwise magnetic and chemical interactions of a
range of transition metal (TM) impurities in various III-V semiconduc-
tors for a charge neutral condition are theoretically studied. The main
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result is that these pairwise interactions can be defined as d-d interactions
for systems that fulfill the following criteria:

• a small TM atomic number Z where the highest occupied states of
the isolated TM impurity are nonbonding orbitals (e.g., Ti in III-V
semiconductors),

• a small TM Z, a small anion Z, and a short TM-anion bond length
where the highest occupied states are antibonding states (e.g., Cr
in III-N semiconductors).

These criteria allow us to discriminate between d-d interactions or the
p-d hybridization based on a calculation of only the isolated impurity.

In Chapters 3 and 4, charge state of TM impurities are limited to a
charge neutral state. TM impurities, however, exhibit various charged
states depending on the external doping conditions. For the sake of
generality, we investigate the pairwise chemical interaction of a range of
TM impurity paris in various insulators for various charged conditions
as introduced in the next chapter.
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5 The charged TM impurities in insulators

Exotic magnetic properties of transition metal (TM) doped semiconduc-
tors or insulators are intimately connected with TM clustering [4,40,60,
61]. TM clustering may be predicted starting from the pairwise chemical
interaction among the TM impurities. We have recently shown that in
addition to the well-known p-d hybridization [46,62] and Coulomb inter-
actions [61,63], direct d-d interactions [54,55,64] can play a crucial role in
the description of pairwise magnetic and chemical interactions. Thus far,
however, such d-d interactions have only been studied for charge neutral
impurities, which leaves open the question of how these d-d interactions
change when system charges are altered. We report a systematic theo-
retical study of the pairwise chemical interaction and d-d interactions in
various insulators for various charged conditions using ab initio methods.

This chapter is structured as follows. The computation details are
introduced in Section 5.1. Structural parameters of bulk insulators are
discussed in Section 5.2. The electronic structure of isolated charged
TM impurities in insulators is discussed in Section 5.3. The magnetic
and chemical interactions of the charged TM impurity pairs in insulators
are discussed in Section 5.4. Finally, we sum up all results and draw a
conclusion in Section 5.5.

5.1 Computational details

We consider several insulators of MgO, AlN, GaN, GaAs, ZnTe, and
CdTe with an isolated TM impurity and the respective nearest neigh-
bor pair. For TM we consider Cr, Mn, Fe. We carry out total energy
calculations within generalized gradient approximation (GGA-PBE) [12]
to the density-functional theory together with projector augmented wave
methods [14], as implemented in the VASP package [32,33]. The MgO is
modeled with rocksalt-structured supercells of 64 atoms and the others
are modeled with zincblende-structured supercells of 64 atoms, with one
or two cations replaced by a TM atom, representing the isolated impurity
and nearest-neighbor pair, respectively. The plane-wave cutoff is set at
460 eV, 460 eV, 460 eV, 290 eV, 290 eV, and 290 eV for MgO(:TM),
AlN(:TM), GaN(:TM), GaAs(:TM), ZnTe(:TM), and CdTe(:TM), re-
spectively. k-point meshes is set at 3×3×3, 3×3×3, 3×3×3, 3×3×3,
2×2×2, and 3×3×3 for MgO(:TM), AlN(:TM), GaN(:TM), GaAs(:TM),
ZnTe(:TM), and CdTe(:TM), respectively. These parameters are deter-
mined as described in Appendix B.2. The total energies in the system
charge q ̸= 0 are modified for image charges in the finite supercell method
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together with proper potential alignment, as described in Ref. [58].

5.2 Bulk insulators

The equilibrium lattice constant of bulk insulators were computed and
compared to experiment and previous theory as given in Table 6. The
agreement with experimental and theoretical data is very good, with
deviations from experiment below 3% and theory below 1%.

Table 6: Calculated lattice constants with experiment for the pure host.

