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Abstract   

 

 A novel ship concept which is called ULBS (Ultra Large Block coefficient ship) to 

reduce CO2 emission form sea transportation is under investigation at Yokohama National 

University. Since ULBS is supposed to have a very blunt hull, flow field analysis around a 

ship is crucial for a design of hull forms with better hydrodynamic performance. 

Computational Fluid Dynamics (CFD) is expected to be an efficient design tool for 

unconventional hull forms such as ULBS. However, it is desirable to examine applicability of 

the CFD method to analysis of similar flows before the actual design application. Thus, free 

surface flow computations of two box-shaped ships which can be considered as the extreme 

cases of ULBS are carried out. Grid convergence study is performed with respect to 

resistance for the verification of the results. Total resistance coefficients are compared with 

each other and also with available experimental data. The pressure and velocity distributions 

of the two ships are compared with each other. The flow structures with large separations are 

observed and the influences of the box geometry to the flow fields are discussed. This 

knowledge is used in the computation of ULBS.  

 After that to investigate the flow characteristics of ULBS (Cb>0.95), free surface 

viscous flows around the ship with and without a stern tunnel are computed by the solver. 

Total resistance coefficients are compared with each other and with experimental data. The 

pressure and velocity distributions of the two ships are compared with each other. Also, grid 

convergence study is performed with respect to resistance for the verification of the results. 

The velocity distributions behind the stern of the two ships are compared with each other. 

The three dimensional vortical structures in the stern of the two hulls are analyzed and 

compared with each other. Massive flow separations behind the stern due to the bluntness of 

a hull and effects of a stern tunnel to flow fields are discussed and this knowledge will be 

used on the future design of ULBS. 
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Chapter 1 

  Introduction 

 

Demands for efficient sea transportation have been increasing due to globalization of 

world economy. At the same time, global environment protection becomes more important 

than ever. Therefore it is of vital importance to improve the transportation efficiency from 

both economic and environmental point of view. The applied ship hydrodynamics group of 

Yokohama National University proposes a new concept of a cargo ship called ULBS (Ultra 

Large Block coefficient ship) as a measure for environment-conscious sea transportation. 

Considering the fact that the Panama Canal will be expanded to 49 meters wide in 2014, the 

breadth of the ship can be expanded to increase capacity. Furthermore, the reduction of a ship 

speed is an effective way to decrease resistance. The ULBS concept is based on these 

circumstances. ULBS is a very blunt ship with wider breadth and its (L/B) length-to-breadth 

ratio is smaller than or equal to 5 for larger cargo capacity. The block coefficient Cb is 

supposed to be larger than 0.95, with a large breadth-to-length ratio (B/L > 0.2), which 

enables larger cargo capacity. On the other hand, it sails at low speed from 10 to 15 knot to 

recover resistance increase due to its bluntness.   

Since ULBS is supposed to have a very blunt hull, flow field analysis around a ship is 

crucial for a hull form design with better hydrodynamic performance. However, because 

ordinary ship hull forms are usually designed as streamlined as possible, flow structures 

around extremely blunt ships have not been studied in detail. In other engineering fields such 

as automobile engineering, blunt bodies often attract attention. For example, the simplified 

car body called Armed body
1)

 is widely used as a benchmark case for flows around a bluff 

body with massively separated wake. In case of ship flows, however, free surface interacts 

with turbulent separated flow around a blunt body and affects flow fields significantly. 

Computational Fluid Dynamics (CFD) tool is expected to be efficient in the analysis of such 

complicated flows. Azcueta et al.
2)

 applied CFD method to free surface flow around a blunt 

ship and bow wave breaking was simulated. Hino
3)

 also performed CFD simulations for the 

same blunt ship geometry. These investigations are primary focused on wave breaking at bow 

and side of a hull. However, flow fields around ULBS are much more complicated since the 
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bluntness of the hull is so extreme that flow separates in various locations. Although CFD 

method has become a powerful tool in ship hydrodynamics analysis, its capability for 

simulating flows around an unconventionally blunt body must be examined before a practical 

use. Therefore it is desirable to examine applicability of the CFD method to analysis of 

similar flows before the actual design application. 

In this study, free surface flow computations on box-shaped ships which can be 

considered as the extreme cases of ULBS are carried out by using SURF
4)

, the Navier-Stokes 

solver developed at National Maritime Research Institute, Japan. In order to obtain insight on 

basic flow structure of ULBS, flows around two kinds of box shapes with different drafts are 

computed in the same Froude numbers. The verification of the computed resistance using 

three systematically refined grids is performed to assess the uncertainties of the solutions. 

The results of different box shapes are compared with each other and also with available 

experimental data.  

For the practical goal of ULBS, various flow control devices such as bulbous bow (to 

reduce wave breaking resistance), tab type rudder (to keep course stability), stern tunnel (to 

reduce the flow separations behind the stern) etc. are attached to improve hydrodynamics 

performance.  

Since ULBS has an extremely blunt hull form, it is expected that massive separations 

are dominant in a flow field around a hull. Therefore, understanding of flow properties is 

crucial for the better design of a hull form and flow control devices. Conventionally, ship 

hydrodynamics analysis has been carried out for a stream-lined body. Even with a blunt ship 

such as VLCC, a stern part is streamlined for better propulsive performance such as 
2, 3)

 for 

CFD applications. However, due to the large Cb, the stern of ULBS has a shape similar to a 

box. In the present study, up-to-date CFD (Computational Fluid Dynamics) method is applied 

to the flow simulations around ULBS. Based on the experiences of the preliminary study
4)

 in 

which CFD analysis is applied to box-shaped ships, higher-order turbulence model is adopted 

in anticipation of accurately simulating flow separations.  

As an example of flow control devices for better hydrodynamic performance, a stern 

tunnel is considered in the present study. 
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Thus, the objective of the present study is to assess up-to-date CFD with an advanced 

turbulence model for simulating massively separated flows around an extremely blunt ship. 

In addition, differences of flow structures between a bare hull and a hull with a stern tunnel 

are examined using numerical results together with available experimental data.  

 Free surface flow analyses of ULBS are carrying out by SURF, the Navier-Stokes 

solver developed at National Maritime Research Institute, Japan. The verification of the 

computed resistance using three systematically refined grids is performed in order to assess 

the uncertainties of the solutions. Total resistance coefficients are compared with each other 

and also with available experimental data. The pressure and velocity distributions of the two 

ships are compared with each other. Compared with the bare hull cases, the stern tunnel case 

can reduce the flow separations behind the stern. The flow structures with large separations 

are observed and this knowledge will be used to improve the future design of ULBS. 

 A turbulence model is essential for simulating high Reynolds number flows of 

practical interests. In Box-shaped Ships study, the Spalart-Allmaras model
17)

, one of the 

standard one-equation models, is adopted. It solves directly a transport equation for the eddy 

viscosity and it is thought to be a reasonable compromise between accuracy and complexity. 

 The unstructured grid based methods are one of the simplest ones and have proved 

very robust and reliable. In the present study, SURF v6.38 for EARSM model, is applied to 

demonstrate the code’s performance in predicting the complex turbulent flow field with free-

surface waves. The FVM method is implemented in the CFD code to handle the free-surface 

flow. 

  It is clear that in the case of Box-shaped Ship study, complex flows where separation 

plays a major role, a good performance of the turbulence model is essential to obtain accurate 

solutions. In ULBS blunt ship, an Explicit Algebraic Reynolds Stress Model has been 

implemented in the Reynolds-Averaged-Navier-Stokes equation solver SURF, linked with the 

k-omega turbulence model. After a description of the flow equations, turbulence modeling 

and the formulation of the EARSM, two test cases have been presented to validate the model.  

 The best prediction of streamwise velocity component is obtained with the EARSM 

model.
15) 
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Chapter 2 

Numerical Procedure 

 

2.1 Flow solver 

 

 The flow solver used in this study is SURF (Solution algorithm for Unstructured 

RaNS with FVM) which is under development at National Maritime Research institute
5), 6), 

7)
.The governing equations used are the three-dimensional Reynolds averaged Navier-Stokes 

equations for incompressible flows. In order to couple pressure with a velocity field, artificial 

compressibility is introduced into the continuity equation. In order to account for the 

unsteadiness, the dual time stepping is employed in which t is the physical time and t
* 

is the 

pseudo time for artificial compressibility and the sub-iteration with t
* 

is performed at each 

time step t.  

The final form is written as follows: 

0
z

)g(g

y

)f(f

x

)e(e

t

q

t

q vvv

*

*

























               (2.1) 

where, 

T

wvupq




       (2.2) 

T

* wvuq




 0                                                                  (2.3) 

 In the above expressions all the variables are made dimensionless using the reference 

density  , velocity U and length Lpp. In case of free surface flows, pressure p is modified as 

2
Fr

z
pp *   
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where p
*
 is the original pressure and Fr is the Froude number, 

ppgLU ,with z being the 

vertical coordinate. The velocity components in the (x, y, z) direction is expressed as (u, v, w). 

The inviscid fluxes e, f and g are defined as 





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
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
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where   is a parameter for artificial compressibility. The viscous flux e
v
, f

v
, and g

v
are 

written as: 
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


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i
tij
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





 

1
      (2.6) 

Re is the Reynolds number, and defined as ULpp/v, where v is the kinematic viscosity. vt is 

the non-dimensional kinematic eddy viscosity determined by an appropriate turbulence model 

which is determined by the Spalart-Allmaras one equation model
17)

 . 

ij

i

j

j

i
ij

~)
x

u

x

u
(

Re
 











1
      (2.7) 

Re is the Reynolds number, and defined as ULpp/v, where v is the kinematic viscosity. ij


 is 

the Reynolds-stress anisotropy tensor determined by an appropriate turbulence model which 

is determined by the Explicit Algebraic Reynolds Stress Model (EARSM) model 
9)

. 

 For the inviscid fluxes (convection terms and pressure gradient terms), the second 

order upwind scheme based on the flux-differencing splitting of Roe 
8)

 with the MUSCL 

approach is employed. The viscous fluxes are evaluated by the second order central scheme. 

Thus, the overall accuracy in space is the second order.  
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2.2 Spatial Discretization 

 

 Spatial discretization is based on a cell centered finite volume method for an 

unstructured grid. The cell shapes are tetrahedral, prism, pyramid or hexahedral and face 

shapes are either triangular or quadrilateral as shown in Figure 2.1 
5), 16)

. It says these four 

types of cells give larger flexibility in handling complex geometries.  

 

 

(a) Tetrahedral             (b) Prism                   (c) Pyramid  (d) Hexahedral 

Figure 2.1 Cell shapes 

 

 In particular, it is suitable for a hybrid grid approach in which prisms and hexahedra 

are placed in the region close to a solid wall for the efficient resolution of boundary layers 

while tetrahedron and pyramids are used to tessellate the remaining region in a flexible 

manner. A cell centered layout is adopted which means flow variables q are defined at the 

centroid of each cell and a control volume is a cell by itself. 

Volume integration of equation (2.8) over a cell yields 
5)

. 

0


















 dV)

z

)gg(

y

)ff(

x

)ee(

t

q
(

tv

vvv

   (2.8) 

Since the grid in the application is stationary, the first term in the integral is the time 

derivative of the product of the cell volume Vi and the cell averaged value of flow variables 

iq .The remaining terms are converted into surface integration over cell faces using the 

divergence theorem. This yields semi-discrete form of the governing equation as follows, 
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0
)(

22

  

j

ji

j

ji
ii RF

t

qV




     (2.9) 

where i is a cell index and j is the index of neighboring cells of the cell i . 2)ji(   is the 

face between cells i  and j  as shown in Figure 2.2. Equation (2.8) is solved using 2nd order 

upwind scheme based on flux difference splitting in space and Euler implicit scheme in 

time
5)

. 

