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Abstract

Biped robot should be robust and able to move or explore freely in human environments.

Therefore, many researchers have explored the biped robot research in certain environments

such as on uneven surface, slope and stairs. Reseach for biped robot walking on slope and

stairs have been started since 90s. However, it is not reported that the mentioned research are

done for walking along stair. Therefore, in this dissertation the research related to biped robot

walking along a step is chosen for further investigation.

The main parts in this dessertation are chapter 4 and 5 where we proposed a new method to

obtain walking parameters for 2 (2-D) and 3-dimensional (3-D) of biped walking along a step.

First, the derivations are shown for 2-D cases which are sagittal and lateral. Then, the method

is extended for the 3-D case. As mentioned earlier, it is realized that many researchers con-

centrated on walking directions of climbed up or down of stairs only. In conventional methods,

center of mass (CoM) moved up or down during walking in this situation because the height of

pendulum is kept at the same length at the left and right legs. Thus, extra effort is required

in order to bring the CoM up to the higher ground. In order to improve this situation, differ-

ent height of pendulum is applied at the left and right legs and named as dual length linear

inverted pendulum method (DLLIPM). However, when different height of pendulum is applied,

it is quite difficult to obtain symmetrical and smooth pendulum motions. Furthermore, syn-

chronization between sagittal and lateral planes are not confirmed. Therefore, DLLIPM with

Newton-Raphson algorithm is proposed to solve these problems.

In our proposed method, the walking pattern for sagittal and lateral planes are designed

systematically and synchronization between them is ensured. As for confirmation, the proposed

method is verified by the simulation and experimental results. It is realized from the results

that the maximum impact forces are reduced with our proposed method.
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Chapter 1

Introduction

1.1 Background and Motivation

There are several types of mobility for ground robots such as by wheels [1], legs or hybrid

locomotion that combined wheels and legs [2]. Moreover, there are various kinds of the legged

robots such as hexapod [3], quadruped [4] and biped [5]-[22]. The less number of the legs, the

more difficult it is, in order to ensure the dynamics stability of the robots. Since the biped has

advantages to explore the human environment, therefore in this thesis, the biped platform is

used.

Most of human environment is unmade for a biped robot. Therefore, researchers have worked

hard to realize stable biped walking in human environment with several proposed concepts such

as zero moment point (ZMP) [7, 8], virtual supporting point (VSP) [9] and linear inverted

pendulum mode (LIPM) [10, 11]. ZMP concept introduced an indicator to obtain stable biped

walking. Whenever the ZMP point is inside the support polygon, the robot will be able to keep

standing without fall down or tip over during walking. In VSP method, the supporting point

can be placed at any virtual point within the stable region in order to realize biped walking

on uneven floor. Finally, in LIPM method the motion of CoM of a biped robot during walking

can be moved with the dynamics representation of linear inverted pendulum. In this thesis, a

proposed method with modification of LIPM concept is used and will be explained further later.

There are also researchers who investigated biped robot motions in specific environment such

as on slope surface [12] and stairs. Sato et al. [13] proposed the virtual slope method for walking

trajectory planning on stairs. In this method, the CoM trajectory of the biped robot is generated

based on the virtual slope surface. Fu et al. [14] proposed the walking pattern synthesis and

sensory feedback control for humanoid stair climbing. This method consists of a feedforward

stair-climbing gait and a feedback sensory controller. Hu et al. [15] proposed a scheme which is

developed with regulable step length and walking speed. This method is tested for walking over

stairs by using a compass-like biped robot. Powell et al. [16] proposed the control techniques for

multiple locomotion behaviours from the examination of experimental human data for walking.

1



Figure 1.1: Definitions of walking on stairs or on a step.

The method is tested for walking on flat ground, upstairs and downstairs.

Some other researchers proposed several methods to detect the physical dimension of the

stair. Park et al. [17] proposed a method to detect stair boundaries for a humanoid robot

by using a 2D laser scanner is installed on the head of a humanoid robot called MAHRU-1.

Chestnutt et al. [18] proposed a method to navigate biped robot around by using an on-board

Hokuyo laser scanner which swivelled up and down while operating. In this method, the scan

data is combined with other data from odometry and gyro sensor to construct a 3D environment.

Guodong et al. [19] proposed the stereovision based system for humanoid navigation.

A bipedal robot should be able to perform various of walking directions on the stairs or

slope such as walking accross, diagonal walking and walking along a stair as shown in Fig.

1.1. However, many of researchers only concentrate in the walking direction of across the stairs

(Shown by A in Fig. 1), which means climbed up or down directions. Walking along the stair

has not been investigated yet. For that reason, the main task of this thesis is to design walking

parameters for biped walking along stair or a step.

Walking along a stair (Shown by B in Fig. 1) and stepping on an object (Shown by C in

Fig. 1) can be solved with the same technique. In the conventional methods, the center of

mass (CoM) is suggested to be brought up or down in order to maintain the same pendulum

length at the right foot and left foot. In this thesis, a method known as dual length linear

inverted pendulum method (DLLIPM) is developed based on some modifications from previous

researh on LIPM [10]. In DLLIPM, CoM is always constant to the lower ground floor as

shown in Fig. 1.2. As seen in Fig. 1.2, the LIPM requires extra effort in order to move the

CoM up to the higher ground. Therefore, this situation is avoided in the DLLIPM by making

the CoM always moves in horizontal motion. It is also expected that in the LIPM, higher

force impact will be felt at the landing foot especially when the CoM is moving down from

higher to the lower ground. However, when different height of CoM is assigned at right foot
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Figure 1.2: CoM trajectory in lateral plane for walking along stair by using LIPM and DLLIPM.

(RF) and left foot (LF) in DLLIPM, there is a possibility of unsmooth and non-symmetrical

pendulum motions. Therefore, DLLIPM with Newton Raphson algorithm is proposed to find

the appropriate parameters for the walking pattern. In this thesis, 3-dimensional (3D) pattern

generation for walking along stair is investigated. Sagittal and lateral effects are analysed and

ensured to be synchronized during the walking.

There are several merits expected from the proposed method. One of the merits is that the

work the biped robot need to perform for the biped walking along a step is less compared to the

conventional LIPM, as described by Fig. 1.2. Furthermore, since the CoM in the DLLIPM is

maintained horizontally without up and down motion as in the LIPM, it is expected that maxi-

mum impact forces are less in the DLLIPM. Besides that, smooth motions and synchronization

between lateral and sagittal is confirmed with the proposed method. However, in this thesis the

step height is a known value. Detection of the floor height is beyond the scope of this paper.

In section 1.2, the biped robot platforms used in simulations and experiments are presented.

In section 1.3, the concept of DLLIPM is explained. The proposed method of DLLIPM with

Newton Raphson algorithm, simulations and experimental results are presented in section 4 and

5.

1.2 The Biped Robot Walking

The biped robot used in simulations and experiments in this thesis is known as MARI-3 [20].

MARI-3 has total of 13 degrees of freedom (DOF); 6 DOF in each leg and 1 DOF at the

waist. The height and weight are 0.6 [m] and 33.64 [kg], correspondingly. In order to verify the

proposed method, a 3-D dynamic simulator known as ROCOS (RObot COntrol Simulator) [21]

and MARI-3 actual biped robot have been used. Fig. 1.3 shows the actual robot, its ROCOS
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Figure 1.3: Biped robot MARI-3.

simulation model and the robot structure.

One of the advantages of DLLIPM with Newton Raphson algorithm is that it is a generalized

method which is applicable to any type of bipedal robot platform. However, it is compulsory to

calculate the CoM of the robot and it must be trackable during the walking. This is essential

because all the derivations in this thesis is developed based on the dynamics of linear inverted

pendulum which is assigned to the motion of the CoM. The calculation of the CoM can be done

from the kinematics of the robot [22]. A picture of a general biped robot with its center of mass

location is shown in Fig. 1.3 b).

Some researchers used pelvis as reference point for simplicity of calcultations. As seen in the

Fig. 1.3 b), the reference point of the pelvis and the real CoM position is located at different

place. If the motion reference trajectories are given based on the pelvis reference point, the robot

may fall down in some situations because the exact CoM location is inaccurate. All calculations

and derivations are developed based on the dynamics of the pendulum which is assigned to the

CoM position. Therefore, it is compulsory to include the CoM position in kinematics and all

the trajectories should be given based on the CoM position, instead of the pelvis position.

There are two different coordinate system references used in this thesis. For the trajectory

planning, the center of landing foot is used as reference of coordinate system. Therefore, both

RF and LF repeatedly used as the reference point, one after another. On the other hand, the

reference of the coordinate system during simulations is always located at the center of RF at

the initial position. This reference point is known as the world coordinate system.

The details of the kinematics of the biped robot and its applications for walking will be

explained further in Chapter 3. In chapter 3 the proposed kinematics are applied for biped

straight walking and diagonal walking.
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Figure 1.4: CoM motion of biped robot in lateral plane.

Figure 1.5: CoM motion of biped robot in sagittal plane.

1.3 Dual Length Linear Inverted PendulumMethod (DL-

LIPM)

DLLIPM is developed based on some modifications of LIPM which is proposed by Kajita

et.al.[10]. DLLIPM can be used to solve biped walking along stair or stepping on an object

if the object is blocking in front of one leg only. In both situations, the problems are solved by

maintaining the CoM height always constant to the lower ground. In order to realize this, the

DLLIPM is used where the length of pendulum at the RF and LF is different.

In LIPM, the CoM is brought up to the higher ground in order to let the height of pendulum

the same at right and left foot. Both LIPM and DLLIPM concepts are shown in Fig. 1.4 and

1.5. In these figures, Z means the height of inverted pendulum. As for DLLIPM shown in Fig.

1.4 b) and 1.5 b), ZLF is also known as ZSP and ZRF is known as ZLP . ‘SP ’ and ‘LP ’ stand for

short pendulum and long pendulum respectively.
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Figure 1.6: LIPM model for sagittal plane.

1.3.1 Linear Inverted Pendulum Mode

In this sub-section, the equations of position and velocity of a single linear inverted pendulum

are derived [23]. The single linear inverted pendulum model for sagittal and lateral motions

are shown in Fig. 1.6 and 1.7, respectively. In these figures, xi, ẋi, ẍi, yi, ẏi and ÿi are the

position, velocity and acceleration at the beginning points. On the other hand, xf , ẋf , ẍf , yf ,

ẏf and ÿf are the position, velocity and acceleration at the ending points. x(t) and y(t) denote

the constantaneous value of CoM trajectory in sagittal and lateral planes, correspondingly.

Furthermore, S denotes the CoM stride motion between LF and RF. While Zc denotes the

height of pendulum, from the foot to the CoM position vertically. The motion equation of

LIPM in sagittal is shown as in (1.1). The same equation is also applicable for the lateral plane.

ẍ =
g

zc
x (1.1)

Position

In this sub-section, the derivations of equations which are related to position in single inverted

pendulum model are shown. From analytical solution of (1.1), the equation of position is

obtained as shown in (1.2).

x(t) = (
xi − Tcẋi

2
)e−

t

Tc + (
xi + Tcẋi

2
)e

t

Tc (1.2)

where

Tc =

√
zc
g

(1.3)
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Figure 1.7: LIPM model for lateral plane.

The position equation as shown in (1.2) is applicable for sagittal and lateral planes.

Velocity

In this sub-section, the derivations of equations which are related to velocity in single inverted

pendulum model are shown. Time derivative of (1.2), gives equation of velocity as shown in

(1.4).

ẋ(t) = (
ẋi −

xi

Tc

2
)e−

t

Tc + (
ẋi +

xi

Tc

2
)e

t

Tc (1.4)

The velocity equation as shown in (1.4) is applicable for sagittal and lateral planes.

1.3.2 Trajectory Planning Method of DLLIPM

DLLIPM trajectory planning consists of 11 steps as shown below. This trajectory planning is

based on LIPM proposed by Kajita et. al.[23] with some changes.

Step 1) Decision of the length for short pendulum and long pendulum: Suppose that

the biped robot walks on flat floor at certain CoM height. This CoM height at flat floor

denotes the length of the long pendulum, ZLP . The height of one stair or a step is a

known value, h. The length of the short pendulum, ZSP is given by (1.5). One leg will

be on the lower ground, and one leg will be on the stair. The pendulum on the lower

ground denotes by the longer pendulum and the pendulum on the stair denotes by shorter

pendulum. The length of the ZLP in sagittal plane is the same as in the lateral plane.

Also the length of the ZSP in sagittal and lateral planes are equal.

ZSP = ZLP − h (1.5)
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Step 2) Decision on odd and even number of foot landing points, nth: It is needed

to determine which foot lands on the higher ground or on the lower ground based on the

forward moving direction of the biped robot. Also, it is required to determine which foot

the robot starts to walk. For example, the robot is walking along a stair as shown in Fig.

1.4 b) and 1.5 b). The robot moves in such a way that the left foot is always landing on

the higher ground, right foot always lands on the lower ground and the motion starts from

the right foot. Therefore, the even and odd number of foot landing points in this case are

given as in (1.6) and (1.7).

n = 0, 2, 4...(RF,LP ) (1.6)

n = 1, 3, 5...(LF, SP ) (1.7)

Step 3) Decision of the walking parameters such as walking cycle, strides, initial

CoM positions and initial landing positions: In conventional LIPM method, these

parameters should be decided before the robot starts to walk. Suppose that the walking

cycle for short and long pendulum denote by Δt−SP and Δt−LP , correspondingly.

Step 4) Setting of foot landing points modifications in sagittal and lateral, P ∗x and

P ∗y , initial time T and initial number n, of landing point: T := 0 and n := 0.

Initially P ∗x = 0 and P ∗y = 0.