System PBE (present) [Å] PBE(Refs [56]) Expt. [Å] [57]

MgO 4.24 4.260 4.212
AlN 4.40 4.402 4.36
GaN 4.59 4.546 4.50
GaAs 5.76 5.752 5.653
ZnTe 6.19 6.194 6.10
CdTe 6.63 6.624 6.48

5.3 Isolated charged TM impurities in insulators

An isolated TM impurity in a semiconductor or insulator host induces
defect levels in the forbidden band gap of the host that may introduce or
trap carriers (electrons or holes). The defect levels for the TM atom in a
tetrahedral or octahedral environment can be classified into e and/or t2
represented levels from the projection of the TM local density of states
onto the e and t2 representations. Note however that, the minority spin
e state of the tellurides with Mn in q=-1 falsely strongly hybridize with
the conduction band due to LDA (GGA) errors [27, 58], and thus, are
not considered henceforth.

The TM induced levels can be described as non-bonding and/or anti-
bonding levels in the gap due to p-d (anion-TM) interactions as in-
troduced in Appendix C.1. The non-bonding and anti-bonding states
around the TM atom and the first nearest anions can be visualized by
their electron densities in Fig. 12. For increasing the system charge, the
spatial extent of these states increase mainly around the TM atom due
to a decrease in electron-nucleus Coulomb attraction for a decrease in
TM oxidation numbers.
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Figure 12: Electron density of isolated TM impurities. The electron
densities in the (100) plane due to (a) the triply occupied nonbonding
t levels in the gap for MgO:Cr and (b) doubly occupied antibonding e
levels in the gap for MgO:Fe. The electron densities in the (110) plane
due to (c) the doubly occupied nonbonding e levels in the gap for AlN:Cr
and (d) triply occupied antibonding t levels in the gap for GaN:Fe. The
black filled, gray filled, and open circles indicate the TM, host cations,
and host anions, respectively. The contours start from 0.001 e/Å3 (cyan),
increase by a factor of

√
2, and end to 0.064 e/Å3 (red).

5.4 The charged TM impurity pairs in insulators

The nearest neighbor TM pairs in a semiconductor or insulator host
induce a manifold of defect levels in the gap. These levels can be roughly
classified as e-e and/or t-t levels due to the interaction of two isolated
impurity e or t levels as introduced in Appendix C.2. Note however that,
the anti-bonding e-e states of the tellurides with Mn in q=-1 and q=-2
falsely strongly hybridize with the conduction band due to LDA (GGA)
errors [27,58], and thus, are not considered henceforth.

The electron density distributions corresponding to these levels are
shown in Fig. 13. For increasing the system charge, the degree of the
direct TM-TM electron density overlap, which is a testimony of d(TM)-
d(TM) interactions, increases corresponding to the increase in the spatial
extent of the TM-dirived states around the TM atoms except for systems
where d-d interactions can be expected to be trivial [64] (e.g., CdTe:Cr).
For the systems, the degree of the density overlap reaches to the maxi-
mum around the system charge q=0.

To see the relation between the TM-TM density overlap and the TM-
TM distance, we show the TM-TM distance in Fig. 14. For increasing
the system charge, the contraction of the TM-TM distance as compared
to the distance between the host cations goes to be enhanced except for
systems where d-d interactions can be expected to be trivial [64] (e.g., C
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Figure 13: Electron density of the nearest neighbor TM impurity pairs.
The electron densities in the (100) plane due to the occupied levels due to
the two nonbonding t (antibonding e) levels in the gap (a) for MgO:Cr-Cr.
The electron densities in the (110) plane due to the occupied levels due to
the two nonbonding e (antibonding t) levels in the gap (b) for GaN:Cr-Cr
and (c) for CdTe:Cr-Cr. Black filled and open circles indicate the TM
and anions, respectively. The contours start from 0.001 e/Å3 (cyan),
increase by a factor of

√
2, and end to 0.064 e/Å3 (red).
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Figure 14: Distances between the TM atoms for the nearest neighbor TM
impurity pairs. For (a) MgO, (b) AlN, (c) GaN, (d) GaAs, (e) ZnTe,
(f) CdTe. The red, green, and blue circles indicate Cr, Mn, and Fe,
respectively. The horizontal dotted line indicate the distances between
the host cations.

(e.g., dTe:Cr). For the systems, the contraction reaches to the maximum

28



around the system charge q=0. This trend in the contraction of the TM-
TM distance is consistent with the trend in the increase of the degree of
the TM-TM electron density overlap.