 

 

Figure 2.2 Definition sketch of cell and face indices. 

 

F and R  are the inviscid and viscous fluxes defined as 

zyx SSS gfeF   , z

v

y

v

x

v SSS gfeR   

( zyx SSS ,, ) are the ( zyx ,, )-components of the area vector of a cell face in the direction from 

the cell i  to the cell j . 

Components of the inviscid fluxes F are 




























z

y

x

pSwU

pSvU

pSuU

U

F(q)       (2.9) 
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where zyx wSvSuSU  .Based on the flux-difference splitting, the inviscid flux are 

evaluated by the upwind scheme. 

)].()()([
2

1
2)(

LRLR
qqAqFqFF  ji

    (2.10) 

Where Rq and Lq  are the flow variables on the right side and the left side of a cell face, 

respectively. A  is defined in the following way. Let A be the Jacobian of the inviscid flux 

F at a cell face: 

q

qqF
A






)2)(( LR

     (2.11) 

The eigenvalues of A  are U, U, U+c, U-c where c is the pseudo-speed-of-sound defined as  

)( 2222

zyx SSSUc        (2.12) 

By using the right-eigenvector R , A  can be expressed as 1
RΛA

 R , 

)cU,cU,U,U(diag  . 

1 RΛRA , and ),,,( cUcUUUdiag Λ . 

To maintain the second order accuracy in space, Rq  and L
q  are extrapolated using the 

Taylor expansion as follows: 

).( i)ji(ii

L
xxqqq   2  

).( 2 jjijj

R
xxqqq    

where 2)( jix  is the coordinate of the center of face 2)ji(   and ix  and jx  are the 

coordinates of the centroid of cell i  and j , respectively. iq  is the gradient of  q at the cell 

centroid i and this can be computed by applying the divergence theorem to the cell i with the 

values of q at the cell i and its neighbors j. 

Viscous fluxes components are written as 
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


























zzzyzyzxx

yzzyyyxyx

zxzxyyxxx

SSS

SSS

SSS
)(







0

qR      (2.13) 

 

 

Figure 2.3  Control volume for the evaluation of velocity gradient. 

 

 The computation of 2)( jiR  requires velocity gradient on a cell face. These are 

computed by applying the divergence theorem to another control volume surrounding a cell 

face as shown in Fig. 2. The values of q at the centroid i and j and at the nodes k, k+1… 

surrounding the face (i+j)/2 are used for the surface integration. xu   is computed as 











Faces
x

)ji(

uS
Vx

u 1

2

 

   ...)S
uuu

S
uuu

(
V

k,k,j,x

kkj

k,k,i,x
kki 





 






 1

1

1
1

33

1
    (2.14) 

where 
V  is the volume of the current control volume and  ,,,xS  is the x-  component of the 

outward area vector of the face formed by the nodes  ,  and  . 
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 The velocity values at the nodes k, k+1 etc. are computed from the values at the 

centroids by simple averaging. 

 

2.3 Time integration 

 

The backward Euler scheme is used for the time integration. The governing equation 

is 

01

2/)(

1

2/)( 



 







j

n

ji

j

n

ji

i

i
t

V RF
q

    (2.15) 

Where  

nn
qqq  1  

And the superscripts denote the time step. t  is time increment for local time stepping in 

which t  is determined cell by cell in such a way that the CFL number is globally constant. 

The linearization of the inviscid flux 1nF  with respect to time is 

q
q

F
FF .nn




1      (2.16) 

When the Jacobian qF   is evaluated, the flux F is computed with the first order accuracy 

by setting  

i

L
qq  , j

R
qq   

Thus, the inviscid flux is written as 

 ).(..
2

1
2/)(

1

2/)( ijiiij

n

ji

n

ji qqAqAqAFF  



  

where 

i

i

i
q

qF
A






)(
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In the similar manner the viscous flux is linearized in time as  

q.
q

R
RR 




 nn 1        (2.18) 

 For the evaluation of the Jacobian qR  , R  is approximated by neglecting the 

contribution from the values at the nodes, i.e. kq , 1kq . Thus, R becomes dependent only on 

the values on the cell centroid, iq  and jq  and qqR ./   becomes 

)..(./ ij qqBqqR   






























22

22

22

0

0

0

0000

3

1
)

1
(

zzyzx

zyyyx

zxyxx

t

SSSSSS

SSSSSS

SSSSSS

VR
B  

with  

2222

zyx SSSS   

Eq. (2.15) now becomes 

0).(

)}.(..{
2
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2/)(




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


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





j
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ijiijj
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n

ji

j

n

ji

i

i
t

qqB

qqAqAqARF
q

V

      (2.16) 

The delta terms are rearranged into the form as follows. 

0).
2

(.)
2

( 2/)(2/)( 


























 

j

n

ji

j

n

ji

j

i

i

i

j

ii

t

V
RFqB

AA
qB

AA
I   (2.17) 

Equation (2.17) is a linear equation with respect to q . The symmetric Gauss-Seidal (SGS) is 

adopted to solve this equation. To achieve fast convergence, the cells are ordered from 

upstream to downstream. The first Gauss-Seidal sweep is carried from the upstream cell to 

the downstream. Then the second sweep follows the reverse order. Typically 20 SGS sweeps 

are performed at each time step. 
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2.4 Free surface Treatment 

 

  Free surface in this study is an interface between air and water. Free surface 

conditions consist of dynamics and kinematics conditions and they are implemented in the 

interface capturing framework. The condition that fluid particles on a free surface remain on 

an interface is the kinematic condition. It is written in a mathematical form as follows
 16)

: 

0




















z

H
w

y

H
v

x

H
u

t

H

Dt

DH
   (2.18) 

Where a free surface shape is defined as 

  0;,, tzyxH  

The kinematic condition in the present scheme is formulated based on the level set 

method which improves the efficiency of the original level set approach 
11)

 used in the 

previous version of the present code 
10)

. The level set function   is defined as the signed 

distance from the interface, i.e.., 





















airin0

interfacetheon0

waterin0

      (2.19) 

Since   (x, y, z; t) = 0 defines the free surface shape, the kinematic condition can be satisfied 

if the following equation is used to update  :  

0




















z
w

y
v

x
u

tDt

D 
     (2.20) 

The numerical solution method for equation (2.20) is identical to the flow equations. The cell 

centered finite-volume discretization applied for the cell i yields  

     022 



 

j

/ji/ji
i

i U
t

V 


      (2.21) 

where 
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       2222 ji,ziji,yiji,xi/ji SwSvSuU    

Vi is the cell volume and j is the neighbor cells of the cell i. The subscript (i+j)/2 means the 

cell face between the cells i and j and  
zyx S,S,S  are the area of cell faces.   2/ji , the value 

of   on the cell face, is extrapolated from the cell centered values in the second order upwind 

manner. The extrapolation is obtained by the least square method. The time integration is 

carried by the Euler backward scheme.  

Suppose that the interface is undisturbed on z=0 and the flow field is uniform 

and    001 ,,w,v,u  . The initial value of  is z . This is a steady state solution of the 

analytical equation (2.20).  The discrete equation (2.21), does not give 0 t , unless 

   
  0

22  

j
/ji,x/ji S     (2.22) 

is satisfied. Since z  is a linearly varying function, the extrapolation of the face value 

  2/ji  from the cell centered values can be performed by the second order scheme. However, 

the one point quadrature   2/ji   2/ji,xS  have significant amount of error, the higher order 

quadrature will increase the computational cost considerably. To remedy this problem, a new 

variable 
~

 is introduced, 

z
~

       (2.23) 

To solve 
~

 instead of , equation (2.20) is modified as 

0


















w

z

~

w
y

~

v
x

~

u
t

~


      (2.24) 

and in the discrete form  

     022 



  ii

j

/ji/ji
i

i wVU
~

t

~

V 


    (2.25) 

For the initial field of z
~

  and    001 ,,w,v,u  , 0 t
~
  because 0

~
 everywhere 

and the fluxes are evaluated as zero, regardless of the quadrature. 
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 In order to avoid reflection of free surface waves in the outer boundaries of a 

computational domain, the wave damping method is applied to the level set method. The 

damping term which makes 
~

 approach zero are added to the level set equation (2.25) as 

follows: 

     022 



  iiii

j

/ji/ji
i

i

~
WVwVU

~

t

~

V 


   (2.26) 

 z,y,xW  is weight function defined as 

      yW,xWmaxAz,y,xW yx  

 







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
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





otherwise

if 0

2

0

o

xxx
xx

xx

xW d

d

d

x  

 






















otherwise

if 0

2

0

o

yyy
yy

yy
yW d

d

d

y  

where dd y,x are the coordinate from which damping region starts and  00 y,x are the location 

of outflow and boundaries. The parameter A controls the amount of damping.  

 There is a singular behavior of the interface in the region close to a solid wall. The no-

slip condition imposed on a wall prevents the interface movement there, while the interface in 

the outer region moves following the fluid motion. It causes the large deformation of   near 

a solid wall. The value of  for the cells close to the wall is extrapolated from the outer cell to 

remove this singularity. 

 It is easy to find the outer cell for the particular cell in the structured grid. But it is not 

a trivial task in the unstructured grid case. First, the closest wall id is computed and stored for 

each cell. To choose the outer cell, compare the quantity ijj rd instead of jd , where ijr is the 

distance between the cell centers i and j.  In Figure 2.4, since ABr is smaller than ACr , the cell 

B is chosen as an outer cell. 
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In the original level set approach, the re-initialization of the level set function is 

performed at every time stage to assure that the level set function is the signed distance 

function. The re-initialization is not required application because the free surface 

configurations are rather moderate in these applications. 

 

 

Figure 2. 4  Selection of an outer cell. 

 

Since most of ship hydrodynamics applications require a flow field of water region 

only, the air region does not need to be solved.  

The dynamic free surface conditions are approximated by the following two 

conditions. First, the velocity gradients normal to the free surface are zero. Second, the 

pressure on the free surface is equal to atmospheric pressure. For the first condition, the 

velocity components are extrapolated in the direction normal to the interface. Firstly air cells 

(the value of   is negative), the search for the neighboring cells (the values of  is positive) 

is carried out. If only one water cell is found, this water cell is selected a source cell. If 

several water cells are found, a source cell is defined in the following way. The current air 

cell whose velocity should be extrapolated is denoted as i and a candidate water cell is 

denoted as j. Let the vector jie be the unit vector from the cell center j to the cell center i and 

j be the gradient of  at the cell center j.   /.e ji is unity when the vector jie  and the 

interface normal are parallel and zero when the vector jie  is perpendicular to the interface 

normal. Thus, the cell with the largest value of   /.e ji  selected as a source cell. In case 

of the air cells whose all neighbors are air cells, velocity is extrapolated from the air cells 
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whose velocity are already extrapolated. The selection of a source cell in this case can be 

performed in a similar way. After the extrapolation of network is established, velocity 

components of the air cell are set equal to those of the corresponding source cell. 

The pressure boundary condition is written as  

2F

h
p   on the free surface 

where atmospheric pressure is assumed to be zero and h is the z-coordinate of the interface. 

The pressure extrapolation formula can be constructed as follows. Suppose that the cell i is 

the air cell for which the pressure must be extrapolated and the cell j is the corresponding 

source. 

 

 

Figure 2.5 Pressure Extrapolation. 

 

Since the level set function  is the signed distance function,  is the distance to the 

interface with 0i  and 0j . The interface is located between the cell centers i and j. As 

shown in Fig. 2, the interface is locally approximated by a flat plate and the closet point on 

the interface from the cell center i is denoted as A and the closet point on the interface from 

the cell center i is denoted as B. Also the intersection of the interface and the line connecting 

the cell centers i and j is denoted as C. Since the triangle IAC is similar to the triangle JBC 

and iIA  and jIB  . The Zc,z-coordinate of the point C, is given by  

ji

ijji

c

ZZ
Z








  
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Thus pressure is extrapolated as 

  
j

ijji

i

pFZ
p



 


2

     (2.27) 

in such a way that 

2F

Z
p c

c   

This procedure uses only the value of  and the actual free surface shape does not need to be 

constructed. 