Step 5) Using LIPM equations to obtain CoM trajectory: For long pendulum, which

means n as in (1.6) in this example, the CoM is moved from T to T +Δt−LP by using (1.8)

for sagittal and (1.9) for lateral. Here the value of Zc equal to ZLP . For short pendulum,

which means n as in (1.7), the CoM is moved from T to T +Δt−SP also by using (1.8) for

sagittal and (1.9) for lateral. In this case, the value of Zc equal to ZSP .

x(t) = (x
(n)
i − P ∗x )cosh(t/Tc)

+ Tcẋ
(n)
i sinh(t/Tc) + P∗x (1.8)

y(t) = (y
(n)
i − P ∗y )cosh(t/Tc)

+ Tcẏ
(n)
i sinh(t/Tc) + P∗y (1.9)

where Tc =
√

Zc

g
. P ∗x and P ∗y are the foot landing points modifications for sagittal and

lateral, respectively. These values are initially 0 for n = 0. After that, for n �= 0, the

calculations are done as shown in step 10.
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Step 6) Increment of number of foot landing point and time:

n := n+ 1 (1.10)

If n is even number, T :=T +Δt−LP .

If n is odd number, T :=T +Δt−SP .

Step 7) Calculation of next foot landing points in sagittal and lateral planes, P (n)
x

and P (n)
y : The next foot landing point for sagittal and lateral planes are calculated by

using (1.11) and (1.12), respectively.

P (n)
x = P (n−1)

x + s(n)x (1.11)

P (n)
y = P (n−1)

y − (−1)ns(n)y (1.12)

where s(n)x and s(n)y mean the foot strides of nth step in sagittal and lateral directions.

Step 8) Calculation of final position and final velocity of CoM for each single sup-

port phase: If n is even number, the final CoM position and the final velocity for sagittal

plane are calculated as in (1.13) and (1.14), respectively. On the other hand, the final

CoM position and the final velocity for lateral plane are calculated as in (1.15) and (1.16),

respectively.

x̄
(n)
LP =

(
x̄LP

x̄LP + x̄SP

)
s(n+1)
x (1.13)

v̄
(n)
x−LP =

(
C + 1

TcS

)
x̄
(n)
LP (1.14)

ȳ
(n)
LP = (−1)n

(
ȳLP

ȳLP + ȳSP

)
s(n+1)
y (1.15)

v̄
(n)
y−LP =

(
C − 1

TcS

)
ȳ
(n)
LP (1.16)

If n is odd number, the final CoM position and the final velocity for sagittal and lat-

eral planes can be solved in the same way as (1.13)-(1.16) but with the respect to short

pendulum.
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Values of C and S in (1.14) and (1.16) are given in (1.17) and (1.18) (suppose that the

instantaneous time at the end of each single support phase denotes by tend).

C = cosh
(
tend
Tc

)
(1.17)

S = sinh
(
tend
Tc

)
(1.18)

Where the values of Tc in (1.14), (1.16), (1.17) and (1.18) are the same values used in step

5.

Step 9) Calculation of desired final position and desired final velocity of CoM in

sagittal, xd and ẋd, and in lateral, yd and ẏd, for each single support phase: If

n is even number, the calculation of desired final position of CoM in sagittal is calculated

from (1.11) and (1.13) as shown in (1.19). On the other hand, the calculation of desired

final position of CoM in lateral is calculated from (1.12) and (1.15) as shown in (1.20).

Furthermore, the desired final velocity in sagittal and lateral are calculated using (1.14)

and (1.16), as shown in (1.21) and (1.22), correspondingly.

xd = P (n)
x + x̄

(n)
LP (1.19)

yd = P (n)
y + ȳ

(n)
LP (1.20)

ẋd = v̄
(n)
x−LP (1.21)

ẏd = v̄
(n)
y−LP (1.22)

If n is odd number, the desired final position and desired final velocity of CoM for sagittal

and lateral planes can be solved in the same way as (1.19)-(1.22) but with the respect to

short pendulum.

Step 10) Calculation of foot landing modification: The foot landing modification in

sagittal is calculated by using (1.23)[23].

p∗x = −
a(C − 1)

D
(xd − Cx

(n)
i − TcSẋ

(n)
i )

−
bS

TcD
(ẋd −

S

Tc

x
(n)
i − Cẋ

(n)
i ) (1.23)
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where D = a(C − 1)2 + b(S/Tc)
2.

a and b are the weight parameters in order to minimize the margin of error for position

and velocity. Values of Tc, C, and S in (1.23) are the same values as in step 8. The foot

landing modification in lateral can be solved in the same manner as in (1.23) but with all

the values from the lateral plane.

Step 11) Go back to step 5: This step is repeated until all number of foot landing points,

n are completed.

The details about application of DLLIPM in 2-D case is shown in Chapter 4. Furthermore,

for the 3-D case is shown in Chapter 5.

1.4 Newton-Raphson and the Closed Form Solution

One of the objectives in this research is to obtain the appropriate walking parameters for

walking along a step. In 2-D case, there are 4 walking parameters need to be obtained which

are maximum stride of long pendulum phase, maximum stride of short pendulum phase, cycle

time of long pendulum phase and cycle time of short pendulum phase. Furthermore, in 3-D

case there are 6 parameters need to be obtained which are maximum stride of long pendulum

phase in sagittal plane, maximum stride of short pendulum phase in sagittal plane, maximum

stride of long pendulum phase in lateral plane, maximum stride of short pendulum phase in

lateral plane, cycle time of long pendulum phase and cycle time of short pendulum phase. In

both cases, 2-D and 3-D cases, the walking parameters are solved by using Newton-Raphson

method which are explained in details in sub-section 4.2.3.2, 4.3.2 and 5.2.

It is general rule, that in order to find a solution to the set of equations, analytical solution

is preferable. Analytical solution means the solution is done by using calculus, trigonometry,

and or other math techniques to write down the solution. Sometimes, this is also referred as a

closed form solution [24]. However, the analytical solution works only for the simple problem.

In this research, especially for the 3-D case, the equations are non-linear and become extremely

difficult to be solved analytically. Therefore, the Newton-Raphson method has been chosen to

solve these complex equations numerically.

1.5 Research Objectives and Outline

In order to achieve a good research, the direction of the research must be clear. Therefore, a

number of research objectives have been planned as the main goal to be realized. The main

objectives are listed as below:
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1. To design and develop the kinematics for MARI-3 biped robot. In this kinematics, ori-

entation and position equations are included. The proposed kinematics calculations are

then applied for walking on flat floor, slope and step surfaces.

2. To obtain appropriate walking parameters for walking along a step in 2-D case with DL-

LIPM approach. Stable walking, smooth and symmetry walking trajectories are intended

to be achieved. The concept of DLLIPM is applied and treated seperately for sagittal or

lateral for the 2-D case.

3. To obtain appropriate walking parameters for walking along a step in 3-D case with

DLLIPM approach. Synchronization between sagittal and lateral planes is intended to be

achieved for the 3-D case.

It is shown earlier in the first subsection of this chapter about the background and moti-

vation of the research. Generally, the main concept of the proposed method and the whole

structure of this thesis are presented in Chapter 1. In Chapter 2, the derivation of ZMP is

shown systematically. Calculations of kinematics and applications to the biped robot platform

are explained in Chapter 3. Concept and applications of DLLIPM in 2-D and 3-D cases are

shown in Chapter 4 and 5, respectively. Finally, conclusion and future works are discussed in

Chapter 6. The appendix sections contain of the mechanical specification of the biped robot,

special research project and publications.
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Chapter 2

ZMP Derivation

2.1 Definition

Zero moment point is a concept related with dynamics and control of legged locomotion, e.g.,

for humanoid robots. It specifies the point with respect to which dynamic reaction force at the

contact of the foot with the ground does not produce any moment in the horizontal direction,

i.e. the point where total of vertical inertia and gravity forces equals 0 (zero). The concept

assumes the contact area is planar and has sufficiently high friction to keep the feet from sliding

[27].

2.2 Derivation

The derivation of ZMP can be obtained from the concept of cart-table model [28].

2.2.1 Cart-table Model

The solution of a 2-D cart-table model can be solved by referring to Fig. 2.1 [29]. is shown as

follows:

τzmp = F × r

= Mg(x− p)−Mẍzh

= 0 (2.1)

As defined in section 2.1, ZMP point, p is the point where total of vertical inertia and gravity

forces equals 0 (zero) as shown by (2.1). (2.1) can be simplified further as follows:

Mg(x− p) = Mẍzh
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Figure 2.1: ZMP of the cart-table model

gx− ẍzh = gp

p = x−
ẍ

g
zh

xzmp = x−
ẍ

g
zh (2.2)

The equation in (2.2) is for sagittal plane. As for the lateral plane, the equation is obtained

identically as shown in (2.3).

yzmp = y −
ÿ

g
zh (2.3)

2.2.2 Analytical Solution

The (2.2) and (2.3) can be solved further analytically. The solution of (2.2) will be shown. As

for the (2.3), it can be solved in the same manner.

As obtained above, the equation of ZMP in sagittal plane is given as follows:

xzmp = x−
ẍ

g
z (2.4)

Then, (2.4) can be arranged as follows:

ẍ

g
z = x− xzmp

ẍ = (x− xzmp)
g

z
(2.5)
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Let’s now define ω as follows:

ω =

√
g

z

ω2 =
g

z
(2.6)

By substituting (2.6) into (2.5), (2.7) is obtained as shown below.

ẍ = (x− xzmp)ω
2 (2.7)

Then, MATLAB is used to expand (2.7) further. In the MATLAB environment, the ’Dsolve’

function is used as shown in (2.8).

Dsolve(′D2x = (x− xzmp) ∗ ω ∗ ω)′,′Dx(0) = dx0′,′ x(0) = x0′) (2.8)

By using (2.8), (2.7) is expanded as shown in (2.9).

x = −
1

2
eωt

(
−dx0− ωx0 + ωxzmp

ω

)
−

1

2
e−ωt

(
dx0− ωx0 + ωxzmp

ω

)
+ xzmp (2.9)

For easier understanding, (2.9) can be simplified as follows;

x = −
1

2ω
eωt(−dx0)−

1

2ω
eωt(−ωx0 + ωxzmp)

−
1

2ω
e−ωt(dx0)−

1

2ω
e−ωt(−ωx0 + ωxzmp) + xzmp (2.10)

In order to simplify (2.10), hyperbolic functions must be taken into account as shown in (2.11).

cosh(x) =
1

2
ex +

1

2
e−x

sinh(x) =
1

2
ex −

1

2
e−x (2.11)

Before the hyperbolic functions can be implemented, (2.10) is rearranged as in (2.12).

x =
1

2
eωt

(
dx0 + ωx0− ωxzmp

ω

)
+

1

2
e−ωt

(
−dx0 + ωx0− ωxzmp

ω

)
+ xzmp

=
1

2
eωt

(
dx0

ω

)
+

1

2
eωt

(
ωx0− ωxzmp

ω

)

+
1

2
e−ωt

(
−dx0

ω

)
+

1

2
e−ωt

(
ωx0− ωxzmp

ω

)
+ xzmp (2.12)

By substituting (2.11) into (2.12), (2.13) is obtained as follows;

x =
dx0

ω
sinh(ωt) +

(
ωx0− ωxzmp

ω

)
cosh(ωt) + xzmp

= (x0 − xzmp)coshωt+
dx0

ω
sinhωt+ xzmp (2.13)

Note that the terms of x0 and dx0 in (2.13) are referred to initial position and initial velocity,

respectively. In this thesis, (2.13) will be used frequently for further derivations.
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Chapter 3

Kinematics

In this chapter, the control method to plan for bipedal robot walking is explained. In this section

forwad and inverse kinematics based on position and orientation will be explained [34]-[37].

3.1 Introduction

Humanoids are developed to perform some basic tasks that a normal human being can do for

example walking, jumping and running. These basic tasks should be able to be performed in

human environments such as stairs and inclined floor. Even though these tasks may seem easy

for a human to perform it, many aspects must be taken carefully in bipedal robot case. A

number of researchers have implemented control methods to solve biped walking problems on

rough or uneven terrain [38]-[41]. Walking on inclined floor problems have been investigated

[42, 43], but these methods need a special trajectory purposely for inclined floor. Feng and

Sun [44] have developed a simple trajectory generation method for biped walking but the robot

can walk only on flat floor using the off-line generated trajectory. It is intended in this paper

to solve biped walking on inclined floor by simply modifying the IK (Inverse Kinematics) so

that the same walking pattern on a flat floor can be applied on the inclined floor. This can be

achieved by changing the orientation trajectory of pelvis. By doing this, the robot is able to

walk on flat and inclined surface using the off-line generated trajectory.

Kim et al. [12] and Taskiran et al. [45] have proposed several control algorithms to achieve

bipedal stable walking on inclined floor. One of the control algorithms is known as ankle torque

control. This method has been validated successfully but it must be operated together with

several more other control algorithms synchronously. However, it is afraid that by only consider

the ankle joints for pose stabilization on inclined floor, the ankle joints may become saturate.

Hence, if too much torque is applied, the ankle joints may damage. Of course, this situation

must be avoided. Therefore, the authors’ group have thought an idea to improve the situation

and proposed a method which will distribute the angles caused by the inclined floors among

the robot joints. It is believed that this is more efficient and can be done via modification of
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IK algorithm.

Some researchers used pelvis and foot positions to solve the robot kinematics [46], while

others may use CoM (Center of Mass) position. [47] implemented CoM and foot positions in

his IK solution. Ugurlu and Kawamura [48] also proposed such IK which takes the position of

CoM and foot, with zero orientation since they just consider walking on flat floor only. In this

section, the approach in [48] is extended to consider the orientations for walking on inclined

surface.

3.2 Forward Kinematics

FK equations are very essential to be determined, so that it can be inverted later for referential

joint angle calculations. There are several possible FK equations that can be obtained from a

bipedal robot such as CoM position, swing leg position and pelvis orientation.