Whether impurity pairs are energetically stable or not as compared to
two isolated impurities can be evaluated by the binding energy Eb [55,65]
defined as Eb = ∆H[TM − TM] - 2∆H[TM], where ∆HD,q(εF , µ) =
(ED,q − EH)+

∑
α nαµα + qεF . Here EH is the energy of the pure host,

and ED,q the energy of a defect containing system. µα is the chemical
potential of a reservoir of atoms α, and the Fermi-level εF is the chemical
potential of the electron reservoir. Negative (positive) values of the bind-
ing energy Eb indicate that a pairs are energetically stable (unstable) as
compared to two isolated impurities. To see which of the system charge
q for a pairs and isolated impurities corresponds to the Fermi-level posi-
tion, we calculate the binding energy Eb and also the transition energy
ε(q′, q′′) i.e., the ionization energy from charge q′ to q′′ [39,55,65] defined

as ε(q′/q”) =
ED,q”−ED,q′

q′−q”
−εv , where εv is the valence band maximum εv.

The binding energy Eb and transition energy ε(q′, q′′) of the impurities
for various charged conditions are shown in Fig. 15. The energy Eb incre-
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Figure 15: Binding energy Eb and transition energy ε(q′, q′′). For (a)
MgO, (b) AlN, (c) GaN, (d) GaAs, (e) ZnTe, (f) CdTe. The εF and εv

indicate the Fermi-level and valence band maximum. The red, green, and
blue lines indicate the Eb and ε(q′, q′′) for Cr, Mn, and Fe, respectively.
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ases for increasing the system charge for MgO:TM, and for the others the
energy Eb reaches to the maximum around the system charge q=0. The
trend for MgO:TM cannot be described due to Coulomb interactions [61,
63]. These trends in the binding energy consistent with the contractive
trend in the TM-TM distance and the increasing trend in the degree of
the TM-TM electron density overlap only for MgO:TM.

5.5 Summary

In this chapter, the pairwise chemical interaction and d-d interactions
of a range of transition metal (TM) impurities in various insulators for
various charged conditions are theoretically studied. The main results
is that only for the system with the smallest anion Z and the shortest
lattice constant the trend in the pairwise chemical interaction for various
charged conditions can be attributed to the trend in d-d interactions.
This indicates that d-d interactions are not always a sufficient quantity
to describe the pairwise chemical interaction.
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6 Summary and outlook

Diluted magnetic semiconductors (DMSs) are promising candidates for
novel spintronics materials, as some of DMSs show novel magnetic prop-
erties. Recent study on DMSs has revealed that magnetic properties of
DMSs are intimately connected with transition metal (TM) cluster for-
mation. For clarifying the relation between the magnetic properties and
TM cluster formation, understanding the pairwise magnetic and chemical
interactions of TM impurities in semiconductors is a minimum require-
ment. These pairwise interactions have been studied over the past few
decades, and for the mechanisms of these pairwise interactions, several
phenomenological models have been presented. However, these pictures
can only partially capture trends in these pairwise interactions and have
not even given a congruous view of these pairwise interactions for the
very same materials.

In this thesis, detailed theoretical studies of these pairwise interac-
tions are presented. The first part of the thesis (Chapter 3) focuses on the
investigations of these pairwise interactions of Cr impurities in AlN for a
charge neutral condition. We find a strong ferromagnetic interaction that
can not be described with conventional magnetic interaction models and
a strong attractive chemical interaction for the Cr pairs, which can be
described mainly due to d-d interactions. The second part of the thesis
(Chapter 4) focuses on the investigations of these pairwise interactions
of TM impurities in III-V semiconductors for a charge neutral condition.
We find that d-d interactions that are usually assumed to be negligible
always appear to some extent for the TM pairs and become particularly
important in the description of pairwise magnetic and chemical interac-
tions for light 3d transition metal impurities in nitride semiconductors.
This finding is consistent with our finding summarized in the first part of
the thesis (Chapter 3). The final part of the thesis (Chapter 5) focuses
on the investigations of the pairwise chemical interaction of TM impuri-
ties in insulators for various charged conditions. We show that only for
the system with the smallest anion atomic number Z and the shortest
lattice constant the trend in the pairwise chemical interaction for various
charged conditions can be attributed to the trend in d-d interactions.
This indicates that d-d interactions are not always a sufficient quantity
to describe the pairwise chemical interaction.