In case of the air cells whose all neighbors are air cells, pressure is set equal to that of 

a source cell. 

Figure 2.6 shows an example of the extrapolation network taken from the actual 

computation. The dotted lines are cells and the thick solid line shows the interface, i.e., the 

line of 0 . The arrows depict the direction of flow variable extrapolation. It is seen that the 

direction of flow extrapolation is close to the interface normal.  

 

 

Figure 2.6  Extrapolation network. 
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2.5 Multigrid  

 

 A multigrid method is known as the extremely efficient way to get fast convergence. 

The concept of a multigrid time stepping applied to the solution of hyperbolic equations is to 

compute corrections to the solution on a fine grid by the time-stepping on a coarser grid. This 

is called a geometric multigrid and successively coarser grids should be generated 

geometrically from an original grid. 

The procedure of the multigrid method is as follows. Equations to be solved is written as 

 qR
dt

dq
       (2.28) 

and the subscript k denotes the grid index. 

First, the solution kq  is obtained in the fine grid  k by solving 

 kk
k qR

dt

dq
       (2.29) 

by the numerical scheme described above, i.e., the Euler-backward scheme and the Gauss-

Seidel iteration. The solution is transferred from the fine grid  k  to the next coarser grid 

 1k by 

 
k

k

kk qTq 10

1



         (2.30) 

where 1k

kT is a transfer (restriction) operator for a solution defined as 

  1

1




 kkkk

k

k V/VqqT      (2.31) 

where the sum is over cells to be fused to a coarser grid cell and V  is a cell volume. The 

solution in the coarse grid is updated by solving the equation 

  111
1


  kkk

k PqR
dt

dq
       (2.32) 
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with the same manner except that the spatial operator 1kR adopts the first order scheme and 



1kq is obtained. P in the above equation is called the forcing terms in the coarse grid  1k  

defined as 

    0

11

1

1 



  kkkk

k

kk qRqRQP      (2.33) 

where 1k

kQ is another transfer operator for a residual and is the sum of the residuals of cells to 

be merged into a coarser grid cell, i.e., 

   

kkk

k

k RqRQ 1       (2.34) 

 0

11 



  kk qq  gives the correction of the solution at the grid  1k which reduces the residual in 

the finer grid  k due to the forcing terms added in the coarse grid equation above. Finally, the 

correction is transferred back from the coarse grid  1k to the fine grid  k by 

  0

111 





  kk

k

kkk qqIqq      (2.35) 

where k

kI 1 is an interpolation (prolongation) operator for a correction. Simple injection is used 

for k

kI 1  in the present scheme. A multigrid cycle employed here is V-cycle in which the 

equations are first solved at the finest grid and the solution moves down to the coarsest grid 

with an update of a solution at each grid and the interpolation is used in the transfer of 

correction from the coarsest grid to the finest one. 

 

2.6. Turbulence models 

 

A turbulence model is essential for simulating high Reynolds number flows of 

practical interests. There exist a number of turbulence models. They range from simple 

algebraic models or one - or two equations model for the eddy viscosity concept to Reynolds 

stress models for the second order closure. However, no model has been proved to be 

universally applicable to general fluid engineering problems. In practice, a turbulence model 

must be selected based on the characteristics of a flow field of each problem. Ship flows, 
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particularly stern flows, are extremely complicated because they are essentially three 

dimensional separated flows with strong longitudinal vortices and free surface effects cannot 

be neglected in some cases. These extremely complicated ship flows are beyond the 

capability of most of existing turbulence models
5, 19)

.  

Since the original Spallart - Allmaras turbulence model is known to be relatively 

simple and yet produce reasonable predictions for ship flows, especially flows at bow and 

stern. To cope with this difficulty, SURF code has adapted a newly proposed evaluation of 

the vorticity component in production term and has obtained Modified Spalart – Allmaras 

turbulence model which has proven better than original model in simulation flow field at bow 

and stern
20)

. Therefore, in the present study, the Modified Spalart – Allmaras turbulence 

model is used to simulate free surface flow and analyze effects of transom shape on stern 

waves. The original Spallart - Allmaras turbulence model is a one equation model which 

solves a transport equation for a viscosity - like variable v~  and be described mathematically 

as follows
17)

: 

The eddy viscosity vt is defined by: 

v

v~
:,

C
f,fv~v
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vvt 
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 
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with v is the molecular viscosity, v~  is determined by solving the transport equation defined 

as following: 
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Here 

222 vf
d

v~
S
~


  ,

1

2
1

1
v

v
f

f





  

where ω is the magnitude of the vorticity, and d is the distance to the closet wall. The 

function fω is: 
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 The right hand terms of equation (2.36) represent the production, diffusion, 

destruction and trip. 

The subscript v stands for “viscous”. 

 The original Spalart - Allmaras turbulence model over-predicts the level of eddy 

viscosity in the core of a vortex and thus produce excessive diffusion. To reduce the eddy 

viscosity calculated from the original one, the vorticity component  is modified as follows: 

   S,minC 0  

where S  is the magnitude of the strain - rate tensor. The advantage of this formulation is that 

the eddy viscosity is reduced in the regions where the magnitude of the vorticity exceeds that 

of the strain rate, such as in the vortex core. On the other hands, the axial vortex correction is 

passive in thin shear layers where S  and    are very close. C is an arbitrary constant and set 

to 20 in SURF code
19)

.  

 In ULBS study, the Explicit Algebraic Reynolds Stress Model (EARSM) model
9)

 

which is based on the k –ω model
23) 

is used. Since separations are dominant in the flow fields 
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around an extremely blunt ship, it is considered that the higher-order models are better suited 

than the standard eddy viscosity models.  

 The Reynolds stress tensor ij
~  is given by the explicit algebraic relation of the 

average velocity fields as 
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where      2/xuxuS ijjiij   and      2/xuxuW ijjiij  . The nonlinear 

terms are within the brackets [] in equation (2.37). The component ij
~ terms are used to close 

the Reynolds averaged Navier-Stokes equations, as in reference
 21)

 for details. The kinematic 

eddy viscosity *
tv is given by 

1 KKCv **

t         (2.38) 

with  1 . Thus, 1 is equivalent to *C . The value of 1 is obtained from the 

solution to the following cubic equation at each point in the flow field: 
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 The correct root to choose from this equation is the root with the lowest real part.
 21)

 

Also, the degenerate case when 02  must be avoided. The current solution procedure 

used is as follows. 
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Otherwise, define 

32 /pqa         (2.44) 

 rpqpb 27932
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274 32 abd         (2.46) 

Then, if 0d  

 3
1

1 2 dbt         (2.47) 

 3
1

2 2 dbt         (2.48) 

   2233 21211 ttp,ttpmin   

If 0d , then 

 272 31 /abcos        (2.49) 

 33231 cosapt      (2.50) 

 3323232   cosapt    (2.51) 

 3343233   cosapt    (2.52) 

   3211 t,t,tmin      (2.53) 

 In the current implementation, the resulting   1*C is limited 

by  00050.,CmaxC **

  . The nominal level for *C in a zero-pressure-gradient log layer is 

approximately 0.09. 
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Other parameters are given by  
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and C 1=1.44 , C 2=1.83, 0
1C =3.4, 1

1C =1.8, C2=0.36, C3=1.25 and C4=0.4. 

For EARSM (K-ω), the explicit tensor representation for ij is coupled with the following K-

ω two-equation model: 
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where  
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and 2k ,      C2 , 410. , 5750. , 830. , and 8950.C  .Note that 

for two-dimensional incompressible flows 22 *tvP  is exact. In the current implementation, 

P in the K equation is limited to be less than 20 times the destruction term  Kf * . The 

function *f from Wilcox
 22)

 improves the performance of the K-ω model for two-

dimensional shear layers, wakes, and jets and is given as follows. 

When 0k : 

*f =1       (2.66) 

When 0k : 
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where the 2

C term in the formula for k is necessary because ω in the current model does not 

absorb C as in Wilcox’s model. The boundary conditions applied at solid walls are 

0K and     2
610 n/v    , where n is the distance to the first cell center away 

from the wall. The boundary condition for  is from Menter. 
23)

 This boundary condition 

simulates the analytical behavior of  near solid walls without the need for specifying the 

solution at interior points. 
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2.7 Boundary Conditions 

 

 The free surface conditions, both dynamic and kinematic conditions are implemented 

in the scheme as follows. Since both the stress of air and surface tension of wave are 

neglected, the dynamic condition becomes no stress on the free surface. Due to the zero 

tangential stress condition, the viscous flux Fv vanishes on a free surface and the velocity 

boundary condition on a free surface can be approximated to be zero-gradient extrapolation. 

The condition for zero normal stress on a free surface gives the Dirichlet condition for 

pressure on a free surface as 2

nFh where h is a wave height and the atmospheric pressure is 

set to be zero. 

 The kinematic condition is used to update a free surface height. In the present scheme, 

the condition with use of the wave damping method, is formulated based on the mass 

conservation considerations 
15)

 as    
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where SFS is an area vector of a cell interface, FSu  is a fluid velocity and FSn  is a unit vector 

whose direction is along a grid line in the girth direction on a free-surface. Here W(x, y) is a 

weight function defined as  
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where dx , dy  is the coordinate from which the damping region starts and 0x ,  0y  is the 

location of outflow and side boundary. A is the parameter which controls the intensity of 

damping, with a typical value of 100. Equation (2.69) is discretized by a finite-volume 

method at the grid node point with the first order accurate backward Euler formula in time 

and the third order accurate upwind differencing for other terms. Temporal discretization of 
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equation (2.69) is conducted in a similar way as the flow equations and also the same multi-

grid strategy is used for convergence acceleration. After the wave height is computed, the 

computational grid is re-generated from the reference grid by the spline interpolation along 

the grid line in the girth direction at each time step. 

 The discrete boundary conditions are summarized in Table. 2.1. Note that the outflow 

and outer (side) boundary conditions for a wave height is to give the value of zero and a wave 

height in the region close to a body and symmetry plane, is extrapolated from the outside in 

order to avoid the singularity at the contact line between a free- surface and a solid body. 

 

Table 2.1  Boundary conditions. 

boundary (u, v, w, vt) p h 

inflow (1, 0, 0, 0) zero gradient 0 

outflow zero gradient 0 0 

outer zero gradient zero gradient 0 

symmetry plane symmetry symmetry zero gradient 

body (0, 0, 0, 0) zero gradient zero gradient 

free-surface zero gradient 2Frh   - 
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Chapter 3 

Experimental and computational visualization of total resistance 

and flow field around Box-shaped Ships  

 

3.1. Ship Models and Flow Conditions 

 

 As mentioned earlier, box-shaped ships is used for the present study, as an extreme 

case of ULBS. Ohashi et al.
16)

 conducted a series of model tests to investigate resistance 

characteristics of floating boxes like box-shaped caissons or pontoons. From the results of 

this systematic experiment, the effects of L/B, B/d, initial trim and size of round corners and 

so forth upon the resistance of the floating boxes have been clarified. 