The platform used in this section is MARI-3 biped robot. The purpose of FK is to determine

an explicit IK solution of 12 joint angles variables in order to handle redundancy. Please note

that the 13th yaw joint is not taken into account because it does not affect the CoM in the case

of this section. For position vectors, CoM position and swing leg position are used. While for

orientation, pelvis orientations with respect to the support foot is used.

3.2.1 CoM Position and Swing Foot Position

In the method of this section, right foot is used as reference. Therefore, the CoM position and

the swing foot position are always referred to the right foot sole center as shown in Fig. 3.1.

Some of biped researchers used pelvis as reference point and used it as input trajectory. This

is because it is visible and easier to visualize compared to CoM point. However, it is believed

that position of CoM is more accurate to be used as input trajectory since ZMP equations [8]

are related to CoM point.

A position of robot during right foot’s single support phase is shown in Fig. 3.1. From this

figure, PCR and PLR are the position vectors from right foot to CoM, and right foot to left foot,

respectively. ZMP equations are used to determine PCR, while PLR is generated from swing

leg motion. From these 6 existing position vectors, the FK equations are determined. These

functions contain the joint angles variables as shown in (3.1).

�Pi = fi(q1, . . . , q12)

i = 1, . . . , 6 (3.1)

From the position vectors, there are 6 equations and 12 joint angles variables. In order to

avoid redundancy, another 6 equations are needed. These additional equations are obtained
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Figure 3.1: Single support phase.

from orientation which will be explained further in the next subsection. In (3.1) and other

equations later, q symbolizes the joint angles. Please note that the left foot’s single support

phase case can be solved identically.

3.2.2 Pelvis Orientation

In this subsection, derivation of FK expressions for the pelvis orientation will be explained.

Fig. 3.2 shows the pelvis orientation with respect to the right foot. θx−RF , θy−RF and θz−RF

represents roll, pitch and yaw rotations with respect to the foot frame which is located in the

middle of right foot sole.

In order to derive the expressions for the pelvis orientation, the basic rotation matrices

around x, y and z axes must be determined. Multiplication all of the basic rotation matrices in

x-y-z Euler sequence [49], gives a 3x3 matrix in functions of θx−RF , θy−RF and θz−RF as shown

in equation (3.2). Please note that matrix element M21, M22, M31 and M32 are just ignored

since they were not used to determine the orientation equations.

Rx ×Ry ×Rz =

⎡
⎢⎣ M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎦ (3.2)
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Figure 3.2: Pelvis orientation.

Where the value of each element in (3.2) is given below:

M11 = cos(θy RF )cos(θz RF )

M12 = −cos(θy RF )sin(θz RF )

M13 = sin(θy RF )

M23 = −sin(θx RF )cosθy RF )

M33 = cos(θx RF )cosθy RF )

From the transformation matrix of the pelvis with respect to the right foot, the orientation

in term of joint angle q1 to q6 is obtained as shown in (3.3). Value of ’a’ in these equations is,

a = q3 + q4 + q5. Same as in (3.2), element N21, N22, N31 and N32 are ignored again because

they were not utilized for orientation equations determination. Notice that only q1 to q6 are

involved here since the joints angles involved are contributed from right leg only. On the other

hand, for the left leg case, it can be solved in the same manner.

RightFoot
Pelvis R =

⎡
⎢⎣ N11 N12 N13

N21 N22 N23

N31 N32 N33

⎤
⎥⎦ (3.3)

Where the value of each element in (3.3) is given below:
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N11 = sin(a)sin(q1)sin(q2) + cos(a)cos(q1)

N12 = −sin(a)cos(q1)sin(q2) + cos(a)sin(q1)

N13 = sin(a)cos(q2)

N23 = sin(q6)cos(a)cos(q2) + sin(q2)cos(q6)

N33 = cos(q6)cos(a)cos(q2)− sin(q2)sin(q6)

Each element of matrix in (3.3) is then compared with each element of matrix in (3.2). By

doing this, the equations are solved to obtain the FK orientation expressions for the pelvis with

respect to right foot as shown in (3.4)-(3.6).

θx RF = arctan

[
−sin(q6)cos(a)cos(q2)− sin(q2)cos(q6)

cos(q6)cos(a)cos(q2)− sin(q2)sin(q6)

]
(3.4)

θy RF = arcsin [sin(a)cos(q2)] (3.5)

θz RF = arctan

[
sin(a)cos(q1)sin(q2)− cos(a)sin(q1)

sin(a)sin(q1)sin(q2) + cos(a)cos(q1)

]
(3.6)

Where ’a’ in (3.4)-(3.6) is the same as in (3.3). For the left leg case, the FK orientation

equations, θx−LF , θy−LF and θz−LF are obtained in the same approach as (3.4)-(3.6).

3.3 Inverse Kinematics

In order to solve the IK, sufficient numbers of FK equations are needed. For position, it can be

either selected CoM or foot position. Here, the approach is to use both CoM and foot positions

as shown previously. CoM position is chosen as the input trajectory instead of pelvis joint

for a more accurate dynamics representations. It is believed that by controlling the CoM in

preference to pelvis joint, the robot will achieve a more natural and stable movement during

walking. From position, there are 6 position equations and 12 joint angles variables as shown

in (3.1) previously. Another 6 more equations are contributed from the orientation.

As for the orientation, the pelvis joint has been chosen for orientation. With 6 more equations

from the orientation, now there are sufficient number of equations and solvable variables. One

of the popular methods to solve the IK in robot study is by using a Jacobian based method.

There are 12 joint angles variables from q1 to q12. Let’s assigned the joint angles as in (3.7),

while positions and orientations as in (3.8).
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�Q = [q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12]
T
12×1 (3.7)

�P = [PCR PLR θR θL]
T
12×1 (3.8)

Where the value of θR and θL in (3.8) are given as follows;

θR = [θx RF θy RF θz RF ]
T
3×1

θL = [θx LF θy LF θz LF ]
T
3×1

By having (3.7) and (3.8), a Jacobian matrix between these two equations can be defined as

in (3.9).

�̇P = J �̇Q (3.9)

Avoiding the singularities, (3.9) could be solved by using Newton-Raphson Method [50].

3.4 Application of IK for Straight Walking

In order to validate the proposed IK, several simulations have been done.

3.4.1 Walking Simulation on Flat Floor

A dynamically balanced bipedal walking pattern on flat floor has been developed first before

simulations with the orientation IK method are done. CoM trajectories in x, y and z directions

of the walking pattern are shown in Figs. 3.3 - 3.5.

Figure 3.3: x-trajectory.
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Figure 3.4: y-trajectory.

Figure 3.5: z-trajectory.

Please note that in Figs. 3.3 - 3.5, the CoM positions are referred to right foot of the biped

robot. The notation of the axes is the same as used in Fig. 3.2 previously. The trajectories

with respect to left foot are not shown. However, the regions of left foot single support and

right foot single support is shown clearly in Figs. 3.3 - 3.5. The CoM trajectory in z direction

is always constant at certain value with respect to the supporting leg. However, one might be

confused with Fig. 3.5 since it does not look constant. During the grey region of Fig. 3.5, right

foot is not in supporting mode anymore. During these times, left foot acts as supporting foot

while right foot in swing phase.

3.4.2 Walking Simulation on 110 Inclined Floor without Orientation
Included

From this simulation, it is noticed that when the floor is inclined to 110, the robot fell down

after 2 steps if orientations are not included in IK. The snapshots of the biped robot walking
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simulation for 110 inclined are shown in Fig. 3.6.

Figure 3.6: Snapshots of biped robot walking on 110 inclined floor without orientation included.

As shown in Fig. 3.6, the robot started with its initial standstill position on a 110 inclined

floor. After 3s, the robot started to move by swinging out its left foot first. Continuously, right

foot stepped out in step 2. Left and right foot stepped out repeatedly one after another for 10

steps. However, since the walking pattern is designed purposely for a flat floor, the robot fell

down backward after step 4 because no pitch orientation is included in the trajectory planning.

From the ZMP trajectrory, it can be seen in Fig. 3.7 that about 10s, ZMP in x direction

already exceeded the foot boundary that caused the fell. For y direction, ZMP almost touched

the boundary as shown in Fig. 3.8.

3.4.3 Walking Simulation on 110 Inclined Floor with Orientation In-
cluded

In order to achieve walking on the 110 inclined floor, orientations are included in the trajectory

planning by using the method proposed in this section. Since the floor is inclined in pitch

direction, all the related pitch axes are used, instead of only the ankle joints. The input angle

orientation in pitch direction is set to 110 in order to compensate the 110 inclined floor. The

robot is able to complete 10 steps walking on inclined floor successfully as shown in snapshots

of Fig. 3.9.
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Figure 3.7: x-ZMP of biped robot walking on 110 inclined floor without orientation included.

Figure 3.8: y-ZMP of biped robot walking on 110 inclined floor without orientation included.

ZMP trajectory is also plotted out as shown in Fig. 3.10 and Fig. 3.11. From the designed

walking pattern, the robot will only started walking movements after 3s. It can be seen in Fig.

3.10 and Fig. 3.11 that at anytime, the trajectory of ZMP never crossed the foot boundary.

This ensured the robot is in stable position until all 10 steps are completed. Please note that

in Figs. 3.7, 3.8, 3.10 and 3.11, the foot sole boundary in x and y directions are drawn by red

dotted lines.

3.4.4 Walking Simulations using Ankle Joints Modification only and
with Orientation Included

For comparison, biped walking simulation on 110 inclined floor with modification at the ankle

joints only has been done. In this simulation, it is found that the orientation of the robot feet

after 10 steps walking are rotated about 200 to the right. The position and orientation of the

robot at the beginning and after 10 steps walking are shown in Fig. 3.12.

Furthermore, simulation using proposed method to distribute angle caused by the inclined

floor to all robot joints is done. On the same height inclined floor, the robot is able to maintain
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Figure 3.9: Snapshots of biped robot walking on 110 inclined floor with orientation included.

Figure 3.10: x-ZMP of biped robot walking on 110 inclined floor with orientation included.

the orientation of robot feet parallel to x-axis direction. Please note that the x-direction is

the same as used in Fig. 3.2 which is the direction of forward movement. The position and

orientation of the robot at the beginning and after 10 steps walking are shown in Fig. 3.13.

3.5 Application of IK for Diagonal Walking

In this section, the IK is applied for diagonal walking on slope [51]. Biped walking on slope has

started as early as in 1990 by Zheng and Shen [31]. In [31], the researchers have proposed a

motion scheme for slope walking that consisted of three major aspects. The major aspects are

solutions related to inclination of landing foot and gradient of the slope, slope motion scheme

and transitional walking. Kim et al. proposed many control schemes for biped walking on
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Figure 3.11: y-ZMP of biped robot walking on 110 inclined floor with orientation included.

Figure 3.12: Biped walking with modifications at ankle joints only.

slope such as upright pose, landing angular momentum, landing shock absorber, landing timing

and landing position controls [12]. Huang et al. [43] proposed a motion pattern generator for

slope walking in 3-D dynamics by using preview control of ZMP. There are also researchers who

implemented tactile sensing system to a humanoid robot for walking on the slopes [32]. The

tactile sensors are installed on two robotic feet.
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Figure 3.13: Biped walking with orientation included.

However, in all researches mentioned above, the walking is only done in straight direction

on the inclined floor. The problems and difficulties of walking in diagonal walking on inclined

floor are not considered in their papers. Therefore, in this section, diagonal walking method on

inclined floor is proposed.

3.5.1 Trajectory Planning Procedure

The trajectory planning procedures for the diagonal walking are summarized into several steps.

The procedures are categorized into two groups as follows:

• Calculation of the CoM Position Trajectory and the Foot Swing Position Trajectory

• Calculation of Roll and Pitch Joint Angles for Diagonal Walking on Inclined Floor

The details of the procedures above are explained as follows.

Calculation of the CoM Position Trajectory and the Foot Swing Position Trajectory

The CoM position is designed by using LIPM approach as explained in section 3.2.1. During

the single support phase, equations 3.10 and 3.11 below are used in order to get the CoM-x and
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CoM-y trajectories while maintaining the ZMP to be inside the support polygon. During the

single support phase, the support polygon is bounded by the size of the support foot. When

the CoM traveled in single support phase, foot swing will move to make a step. This swing foot

is moved by using polynomial function.

x(t) = (x0 − xzmp)cosh(ωt) +
ẋ0

ω
sinh(ωt) + xzmp (3.10)

y(t) = (y0 − yzmp)cosh(ωt) +
ẏ0
ω
sinh(ωt) + yzmp (3.11)

where the value of ω in equations 3.10 and 3.11 is given as follows:

ω =

√
g

z
(3.12)

Here, x0 and y0 denote the initial trajectory of CoM in x and y directions respectively.

In double support phase smooth connections between two phases are ensured by using a 5th

polynomial function as given in (3.13) - (3.15). Position, velocity and acceleration are taken

into account in order to get smooth movement or transition between phases.

p(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (3.13)

v(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (3.14)

a(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3 (3.15)

Here, p, v and a denote the position, velocity and acceleration respectively. a0 to a5 are deter-

mined with six constraints which are initial and ending of position, velocity and acceleration.

Calculation of Roll and Pitch Joint Angles for Diagonal Walking on Inclined Floor

Besides the positions, pelvis orientations must be designed according to the floor surface. If the

floor is flat, all the orientation input trajectories, θx RF , θy RF , θz RF , θx LF , θy LF and θz LF

are all zero. However, on the inclined floor these orientation input trajectories are not zero.

θx RF and θx LF denote the roll orientation of the pelvis with respect to right foot and left foot

respectively. θy RF and θy LF denote the pitch orientation of the pelvis with respect to right

foot and left foot respectively. Furthermore, θz RF and θz LF denote the yaw orientation of the

pelvis with respect to right foot and left foot respectively.