A large part of my PhD work has been dedicated to understanding
the magnetic and chemical interactions of the nearest neighbor substi-
tutional TM impurity pairs in semiconductors in detail. The detailed
understanding of such short-range interactions does not directly allow us
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to understand the properties of TM impurities in semiconductors. How-
ever, the detailed understanding of such short-range interactions will be
important when one use design principles [61, 65, 66] to obtain target
magnetic properties via controlling TM cluster formation for DMSs.
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A Models for the pairwise magnetic inter-

action

A.1 Open shell models

”Open shell” models are constructed to describe ferromagnetic interac-
tions of transition metal (TM) compounds for the existence of partial
occupancies in the electronic states of the isolated TM atom [25–28].
The models can be classified into double exchange model [25, 26] or p-d
hopping model [27,28], whether the models are described in the electronic
picture or hole picture. In either models, the magnetic interaction is de-
scribed via the p(anion)-d(TM) hybridization. The hybridization yields
bonding and antibonding levels in the each spin channel. In the case of
the existence of partial occupancies in the electronic states, occupancies
of bonding levels are more than those of antibonding levels for one spin
channel, which yields energy gain for parallel spin configurations (i.e., fer-
romagnetic interaction) as seen in Fig. 16 (a). In the case of the absence
of partial occupancies in the electronic states, both bonding and anti-
bonding levels for one spin channel are completely filled, which does not
yield energy gain for parallel spin configurations (i.e., non-ferromagnetic
interaction) as seen in Fig. 16 (b).

(b)No hole in each TM(a)Hole in each TM

TM TM

dn dn

up up

dn dn

up up

TM TM

Figure 16: Schematic energy levels of two interacting TM for parallel spin
configurations in the case of (a) existence and (b) absence of partial occu-
pancies in the isolated TM derived electronic states for TM compounds.

A.2 Superexchange models

Superexchange models are constructed to describe antiferromagnetic in-
teractions of TM compounds for the absence of partial occupancies in
the electronic states of the isolated TM atom [29], under special cir-
cumstances the models can yield ferromagnetic interactions without the

34



partial occupancies [30,31]. Here, the magnetic interactions are described
via the p(anion)-d(TM) hybridization. The hybridization between occu-
pied p orbital of anion and occupied d orbital of TM atom can only take
place by donation of electron from anion atom into the vacant d states of
the TM atom whose spin state is opposite to the spin state of the electron
of anion atom. On the contrary, the hybridization between occupied p
orbital of anion and vacant d orbital of TM atom can only take place by
donation of electron from anion atom into the vacant d states of the TM
atom whose spin state is the same as the spin state of the electron of
anion atom in order to optimize Hund’s rule coupling to the TM atom.
Then superexchange yields anti-ferromagnetic interactions for the case
in Fig.17 (a) and Fig. 17 (b) and ferromagnetic interactions for the case
in Fig.17 (c) and Fig. 17 (d).

(a)

(c) 

(b)

(d) 

TMa TMb Anion TMa 

TMb 

Anion 

TMa TMb Anion TMa TMb Anion

Figure 17: Superexchange for two TM atoms separated by an anion.
Anti-ferromagnetic interactions for non-orthogonally arranged TM pairs
(a) where both TMa-anion and TMb-anion bonds are covalent. (b) where
both TMa-anion and TMb-anion bonds are ionic. Ferromagnetic inter-
actions (c) for orthogonally arranged TM pairs where both TMa-anion
and TMb-anion bonds are covalent and (d) for non-orthogonally arranged
TM pairs where one of TMa-anion and TMb-anion is ionic.

B Way to determine parameters

B.1 U and J parameters

In +U calculations, there are some ways to choose U and J parame-
ters [67–69]. Here, we use Lany et al. approach [69], where (U − J)
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parameters are chosen to recover the error coming from the limitation
of LDA or GGA about thermochemical phase stability of the different
oxide stoichiometries (e.g, NiO and Ni2O3).