Table 3.1 Principal particulars of box Shapes 

Box A B 

LPP(m) 5 5 

B(m) 1.05 1.05 

d(m) 0.35 0.1868 

 (m) 1.8375 0.9807 

LPP/B 4.76 4.76 

B/d 3 5.62 

Fr( -based) 0.1 0.25 0.3 0.35 0.1 0.25 0.3 0.35 

Fr(LPP-based) 0.0495 0.1237 0.1485 0.1732 0.0892 0.1114 0.1337 0.1560 

Rex10
6
 1.53 3.82 4.59 5.35 2.85 3.56 4.27 4.98 

Velocity(U) 0.3465 0.8661 1.0394 1.2126 0.6241 0.7801 0.9361 1.0921 

 

From the various test cases, the principal particulars of box shape A and B with 

different B/d ratio are selected based on the similarity of particulars of ULBS. The principal 



29 

 

particulars and flow conditions are listed in Table 3.1. The box shapes A and B have the same 

length and breadth, while the draft of Box A is approximately twice of that of Box B. The 

effect of breadth-draft ratios B/d upon resistance and flow field is investigated by means of 

numerical simulations. 

In order to compare the computational results, the following non-dimensional form is 

adopted for total resistance, 

23
2

21 U

R
C T

t





       (3.1) 

where 

RT: total resistance (kg) 

 : density of water (kg.sec
2
.m

-4
) 

 : displacement (m
3
) 

U: flow velocity (m.sec
-1

) 

The Froude number range is set based on the values of displacement-based F  which is 

defined as 

3
1





g

U
F        (3.2) 

Whereas the length-based Froude number, Fr is defined as 

pp

r
gL

U
F         (3.3) 

Also Reynolds numbers are estimated based on water temperature of the experimental data as 

follows in order to compare results in the same condition as the experiment. 

v

UL
Re

pp
        (3.4) 
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L=length 

b= half breath 

d=draft 

f=freeboard 

rf=distance from bow to inflow 

ra=distance from bow to outflow 

ry=distance from side wall  

to outer boundary 

Figure 3.1 Grid parameters 

 

The computational grids are generated based on the block-structured topology. 

Parameters for grids are shown in Figure 3.1. The outer grid block is O-O topology and the 

inner block is H-O topology. The outer block which contains the side wall of the box has O-O 

topology with (nx) x (nz) x (ndivr) cells. The inner block which contains the front and black 

walls together with the bottom wall of the box has H-O topology with (nx) x (2nz) x (ndivr) 

cells. Where the nx, ny, nz are number of cells on the box walls in x, y and z directions, and 

ndivr is cell number from wall to outer boundary, respectively. The number of cells for ship 

A and B are listed in Table 3.2. Note that only the half domain is discretized due to symmetry 

of geometry. Partial views of computational grids for each case are shown in Figure 3.2. 

Table 3.2 Number of grid cells 

 O-O Topology H-O Topology  

 nx nz ndivr nx 2xnz ndivr Cells 

Box A 80 96 128 80 2x96 128 1,679,360 

Box B 80 56 128 80 2x56 128 1,064,960 
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Figure 3. 2 Partial View of unstructured grids around the stern of the Box Shape. Box A 

(Left) and Box B (Right). 

 

3.2 Verification and validation 

 

 The verification and validation procedure for the present results are also performed in 

this study. In order to validate the computational method against experimental results, the 

uncertainty related to the computational method is estimated. When the numerical uncertainty 

is known, the validation can be conducted by means of comparison with experimental data. 

Verification is defined as the process of a determining that a model implementation 

accurately represents the developer’s conceptual description of the model and the solution to 

the model 
11)

.The simulation error  S is defined as the difference between a simulation results 

S and the truth T and is composed of additive modeling  SM and numerical  SN error. For 

certain conditions, both the sign and magnitude of the numerical error can be estimated as 

SN

*

SNSN    where *

SN  is an estimate of the sign and magnitude of δSN; and SN is the 

error in that estimate. The simulation value is corrected to provide a numerical benchmark 

SC, which is defined as 
12)

: 

*

SNC SS        (3.5) 

For the uncorrected simulation approach, numerical error is decomposed into contributions 

from iteration number δI, grid size δG, time step δT and other parameters δP, which gives the 

following expression for simulation numerical uncertainty: 
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22222

PTGISN UUUUU      (3.6) 

For the corrected simulation approach, the solution is corrected to produce a numerical 

benchmark SC and the estimated simulation numerical error *

SN and corrected uncertainty 

NSC
U  are given by: 

*

P

*

T

*

G

*

I

*

SN       (3.7) 

22222

CCCCC PTGINS UUUUU      (3.8) 

Iterative and parameter convergence studies are conducted using multiple solutions with 

systematic parameter refinement by varying the i
th

 input parameter  xi while holding all other 

parameters constant. Convergence study requires a minimum of m = 3 solution to evaluate 

convergence with respect to input parameter. 

The grid uncertainty, UG, is estimated based on three symmetrically refined grids. The 

procedure is in accordance with the Recommendation of ITTC 
11), 12)

.  

The changes in solution between coarse and medium grids,
2332

SSG   and between 

medium and fine grids, 1221
SSG   are used to calculate the convergence 

ratio
3221 GGGR  , where S1, S2, S3 are solutions of fine, medium and coarse grid. 

Depending on the value of RG three conditions can occur:  

(i) 0 <RG < 1, monotonic convergence, 

(ii) RG < 0, oscillatory convergence, 

(iii) 1 < RG, grid divergence. 

 In condition (iii) no uncertainty can be estimated. In condition (ii) the uncertainty is 

estimated by  

)SS(U LUG 
2

1       (3.9) 
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where SU  and SL are the maximum and minimum of the solutions from the considered grids. 

In condition (i) grid convergence occurs and generalized Richardson extrapolation (RE) is 

used to estimate the grid error )*(

REG

1

1
 and the order of accuracy PG, which are given as 

1

21
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1
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GG P

G

G)(*
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r
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       (3.10) 

and 

)rln(

)ln(
P
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3221


      (3.11) 

2312 GGGGG xxxxr    is the refinement factor, which defines the relation between the 

considered grids. When )*(

REG

1

1
 and PG are known it is possible to estimate the grid uncertainty. 

There are two ways to do this depending on whether the solutions are close to the asymptotic 

range or not. If the correction factor defined by 
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C       (3.12) 

where PGest is the limiting or theoretical accuracy of the applied numerical method, is close to 

unity, the solution are closed to the asymptotic range. The numerical error, *

SN , benchmark, 

SC and uncertainty , UGC can be calculated from 

)*(

REG

*

SN G
C 1

1
        (3.13) 

*

SNC SS        (3.14) 

)*(

REGG GC
CU 1

1
1       (3.15) 

If the correction factor is away from unity only the numerical uncertainty is calculated 

)*(

REGG G
)C(U 1

1
112      (3.16) 

 

3.3 Validation 

 

Validation is defined as a process for assessing simulation modeling uncertainty USM 

by using benchmark experimental data and when conditions permit, estimating the sign and 
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magnitude of the modeling error  SM itself. The comparison error E is given by the difference 

in the data D and simulation S values 
12)

: 

)(SDE SNSMD      (3.17)   

Modeling errors  SM can be decomposed into modeling assumptions and use of previous data. 

To determine if validation has been achieved, E is compared to the validation uncertainty UV 

given by: 

222

SNDV UUU       (3.18) 

If |E| < UV, the combination of all errors in D and S is smaller than UV and validation is 

achieved at the UV level. If EUV  , the sign and magnitude of SME  can be used to make 

modeling improvements. For the corrected simulation, equations equivalent to (3.17), (3.18) 

are: 

)(SDE SNSMDC       (3.19) 

22222

NSDSMEV CCC
UUUUU      (3.20) 

 When the numerical uncertainty is known, the validation can be conducted by means 

of comparison with experimental data. In order to determine if validation is obtained the 

comparison error E=D-S (D and S are experimental and computed values, respectively) and 

the validation uncertainty 222

SNDV UUU  (UD is the data uncertainty), must be determined. In 

unsteady cases, the numerical uncertainty is evaluated by 222

GISN UUU  . When these 

quantities are known, validation at the UV level is achieved if the combination of the errors in 

D and S is smaller than the validation uncertainty, i.e.  when VUE  .   

 Table 3.2 shows the total resistance coefficients Ct obtained with the three 

systematically refined grids of the Box A. Table 3.3 shows similar data of the Box B. The 

results of verification are shown in Table 3.4. The refinement ratio used for the grid 

convergence is 2Gr  as stated above. For the Box A, RG is estimated to -0.193 which 

shows the oscillatory convergence, while RG=0.171 in the Box B shows the monotonic 

convergence. 
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 In case of the box A, the grid uncertainty UG is estimated from Equation (3.16) as 

1.06% of S1 (the fine grid solution). In case of the Box B, the further analysis is possible as 

shown in Table 3.5 and the grid uncertainty is estimated as 0.747% of S1. Since the correction 

factor is 4.86 and away from unity, only the grid uncertainty UG is estimated from Equation 

(3.9). 

 In order to conduct the validation, the experimental uncertainty UD is required. 

However, since UD is not available for the present case, only the comparison error are 

estimated as -5.62%D for Box A and 1.48%D for Box B. 

 

Table 3.3 Grid convergence study of total resistance Ct (x10
-2

) for Box A, F  =0.25 

Box A Coarse   3 Medium 2 Fine 1 Experiment 

Cell No. 209,920 636,416 1,679,360 - 

Ct 

  

1.483 

 

1.4524 

+1.71% 

1.4577 

-0.41% 

1.38 

% of finer grid value 

 

 

Table 3.4 Grid convergence study of total resistance Ct (x10
-2

) for Box B, F  =0.25 

Box B Coarse   3 Medium 2 Fine 1 Experiment 

Cell No. 133,120 388,608 1,064,960 - 

Ct 

  

0.8647 

 

0.8442 

+2.85% 

0.8407 

+0.42% 

0.888 

% of finer grid value 
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Table 3.5 Verification of total resistance Ct for Box A and Box B, F  =0.25 

 

Box 

GR
 GP

 
GC  GU  

%S1 

*
G  

%S1 

CGU
 

%S1 

CS  

A -0.193 - - 1.06 - - - 

B 0.171 5.10 4.86 0.73 0.41 0.65 8.37E-03 

 

Table 3.6 Validation of total resistance Ct for Box A and Box B, F  =0.25 

 E%=(D-S)x100/D 

Ct 

 

Box A 5.62 

Box B 4.89 

   

 

3.4 Comparison of total resistance coefficient 

 

Figure 3.3 shows the comparison of total resistance coefficient between CFD and 

experimental results. The resistance coefficient of Box A is higher than that of Box B due to 

the larger draft. From a quantitative point of view the calculated resistance is over-predicted 

with 5.62% (average of all speeds) in Box A and under-predicted with 4.89 % in Box B 

which is the same tendency of the comparison errors at F  =0.25. Although the reason for 

over-prediction in Box A and under-prediction in Box B is not known, it may be related to 

modeling uncertainty associated with turbulence modeling. However, the tendency of the 

slope of the resistance curves is well reproduced by the computations. The error bars show 

the grid uncertainty of 1.06% in Box A and 0.747% in Box B. 
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Figure 3.3 Comparisons of total resistance coefficients between CFD and Experimental 

results for Box A and Box B. 

 

 Figure 3.4 shows the comparison of wave profiles along the center plane and the side 

wall of Box A and Box B. The bow wave exhibit the peak on the front face followed by the 

trough at the fore corner. The trough appears again in the aft corner and stern wave is 

generated behind the box. This tendency is common for all Froude numbers, although the 

maximum wave height at the bow is only 0.5% of the draft and no significant waves are 

observed at F  =0.1. The maximum and minimum amplitudes of waves become larger with 

increasing Froude number. Also, the wave amplitudes in Box B are lower than in Box A 

because the draft of Box B is about half of Box A. 