Diagonal walking is occurred when the biped robot rotated to right or left from the straight

orientation on inclined floor as shown in Fig. 3.14. In this research, the inclined floor is assumed

known. If the slope angle of the inclined floor is known, it is important to know the relationship
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Figure 3.14: Diagonal walking on inclined floor.

Figure 3.15: Relation between slope and pitch angles.

between the slope and the pitch angles. Later on, relationship between pitch and roll joints are

determined.

The derivations of relation between slope and pitch angles can be obtained by using Fig.

3.15 as reference. θ0 is the angle when the biped robot rotated to the right from its straight

position to perform a diagonal walking position.

From Fig. 3.15, the equations are derived as follows:

Y0 = sin(θp)×X2 = sin(θ)×X3 (3.16)
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sin(θp) = sin(θ)×
X3

X2

(3.17)

sin(θp) = sin(θ)× cos(θ0) (3.18)

It is shown in derivations above, the relationship between pitch and slope angles as shown

in (3.18).

On the other hand, the derivations of relation between roll and pitch angles are obtained by

using Fig. 3.16 as reference.

Figure 3.16: Relation between roll and pitch angles.

The derivations between roll and pitch angles are shown in (3.19) - (3.21).

X3 =
Y0

sin(θ)
(3.19)

X2 =

√
X1

2 + (
Y0

sin(θ)
)2 (3.20)

sin(θp) =
Y0

X2

=
Y0√

X1
2 + ( Y0

sin(θ)
)2

(3.21)

tan(θp) =
hx

X2

(3.22)

hx = tan(θL)×

√
X1

2 + (
Y0

sin(θ)
)2 (3.23)

31



Table 3.1: Simulation parameters
Maximum height of swing leg [m] 0.03

Forward foot stride [m] 0.07
Perpendicular of CoM height to slope surface [m] 0.4971

Single support time [s] 0.6
Double support time [s] 0.8
Inclined floor angle, θ [0] 7.08

Roll orientation angle, θR [0] 5
Pitch orientation angle, θp [0] 5

Rotation from the straight, θ0 [0] 45

sin(θR) =
Y0

hx

=
Y0

tan(θL)×
√
X1

2 + ( Y0

sin(θ)
)2

(3.24)

Equs. (3.21), (3.22) and (3.24) are then compared. As the result, (3.25)-(3.26) are obtained

as below.

sin(θp) = sin(θR)× tan(θL) (3.25)

sin(θp) = sin(θR)× tan(900 − θ0) (3.26)

It is shown in the derivations above, the relationship between pitch and roll angles as shown

in (3.26).

3.5.2 Simulation Results

The simulations are done by using ROCOS. The simulations setup parameters are shown in

Table 3.1. In these simulations, the biped is walking on floor in diagonal direction.

As shown in the Table 3.1, the diagonal walking simulations are done for the inclined floor

with slope angle of 7.08 degree. If the floor slope angle, θ and the rotation from straight, θ0 are

known, the roll and pitch joint angles can be calculated by using (3.18) and (3.26). It is also

given that the θ0 is 45 degree.

In this simulation, the biped robot performed a ten steps walking in diagonal direction on

the inclined floor. The CoM trajectories in x, y and z directions are plotted and shown as in

Figs. 3.17 and 3.18. The perpendicular distance of the CoM height in z direction between the

CoM and the support foot is always constant at 0.4971m as shown in Fig. 3.18. It can be seen

that smooth CoM trajectories are obtained by using the proposed method as confirmed in Figs.

3.17 and 3.18.

The value of θ0 is 45 degree and the inclined floor slope angle is 7.08 degree. Using (3.18)

the pitch orientation is obtained as (3.27).
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Figure 3.17: x and y trajectory of CoM.

Figure 3.18: z trajectory of CoM.

sin(θp) = sin(θ)× cos(θ0)

sin(θp) = sin(7.080)× cos(450)

θp = 50 (3.27)

Furthermore, the roll orientation is determined by using (3.26) as shown in (3.28).

sin(θp) = sin(θR)× tan(900 − θ0)
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sin(θp) = sin(θR)× tan(900 − 450)

θR = 50 (3.28)

The roll and pitch orientation of the pelvis with respect to the right foot is shown as in

Fig. 3.19. With the proposed method, the positions and orientations are determined and the

diagonal walking is achieved successfully.

Figure 3.19: Pelvis orientation with respect to right foot.
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Chapter 4

Biped Robot Walking along a Step in
2-D with DLLIPM

In this chapter the proposed method is explained for the 2-D of biped walking, in sagittal and

lateral cases.

4.1 Introduction

This section is expanded from Sub-section 1.3. In the Sub-section 1.3, the concept of DLLIPM

has been introduced. Now, the details of the derivations for 2-D cases, sagittal and lateral will

be explained.

4.2 Sagittal

This sub-section will explain about the proposed method for walking along a step with consider-

ation of sagittal plain only [30]. When different length of pendulum is used for representing RF

and LF during the biped walking, there is possibility of unbalance shape of walking trajectory.

Therefore, Newton-Raphson is used in order to obtain appropriate walking parameters. In this

section, the proposed method is explained and derivations are done systematically.

4.2.1 Single Inverted Pendulum

In this sub-section, the equations of position, velocity and acceleration of a single inverted

pendulum are derived [23]. The single inverted pendulum model is shown as in Fig. 4.1. In

this figure, xi,ẋi and ẍi are the position, velocity and acceleration respectively at the beginning

point. On the other hand, xf ,ẋf and ẍf are the position, velocity and acceleration at the ending

point. x(t) and S denote the constantaneous value of CoM trajectory in x-direction and the

stride of CoM, correspondingly. While g and Zc denote the acceleration of gravity and the

height of pendulum respectively.

35



Figure 4.1: Single inverted pendulum model.

Position

In this sub-section, the derivations of equations which are related to position in single inverted

pendulum model are shown. The equation of position is shown as in (4.1)

x(t) = xicosh(
t

Tc

) + Tcẋisinh(
t

Tc

) (4.1)

The value of Tc in (4.1) is given as (4.2)

Tc =

√
zc
g

(4.2)

In order to represent (4.1) in term of exponential function, (4.3) is derived.

x(t) = (
xi − Tcẋi

2
)e−

t

Tc + (
xi + Tcẋi

2
)e

t

Tc (4.3)

Velocity

In this sub-section, the derivations of equations which are related to velocity in single inverted

pendulum model are shown. Time derivative of (4.3), gives equation of velocity as shown in

(4.4).

ẋ(t) = (
ẋi −

xi

Tc

2
)e−

t

Tc + (
ẋi +

xi

Tc

2
)e

t

Tc (4.4)
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Figure 4.2: Dual length inverted pendulum model for parallel stair walking. In this figure, one
leg is always lands on the higher ground and the other one always lands on the lower ground.
These phases will be repeated for continuous walking.

Acceleration

In this sub-section, the derivations of equations which are related to acceleration in single

inverted pendulum model are shown. Time derivative of (4.4) gives equation of acceleration as

shown in (4.5).

ẍ(t) = (

xi

T 2
c

− ẋi

Tc

2
)e−

t

Tc + (

xi

T 2
c

+ ẋi

Tc

2
)e

t

Tc (4.5)

(4.5) can be also rearranged as in (4.6)

ẍ(t) =
xi

T 2
c

(
e

t

Tc + e−
t

Tc

2
) +

ẋi

Tc

(
e

t

Tc − e−
t

Tc

2
) (4.6)

4.2.2 Biped Walking Model by LIPM for Walking on a Step

Supposed that the long pendulum and short pendulum phases represent by phase 1 and phase

2 as shown in Fig. 4.2.

4.2.2.1 Definitions of Parameters

All parameters involved in Fig. 4.2 are explained and defined clearly as in Table 4.1.
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Table 4.1: Definitions of parameters
Parameters Definitions

ZLP CoM height of long pendulum
ZSP CoM height of short pendulum
S1 CoM stride during phase 1
S2 CoM stride during phase 2

x1(t) Instantaneous position during phase 1
x2(t) Instantaneous position during phase 2
x1i Initial position during phase 1
ẋ1i Initial velocity during phase 1
ẍ1i Initial acceleration during phase 1
x1f Final position during phase 1
ẋ1f Final velocity during phase 1
ẍ1f Final acceleration during phase 1
x2i Initial position during phase 2
ẋ2i Initial velocity during phase 2
ẍ2i Initial acceleration during phase 2
x2f Final position during phase 2
ẋ2f Final velocity during phase 2
ẍ2f Final acceleration during phase 2
Ts1 Instantaneous time at the end of phase 1
Ts2 Instantaneous time at the end of phase 2

4.2.2.2 Assumptions

All derivations shown later are based on five assumptions as following:

1. The initial position and initial velocity of phase 1 are known.

2. The height of the higher ground surface, h, which the robot will walk on is a known value.

3. The CoM height of long pendulum and short pendulum are known.

4. Both pendulums, the long and short pendulums are symmetrical. Reference of the position

for each phase is the middle of each supporting foot.

5. There are four free parameters that need to be solved which are S1, S2, Ts1 and Ts2.

4.2.2.3 Constraints

Based on assumptions designed in the previous sub-section, several constraints are enforced.

In total, there are four constraints which resulted into four equations. The objectives of the

constraints enforced are to ensure smooth motions between phases and also for reducing the

force at the landing foot.
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1. From the fourth assumption, the pendulums for phase 1 and 2 are made to be symmetrical

by the following equations:

x1f = +
S1

2
(4.7)

x2f = +
S2

2
(4.8)

2. Velocity is continuous which means the end velocity of phase 1 has the same value with

the initial velocity of phase 2. In the first constraint, all pendulums are made to be

symmetrical. Therefore, to ensure the continuity of the velocity, the end velocity of phase

1 must be equal to the end velocity of phase 2 as shown by the following equation:

ẋ1f = ẋ2f (4.9)

3. Acceleration is continuous which means the end acceleration of phase 1 has the same

value with the absolute value of initial acceleration of phase 2. In the first constraint,

all pendulums are made to be symmetrical. Therefore, to ensure the continuity of the

acceleration, the end acceleration of phase 1 must be equal to the end acceleration of

phase 2 as shown by the following equation:

ẍ1f = ẍ2f (4.10)

Detailed Equations

In this part, the detailed equations are derived from the constraints mentioned in sub-section

3.2.3.

1. The previous constraint in (4.7) is realized using (4.3) as shown in (4.11).

x1f =
(
x1i − Tc1ẋ1i

2
e
−

Ts1

Tc1

)

+
(
x1i + Tc1ẋ1i

2
e

Ts1

Tc1

)
=

S1

2
(4.11)

2. The previous constraint in (4.8) is also realized using (4.3) as shown in (4.12).

x2f =
(
x2i − Tc2ẋ2i

2
e
−

Ts2

Tc2

)

+
(
x2i + Tc2ẋ2i

2
e

Ts2

Tc2

)
=

S2

2
(4.12)
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3. The previous constraint in (4.9) is realized using (4.4) as shown in (4.13).

(
ẋ1i −

x1i

Tc1

2
e
−

Ts1

Tc1

)
+

(
ẋ1i +

x1i

Tc1

2
e

Ts1

Tc1

)
−

(
ẋ2i −

x2i

Tc2

2
e
−

Ts2

Tc2

)
−

(
ẋ2i +

x2i

Tc2

2
e

Ts2

Tc2

)
= 0 (4.13)

4. The previous constraint in (4.10) is realized using (4.6) as shown in (4.14).

⎛
⎝x1i

T 2
c1

e
Ts1

Tc1 + e
−

Ts1

Tc1

2

⎞
⎠ +

⎛
⎝ ẋ1i

Tc1

e
Ts1

Tc1 − e
−

Ts1

Tc1

2

⎞
⎠−

⎛
⎝x2i

T 2
c2

e
Ts2

Tc2 + e
−

Ts2

Tc2

2

⎞
⎠ −

⎛
⎝ ẋ2i

Tc2

e
Ts2

Tc2 − e
−

Ts2

Tc2

2

⎞
⎠ = 0 (4.14)

4.2.3 Solution of S1, S2, TS1 and TS2 using Newton-Raphson Method

In order to find solution for S1, S2, TS1 and TS2, a numerical method known as Newton-Raphson

is chosen. There are several steps need to be taken.

4.2.3.1 Simplification of equations

Before Newton-Raphson method can be implemented, equations (4.15)-(4.20) are defined.

α = e
Ts1

Tc1 (4.15)

β = e
Ts2

Tc2 (4.16)

A =
(
x1i + Tc1ẋ1i

2

)
(4.17)

B =
(
x1i − Tc1ẋ1i

2

)
(4.18)

C =
(
x2i + Tc2ẋ2i

2

)
(4.19)

D =
(
x2i − Tc2ẋ2i

2

)
(4.20)

By substituting (4.15), (4.17) and (4.18) into (4.11), equation (4.21) is obtained as following,

(
Bα−1

)
+ (Aα) =

S1

2
(4.21)

By substituting (4.16), (4.19) and (4.20) into (4.12), equation (4.22) is obtained as following,

(
Dβ−1

)
+ (Cβ) =

S2

2
(4.22)
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By substituting (4.15) and (4.16) into (4.13), equation (4.23) is obtained,

(
ẋ1i −

x1i

Tc1

2
α−1

)
+

(
ẋ1i +

x1i

Tc1

2
α

)
−

(
ẋ2i −

x2i

Tc2

2
β−1

)
−

(
ẋ2i +

x2i

Tc2

2
β

)
= 0 (4.23)

Then, (4.23) is further simplified by substituting (4.17)-(4.20) into it as shown in (4.24).