For the Cr impurity, we choose U parameters with J parameters of
1.0 eV, to reproduce the correct thermochemical stability of CrO2 and
Cr2O3. In thermodynamic equilibrium, the Cr and oxygen chemical po-
tentials must satisfy the stability condition for CrO2 and Cr2O3; Eq.(A):
∆µCr +2∆µO = ∆Hf (CrO2) and Eq.(B): 2∆µCr +3∆µO = ∆Hf (CrO2),
where ∆Hf is the calculated CrO2 and Cr2O3 formation enthalpy. ∆µO

versus ∆µCr for CrO2 and Cr2O3 for both the experiments [57] and GGA
calculations is plotted in Fig. 18. At ∆µO∼ -0.6 eV, experimental data
suggests Cr2O3 is stable with respect to CrO2, but GGA calculation does
Cr2O3 is unstable with respect to CrO2. We thus determine U parame-
ters with J parameters of 1.0 eV, as in the GGA+U calculations Cr2O3

is stable with respect to CrO2 at ∆µO∼ -0.6 eV simply increasing U pa-
rameters with J parameters of 1.0 eV. We obtain U parameters as 3.0
eV with J parameters of 1.0 eV.

-6

-5

-4

-3

-2

-1

 0

-3 -2.5 -2 -1.5 -1 -0.5  0

Eq.(A) (Cr0
2 
Expt.)

Eq.(B) (Cr
2
0

3 
Expt.)

Δµ
Cr

Δµ
o

Eq.(A) (Cr0
2 
GGA)

Eq.(B) (Cr
2
0

3 
GGA)

Figure 18: ∆µO versus ∆µCr for CrO2 and Cr2O3 for both the experi-
ments and GGA calculations.
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B.2 Cutoff energy and k⃗-point meshes

For calculating total energies and electronic structures of systems, we
need parameters of the cutoff energy Ecut and k⃗-point meshes. The Kohn-
Sham wave functions in the Bloch states are expressed by using a plane
wave expansion

ϕk,i(r) =
∑
G

cσ
k,ie

i(k+G)·r, (29)

where k is a wave vector in the first Brillouin zone (BZ) that is the volume
within the boundary that define the condition for Bragg reflection, and G
is reciprocal lattice vectors concerned with the real space lattice vectors
as shown in the following equation eiG·R = 1, where R is the real space
lattice vectors. In practical calculations, the Fourier expansion of the
wave functions (in equation (29)) is truncated by keeping only those

plane wave vectors with a kinetic energy (k⃗ + G⃗)2/2 lower than a given
cutoff value Ecut

1

2
(k⃗ + G⃗)2 < Ecut. (30)

The convergence of all calculations with respect to the basis set size
should be tested simply by increasing step by step the plane wave cutoff
energy Ecut.

Physical quantities like the electron density can be evaluated by in-
tegration over k⃗ inside only the first Brillouin zone (BZ). This is because

any k′ not in the first BZ can be expressed k⃗′ = k⃗+ G⃗, where k⃗ lies in the
first BZ, when the eigenstates are in the Bloch states. In practical cal-
culations, we replace the integration over the BZ by a discrete weighted
sum over a chosen k⃗-point meshes. For a chosen k⃗-point meshes, we use
a Γ-centered Monkhorst-Pack scheme [70]. In Monkhorst-Pack method,

the k⃗-point meshes are defined using three integers (L,M,N), and the
(L × M × N) points are spaced evenly along the reciprocal lattice vec-
tors in the first BZ. For increasing size of the supercell, the volume of the
Brillouin zone becomes smaller and smaller (from eiG⃗·R⃗). With increasing

supercell size more and more, less and less k⃗-points are therefore needed.
Ideally, high cut off energy and condensed k⃗-point meshes are needed, but
the calculations become impractical. We thus need to determine finite
values for these parameters which can yield sufficient accuracy.

In order to obtain such parameters in large (64∼96) atom supercells
that are used for the transition metal (TM) doped materials studied in

this thesis, we carry out convergence tests for cutoff energy and k⃗-point
meshes in small (∼8) atom supercells for the host materials. In the con-
vergence test for the cutoff energy, the relative energies between systems
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with different lattice constant under the same k⃗-point meshes were found
to converge to a precision of roughly 1 meV. In the convergence test for
the k⃗-point meshes, the relative energies between systems with different
lattice constant under the same cutoff energy were found to converge to a
precision of roughly 1 meV. Whenever we use different size of supercells,
we scale the k⃗-point meshes according to the lengths of the reciprocal
lattice vectors as the dense of the k-point meshes becomes same as the
dense of k⃗-point meshes in the small atom supercells.