 In Figure 3.5, pressure distributions on the center plane and the side wall of the boxes 

are shown. With respect to the pressure field, high pressure regions near the bow due to 

stagnation are observed. It seems the extent of the high pressure regions afore of the front 

face is larger in Box A which has the deeper draft than Box B. In the side wall aft of the 

corner, pressure decreases which corresponds to the wave trough in Figure 3.4. Further 

downstream, pressure becomes almost constant since the side wall is flat there. The pressure 

distributions do not show large differences for the same box shape regardless of the Froude 

numbers. 
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Figure 3.4 Comparison of wave profiles between Box A and Box B at the same Froude 

numbers F  =0.1, 0.25, 0.3 and 0.35 (from top left to right bottom). 
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Figure 3.5 Pressure distributions and velocity contour line at the center plane near the bottom 

of the Box A (Left) and Box B (Right), (From top to bottom, F  =0.1, F  =0.25, F  =0.3 and 

F  =0.35). 
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Figure 3.6 Velocity distributions and streamlines on the free surface of the Box A (Left) and 

Box B (Right), (From top to bottom, F  =0.1, F  =0.25, F  =0.3 and F  =0.35). 

 

 Figure 3.6 shows u, velocity distributions in the x- direction, at the center plane and 

the side wall of the boxes. The velocity u on the side wall of the boxes is zero because of no 

slip condition. The separation occurs under the bottom of the bow due to the sharp corner of 

the boxes. The velocity distributions in the bottom of Box A and Box B show similar 

tendency and the separation on the bottom is followed by the boundary layer evolution and 

these are not dependent on Froude numbers or draft of the boxes. On the other hand, flow 

fields behind the stern end show differences between Boxes A and B. It seems the separation 

is stronger in Box A than in Box B and again it may be attributed to the difference of the 

draft. 
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Figure 3.7 Wave height near the bow of the Box A (Left) and Box B (Right), (From top to 

bottom, F  =0.1, F  =0.25, F  =0.3 and F  =0.35). 
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Figure 3.8 Velocity distributions and streamlines on the free surface of the Box A (Left) and 

Box B (Right), (From top to bottom, F  =0.1, F  =0.25, F  =0.3 and F  =0.35). 
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 Figure 3.8 shows velocity distributions and streamlines on the free surface around the 

boxes. The flow separations can be seen behind the fore corners on the side of the boxes and 

its length is longer in Box A than in Box B, which corresponds to the extents of low pressure 

zone in Figure 3.6. The separation regions behind the stern are stronger in Box A than in Box 

B. It is the same tendency as the velocity in the center plane in Figure 3.7. 

 Figure 3.9 shows streamlines plot of Box A for F =0.3. It is clear that the streamlines 

around the bow of the bluff body are really complicated. Therefore the modify advance 

turbulence model should be used to capture the complicated flow features. 

 

 

Figure 3.9 Streamlines plot of Box A for F =0.3. 

 

  

 

 



46 

 

Chapter 4 

Experimental and computational visualization of total resistance 

and flow field around ULBS  

 

4.1. Model tests of ULBS 

 

 A schematic plan of ULBS suggested in Yokohama National University is shown in 

Figure 4.1. For the practical goal of ULBS, various new ideas should be introduced to reduce 

fluid resistance and to improve propulsive performance as shown in Figure 4.1. In this paper, 

as one of the investigations for ULBS, the verification of total resistance and the comparison 

of flow fields around ULBS with and without a stern tunnel are discussed.  

 

 

Figure 4. 1 Schematic plan of ULBS. 
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Figure 4. 2 Prismatic curve of ULBS. 

  

4.2 Formulation for model ship 

 

 To correlate the experimental and computational results, the formulations of ULBS 

models are defined as follows. Symbols used in these formulations are given in Figure 4.3. 

The model ship is formulated by using the following procedure.   
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Figure 4. 3 Water plane of tested model ship 

 

 

 

 

 

  

 

 

 

Figure 4. 4 Cross section of tested model ship 
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The Midship section coefficient, 

   

 

 
bd

R

bd

Rbd
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/RRbRRdb
CM

4

4
1

4
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                       (4.1) 

Displacement of model, 

 

 
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


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              (4.2) 

Block coefficient of the model, 

 
L

C
aC

LBd
C

M
M

b

4

4






                                   (4.3) 

From equation (4.3), the length of elliptic section for the model ship, 

 
 



4

4

M

bM

C

CCL
a                                        (4.4) 

The maximum half breadth in the elliptic section of the hull, 

 

2

2 2

1
1 








 a

L
x

a
bbi                                     (4.5) 

The half breadth at Midship, sinRRbyb   

   
 sin1 Rb                           (4.6) 

And the half breadth at the elliptic section,  
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4.3 Experiment and Computational Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5 Model ship (top) and Stern tunnel shape (bottom) (Experimental Conditions) 
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Figure 4.6 Model ship, “Bare Hull” (left) and “Stern Tunnel” (right) 

 

For the study of the verification of total resistance and the comparison of velocity 

profiles, the bare hull (Cb=0.956) and the hull with stern tunnel (Cb=0.972) are considered for 

which the experiment was carried out by Matsunaga.  

 Ship hull forms used in this study are conceived as a typical ULBS (Ultra Large 

Block coefficient Ship) hull using mathematical formulations. Two ship models are 

considered. One is called “Bare Hull” hereafter and its waterline at bow is expressed as a 

semi-ellipse followed by the parallel part which continues to the aft-end. Frame lines are 

wall-sided with a bilge circle at the bottom. The other is called “Stern Tunnel” which is based 

on “Bare Hull” and a stern tunnel is attached in the aft part. The width and the depth of a 

tunnel is 1/3 of breadth B and 1/2 of the draft d. Tunnel has a wedge-shape with its length of 

1/5 of Lpp. “Bare Hull” and “Stern Tunnel” shapes are shown in Figure 4.5 and Figure 4.6. 

The principal particulars are tabulated in Table 4.1. 
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Table4. 1 Principal Particulars of model ships 

Bare Hull Stern Tunnel

Breadth (B/Lpp) 0.2

Draft (d/Lpp) 0.067

Reynolds number Re 8.4 × 105

Froude number Fr 0.15

Wetted surface area S/(Lpp x Lpp) 0.318 0.3244

Block coefficient Cb 0.972 0.956

Turbulence Model EARSM (Explicit Algebraic Reynolds Stress 

Model ) Unsteady

Flow Solver SURF( Solution algorithm for Unstructured 
RANS with FVM)

 

In order to compare the computational results, the following non-dimensional form is 

adopted of total resistance based on the length of ship Lpp, 

2221 PP

T
t

LU

R
C


         (4.8) 

where, 

Rt: total resistance (kg) 

 : density of water (kg.sec
2
.m

-4
) 

Lpp: ship length (m) 

U: flow velocity (m.sec
-1

) 

The Froude number is set based on the values of length-based  rF  which is defined as 

PP

r
gL

U
F        (4.9) 
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Also Reynolds numbers are estimated based on water temperature of the experimental data in 

order to compare results in the same condition as the experiment. 

v

UL
Re

PP

       (4.10) 

 Experiments were carried out in the circulating water channel (its measuring section is 

2.5m (length) x 1.2m (width) x 0.6m (water depth)) of Yokohama National University with 

ship models of Lpp=1.5m. Reynolds number Re and Froude number Fr of the computations 

are set to be the same as in the experimental condition, which are Re = 8.4 x10
5 

and Fr = 

0.15. 

 The computational grids are generated using the commercial grid generation software 

Gridgen (Pointwise, Inc.), which creates non-overlapping patched multi-block boundaries. 

Grids for “Bare Hull” and “Stern Tunnel” are designed to have the same properties as much 

as possible in order to minimize the effects of grid differences. Computational domain is 

similar to a quarter of an ellipsoid with -2 ≤ x/Lpp ≤ 2.6, -2 ≤ y/Lpp and -2 ≤ z/Lpp ≤0.05, 

while a ship is located -0.5 ≤ x/Lpp ≤ 0:5. Only the port side is discretized due to symmetry. 

Each grid consists of 8 structured grid blocks and a total number of cells are 4,579,328. 

Figure 4.7 and Figure 4.8 shows the partial views of the computational grids of “Bare Hull” 

and “Stern Tunnel”. Note that the bow grids are identical for both models. 
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Figure 4. 7 Partial View of unstructured grids around Bare Hull, Bow mesh (Left) and stern 

mesh (Right), Coarse, Medium, and Fine (From top to bottom). 

 

 Computational are performed using the unsteady flow mode of the solver with the 

dual time stepping and non-dimensional time step deltat=0.002 is used for the physical time 

marching. 
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Figure 4. 8 Partial View of unstructured grids around Stern Tunnel, Bow mesh (Left) and 

stern mesh (Right), Coarse, Medium, and Fine (From top to bottom). 
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 The six boundaries of the computational domain are the following: the inlet boundary: 

the outlet boundary; the external boundary is a circular or elliptical cylinder with the axis at 

the water line and 2Lpp radius; the remaining boundaries are the ship surface, the symmetric 

plane of the ship and the undisturbed water surface.  

 The grid is clustered near the ship hull, the free-surface and the symmetry plane. The 

origin 0 is located at mid-ship on the undisturbed water surface. The x-axis is positive 

towards the stern, the y-axis is positive towards the starboard side and the z-axis is positive 

upwards. The ship is moving at constant forward speed in calm water and the hull is held 

fixed in space. The computation was done in unsteady mode to ensure the stability in solution 

procedure.  

Although the averaged minimum spacing near the ship hull is 1.0×10
-5

 and 

sufficiently small for resolving the boundary layer on a hull surface. The turbulence model 

used is EARSM model and flow fields are assumed to be fully turbulent. The computational 

grid was generated using the commercial code GRIDGEN (Pointwise, Inc.), which creates 

non-overlapping patched multi-block boundaries. Two grids are prepared; one for the bare 

hull and the other is a hull stern tunnel. Both grids are based on multi-block structured grids 

covering only the port side of a domain assuming y-symmetry. 

 The computational grids are generated based on the block-structured topology. Firstly 

the hull with stern tunnel is produced. The bare hull grid was produced by removing the stern 

tunnel block. The total grid system consists of 8 blocks. The total number of grid points and 

the total resistance coefficients Ct obtained with the three systematically refined grids of the 

bare hull and hull with stern tunnel are given in Table 4.8. Note that only the half domain is 

discretized due to symmetry of geometry. Three grids (Fine, medium and coarse) are used for 

Fr =0.15 case to help estimating the discretization errors with refinement factor of 2 . The 

generated grids are converted to a structured and computed by using SURF. 
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4.4  Verification of Numerical Results 

 

 In order to verify the computational method against experimental results, the 

uncertainty related to the computational method is estimated. The grid uncertainty, UG, for the 

total resistance coefficient 
2221 PP

T
t

LU

R
C


 where Rt is the total resistance is estimated 

using three systematically refined grids. The procedures estimated based on three 

symmetrically refined grids. The procedure is in accordance with the Recommendation of 

ITTC 
11), 12)

 as in Box Ship. 

 The computed results of time-averaged resistance values of Ct using three grids are 

shown in Table 4.2 and resulting grid uncertainty is shown in Table 4.3.  

 The grid refinement ratio used for the grid convergence is 2Gr as stated early. 

Thus, the cell numbers are 4,579,328 for the fine grids shown in Figure 4.7 and Figure 4.8, 

and 1,642,004 for the medium grids and 572,416 for the coarse grids. For the bare hull, RG is 

estimated to 0.166 which shows the monotonic convergence, while RG=-0.134 in the stern 

tunnel case shows the oscillatory convergence. 