1

Tc1

(
−Bα−1 + Aα

)
−

1

Tc2

(
−Dβ−1 + Cβ

)
= 0 (4.24)

By substituting (4.21) and (4.22) into (4.24), (4.25) is obtained as following;

1

Tc1

(
2Aα−

S1

2

)
−

1

Tc2

(
2Cβ −

S2

2

)
= 0 (4.25)

By substituting (4.15) and (4.16) into (4.14), equation (4.26) is obtained,

1

T 2
c1

(
x1i + Tc1ẋ1i

2
α +

x1i − Tc1ẋ1i

2
α−1

)
−

1

T 2
c2

(
x2i + Tc2ẋ2i

2
β +

x2i − Tc2ẋ2i

2
β−1

)
= 0 (4.26)

By substituting (4.21) and (4.22) into (4.26), (4.26) can be simplified as (4.27)

1

T 2
c1

S1

2
−

1

T 2
c2

S2

2
= 0 (4.27)

From (4.21), (4.22), (4.25) and (4.27), the equations are defined as functions in (4.28)-(4.31)

f1(x) = Aα2 −
S1

2
α +B (4.28)

f2(x) = Cβ2 −
S2

2
β +D (4.29)

f3(x) =
2A

Tc1

α−
1

2Tc1

S1 −
2C

Tc2

β +
1

2Tc2

S2 (4.30)

f4(x) =
1

T 2
c1

S1 −
1

T 2
c2

S2 (4.31)

Then, (4.28)-(4.31) are rearranged as vectors shown in (4.32). In (4.32) the values of x are the

variable or parameters that need to be solved as shown in (4.33).

�f(x) = [f1(x) f2(x) f3(x) f4(x)]
T (4.32)

�x = [α β S1 S2]
T (4.33)
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4.2.3.2 Newton Raphson algorithm

Newton Raphson method is involving process of iterations. The objective is to obtain the roots

from several complex functions. In this method, the roots are calculated using (4.34).

xn+1 = xn −
f(xn)

f ′(xn)
(4.34)

f ′(xn) in (4.34) are the derivative of functions which are obtained as follows;

f ′(xn) =

⎡
⎢⎢⎣

∂f1
∂x1

. . . ∂f1
∂x4

...
. . .

...
∂f4
∂x1

. . . ∂f4
∂x4

⎤
⎥⎥⎦
4×4

(4.35)

The value of each element in the matrix above is then obtained.

4.3 Lateral

This sub-section will explain about the proposed method for walking along a step with consid-

eration of lateral plain only [33]. As for the lateral axis, it can be solved almost in the same

manner as the sagittal but with slightly different constraints.

4.3.1 Biped Walking Model by DLLIPM for Walking along a Step
in Lateral Plane

The long and the short pendulum phases are represented by phase 1 and 2 as shown in Fig.

4.3. In this figure, one leg lands on the higher ground and the other lands on the lower ground.

These phases will be repeated for continuous walking. Phase 1 is defined as walking cycle of

the biped robot when the robot is supporting by the foot on the lower ground which means the

height of pendulum in this cycle is referred as long pendulum (LP). Whereas phase 2 is defined

as walking cycle of the biped robot when the robot is supporting by the foot on the higher

ground which means the height of pendulum in this cycle is referred as short pendulum (SP).

The beginning point of the walking motion is started from the center of the RF sole.

Definitions of Parameters

All parameters involved in Fig. 4.3 are explained and defined in Table 4.2.

Assumptions

All derivations shown later are based on five assumptions as following:

• The initial position and initial velocity of phase 1 are known.
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Figure 4.3: Dual length inverted pendulum model for walking along stair in lateral plane.

Table 4.2: Definitions of parameters (k is 1 or 2, which is referred to phase 1 or 2, respectively).

Parameters Definitions

ZLP CoM height of long pendulum
ZSP CoM height of short pendulum
Syk Possible maximum stride during phase k
yk(t) Instantaneous position during phase k
yki Initial position during phase k
ẏki Initial velocity during phase k
ÿki Initial acceleration during phase k

ȳk=ykf Final position during phase k
ẏkf Final velocity during phase k
ÿkf Final acceleration during phase k
Tsk Instantaneous time at the end of phase k

• The height of the higher ground surface, h, which the robot will walk on is a known value.

• The CoM heights of long pendulum and short pendulum are known.

• Both pendulums, the long and the short pendulums are made to be symmetrical. Reference

of the position for each phase is the middle of each supporting foot.

• There are four free parameters that need to be solved which are Sy1, Sy2, Ts1 and Ts2.

Sy1, Sy2 are chosen because symmetrical pendulum motion can be determined when these

parameters are made to be half as shown in the constraints sub-section later. Furthermore,
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Ts1 and Ts2 are chosen since these parameters are also important in order to determine

symmetrical pendulum motion when initial position and velocity have been decided.

Constraints

In order to ensure smooth motions and symmetrical pendulums, there are several constraints

that must be enforced. In total, there are four constraints which resulted into four equations as

shown by (4.36)-(4.39).

1. The pendulums for phase 1 and 2 are made to be symmetrical by the following equations:

y1f = +
Sy1

2
(4.36)

y2f = −
Sy2

2
(4.37)

2. In order to ensure a smooth and symmetrical trajectory of the velocity, the final velocity

of phase 1 must be equal to the negative value of the final velocity of phase 2 as shown

by the following equation:

ẏ1f = −ẏ2f (4.38)

3. In order to ensure a smooth and symmetrical trajectory of the acceleration, the final

acceleration of phase 1 must be equal to the negative value of the final acceleration of

phase 2 as shown by the following equation:

ÿ1f = −ÿ2f (4.39)

Detailed Equations of the Constraints

In this part, the detailed equations are derived from the constraints mentioned in sub-section

4.1.3.

1. The previous constraint in (4.36) is realized using (4.3) as shown in (4.40).

y1f =
(
y1i − Tc1ẏ1i

2
e
−

Ts1

Tc1

)

+
(
y1i + Tc1ẏ1i

2
e

Ts1

Tc1

)
=

Sy1

2
(4.40)

Where the value of Tc1 above is given as in (4.41)

Tc1 =

√
ZLP

g
(4.41)
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2. The previous constraint in (4.37) is also realized using (4.3) as shown in (4.42).

y2f =
(
y2i − Tc2ẏ2i

2
e
−

Ts2

Tc2

)

+
(
y2i + Tc2ẏ2i

2
e

Ts2

Tc2

)
= −

Sy2

2
(4.42)

Where the value of Tc2 above is given as in (4.43)

Tc2 =

√
ZSP

g
(4.43)

3. The previous constraint in (4.38) is realized using (4.4) as shown in (4.44).

(
ẏ1i −

y1i
Tc1

2
e
−

Ts1

Tc1

)
+

(
ẏ1i +

y1i
Tc1

2
e

Ts1

Tc1

)
+

(
ẏ2i −

y2i
Tc2

2
e
−

Ts2

Tc2

)
+

(
ẏ2i +

y2i
Tc2

2
e

Ts2

Tc2

)

= 0 (4.44)

4. Time derivative of (4.4) results in equation of acceleration. This equation is then used in

order to realize the previous constraint in (4.39) as shown in (4.45).

⎛
⎝ y1i
T 2
c1

e
Ts1

Tc1 + e
−

Ts1

Tc1

2

⎞
⎠ +

⎛
⎝ ẏ1i
Tc1

e
Ts1

Tc1 − e
−

Ts1

Tc1

2

⎞
⎠+

⎛
⎝ y2i
T 2
c2

e
Ts2

Tc2 + e
−

Ts2

Tc2

2

⎞
⎠ +

⎛
⎝ ẏ2i
Tc2

e
Ts2

Tc2 − e
−

Ts2

Tc2

2

⎞
⎠

= 0 (4.45)

4.3.2 Solution of Sy1, Sy2, TS1 and TS2 using Newton-Raphson Method

In order to find solution for Sy1, Sy2, TS1 and TS2, a numerical method known as Newton-

Raphson is implemented. Newton-Raphson is a very popular iterative method to solve for

long and complex equations. However, there are several steps need to be taken which will be

discussed further in this section. Careful steps must be taken into account in order to ensure

the convergence of equations.
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Simplification of Equations

Before Newton-Raphson method can be implemented, long and complex equations must be

simplified. Therefore, (4.46)-(4.51) are defined.

α = e
Ts1

Tc1 (4.46)

β = e
Ts2

Tc2 (4.47)

A =
(
y1i + Tc1ẏ1i

2

)
(4.48)

B =
(
y1i − Tc1ẏ1i

2

)
(4.49)

C =
(
y2i + Tc2ẏ2i

2

)
(4.50)

D =
(
y2i − Tc2ẏ2i

2

)
(4.51)

As for the equation of position of phase 1, by substituting (4.46), (4.48) and (4.49) into (4.40),

equation (4.52) is obtained as following,

(
Bα−1

)
+ (Aα) =

Sy1

2
. (4.52)

As for the equation of position of phase 2, by substituting (4.47), (4.50) and (4.51) into (4.42),

equation (4.53) is obtained as following,

(
Dβ−1

)
+ (Cβ) = −

Sy2

2
. (4.53)

As for the equation of velocity, by substituting (4.46) and (4.47) into (4.44), equation (4.54) is

obtained,

(
ẏ1i −

y1i
Tc1

2
α−1

)
+

(
ẏ1i +

y1i
Tc1

2
α

)
+

(
ẏ2i −

y2i
Tc2

2
β−1

)
+

(
ẏ2i +

y2i
Tc2

2
β

)
= 0 (4.54)

Then, (4.54) is further simplified by substituting (4.48)-(4.51) into it as shown in (4.55).

1

Tc1

(
−Bα−1 + Aα

)
+

1

Tc2

(
−Dβ−1 + Cβ

)
= 0 (4.55)

By substituting (4.52) and (4.53) into (4.55), (4.56) is obtained as following;

1

Tc1

(
2Aα−

Sy1

2

)
+

1

Tc2

(
2Cβ +

Sy2

2

)
= 0 (4.56)
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As for the equation of acceleration, by substituting (4.46) and (4.47) into (4.45), equation (4.57)

is obtained,

1

T 2
c1

(
y1i + Tc1ẏ1i

2
α +

y1i − Tc1ẏ1i
2

α−1
)

+

1

T 2
c2

(
y2i + Tc2ẏ2i

2
β +

y2i − Tc2ẏ2i
2

β−1
)

= 0 (4.57)

(4.57) is then simplified as in (4.58) by substituting (4.52) and (4.53) into (4.57).

1

T 2
c1

Sy1

2
−

1

T 2
c2

Sy2

2
= 0 (4.58)

From (4.52), (4.53), (4.56) and (4.58), the equations are defined as functions in (4.59)-(4.62).

f1(y) = Aα2 −
Sy1

2
α +B (4.59)

f2(y) = Cβ2 +
Sy2

2
β +D (4.60)

f3(y) =
2A

Tc1

α−
1

2Tc1

Sy1 +
2C

Tc2

β +
1

2Tc2

Sy2 (4.61)

f4(y) =
1

T 2
c1

Sy1 −
1

T 2
c2

Sy2 (4.62)

In the same manner as in the sagittal case, (4.59)-(4.62) are rearranged as vectors shown in

(4.63). In (4.63) the values of y are the variables or parameters that need to be solved as shown

in (4.64).

�f(y) = [f1(y) f2(y) f3(y) f4(y)]
T (4.63)

�y = [α β Sy1 Sy2]
T (4.64)

Newton Raphson Algorithm

Newton Raphson method involves the process of iterations. The objective is to obtain the roots

from several complex functions. In this method, the roots are calculated using (4.65).

yn+1 = yn −
f(yn)

f ′(yn)
(4.65)

f ′(yn) in (4.65) is the derivative of functions which is obtained as in (4.66).

f ′(yn) =

⎡
⎢⎢⎣

∂f1
∂y1

. . . ∂f1
∂y4

...
. . .

...
∂f4
∂y1

. . . ∂f4
∂y4

⎤
⎥⎥⎦
4×4

(4.66)

The value of each element in the matrix above is then obtained.

47



4.4 Concluding Remarks in 2-D DLLIPM

Application of DLLIPM in 2-D case is interesting. However, it is more practical to combine

both sagittal and lateral in order to perform 3-D biped walking. The 3-D approach will be

explained in Chapter 5. It is noted that the difference of constraints between sagittal and

lateral are related with the velocity and acceleration equations. For the 2-D case, there are only

4 constraints involved. On the other hand, the 3-D case will have 6 constraints which are also

related with position, velocity and acceleration equations.
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Chapter 5

Biped Robot Walking along a Step in
3-D with DLLIPM

This chapter is expanded from Chapter 4. In this chapter, equations are derived to combine

lateral and sagittal for 3-D biped walking along a step.

5.1 Constraints for 3-D DLLIPM

In order to ensure smooth motions and symmetrical pendulums, there are several constraints

that must be enforced. In total, there are six constraints which resulted into six equations as

shown by (5.1)-(5.6).

1. By using the position equations, the pendulums for phase 1 and 2 are made to be sym-

metrical by the following equations:

x1f = +
Sx1

2
(5.1)

x2f = +
Sx2

2
(5.2)

y1f = +
Sy1

2
(5.3)

y2f = −
Sy2

2
(5.4)

2. In order to ensure a smooth trajectory of the velocity and syncronization between sagittal

and lateral, constraint as in (5.5) is enforced.

ẋ2
1f + ẏ21f = ẋ2

2f + (−ẏ2f )
2 (5.5)

3. In order to ensure a smooth trajectory of the acceleration and syncronization between

sagittal and lateral, constraint as in (5.6) is enforced.

ẍ2
1f + ÿ21f = ẍ2

2f + (−ÿ2f )
2 (5.6)
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5.2 Derivations of 3-D DLLIPM

In order to find solution for appropriate Sx1, Sx2, Sy1, Sy2, TS1 and TS2 parameters, a numerical

method known as Newton-Raphson is chosen. There are several steps need to be taken which

will be discussed further in this section.