C Description of defect levels in the band

gap of TM impurities

C.1 An isolated TM impurity

The formation of a substitutional transition metal impurity can be thought
of as a two step process, involving first the removal of a host cation
atom, and second, the placement of a transition metal (TM) impurity
atom in its place [71]. The removal of a cation atom creates anion atoms
surrounding the cation atom dangling bonds. The placement of a TM
impurity atom in its place yields nonbonding and/or antibonding levels
in the gap region due to the interaction of the TM’s symmetry-adapted
3d levels and the anion dangling bonds that have the same represen-
tation as the symmetry-adapted 3d levels. The spatial distribution of
the antibonding states changes when the system’s TM and anion are al-
tered [47,48] . For the systems with large Z TM and large Z anion, the
antibonding states become p-orbital like levels as shown in Fig. 19 (a).
For the systems with small atomic number Z TM and small Z anion, the
antibonding states become d-orbital like levels as shown in Fig. 19 (b).
The similar interchange in a d character and p character of the antibond-
ing states are expected when the system charge is altered [39]. When the
system charge is increased, the TM-d levels are higher in energy than the
anion p-levels, which increases a d character and reduce a p character in
the antibonding states as shown in Fig. 19 (a) → Fig. 19 (b).
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Figure 19: Schematic energy-level diagram of an isolated TM impurity in
a tetrahedral (octahedral) semiconductor or insulator (a) for the system
with large atomic number Z TM and large Z anion or the system with
less system charge (b) for the system with small Z TM and small Z anion
or the system with more system charge. In each panel, the mixed levels
(center) are generated from the interaction between crystal-field levels
on the TM-d (left) with the anion-p levels (right).

C.2 TM impurity pairs

For the nearest neighbor TM pairs in a semiconductor or insulator host,
defect levels in the gap are usually described due to the interaction of
two isolated impurity nonbonding or antibonding levels as illustlated in
Fig. 20. We however observe an exception to this picture for the ”out-of-
plane” configurations for Cr doped AlN as discussed in section 3.4 which
may be due to very strong polarization effects of AlN as discussed in
Ref. [72].

(a)parallel spin config.

dn dn

up up

TM TM

dn

up dn

up

TM TM

(b)anti-parallel spin config.

TM pair TM pair

Figure 20: Schematic energy-level diagram of the nearest neighbor TM
impurity pairs (a) for parallel spin configuration and (b) anti-parallel spin
configuration. The up (dn) indicates majority (minority) spin states. In
each panel, the mixed levels (center) are generated from the interaction
between the isolated TM-derived levels (left and right).
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D Finite-size effects due to charged defects

Supercell approach describes efficiently and accurately the crucial local
rearrangements of bonding between atoms, it also introduces artificial
long-range interactions between the periodic defect images. In this ap-
proach, total energies are evaluated by setting the divergent terms of the
electron-ion potentialVei(G=0), Hartree potential VH(G=0), and ion-ion
potential Vii(G=0) to zero. In the charge-neutral case, this procedure is
justified by the exact cancellation of the respective terms [73–75]. In the
charged calculation, the omission of the averaged electrostatic potential
can be viewed as an effective compensation for the net charge by a homo-
geneous jellium background charge and virtually yield the jellium-defect
and defect-defect interactions. For the correction for the jellium-defect
interaction, we use Lany et al. approach [58] as

∆Epa(D, q) = q(V r
D,q − V r

H), (31)

where the reference potentials V r in the charged-defect (D, q) and pure-
host (H) calculations are determined from the local atomic-sphere-averaged
electrostatic potentials at atomic sites farther away from the defect. For
the correction for the defect-defect interaction, we use Lany et al. ap-
proach [58] that is practically same as Makov and Payne approach [76]
under the conditions of (i) the dielectric constant ε is sufficiently large
(ε >> 1) and (ii) the supercell is approximately isotropic as

∆Ei(V
1/3, q) = +

q2αM

3εV 1/3
, (32)

where V is the supercell volume and αM is the (supercell) lattice-dependent
Madelung constant.
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