 

Table4. 2 Grid convergence study of total resistance Ct (x10
-3

) for Stern Tunnel, Fr=0.15         

  Coarse S3 Medium S2 Fine S1 Experiment 

 Cell 

No. 572,416 1,642,004 4,579,328 

- 

Bare Hull 

 

Ct 

  

5.5863 

 

5.2069 

-6.84% 

5.1455 

-1.17% 

5.93 

Stern 

Tunnel 

Ct 

  

5.7226 

 

5.4782 

-4.27% 

5.5109 

0.60% 

5.87 

% of finer grid value 
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Table4. 3 Verification of total resistance Ct for two model ship, Fr =0.15 

 

Ship 
GR  GP  GC  GU  

%S1 

*
G  

%S1 

CGU  

%S1 

CS  
10

-3
 

Bare 

hull 

0.166   5.18 5.01 2.20 1.25 0.997 5.08 

Tunnel -0.134 - - 2.22 - - 5.54 

 

Table4. 4 Validation of total resistance Ct for two model ship, Fr =0.15 

Ship E%=(D-S)x100/D 

Ct Bare hull 13.0 

 Stern Tunnel 6.12 

  

 In case of the stern tunnel, the grid uncertainty UG is estimated as 2.22% of S1 (the 

fine grid solution). In case of the Bare Hull, the further analysis is possible as shown in Table 

3, and the grid uncertainty is estimated as 2.25% of S1. Since the correction factor is 5.01 and 

away from unity, only the grid uncertainty UG is estimated. In Table 3, the corrected grid 

uncertainty and related quantities are also shown for reference. 

 Although the uncertainty levels are reasonably low, Ct of “Stern Tunnel” is larger 

than “Bare Hull” and this trend is opposite to that of the measurement shown in Table 4.2. 

Although the uncertainty levels are reasonably low for both cases, Ct of “Stern Tunnel” is 

larger than “Bare Hull” and this trend is opposite to that of the measurement shown in Table 

2. In the experiment, the models with 1.5m Lpp are used in the circulating water channel at 

Yokohama National University. The resistance is measured with the load cell with the 

capacity of 20 N and its accuracy is given as 0.2% of full scale. Since the uncertainty of the 

measurement is not available, the validation of the results is not performed. 

 The validation of total resistance Ct for two model ship is shown in Table 4.4. In order 

to conduct the validation, the experimental uncertainty UD is required. However, since UD is 

not available for the present case, only the comparison errors are estimated as 13.0%D for 

Bare Hull and 6.12 %D for Stern Tunnel. 
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4.5 Comparison of total resistance coefficients 

 

Table4. 5 Computed resistance components (x10
-3

, 2

ppL - base) 

Ship Total resistance 

coefficient Ct 

Pressure resistance 

coefficient Cp 

Frictional resistance 

coefficient Cf 

Bare Hull 5.14 4.22 0.93 

Stern Tunnel 5.51 4.56 0.95 

 

  

Figure 4. 9 Computed hull surface pressure distributions at the stern, “Bare Hull” (left) and 

“Stern Tunnel” (right). 
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Figure 4. 10 Comparison of total resistance coefficients between CFD and experimental 

results for Bare Hull and Stern Tunnel. 

 

 Figure 4.10 shows the comparison of total resistance coefficient between CFD and 

experiment results. In experiment, the total resistance coefficient of stern tunnel is smaller 

than the bare hull, but in computational cases, the total resistance of the stern tunnel is higher 

than bare hull. In computational case, the stern tunnel cannot reduce total resistance 

coefficient as in Experiment. It may be related to modeling uncertainty associated with 

turbulence modeling or insufficient grid numbers. From a quantitative point of view the 

calculated resistance is under-predicted with 13% (average of all speeds) in Bare Hull and 

under-predicted with 6.12% in Stern Tunnel which is the same tendency of the comparison 

errors above. However, the tendency of the slope of the resistance curves is well reproduced 

by the computations. The error bars show the grid uncertainty of 2.25% in bare hull cases and 

1.06% in stern tunnel cases.  

 The computed resistance components are shown in Table 4.5. The main difference 

comes from pressure resistance. Increase of pressure resistance in “Stern Tunnel” can be 

verified by the hull surface pressure distributions in the stern shown in Figure 4.9, since the 
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fore part of the hulls are identical for both hulls. With the presence of a stern tunnel, flow 

inside the tunnel is accelerated as discussed in the following section and thus pressure 

decreases. Thus, the relatively higher pressure zone near the center on “Bare Hull” disappears 

in “Stern Tunnel”. Thus, larger resistance in “Stern Tunnel” seems to be consistent with flow 

fields. A possible reason for this opposite prediction of resistance trend is numerical 

modeling errors of the current turbulence models for massively separated flows. Further 

investigations are required both in simulations and measurements to clarify the reasons of this 

discrepancy. 
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Chapter 5 

Visualization of Flow Field around ULBS 

 

5.1 Effect of turbulence model 

 

Figure 5. 1 Streamlines with u velocity contours around the bow bottom on the vertical center 

plane: k -ω SST (top left), EARSM (top right) and visualization in the experiment (bottom). 
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In order to examine the effect of turbulence models on flow fields, comparison are 

made between the results with EARSM and the conventional eddy viscosity model (k-ω SST 

model11)). Figure 5.1 shows the streamlines with contours of u (velocity in x-direction) on 

the center plane around the bow bottom together with the visualization of the flow field in 

the experiment. In k－ω case, only one vortex is observed under the bottom, while in 

EARSM case multiple vortexes with small scale are captured, which is closer to the 

visualization result in the experiment. It is evident that EARSM turbulence model can 

reproduce detailed flow features compared with the k－ω SST model. Therefore EARSM 

model will be used in this study with the anticipation that separated flows in stern regions can 

be predicted better. 

 

5.2 Isosurfaces of second invariant of the velocity gradient, Q 

 

 The Q-criterion 
14)

 is used to identify the coherent vortical structures. The rate of 

strain tensor Sij and the vorticity tensors Wij are defined as  

     2/xuxuS ijjiij             (5.1) 

     2/xuxuW ijjiij             (5.2) 

The 2nd-invariant of the rate of deformation tensor Q is defined by Equations 5.1 and 5.2 as 

 22

2

1
ijij SWQ                       (5.3) 

If Q is positive, the Euclidean norm of vorticity tensor dominates the rate of strain which 

evidences the rotation of the flow. It has been found that technique of isosurfaces of second 

invariant of velocity gradient tensor Q defined in Equations 5.3 is superior for identifying 

coherent structures to the technique of isosurface of vorticity. If Q is positive, the Euclidean 

norm of vorticity tensor dominates the rate of strain which evidences the rotation of the flow.  
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 The isosurface vorticity of Q=5 which are coloured with velocity magnitudes are 

shown in the following figures. And streamlines are used to visualize separations and re-

attachments around the bow and behind the stern. 

 

5.3 Flow field around the bow 

 

Figure 5. 2 Isosurfaces of second invariant of velocity gradient tensor Q=5 with velocity 

contour around the bow (Bottom view) (Left), and Flow field the bow at the center plane 

(Experiment) (Right).  

 

 Figure 5.2 shows the magnified view of the bow part of “Stern Tunnel”, where a 

series of vortex structures shedding from the bow are observed and this is consistent with 

streamlines shown in Experiment. This feature in the bow is common between two hulls 

because of the same grid of the block of bow. The separation near the bottom of the bow is 

followed by the boundary layer evolution. 
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5.4 Flow field overview around the hull 

 

Figure 5.3 shows the bottom views of the vortical flow fields for “Bare Hull” and 

“Stern Tunnel”. In the plot, iso-surfaces of the second invariant of the velocity gradient Q = 5 

are shown. The flow fields around the bow of “Bare Hull” and “Stern Tunnel” are essentially 

identical because of the same geometry of the fore part. Small discrepancies come from the 

fact that flows are unsteady and fluctuating slightly.  

Figure 5. 3 Overview of Isosurfaces of second variant of velocity Q=5 with velocity contour 

around the hull, “Bare Hull” (Left) and “Stern Tunnel” (Right). 

 

Figure 5.4 shows u, velocity distributions in the x- directions at the center plane near 

the bottom of the bow and the end of the stern. A series of vortexes occurs near the bottom of 

the bow after passing through the corner of the bow. The velocity distributions in the bottom 

of “Bare Hull” and “Stern Tunnel” show similar tendency because of the same block of the 

bow, and the separation on the bottom of the bow is followed by the boundary layer 

evolution. The separations occur after passing the bluff body of the stern. The separation near 

the stern end is stronger in the “Bare Hull” case than “Stern Tunnel” case. It seems the 

separation near the stern end depends on the shape of the stern, and the presence of “Stern 

Tunnel” can reduce the flow separations. 
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Figure 5. 4 Overview of velocity contour around the hull, “Bare Hull” (Left) and “Stern 

Tunnel” (Right). 

 

Figure 5. 5 Velocity distributions on the free surface of ULBS, “Bare Hull” (Left) and “Stern 

Tunnel” (Right). 

 

Figure 5.5 illustrates the velocity distributions, u, on the free surface. After passing 

through the bow, the velocity becomes higher because of the smooth flow around the curve 

shape of the bow. After passing through the bluff body of the stern the velocity becomes 

drops and a central recirculation region occurs at the center plane of the bare hull. In “Stern 

Tunnel” cases, a corner recirculation region occurs behind the end corner of “Stern Tunnel”.  
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5.5 Flow structures behind the stern 

  

 Figure 5.6 shows iso-surfaces of second variant of velocity Q=5 with velocity contour 

around the stern. The flow fields in the stern show significant differences between two hulls 

and “Stern Tunnel” hull generates more complicated flows than “Bare Hull”. Stern of “Bare 

Hull” has a simple shape with continuing parallel part and the vortices shed at the edges of 

the stern. On the other hand, in case of “Stern Tunnel”, vortices are generated on the walls of 

the tunnel in addition to the stern edges of the hull. 

  

Figure 5. 6 Isosurfaces of second variant of velocity Q=5 with velocity contour around the 

stern (From bottom view), “Bare Hull” (Left) and “Stern Tunnel” (Right). 
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Figure 5. 7 Sketches of the flow structures behind the stern, “Bare Hull” (Left) and “Stern 

Tunnel” (Right). 

 

  Sketches of the flow structures behind the stern are shown in Figure 5.7. The 

following terms are defined to discuss the flow structures behind the stern: 

HSV     Vortex generated at the side 

(Hull Side Vortex)   edge of a main hull 

HBV     Vortex generated at the bottom 

(Hull Bottom Vortex)   edge of a main hull 

TSV     Vortex generated at the side 

(Tunnel Side Vortex)   edge of a tunnel 

TBV     Vortex generated at the bottom 

(Tunnel Bottom Vortex)  edge of a tunnel 

In case of “Bare Hull”, two vortex structures, HSV and HBV, are dominant, while four 

structures, HSV, HBV, TSV and TBV, are present in “Stern Tunnel” and flow field becomes 

more complicated. 
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 Figure 5.8 depicts the iso-surfaces of the vorticity magnitude =20 behind the stern. In 

“Bare Hull” case, it is visible that the vortex comes from the side of the transom stern (HSV) 

and the vortex comes from the bottom of transom stern (HBV). In “Stern Tunnel” case, the 

side vortex comes from   main transom stern (HSV) and the vortex comes from the bottom of 

stern tunnel part (TBV) followed long vortex further downstream are visible. The intensity of 

vortex in “Bare Hull” HSV is higher than that of “Stern Tunnel”. These iso-surfaces show the 

basic structures sketched in Figure 5.7, although (HBV) in “Stern Tunnel” is behind the 

(TSV) and can hardly be seen.  