Before Newton-Raphson method can be implemented, long and complex equations must be

simplified. Therefore, (5.7)-(5.16) are defined. α and β are variables but A-H are constants.

These constants are just defined as A-H equations in order to avoid long and repetitive equations

in the derivations.

α = e
Ts1

Tc1 (5.7)

β = e
Ts2

Tc2 (5.8)

A =
(
x1i + Tc1ẋ1i

2

)
(5.9)

B =
(
x1i − Tc1ẋ1i

2

)
(5.10)

C =
(
x2i + Tc2ẋ2i

2

)
(5.11)

D =
(
x2i − Tc2ẋ2i

2

)
(5.12)

E =
(
y1i + Tc1ẏ1i

2

)
(5.13)

F =
(
y1i − Tc1ẏ1i

2

)
(5.14)

G =
(
y2i + Tc2ẏ2i

2

)
(5.15)

H =
(
y2i − Tc2ẏ2i

2

)
(5.16)

The previous constraint which is stated earlier in (5.1) is realized by using the same position

equation that used in Chapter 4, as shown in (5.17).

x1f =
(
x1i − Tc1ẋ1i

2
e
−

Ts1

Tc1

)

+
(
x1i + Tc1ẋ1i

2
e

Ts1

Tc1

)
= +

Sx1

2
(5.17)

By substituting (5.7), (5.9) and (5.10) into (5.17), f1(q) is defined as following,

f1(q) = Aα2 −
Sx1

2
α +B (5.18)

The previous constraint in (5.2) is realized as shown in (5.19).

x2f =
(
x2i − Tc2ẋ2i

2
e
−

Ts2

Tc2

)

+
(
x2i + Tc2ẋ2i

2
e

Ts2

Tc2

)
= +

Sx2

2
(5.19)
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By substituting (5.8), (5.11) and (5.12) into (5.19), f2(q) is obtained as following,

f2(q) = Cβ2 −
Sx2

2
β +D (5.20)

The previous constraint in (5.3) is realized as shown in (5.21).

y1f =
(
y1i − Tc1ẏ1i

2
e
−

Ts1

Tc1

)

+
(
y1i + Tc1ẏ1i

2
e

Ts1

Tc1

)
= +

Sy1

2
(5.21)

By substituting (5.7), (5.13) and (5.14) into (5.21), f3(q) is defined as following,

f3(q) = Eα2 −
Sy1

2
α + F (5.22)

The previous constraint in (5.4) is realized as shown in (5.23).

y2f =
(
y2i − Tc2ẏ2i

2
e
−

Ts2

Tc2

)
+(

y2i + Tc2ẏ2i
2

e
Ts2

Tc2

)
= −

Sy2

2
(5.23)

By substituting (5.8), (5.15) and (5.16) into (5.23), f4(q) is defined as following,

f4(q) = Gβ2 +
Sy2

2
β +H (5.24)

The previous constraint in (5.5) is realized using (4.4), (5.7)-(5.16) as shown in (5.25).(
1

Tc1

(
2Aα−

Sx1

2

))2

+
(

1

Tc1

(
2Eα−

Sy1

2

))2

=

(
1

Tc2

(
2Cβ −

Sx2

2

))2

+
(
−1

Tc2

(
2Gβ +

Sy2

2

))2

(5.25)

Then, f5(q) is expanded as following:

f5(q) =
4A2α2

Tc1
2 −

2AαSx1

Tc1
2 +

Sx1
2

4Tc1
2 +

4E2α2

Tc1
2 −

2EαSy1

Tc1
2 +

Sy1
2

4Tc1
2 −

4C2β2

Tc2
2 +

2CβSx2

Tc2
2 −

Sx2
2

4Tc2
2 −

4G2β2

Tc2
2 −

2GβSy2

Tc2
2 −

Sy2
2

4Tc2
2 (5.26)

The previous constraint in (5.6) is realized using time derivative of (4.4), (5.7)-(5.16) as

simplified in (5.27).(
Sx1

2Tc1
2

)2

+

(
Sy1

2Tc1
2

)2

=

(
Sx2

2Tc2
2

)2

+

(
Sy2

2Tc2
2

)2

(5.27)
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Then, f6(q) is defined by expanding (5.27) as following:

f6(q) =
Sx1

2

Tc1
4 +

Sy1
2

Tc1
4 −

Sx2
2

Tc2
4 −

Sy2
2

Tc2
4 (5.28)

All the functions are arranged as in (5.29). In (5.29) the values of q are the variables or

parameters that need to be solved as shown in (5.30).

�f(q) = [f1(q) f2(q) f3(q) f4(q) f5(q) f6(q)]
T (5.29)

�q = [α β Sx1 Sx2 Sy1 Sy2]
T (5.30)

At the moment only six equations as in (5.29) with six variables as in (5.30) are optimized.

Other parameters are able to be optimized but left for future works. The six variables are

chosen because they are among important parameters that will determine the walking features

of biped robot. α and β determine the walking cycle of phase 1 (long pendulum) and phase

2 (short pendulum). Sx1 and Sx2 determine the stride length of phase 1 and 2 in sagittal

plane, respectively. Sy1 and Sy2 determine the stride length of phase 1 and 2 in lateral plane,

respectively.

Newton Raphson algorithm

Newton Raphson method is involving process of iterations. The objective is to obtain the roots

from several complex functions. In this method, the roots are calculated using (5.31) [25].

qn+1 = qn −
f(qn)

f ′(qn)
(5.31)

f ′(qn) in (5.31) is the derivative of functions which is obtained as in (5.32).

f ′(qn) =

⎡
⎢⎢⎣

∂f1
∂q1

. . . ∂f1
∂q6

...
. . .

...
∂f6
∂q1

. . . ∂f6
∂q6

⎤
⎥⎥⎦
6×6

(5.32)

The value of each element in the matrix above is then obtained.

5.3 Simulation Results

5.3.1 The Predetermined and Initial Guess Values for Newton Raph-
son Calculations

In the Newton Raphson method there are initial guess values for iterations that must be given.

These parameters are shown as in Table 5.1. The meaning of each parameters in Table 5.1 can

be determined from Table 4.1. There are also predetermined values which means the values are

decided before the Newton Raphson Calculations are done.

52



Table 5.1: Parameters for Newton Raphson calculations

Parameters Values Note

ZLP 0.5376m Predetermined value
ZSP 0.4376m Predetermined value
x1i -0.164m Predetermined value
ẋ1i 0.7887 m/s Predetermined value
x2i -0.10265m Predetermined value
ẋ2i 0.7887 m/s Predetermined value
y1i 0.1027m Predetermined value
ẏ1i -0.33 m/s Predetermined value
y2i -0.0808m Predetermined value
ẏ2i 0.33 m/s Predetermined value

Tc1

√
ZLP

g
=

√
0.5376
9.80665

Predetermined value

Tc2

√
ZSP

g
=

√
0.4376
9.80665

Predetermined value

Ts1 0.9s For calculation of α0

Ts2 0.6s For calculation of β0

α0 e
Ts1

Tc1 = e
0.9

0.2341 Initial guess

β0 e
Ts2

Tc2 = e
0.6

0.2112 Initial guess
Sx10 0.3280m Initial guess
Sx20 0.2800m Initial guess
Sy10 0.2053m Initial guess
Sy20 0.1616m Initial guess

Table 5.2: Range of initial guess values

Initial values of parameters Minimum Maximum

α0 e
0.6

0.2341 e
1.0

0.2341

β0 e
0.37

0.2112 e
1.0

0.2112

Sx10 0.3m 0.34m
Sx20 0.1m 0.30m
Sy10 0.16m 1.0m
Sy20 0.14m 0.19m

In the proposed method, the constrained equations can be achieved with certain limitation

of the initial settings as shown in Table 5.2. If the initial guess values are chosen outside of these

limitations, the convergence may not be achieved. Furthermore, all the obtained parameters

from the Newton Raphson method must be positive values since it is related with time and

length of CoM trajectory motions. All values in Table 5.2 are limited to the physical structure

of the robot.
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Table 5.3: Strides table

n 1 2 3 4 5 6 7 8 9 10

s(n)y 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

s(n)x 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

5.3.2 Results of the iterations with the Newton Raphson method

From the values used in sub-section 5.3.1, iterations are done by using (5.31). The results are

shown in Fig. 5.1 and Fig. 5.2. α is obtained as 10.5198 at 5th iteration and β is obtained

as 10.2831 at 4th iteration. Furthermore, Sx1, Sx2, Sy1 and Sy2 are obtained as 0.1842, 0.2438,

0.2841 and 0.1287, correspondingly. During the iterations process of the Newton Raphson

method, different initial settings may give negative values of the parameters or may not converge.

If it is not converge or negative values of parameters are obtained, different initial settings must

be selected again. The initial settings are chosen by trial and error. All the parameters, α,

β, Sx1, Sx2, Sy1 and Sy2 must be always positive. It should not be negative because α and β

represent the time which is impossible to be negative sign. On the other hand, the Sx1, Sx2, Sy1

and Sy2 are the distance of the center of mass maximum trajectory which should also be always

positive in sign.

Figure 5.1: Results of α and β after several iterations by using Newton Raphson algorithm.

In order to verify all the functions from the Newton Raphson solutions, Fig. 5.3 is plotted.

In this figure, all functions are obtained as ‘0’ values after all the parameters are converged.

This validated that all the constraints have been fulfilled.
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Figure 5.2: Results of Sx1, Sx2, Sy1 and Sy2 after several iterations by using Newton Raphson
algorithm.

Figure 5.3: Results of all functions from f1(q) to f6(q) by using Newton Rahpson algorithm.

5.3.3 Simulation of 3D Walking Pattern with DLLIPM (without
Newton Raphson)

In this sub-section, simulation of biped robot walking along a step with the height of 0.1 [m]

is presented. The strides are decided to be as in Table 5.3. The ZLP , Δt−LP and Δt−SP are

decided to be 0.5376 [m], 0.9 [s] and 0.6 [s] correspondingly. Here, the parameter settings are just

chosen intuitively without the Newton Raphson method. With these settings, the trajectory

planning method in sub-section 1.3.2 is used. The result for sagittal plane is obtained as in Fig.

5.4. On the other hand, the result for lateral plane is shown as in Fig. 5.5.

As for the sagittal plane, it is noticed from Fig. 5.4 that the CoM position trajectory

shown by the blue line is accelerated and deaccelerated repeatedly. Thus, the impact force

may increase. It is also noticed that the there are multiple levels of maximum and minimum

velocity for long pendulum and short pendulum cycles. These multiple level of velocity will
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create unsmooth motion during the walking. As for the lateral plane, it is observered from Fig.

5.5 that the CoM position trajectory becomes deviated from its initial straight position. The

deviated problem is more critical during the first few steps. It is also observed in this figure

that the shape of velocity trajectory, shown by the red line is not symmetry.

Figure 5.4: Walking pattern of 10 steps in sagittal plane (without proposed method).

Figure 5.5: Walking pattern of 10 steps in lateral plane (without proposed method).

5.3.4 Simulation of 3D Walking Pattern with Improved DLLIPM
(with Newton Raphson)

By using DLLIPM algorithm shown earlier in sub-section 1.3.2, the walking pattern for the

environment or situation in sub-section 5.3.3 is simulated again with the new walking parameters

obtained from sub-section 5.3.2. The result for sagittal plane is obtained as in Fig. 5.6. On the

other hand, the result for lateral plane is shown as in 5.7.
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Figure 5.6: Walking pattern of 10 steps in sagittal plane (with proposed method).

Figure 5.7: Walking pattern of 10 steps in lateral plane (with proposed method).

As for the sagittal plane, it is noticed in the Fig. 5.6 that the trajectory of CoM does

not accelerated and deaccelerated repeatedly as much as the previous situation, shown in the

Fig. 5.4. Thus, the impact force may reduce. Besides that, it is noticed that the minimum

velocity for long pendulum and short pendulum cycles is now at the same value which results

smoother walking motion. As for the lateral plane, it is observed that the motion of the CoM

is not deviated from its intial straight position as shown in the Fig. 5.7. Furthermore, it is also

noticed from this figure that the problem of unsymmetrical shape of velocity trajectory has been

solved. Smooth trajectories will help a bipedal robot to achieve safer and more stable walking.

From all the shown results, it is verified that with the proposed method, the biped walking

pattern for walking along a step have been improved. In orders to validate the velocity and

acceleration constraints suggested in sub-section 5.1, Figs. 5.8, 5.9, 5.10 and 5.11 are plotted.

In Figs. 5.8 and 5.9, the differences between the peak values are larger in comparison to the
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Figure 5.8: Combination of velocity vectors, sagittal and lateral (without proposed method).

Figure 5.9: Combination of acceleration vectors, sagittal and lateral (without proposed method).

situations in Figs. 5.10 and 5.11. Here, there are still some small differences because of the

foot landing modification used in trajectory planning. However, the proposed method which are

shown in Figs. 5.10 and 5.11 have about the same minimum values of velocity and acceleration

in comparison to Figs. 5.8 and 5.9. This will ensure a smooth and better motion of the proposed

method.

5.3.5 Walking Stability

It is intended to observe the stability of the proposed method in comparison without the pro-

posed method. In order to analyse the stability of the biped robot walking with and without

the proposed method, the observation in lateral plane will be considered. It is easier to see the

advantage of the proposed method over without the proposed method by referring to Figs. 5.5

and 5.7.

58



Figure 5.10: Combination of velocity vectors, sagittal and lateral (with proposed method).

Figure 5.11: Combination of acceleration vectors, sagittal and lateral (with proposed method).

In order to realized the biped walking without fall down, the right foot (RF) and left foot

(LF) must be landed at the point of ZMP trajectory. In other words, the ZMP trajectory

which is shown by the green dashed line must be within the foot sole as shown in Figs. 5.12

and 5.13. As shown in Table 5.3, the walking pattern is designed for a biped robot that has

distance between RF and LF as 0.2[m]. However, without the proposed method, the robot must

do the side step about 0.35[m] at the beginning as shown in Fig. 5.12. If the side step is too

big, beyond the limitation of the physical structure, the ZMP trajectory will be outside of the

foot sole boundary and the robot will fall down. This problem is solved by using the proposed

method where the side step is always about 0.2[m] as shown in Fig. 5.13.
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Figure 5.12: Walking pattern of 10 steps in lateral plane (without proposed method).

Figure 5.13: Walking pattern of 10 steps in lateral plane (with proposed method).

5.3.6 Simulation Results of LIPM and DLLIPM

Simulations of biped robot walking with LIPM and DLLIPM methods are conducted by using

ROCOS. In ROCOS, the real environment of bipedal robot can be simulated and the results are

almost similar to the real experiment surroundings. The simulations are conducted for walking

with two different concepts as shown in Figs. 1.4 a) and b) earlier in this thesis. RF always

lands on the lower step. Whereas LF always lands on the higher step of the stairs during the

walking. The GRF during these walking simulations are measured with the force sensors located

at the RF and LF of the biped robot. The heights of the step in the simulations are 0.1[m] and

the sampling time is 1[ms] or 1[kHz].

The results are shown in Figs. 5.14 for LIPM and 5.15 for DLLIPM. In these figures, the

regions of left foot single support phase (LFSS) and right foot single support phase (RFSS)

are shown by the yellow and grey area, correspondingly. The maximum impact forces during
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Figure 5.14: GRF data measured from force sensors during walking simulation (LIPM).

LFSS1 in LIPM and DLLIPM simulations are similar which are 410 [N] as shown by the purple

dashed circles in Fig. 5.14 for LIPM and Fig. 5.15 for DLLIPM. There is a small reduction of

maximum impact forces during RFSS2 which is from 440 [N] to 430 [N] as shown by the brown

dashed circles in Fig. 5.14 for LIPM and Fig. 5.15 for DLLIPM.

Moreover, bigger differences occurred during the RFSS1 and LFSS2. In LIPM simulation,

the maximum impact forces during RFSS1 and LFSS2 are 480 [N] and 450 [N], respectively

as shown by the red dashed circles in Fig. 5.14. These impact forces are reduced with the

proposed method where maximum impact forces during RFSS1 and LFSS2 are 370 [N] and 430

[N], respectively as shown by the red dashed circles in Fig. 5.15. The motion of up and down

of CoM during walking along stair in LIPM simulation contributed in the higher impact forces

shown by the data of GRF sensors. On the other hand, the proposed method maintained the

CoM height horizontally to reduce the impact forces. These facts demonstrated the effectiveness

of the proposed method in order to reduce the GRF.

As for statistical validation, the walking with DLLIPM approach is repeated for the slightly

different environment and longer foot steps (10 steps). This time, the height of the environment

is the same but now, RF always lands on the lower step and LF always lands on the higher

step of the stairs during the walking. The results are shown in Figs. 5.16 for LIPM and 5.17

for DLLIPM. It is proofed that the maximum impact forces with DLLIPM concept in Fig. 5.17

are lower than the maximum impact forces with LIPM concept in Fig. 5.16.
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Figure 5.15: GRF data measured from force sensors during walking simulation (DLLIPM).
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Figure 5.16: GRF data measured from force sensors during 10 steps walking simulation (LIPM).

5.4 Experiment Results

Experiments of biped robot walking with consideration of lateral plane are conducted for walking

on a step by using MARI-3 biped robot. The experiments are done as shown by the snapshots

in Fig. 5.18. In these experiments, only lateral walking is taken into account which means the

robot walked without moving forward. Emphasis is given to the lateral plane since the stair is

elevated in this direction. The walking cycles of each experiment consists of two steps of right

foot single support (RFSS), two steps of left foot single support (LFSS) and double support

phases. The experiments are conducted for walking with two different concepts as shown in

Figs. 1.4 a) and 1.4 b) which have been shown earlier in this paper. In the experiments,
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Figure 5.17: GRF data measured from force sensors during 10 steps walking simulation (DL-
LIPM).

RF always lands on the lower step. Whereas LF always lands on the higher step of the stair

during the walking. The ground reaction forces (GRF) during these walking experiments are

measured with the force sensors located at the RF and LF of the biped robot. The heights of

the step in the experiments are 0.05 [m] and the sampling time is 0.001 [s] (1kHz). Each joint

angle is processed in a servo block in which position control, velocity control and disturbance

observer is applied [26]. These servo blocks output the torque references for the actuators and

the robot moves. The foot swing trajectories are generated by using polynomial function [11]

and the height of each swing is 30 [cm]. As for the LIPM experiment, (5.33) is used to generate

the CoM trajectory of z-axis [23]. k is obtained by dividing the stair height with the distance

between the robot’s feet. As for the experiment of DLLIPM, the CoM trajectories are simulated

by using DLLIPM scheme as explained in section 1.3.2. The results are shown in Figs. 5.19

and 5.20.

CoMz = CoMy × k + Zc (5.33)

The solid lines in the Figs. 5.19 and 5.20 represent forces measured at the RF of the biped

robot. Furthermore, the dashed lines in the Figs. 5.19 and 5.20 are the forces measured at the

LF of the biped robot. In these figures, the regions of right foot single support phase (RFSS)

and left foot single support phase (LFSS) are shown. In the experiment with LIPM, maximum

impact forces during RFSS1, LFSS1, RFSS2 and LFSS2 are 359.5 [N], 328.2 [N], 473.6 [N]

and 401 [N], respectively as shown by the horizontal dashed lines in Fig. 5.19. These impact

forces are reduced with the proposed method where the maximum impact forces during RFSS1,

LFSS1, RFSS2 and LFSS2 are 354.1 [N], 303 [N], 398.3 [N] and 366 [N], respectively as shown
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Figure 5.18: MARI-3 walking in the experiment with the proposed method.

by the horizontal dashed lines in Fig. 5.20. These facts demonstrated the effectiveness of the

proposed method in order to reduce the maximum impact forces of the GRF.

5.5 Derivations of 3-D DLLIPM with Other Constraints

The main objective of this sub-section is to derive equations of 3-D DLLIPM with other con-

straints. This time, the constraints are related to position and velocity equations only. The

acceleration equation will be not considered.

First, let’s refresh about the previous constraints. Previously, the constrainst with consid-

eration of position, velocity and acceleration equations are given as follows:

1. As for the position equations, the pendulums for phase 1 and 2 are made to be symmetrical

by the following equations:

x1f = +
Sx1

2
(5.34)

x2f = +
Sx2

2
(5.35)
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Figure 5.19: Ground reaction force data measured from force sensors during walking experiment
(LIPM).

Figure 5.20: Ground reaction force data measured from force sensors during walking experiment
(DLLIPM).

y1f = +
Sy1

2
(5.36)

y2f = −
Sy2

2
(5.37)

2. In order to ensure a smooth trajectory of the velocity and syncronization between sagittal

and lateral, constraint as in (5.38) is enforced.

ẋ2
1f + ẏ21f = ẋ2

2f + (−ẏ2f )
2 (5.38)

3. In order to ensure a smooth trajectory of the acceleration and syncronization between

sagittal and lateral, constraint as in (5.39) is enforced.

ẍ2
1f + ÿ21f = ẍ2

2f + (−ÿ2f )
2 (5.39)
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It is intended to re-derive equations above with new constraints. In the new constraints,

(5.38) and (5.39) are modified. Now, the 6 constraints are defined as follows:

1. The position equations are maintained as in the previous:

x1f = +
Sx1

2
(5.40)

x2f = +
Sx2

2
(5.41)

y1f = +
Sy1

2
(5.42)

y2f = −
Sy2

2
(5.43)

2. As for the sagittal velocity:

ẋ1f = ẋ2f (5.44)

3. As for the lateral velocity:

ẏ1f = −ẏ2f (5.45)

In the same manner as previous derivation, labels are defined as follows:

α = e
Ts1

Tc1 (5.46)

β = e
Ts2

Tc2 (5.47)

A =
(
x1i + Tc1ẋ1i

2

)
(5.48)

B =
(
x1i − Tc1ẋ1i

2

)
(5.49)

C =
(
x2i + Tc2ẋ2i

2

)
(5.50)

D =
(
x2i − Tc2ẋ2i

2

)
(5.51)

E =
(
y1i + Tc1ẏ1i

2

)
(5.52)

F =
(
y1i − Tc1ẏ1i

2

)
(5.53)

G =
(
y2i + Tc2ẏ2i

2

)
(5.54)

H =
(
y2i − Tc2ẏ2i

2

)
(5.55)
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As shown in (5.18), (5.20), (5.22) and (5.24) previously, the contraints of position equations

are defined as follows:

f1(q) = Aα2 −
Sx1

2
α +B (5.56)

f2(q) = Cβ2 −
Sx2

2
β +D (5.57)

f3(q) = Eα2 −
Sy1

2
α + F (5.58)

f4(q) = Gβ2 +
Sy2

2
β +H (5.59)

From modification of (5.25), the new constraints for velocity are shown as below. Note that

the previous equation of acceleration are omitted.

f5(q) =
1

Tc1

(
2Aα−

Sx1

2

)
−

1

Tc2

(
2Cβ −

Sx2

2

)
(5.60)

f6(q) =
1

Tc1

(
2Eα−

Sy1

2

)
+

1

Tc2

(
2Gβ +

Sy2

2

)
(5.61)

Furthermore, (5.60) and (5.61) are expanded as follows:

f5(q) =
2Aα

Tc1

−
Sx1

2Tc1

−
2Cβ

Tc2

+
Sx2

2Tc2

(5.62)

f6(q) =
2Eα

Tc1

−
Sy1

2Tc1

+
2Gβ

Tc2

+
Sy2

2Tc2

(5.63)

Next, all the functions that shown in (5.56), (5.57), (5.58), (5.59), (5.62) and (5.63) can be

solved by using Newton-Raphson method.
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Chapter 6

Generalized Conclusions

In this section, the conclusions for each chapter, from chapter 1-5 will be explained. In total, this

thesis is divided into 6 chapters including this chapter, the generalized conclusions. A the end

of this thesis, there are appendix sections that included the MARI-3’s mechanical specification,

special research report and publications.

In chapter 1, background and motivation of this research is discussed. Previous research

studies that related to biped walking on slope and stairs are cited properly. The motivation

of this research is that walking along a step has not investigated yet by other researchers yet.

Most of them investigated for walking directions of up and down only. Research objectives

are also statetd at the end of chapter 1. There are three research objectives to be achieved

which are to design and develop the kinematics for MARI-3 biped robot, to obtain appropriate

walking parameters for walking along a step in 2-D case with DLLIPM approach and to obtain

appropriate walking parameters for walking along a step in 3-D case with DLLIPM approach.

ZMP derivation by using cart-table model is shown in chapter 2. Furthermore, the analytical

solution of ZMP is also shown. The general ZMP equation which is shown as in (2.13) is used

repeatedly in many derivations in this thesis.

In chapter 3, the kinematics calculations that included orientation and position equations

are shown. The proposed kinematics are applied at MARI-3 biped robot for walking on flat

floor, slope and diagonal walking. ROCOS has been used as simulator to proof the applications

of the proposed kinematics. By using ROCOS, the x, y and z-trajectory of CoM are obtained

for the walking on the various floor surfaces. The proposed kinematics is validated successfully

since the responses of the trajectory are obtained similarly as the references of the trajectory.

Biped robot walking along a step in 2-D with DLLIPM is discussed in chapter 4. In this

chapter, the derivations of the proposed method are done seperately for sagittal and lateral

cases. There are 4 variables to obtain which are Sx1, Sx2, Ts1 and Ts2 for sagittal case. On the

other hand, there are also 4 variables to obtain for lateral case which are Sy1, Sy2, Ts1 and Ts2.

In both cases, there are 4 constraints used which are related to position equations in phase 1
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and phase 2, velocity and acceleration equations.

In chapter 5, biped robot Walking along a step in 3-D with DLLIPM is discussed. In this

chapter, the derivations are done in order to synchronous between sagittal and lateral planes.

There are 6 variables to obtain which are Sx1, Sx2, Sy1, Sy2, Ts1 and Ts2. Furthermore, there are

6 constraints used which are related to position equations in phase 1 and phase 2 for sagittal and

lateral planes, velocity and acceleration equations. Simulations are done with ROCOS simulator

in order to realized the biped robot walking with LIPM and DLLIPM methods. Experiments

are also done by using MARI-3 biped robot. In simulations and experiments, findings are found

that the maximum impact forces are reduced by using DLLIPM method, in comparison to LIPM

method.

6.1 Summary of Results

There are some important merits from the proposed method, DLLIPM for biped walking along

a step:

• Synchronization between sagittal and lateral in order to perform 3-D biped robot walking.

In chapter 5, the derivations included 6 constraints which synchronized between sagittal

and lateral planes.

• Minimization of maximum impact forces. It is found that, by using DLLIPM method in

biped walking along a step, the CoM is always maintained horizontally which contributed

in minimization of maximum impact forces. In LIPM method, CoM is brought up and

down repeatedly and this contributed to higher maximum impact forces.

• Walking stability from the observation of the ZMP trajectory. It is discussed in sub-section

5.3.5 that with the proposed method, a more stable walking is achieved.

6.2 Future Research

There are several future works which can be considered and have not done yet because of time

limitation. The topics that could be explored and will be the near future research topics are

listed as below.