 

  

Figure 5. 8 Overview of Iso-surfaces of second variant of velocity Q=5 with velocity contour 

behind the stern from the top view, “Bare Hull” (Left) and “Stern Tunnel” (Right). 
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Figure 5. 9 Velocity distributions and streamline behind the stern on the free surface. “Bare 

Hull” (Left) and “Stern Tunnel” (Right) 

 

 Figure 5.9 shows velocity distributions and streamline behind the stern on the free 

surface. After passing through the bluff body of the stern the velocity becomes drops and the 

vortexes occur in accordance with the low velocity region which shows the recirculation. In 

“Bare Hull” case, vortex occurs behind the transom stern in accordance with the velocity 

region in Figure 5.10. In “Stern Tunnel” case, the figure illustrates clearly the mean flow 

structure, being characterized by corner vortex comes from main transom stern and a series of 

vortexes come from the stern tunnel part. Again the re-circulation region of “Bare Hull” is 

larger than “Stern Tunnel”. One big swirling flow with counter-clockwise rotation is 

observed in “Bare Hull”, while two main vortices are present in “Stern Tunnel”. One in the 

outside is in the same direction with “Bare Hull” and these are related to HSV. The other 

vortex inside is in the opposite rotation and related to TSV. 
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Figure 5. 10 Iso-surfaces of second variant of velocity Q=5 with velocity contour on the free 

surface z/L=-0.02, “Bare Hull” (Left) “Stern Tunnel” (Right). 

 

 Figure 5.10 shows iso-surfaces of second variant of velocity Q=5 with velocity 

contour on the free surface z/L=-0.02, “Bare Hull” (Left) “Stern Tunnel” (Right). After 

passing through the bluff body of the stern, the velocity becomes drops and the vortex occurs 

in accordance with the low velocity region which shows the recirculation. In comparison with 

the “Bare Hull” case, the low velocity region and intensity of vortex in “Stern Tunnel” case is 

smaller than that of the “Bare Hull”. A very long vortex structures were observed in the wake 

region of the “Stern Tunnel” case, and it seems come from the end of tunnel parts, as shown 

in Figure 5.11. It is observed that a series of vortices comes from the bottom edge of the stern 

in “Bare Hull” case (HBV), and vortices with weaker intensity come from the bottom of stern 

tunnel in “Stern Tunnel” case (TBV). Also the vortices from the side of the hulls (HSV) are 

larger in “Bare Hull” than in “Stern Tunnel”. 

 Figure 5.11 shows iso-surfaces of second variant of velocity Q=5 with velocity 

contour behind the stern from the bottom view, “Bare Hull” (Left) and “Stern tunnel” (Right). 

In “Bare Hull” case, it is visible that the vortex comes from the side of the transom stern 

(HSV) and the vortex comes from the bottom of transom stern (HBV). In “Stern Tunnel” 

case, the side vortex comes from   main transom stern (TSV) and the vortex comes from the 

bottom of stern tunnel part (TBV) followed long vortex further downstream are visible. The 

intensity of vortex in “Bare Hull” HSV is higher than that of the “Stern Tunnel” (TSV). 
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Figure 5. 11 Overview of Iso-surfaces of second variant of velocity Q=5 with velocity 

contour behind the stern from the bottom view, “Bare Hull” (Left) “Stern Tunnel” (Right). 

  

  

Figure 5.12 Flow field behind the stern (Experiment), “Bare Hull” (Left) “Stern Tunnel” 

(Right). 

 

 Figure 5.12 shows flow field behind the stern at the vertical center plane 

(Experiment), “Bare Hull” (Left) and “Stern Tunnel” (Right). In “Bare Hull” case, a large 

central vortex occurs behind the transom stern. In “Stern Tunnel” case, the flow goes up 

along the stern tunnel part and a weaker vortex occurs. 

  



73 

 

 Figure 5.13 shows velocity distributions and streamline behind the stern at the vertical 

center plane y/LPP=0.5, “Bare Hull” (Left) and “Stern Tunnel” (Right). The re-circulation 

region in “Bare Hull” is much larger than in “Stern Tunnel”. The multiple swirling can be 

observed in “Bare Hull” and this is related to the series of iso-surfaces of Q in HBV region in 

Figure 5.10. Flow directions behind the stern are close to horizontal in “Bare Hull” and 

upward in “Stern Tunnel” as expected. In “Bare Hull” case, two vortexes occur behind the 

bluff body of the stern. The node point in the shear layer of the vortex region behind the stern 

is also visible. In “Stern Tunnel” case, the flow goes up along the stern tunnel part and only 

one vortex occurs after passing through the bottom of the stern tunnel. In comparing with 

“Stern Tunnel” case, the vortexes moves further downstream in “Bare Hull” case. The region 

of lower velocity behind the stern end is clear in “Bare Hull” cases than in “Stern Tunnel” 

cases, and it is in accordance with the experimental data in Figure 5.12. It is obvious that the 

separation becomes weaker in “Stern Tunnel” cases than in “Bare Hull” cases. 

 

  

Figure 5.13 Velocity distributions and streamline behind the stern at the vertical center plane, 

“Bare Hull” (Left) “Stern Tunnel” (Right). 
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Figure 5. 14 Iso-surfaces of second invariant of the velocity gradient Q=5 colored with 

velocity contour at the center plane y=-0.02, “Bare Hull” (Left) “Stern Tunnel” (Right). 

 

Figure 5.14 shows iso-surface of second invariant of the velocity gradient tensor Q=5 

colored with velocity contour at the section plane y=-0.02. It is observed that a series of 

vortexes comes from the bottom of the transom stern in “Bare Hull” case (HBV), and weaker 

intensity of vortexes come from the bottom of stern tunnel part in “Stern Tunnel” case 

(TBV). The vortexes in both cases are in accordance with the streamlines in Figure 5.13. 

 

Figure 5.15 The vertical center plane y/LPP=0 & y/LPP=-0.067 behind the stern. 
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Figure 5.15 shows the position where the iso-surfaces of Q and intensity of velocity 

measured. Y/LPP=0 is the center plane which is behind where the shape of the stern tunnel 

occurs. On the other hand, y/LPP=-0.067 which corresponds to the middle of a half span of the 

main hull beside the stern tunnel. 

  

Figure 5. 16 Iso-surfaces of second invariant of the velocity gradient at the center plane 

y/LPP=0, “Bare Hull” (Left) “Stern Tunnel” (Right). 

 

 Figure 5.16 illustrates iso-surfaces of second invariant of the velocity gradient at the 

center plane y/LPP=0, “Bare Hull” (Left) and “Stern Tunnel” (Right). In “Bare Hull” case, a 

series of stronger vortexes (HBV) comes from the bottom of the main transom stern. In 

“Stern Tunnel” case, it is evident that the flow goes up along the stern tunnel part and a series 

of weaker vortexes (TBV) comes from the stern tunnel part. Figure 5.17 shows iso-surfaces 

of vorticity magnitude distribution at the center plane y/Lpp = 0. On the center plane, vorticity 

develops horizontally from the bottom edge of the stern in case of “Bare Hull” (HBV), while 

vorticity goes up with the same angle of the tunnel bottom in “Stern Tunnel” case (TBV). 

Also, the high vorticity region of HBV in “Bare Hull” is larger than TBV in “Stern Tunnel”, 

which shows separation behind the stern of “Bare Hull” is stronger than that of “Stern 

Tunnel”. It is clear that the intensity of (TBV) is weaker than (HBV) in accordance with the 

intensity of vortexes in Figure 5.16. 
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Figure 5.17 Iso-surfaces of vorticity magnitude at the center plane y/LPP=0, “Bare Hull” 

(Left) “Stern Tunnel” (Right). 

 

 Similarly Figure 5.18 illustrates iso-surfaces of second invariant of the velocity 

gradient at the center plane, y/LPP=-0.067 which corresponds to the middle of a half span of 

the main hull beside the stern tunnel, “Bare Hull” (Left) and “Stern Tunnel” (Right). In “Bare 

Hull” case, a series of vortexes (HBV) comes from the bottom of the main transom stern. In 

“Stern Tunnel” case, a series of vortexes (HBV) comes from the main transom stern. Figure 

5.19 shows iso-surfaces of vorticity magnitude distributions on the section of y/Lpp = -0.067. 

On that plane, vorticity develops horizontally in both cases, since these vortices can be 

considered to be HBV. Again, the intensity of the vorticity is larger in “Bare Hull” than 

“Stern Tunnel” in accordance with the intensity of vortexes in Figure 5.19. 
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Figure 5.18 Iso-surfaces of second invariant of the velocity gradient at the center plane, 

y/LPP=-0.067, “Bare Hull” (Left) “Stern Tunnel” (Right). 

 

  

Figure 5. 19 Iso-surfaces of vorticity magnitude at the center plane, y/LPP=-0.067, “Bare 

Hull” (Left) “Stern Tunnel” (Right). 
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Figure 5.20 Vorticity behind the stern at x/Lpp=0.5533, “Bare Hull” (Left) and “Stern Tunnel” 

(Right). 

 

 Figure 5.20 exhibits vorticity distribution behind the stern at the section of 

x/Lpp=0.5533. These distributions clearly show HSV and HBV in “Bare Hull” and HSV, 

HBV, TSV and TBV in “Stern Tunnel”. In both cases, it is evident that the high intensity of 

vorticity appears along the shape of the main transom stern and the shape of the stern tunnel. 

It seems the intensity of vortex becomes high after passing through the shape of the bluff 

bodies. 

 

5.6 Velocity field behind the stern 

 

Figure 5.21 and 5.22 show the velocity distributions at the section of x/Lpp = 0:5533, 

5.33% Lpp behind the stern end. “Bare Hull” has a simple wake with the minimum velocity 

in the center line and near the free surface. On the other hand, the dominant wake of “Stern 

Tunnel” is behind the main hull part and the wake of a tunnel is higher velocity due to 

acceleration in a tunnel. In the cross-flow vector plots in Figure 5.22, the velocity directions 

are completely different between two hulls, which reflect the variation of re-circulation 

structures due to the stern tunnel. In “Stern Tunnel”, upward velocities are observed near the 

center plane, which also shows the acceleration due to the stern tunnel. 
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Figure 5. 21 Comparison of velocity contours u at the nominal wake plane at x/LPP=0.5533 of 

ULBS, “Bare Hull” (Left) “Stern Tunnel” (Right). 

 

  

Figure 5. 22 Comparison of velocity vectors at the nominal wake plane at x/LPP=0.5533 of 

ULBS, “Bare Hull” (Left) “Stern Tunnel” (Right). 

 

The increasing extends of the primary vortex and the strengthening of the secondary 

and tertiary vortices are observed. It should be noted here that, even on this relatively coarse 

grid, the EARSM demonstrates its commendable performance of in predicting the strength 

and extent of the vortices. It is proved that, for separated/vortical flows, the EARSM 
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produces the best possible solution based on the RANS method. It seems that in unsteady 

simulation, the variations of velocity become change from time to time.  

Figure 5.23 shows the comparison of computed and measured velocity profiles at 

z/LPP=-0.033 behind the stern in “Bare Hull” cases. It is clear that the computation can 

capture well as in the experiment. Since ULBS is a blunt ship, longitudinal vortices behind 

the ship are strong and most of the estimated axial wake patterns agree well with the 

experiment. The patterns of computed cross flow factors are also generally in good 

accordance with the experiment.  

 

 

Figure 5. 23 Comparison of u velocity profiles between computation and measurement at 

(x/LPP=0.553 at z/LPP=-0.033) in “Bare Hull”. 

 

 Figure 5.24 shows the comparison of computed and measured u velocity 

profiles at x/Lpp=0.5533 and z/LPP=-0.033 behind the stern in “Stern Tunnel” cases. The 

patterns of computed cross flow factors are also generally in good accordance with the 

experiment. Flow at this position is strongly influenced by the stern tunnel. General trends are 

well reproduced by the computations, although the measured profiles exhibit slightly 
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narrower wake zones than computed ones for both cases. Small discrepancies may be related 

to modeling uncertainty associated with turbulence modeling or insufficient grid numbers.  

 

 

Figure 5. 24 Comparison of u velocity profiles between computation and measurement at 

(x/LPP=0.553 at z/LPP=-0.033) in “Stern Tunnel”. 

 

5.7 Wave fields around the hull on the free surface 

 

 The computation can also capture the free surface elevation, wave profiles and 

pressure distribution around the hull. Although the detail of wave fields around a hull is out 

of scope of the present study, Figure 5.25 displays comparison of the free-surface elevation 

contours around “Bare Hull” and “Stern Tunnel”. The large bow waves in front of a bow are 

dominant and they are followed by the diverging wave system with Kelvin pattern. These 

features are common between two hulls. On the other hand, stern waves show different 

patterns. “Stern Tunnel” generates larger stern waves than “Bare Hull”, since the stern tunnel 

accelerates the flow significantly as seen in the previous sections. Also the steep, nearly 

breaking, wave near the bow and stern wave pattern are clearly observed.  
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 Figure 5.26 shows the comparison of wave profiles along the center plane and the side 

wall of “Bare Hull” with that of “Stern Tunnel”. The wave profiles around the bow shows 

similar tendencies in both cases due to the same grid of the bow block.  The wave profile 

exhibit the peak on the front face of the bow followed by the trough at the fore corner. The 

trough appears again in the aft corner and stern wave is generated behind the stern. The wave 

profile exhibit the peak around x/LPP=-0.5, which is the crest of the bow wave developing 

from the face of the bow followed by the trough at the fore corner. The wave profile shows 

the lowest trough after passing the front of the bow. After the end of the stern, the wave high 

becomes drop in the bare hull case, and around x/LPP=-0.75, the wave high becomes higher in 

“Stern Tunnel” than “Bare Hull” case. In “Stern Tunnel” case, the flow goes up along the part 

of the stern tunnel and the stern wave becomes higher. It is in accordance with the stern wave 

height in figure 5.25. 

 In Figure 5.27, the wave breaking is observed near the side of the bow, the 

computational results agree well with the experimental ones. In computing with SURF, the 

wave breaking in front of the bow cannot be captured as in the experiment. 
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Figure 5. 25  Comparison of free-surface elevation contours around the hull of ULBS, “Bare 

Hull” (top) “Stern Tunnel” (bottom). 

  



84 

 

 

Figure 5. 26  Comparison of wave profiles between “Bare Hull” and “Stern Tunnel”. 

 

  

Figure 5. 27  Wave Breaking around the Bow on the Free Surface, Experiment (Left) and 

EARSM (Right). 
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Figure 5. 28  Comparison of wave height around the bow, “Bare Hull” (Left) “Stern Tunnel” 

(Right).   

 

 Figure 5.28 shows comparison of pressure field around the bow on the free surface of 

“Bare Hull” (Left) “Stern Tunnel” (Right). With respect to the pressure field, high pressure 

regions near the bow due to stagnation are observed. In the side wall aft of the curve corner, 

pressure decreases which corresponds to the wave trough in Figure 5.26. Further downstream, 

pressure becomes almost constant since the side wall is flat there. The pressure distributions 

do not show large differences for the same block of the front part of the bow because of the 

same fore part. 
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Chapter 6 

Conclusions 

 

6.1 Conclusions for Box-shaped Ships 

 

 The free surface flows around the box shaped ships are calculated by the RANS code 

SURF. The verification of the results with respect to total resistance is carried out based on 

the series of three grid sequences, which show reasonable uncertainty levels of the present 

solutions. From a quantitative point of view the calculated resistance is over-predicted with 

5.62% in Box A and under-predicted with 4.89 % in Box B compared with the experimental 

data. 

 The computed flow fields show separations in the corners of the boxes and behind the 

box and these separations interact with free surface and simulation results seem to capture 

these basic flow features.  

 The main differences between two box shapes are the variations of drafts. It seems the 

separations both at the side corners and behind the stern end depend on the draft of the box. 

The deeper the draft is, the stronger the separations. On the other hand, the separations on the 

bow bottom corners are not affected much by the variation of the draft. 

 The pressure (wave height) distributions ahead of the bow seem independent of the 

Froude number. The maximum and minimum wave amplitudes at the bow become larger 

with increasing Froude number and also with increasing draft. 

 The overall results seem satisfactory for our purposes to examine capabilities of CFD 

methods to the flow field structures around ULBS. Since the flow fields include large regions 

of separation and this may cause over- and under-predictions of resistance with different 

drafts, the effect of turbulence models should be investigated further in order to improve 

accuracy of the simulations. The flow simulations around actual ULBS forms will be carried 

out based on the knowledge learned in this study. 
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6.2 Conclusions for ULBS 

 

In order to assess the capability of a CFD method currently used in practical ship flow 

computations with an advanced turbulence model for simulating strongly separated flows 

around an extremely blunt ship and to evaluate the effects of a stern tunnel, flow simulations 

are carried out for an extremely blunt ship with and without a stern tunnel. It is clear that the 

flow separations can be reduced effectively by fitting with the stern tunnel. Furthermore 

study to improve ULBS’s design will be continued. 

 The verification of the computed total resistance based on three grid sequences shows 

reasonable uncertainty levels of the present solutions. However, the resistance decreases with 

a stern tunnel in the measurement is not reproduced by the simulations. Although the reason 

for this discrepancy is not clear, it may be due to the numerical modeling error associated 

with a turbulence model or due to the uncertainty of measurement. The overall flow fields 

look good and simulations seems to capture the basic flow features. From a quantitative point 

of view the calculated resistance is over-predicted with 13% in Bare Hull and with 6.12 % in 

Stern Tunnel.  

By using the iso-surface of the second invariant of the velocity gradient tensor and the 

vorticity magnitude, flow structures behind the stern are analyzed. It is found that the two 

main vortex sheets one from the side edge of a hull and the other from the bottom edge of a 

hull are formulated in case of “Bare Hull”. In “Stern Tunnel”, on the other hand, two more 

vortex sheets are generated at the side wall and the bottom of a tunnel in addition to hull side 

and hull bottom vortices. 

 Also it is shown that the separation zone behind the stern is larger in “Bare Hull” 

than in “Stern Tunnel” by the examination of velocity fields and streamlines. Computed 

velocity profiles behind the hull reproduce the general trend which is similar to that of the 

measured data both in “Bare Hull” and “Stern Tunnel” cases. It appears that the performance 

of the turbulence models is not sufficient for quantitative comparisons with the measurement, 

although the uncertainty of the velocity measurement must be examined further. 

Though further study of turbulence modeling effects is desirable for the improvement 

of numerical accuracy, the overall results in general seem satisfactory for our purposes of 
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examining capabilities of CFD methods for analysis of flow structures with and without a 

stern tunnel. The overall results show the difference of flow structures with and without a 

stern tunnel well. 

Another future scope is a hull form optimization of ULBS. The large areas of flow 

separation are found in the bow bottom and the stern tunnel shape seems not optimal. The 

optimization of these parts as well as the use of other flow control devices is needed for better 

design of ULBS. Experimental and simulation of ULBS with bulbous bow & other 

appendages and optimization of ULBS hull form will be carried out. 

Wave breaking is observed near the side of the bow, the computational results agree 

well with the experimental ones. However, in SURF computation, the wave breaking in front 

of the bow cannot be captured as in the experiment. The wave profiles around the hull are 

captured well. It is obvious that the appropriate Kelvin wave patterns are well reproduced and 

the near-hull features of the free surface are captured well. 

At the vertical centre plane, a series of three vortexes occurs near the bottom of the 

bow. And low velocity regions are observed in accordance with the vortexes, and then the 

vortexes extend further downstream.  

The computed flow fields show separations in the corner of the bow and behind the 

stern. These separations interact with free surface and simulation results seem to capture the 

basic flow features.  

The region of lower velocity and intensity of vortex behind the stern end is smaller in 

the stern tunnel hull case than in the bare hull case, and in accordance with the vortex. The 

flow separation comes from the transom stern in bare hull case and it comes from the stern 

tunnel part in stern tunnel case. It is obvious that the separation becomes weaker in the stern 

tunnel cases than in the bare hull cases. It seems the separation near the stern end depends on 

the shape of the stern, and the presence of the stern tunnel can reduce the flow separations. 

On the free surface, the streamlines seem still. The velocity becomes higher nearer the 

curve end of the bow. And the velocity becomes drop after passing the curve end of the bow. 

The overall results seem satisfactory for our purposes to examine capabilities of CFD 

methods to the flow field structures around ULBS. 
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The flow simulations around actual ULBS forms will be carried out based on the 

knowledge learned in this study. 

Also the velocity distributions, u, behind the stern can be captured as in the 

experiment. General trends are well reproduced by the computations, although the measured 

profiles exhibit slightly narrower wake zones than computed ones for both cases. Small 

discrepancies may be related to modeling uncertainty associated with turbulence modeling or 

insufficient grid numbers. But it seems EARSM model can capture correctly the flow 

phenomenology even in the complex flow configurations. It seems the simulation can be 

captured qualitatively. 

Further experiment and simulation of ULBS with bulbous bow and other appendages 

will be studied. Optimization of ULBS hull form will also be studied. 
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Comments 

Question (1): 

 Why is the resistance decreases with a stern tunnel in the measurement not 

reproduced by the simulations?   

Answer (1): 

 The resistance decreases with a stern tunnel in the measurement is not reproduced by 

the simulations. But the verification of the computed total resistance based on three grid 

sequences show reasonable uncertainty levels of the present solutions. The overall flow fields 

look good and simulations seems to capture the basic flow features.  

 A possible reason for this opposite prediction of resistance trend is numerical 

modeling errors of the current turbulence models for large scale separated flows or 

insufficient grid numbers. Further investigations are required both in simulations and 

measurements to clarify the reasons of this discrepancy.  

 The ship model is only 1.5 meters and is simulating in the small oscillating water 

channel. The measured flow velocity is also very low. On the other hand, the accuracy of the 

resistance measurement must be examined as well. 

Question (2): 

 What is the meaning of order of accuracy p?   

Answer (2):  

Order of accuracy is the rate of decrease of discretization error with mesh refinement. The 

observed order of accuracy is the measure that is used to assess the confidence in a 

discretization error estimate. When the observed order of accuracy matches the formal order, 

then one can have high confidence that the error estimate is accurate and therefore use the 

error estimate to correct the solution. However, the much more common case is when the 

formal order does not match the observed order. In this case, the error estimate is much less 

reliable and should generally be converted into a numerical uncertainty. While the difference 

between the discrete solution and the (unknown) exact solution to the mathematical model is 

still truly an error, the lack of knowledge of the true value of this error will be forced to 

represent it as an epistemic uncertainty. Epistemic uncertainties are distinct from aleatory (or 
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random) uncertainties in that they are due to a lack of knowledge. They can be reduced by 

providing more information, in this case, additional computations on more refined meshes. 

When the exact solution is not known, three numerical solutions on systematically-refined 

meshes are required to calculate the observed order of accuracy. Consider a p
th

-order accurate 

scheme with numerical solutions on a fine mesh (h1), a medium mesh (h2), and a coarse mesh 

(h3). For the case of a constant grid refinement factor, i.e., 
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Using the discretization error expansion, we can now write for the three discrete solutions: 
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Neglecting terms of order hp+1 and higher allows us to recast these three equations in terms of 

a locally-observed order of accuracy p̂ : 
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which will only match the formal order of accuracy if the higher order terms are indeed small. 

Subtracting f2 from f3 and f1 from f2 yields: 
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Taking the natural log of both sides and solving for the observed order of accuracy p̂  gives: 
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where p
th

 is “theoretical ” order of accuracy of the applied numerical method. If the 

correction factor is close to unity, the solutions are close to the asymptotic range. p
th

 is 

second order accuracy and p here is 5
th

 order accuracy. Because the higher order terms are 

neglected, and the error become large. To reduce error, very fine grids are essential to 

generate. In this case the grid is about five million and it seems fine. But the error is still 

large. 