• Simulation and experiment by using other constraints. It is just noticed recently that

there are other options in determination of the constraints. In this research, position,

velocity and acceleration equations have been used for the constraints. It is intended to

continue the simulation and experiment by using position and velocity equations only as

suggested in sub-section 5.5.
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• Optimization of other walking parameters. In this research, only 6 walking parameters

have been chosen for optimization as shown in Table 5.1. The rest are pre-determined

values and able to be optimized in the future.

• As the limitation of time, experiments in this thesis are done only for the lateral plane.

In the future, it is intended to do experiment of forward walking along the step too.

• It is intended to expand the concept of DLLIPM for biped diagonal walking on stairs.

• It is also intended to expand the concept of DLLIPM for a more challenging motion which

is biped robot turning on stairs.
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Appendix A

MARI-3’s Mechanical Specifications

A.1 Link Wise Specs
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Figure A.1: Numbered Links on MARI-3

Below, MARI-3’s link parameters are given in a link-wise manner[52]. m symbolizes mass,

d indicates the CoM position with respect to corresponding joint position. Please refer to Fig.
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A.1. The data are used in the kinematics calculations.

Link 1

m1 = 3.641 [kg] (A.1)

d1 =
[
0.02716 0.00942 −0.06381

]T
[m] (A.2)

Link 2

m2 = 4.212 [kg] (A.3)

d2 =
[
−0.01634 0.01494 −0.13399

]T
[m] (A.4)

Link 3

m3 = 3.101 [kg] (A.5)

d3 =
[
−0.00283 0.00893 −0.18926

]T
[m] (A.6)

Link 4

m4 = 3.253 [kg] (A.7)

d4 =
[
−0.01359 0.00163 −0.08821

]T
[m] (A.8)

Link 5

m5 = 3.641 [kg] (A.9)

d5 =
[
0.02716 −0.00942 −0.06381

]T
[m] (A.10)

Link 6

m6 = 4.212 [kg] (A.11)

d6 =
[
−0.01635 −0.01494 −0.13399

]T
[m] (A.12)
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Link 7

m7 = 3.101 [kg] (A.13)

d7 =
[
−0.00283 −0.00893 −0.18926

]T
[m] (A.14)

Link 8

m8 = 3.253 [kg] (A.15)

d8 =
[
0.01359 −0.00215 −0.08821

]T
[m] (A.16)

Link 9

m9 = 3.731 [kg] (A.17)

d9 =
[
0.0 0.0 −0.01138

]T
[m] (with respect to pelvis) (A.18)

Link 10

Note that CoM position of link 10 is exactly on the z-axis. The corresponding joint, q13, only

rotates about yaw axis. Therefore, q13 has no influence neither on the upper body CoM nor on

the overall CoM position.

m10 = 5.87 [kg] (A.19)

d10 =
[
0.0 0.0 0.0862

]T
[m] (A.20)

Transformation Matrix from Right Ankle Roll Joint to Right Foot Sole Center

T6→RF =

⎡
⎢⎢⎢⎣
0.0 0 −1.0 0.11
0.0 1.0 0.0 0.0
1.0 0.0 0.0 0.0
0 0.0 0.0 1.0

⎤
⎥⎥⎥⎦ (A.21)

Transformation Matrix from Left Ankle Roll Joint to Left Foot Sole Center

T12→LF =

⎡
⎢⎢⎢⎣
0.0 0 −1.0 0.11
0.0 1.0 0.0 0.0
1.0 0.0 0.0 0.0
0 0.0 0.0 1.0

⎤
⎥⎥⎥⎦ (A.22)
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Appendix B

Stability observation of a 2-link robot
manipulator with disturbance observer
and computed torque control (Mass
fluctuation consideration)

B.1 Introduction

Robot manipulator is a very non-linear system. In practical, the manipulator is exposed to some

kinds of disturbances such as joint frictions and end-effectors payloads. If these disturbances are

ignored, some problems like poor tracking performance and unstable system will be appeared.

Therefore, controllers are crucial and must be implemented in order to have a good manipulator

system.

This report is prepared for a special research subject (Subject code: SD10039). The objective

of this research is to observe stability of a 2-link planar manipulator on mass fluctuations. In the

observations, two type of control methods are used which are computed torque control (CTC)

and disturbance observer (DOB). Furthermore, this report presents some results of simulations.

Simulation tool used is MATLAB. In the simulations, the mass fluctuations are created by using

two methods which are explained more detail in section B.4.

This section is organized as following; section B.1 is explaining about the whole idea of this

report, section B.2 explains the forward kinematics of the 2-link planar manipulator, section

B.3 explains on the dynamics equations of the manipulator and how they are derived, section

B.4 explains about the definitions of the mass fluctuations, section B.5 is the main content

which is the control section. Section B.6 is the discussions on the simulation results obtained

in section B.5. Finally, section B.7 concludes the findings or observations obtained from this

special research project.
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B.2 Kinematics

Kinematics is the analysis of motion without consideration of torque or forces produced the

motion. The structure of the 2-link planar robot for kinematics calculations is shown as in

Fig.B.1. The structure consists of 2 links, l1 and l2. The movement of link 1 and link 2 produce

angles denote by θ1 and θ2. x0 and y0 is the position of the end effector in the Cartesian plane.

It is noticeable from Fig.B.1 that the movement of link 1 affects the link 2; whereas movement

of link 2 will not effects the link 1.

Figure B.1: 2-link planar manipulator

B.3 Dynamics

The derivations of the dynamics equations in this report are developed by using Euler Lagrange

motion of equations[53]. The equation is shown as in (B.1).

D(θ)θ̈ + C(θ, θ̈)θ̈ + g(θ) = τ (B.1)

D, C and g are known as inertia/mass, centrifugal/coriolis and gravity matrices respectively

which are essential to produce torque.

B.4 Mass Fluctuations

As mentioned earlier, the main objective of this project is to observe the stability of a 2-

link planar with consideration of mass fluctuations. There are two options to create the mass
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fluctuations which are shown in B.4.1 and B.4.2 sub-sections below;

B.4.1 Definition 1

In definition 1, the mass fluctuations are created by changes of mass matrix as in (B.2).

Dn = (10 ∼ 100%)×D (B.2)

B.4.2 Definition 2

In definition 2, the mass fluctuations are created by changes of the mass itself as shown in (B.3).

mnew = (10 ∼ 100%)×moriginal (B.3)

B.5 Control

This is the main section of this report. Here, two types of controllers will be explained which

are computed torque control (CTC) and disturbance observer (DOB).

B.5.1 Part A: Computed Torque Control (CTC)

The computed torque control equations are shown as in (B.5)[54].

Dθ̈ + Cθ̇ + g = τ (B.4)

Dθ̈ + Cθ̇ + g = DnU + Cnθ̇ + gn (B.5)

where U in (B.5) is given as follows;

U = θ̈ref +Kp(θref − θres) +Kd(θ̇ref − θ̇res)

The blockdiagram of CTC is shown as in Fig.B.2. The term θ̈ref in Fig.B.2 is known as feed-

forward acceleration reference [56].

CTC simulations

The simulations setting and physical parameters are shown in Table B.1 and Table B.2 respec-

tively.

The results of the simulations with step input and sine input are given as in Fig.B.3 and

Fig.B.4 respectively.
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Figure B.2: Computed torque control block diagram

Table B.1: CTC simulation setting

Items Info

Controller CTC, Kp1=100, Kp2=150,
Kd1=30, Kd2=60

Mass Dn=10%D, Dn=30%D,
fluctuations Dn=50%D, Dn=70%D,

Dn=100%D
References θ1ref=θ2ref=50xπ/180 (Step),

θ1ref=θ2ref=0.87sin(2πt) (Sine)

Table B.2: Physical structure setting

Items Sspecifications

l1 = l2 0.5[m]
S1 = S2 0.25[m]
m1 = m2 5[kg]

inertia link 1 0.42[kgm2]
=inertia link 2

g 9.81[m/s2]

B.5.2 Part B: Disturbance Observer (DOB)

The disturbance observer equations are shown as in (B.6)-(B.7)[55].

τ = θ̈ref +Kp(θref − θres) +Kd(θ̇ref − θ̇res) + d̂is (B.6)

where d̂is in (B.6) is given as follows;

d̂is =
gdob

s+ gdob
(τ + gdobDn)− gdobDn (B.7)

The blockdiagram of DOB is shown as in Fig.B.5.
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Figure B.3: CTC with step input

DOB simulations

The simulations setting is shown in Table B.3. Actually only gdob parameters are added into

Table B.3, whereas other settings are still similiar as in Table B.1. The physical parameters are

the same as previous CTC simulations as shown in Table B.2.

Table B.3: DOB simulation setting

Items Info

Controller CTC, Kp1=100, Kp2=150,
Kd1=30, Kd2=60

gdob1=300, gdob2=300
Mass Dn=10%D, Dn=30%D,

fluctuations Dn=50%D, Dn=70%D,
Dn=100%D

References θ1ref=θ2ref=50xπ/180 (Step),
θ1ref=θ2ref=0.87sin(2πt) (Sine)
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Figure B.4: CTC with sine input

The results of the DOB simulations with step input and sine input are given as in Fig.B.6

and Fig.B.7 respectively.

B.5.3 CTC and DOB simulations by using definition 2

In this section, results of simulations by using definition 2 as explained earlier in sub-section

B.4.2 are shown.

The CTC simulations with step and sine inputs are shown as in Fig.B.8 and Fig.B.9 corre-

spondingly.

The DOB simulations with step and sine inputs are shown as in Fig.B.10 and Fig.B.11

correspondingly.
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Figure B.5: Disturbance observer block diagram

B.6 Discussion

B.6.1 Tracking performance of q1 and q2 responses

The CTC simulations with step and sine inputs are shown as in Fig.B.3 and Fig.B.4. In these

figures, it is noticed that when the value of Dn is smaller than D, the tracking performance

becomes poor. At Dn = 10%D, the q1 and q2 responses produced oscillation and overshoot. By

using definition 2 as mass fluctuations, the tracking performance becomes worse as shown in

Fig.B.8 and Fig.B.9.

On the other hand, DOB simulations are shown in Fig.B.6, Fig.B.7, Fig.B.10 and Fig.B.11.

In all of these simulations, the tracking performance is quite good and the responses are within

acceptable range from the input references.

B.6.2 XY trajectory of responses in Cartesian plane

The XY trajectory of responses by using CTC deviated from its reference trajectory during

mass fluctuations as clearly seen in Fig.B.3 and Fig.B.8.

Conversely, DOB produced a better and more accurate XY trajectory during mass fluctua-

tions as shown in Fig.B.6 and Fig.B.10.
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Figure B.6: DOB with step input

B.6.3 Joint position error

After observation on all simulations of CTC and DOB, it is found that in CTC simulations, the

maximum joint position error is about 2.5 [rad] and the minimum is about -2.5 [rad] as shown

in Fig.B.4. While, in DOB simulations, the errors are 10 times lower which are between -0.25

[rad] to 0.25 [rad] Fig.B.7.

B.7 Conclusion

In this research, stability observations of a 2-link planar manipulator with computed torque

control (CTC) and disturbance observer (DOB) have been investigated. Mass flactuations con-

sideration is taken into account in this investigation. It is noted from the simulations that CTC

is only performed well with small modeling errors. However, when mass fluctuates, modeling

errors become big and this affected the CTC system. It have been proofed via simulations, that

the CTC results are not very good especially when Dn = 10%D in all CTC simulations, either
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Figure B.7: DOB with sine input

using sine or step input, using definition 1 or 2.

However, in DOB control system, the disturbances are observed and even though the mass

fluctuates, DOB has overcome this fluctuation by swapped back the observed disturbances back

into the system. Finally, it is concluded that CTC is not very robust to mass fluctuations

whereas DOB is robust.
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Figure B.8: CTC with step input using definition 2
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Figure B.9: CTC with sine input using definition 2
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Figure B.10: DOB with step input using definition 2

94



0 1 2 3 4 5
−1

−0.5

0

0.5

1
q1 joint

A
ng

le
[ra

d]

Time[s]
0 1 2 3 4 5

−1

−0.5

0

0.5

1
q2 joint

A
ng

le
[ra

d]

Time[s]

0 1 2 3 4 5
−2000

0

2000

4000

6000

8000
Torque at joint 1

Time[s]

To
rq

ue
[N

m
]

0 1 2 3 4 5
−2000

0

2000

4000

6000
Torque at joint 2

Time[s]

To
rq

ue
[N

m
]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1
XY workspace

x[m]

y[
m

]

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4
Joints position error

Time[s]

P
os

iti
on

 e
rr

or
[ra

d]

Reference
q1 joint pos. when 100%m
q1 joint pos. when 70%m
q1 joint pos. when 50%m
q1 joint pos. when 30%m
q1 joint pos. when 10%m

Reference
q2 joint pos. when 100%m
q2 joint pos. when 70%m
q2 joint pos. when 50%m
q2 joint pos. when 30%m
q2 joint pos. when 10%m

Torque at joint 1 when 100%m
Torque at joint 1 when 70%m
Torque at joint 1 when 50%m
Torque at joint 1 when 30%m
Torque at joint 1 when 10%m

Torque at joint 2 when 100%m
Torque at joint 2 when 70%m
Torque at joint 2 when 50%m
Torque at joint 2 when 30%m
Torque at joint 2 when 10%m

Reference
XY traj. when 100%m
XY traj. when 70%m
XY traj. when 50%m
XY traj. when 30%m
XY traj. when 10%m

q1 joint pos. error when 100%m
q2 joint pos. error when 100%m
q1 joint pos. error when 70%m
q2 joint pos. error when 70%m
q1 joint pos. error when 50%m
q2 joint pos. error when 50%m
q1 joint pos. error when 30%m
q2 joint pos. error when 30%m
q1 joint pos. error when 10%m
q2 joint pos. error when 10%m

Figure B.11: DOB with sine input using definition 2
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