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Abstract

A computational method is proposed for the analysis of hydrodynamic performance of
ships and the design of optimized hull form in shallow water and deep water with respect
to the wavemaking resistance is presented. The method involves coupled ideas from two
distinct research fields: numerical ship hydrodynamics and nonlinear programming
technique. Having the numerical tools for hydrodynamic analysis, a mathematical
procedure for optimizing hull forms is developed. The optimal hull form design system
enables the designer to include advanced resistance performance predictions at the early
stage of design process, allowing a systematic evaluation of the resistance performance
characteristics as a function of the hull geometry.

The wavemaking resistance of ships is estimated by means of Morino’s panel
method extended to free surface flow and into the influence of finite depth on the wave
resistance of ships and PAFS is linked to the optimization procedure of Sequential
Quadratic Programming (SQP) technique. An optimum hull form can be obtained
through a series of iterative computation subject to some design constraints.

The developed optimization procedure in shallow water is demonstrated by
choosing a mathematical Wigley (Cp = 0.444) hull and a standard Series 60 (Cg = 0.60)
hull. The optimization in shallow water is carried out at Froude number of 0.316 and the
wavemaking resistance taken as an objective function and the optimized hull forms are

obtained for different depths of water. The specified Froude number corresponds to lower



than depth critical speed since most of ships operating in shallow water below depth
critical speed. The sinkage is an important factor in shallow water and this method
considered sinkage as a hydrodynamic design constraint during the optimization process.
The numerical results of optimization procedure indicate that the optimized hull forms in
shallow water yields a reduction in wavemaking resistance.

In the optimization of catamaran ship hull without and with airship forms bulb
installed on the center plane of catamaran, a mathematical ship hull of cosine waterline
and parabolic frame line has been chosen to carry out the fundamental study of the
numerical optimization and the wavemaking resistance taken as the objective function.
The optimization is carried out at two Froude numbers 0.45 and 0.50 respectively, which
are around the last hump of the wavemaking resistance curve of catamaran ship and most
of the catamaran ships are running in high-speed range. The optimized catamaran hulls
without and with airship form bulbs show lower wavemaking resistance with original
ones around the design speed.

The entire process of hydrodynamic analysis, geometrical modeling and
optimization thus attempts to imitate the traditional hull form design procedure. The
system of computer can be used to develop mathematically faired and hydrodynamically

desirable hull forms from an existing ship.
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CHAPTER 1

Introduction

The numerical shape optimization technique is a promising method for the design
problems in engineering because it can supplement an experience and guide when
designing new geometries or trying to improve the efficiency of the existing ones.
Approach of using a direct flow solver and general robust constraint methods is accepted
in 3D industrial aerodynamics design, simple geometries and simple flow models such as
2D airfoils or wing profiles, the shape optimization methods are widely used.

The most fundamental and persistent problem in ship hydrodynamics is the design of a
low resistance ship that satisfies given requirements of displacement volume and speed.
Ship designers and ship hydrodynamicists have always been interested in finding ship
forms of minimum resistance. The knowledge of the flow around the ship and its

resistance components is very important in ship hull form development.

Traditionally naval architects design the ship hull form and perform the model tests to
survey the wave property. If the results cannot meet the expectation, then they modify the
hull form and execute another test, repeating the process until satisfactory result are
obtained. This optimal cycles consumes time and cost. In recent years computational
fluid dynamics (CFD) method were introduced into the design process to simulate the

flow filed around the hull.

Numerical optimization is a well established mathematical filed and there are numerous
references on the theory and application of numerical optimization technique. Many
mathematical algorithms exist for solving optimization problems. However, they vary
greatly in efficiency and quality of the final solution for a given number of function

evaluations. No single technique is best for solving all problems.



An interesting possibility is to combine a CFD method and a numerical method together
with a program for hull form variation. This procedure can be used to find a hull that is
optimized with respect to properties computed by the CFD method, such as resistance,
wave-height, sinkage, trim etc. One or more geometrical constraints for instance
displacement and ship hull main dimensions and hydrodynamic constraints such as

sinkage, trim etc. must be introduced to limit the modifications of the hull.

Many interesting works on hull optimization in deep water from hydrodynamic point of
view have been presented through the years, both for conventional and unconventional
ships (Hino 1996, Hino et al. 1998, Peri et al. 2001 and Tahara et al. 1998). Different
hydrodynamic models for the flow prediction have been used, from thin ship theory for
the wave resistance to more advanced CFD methods. Some of these attempts seem to be

encouraging as numerical computations show improvements of the optimized design.

The term “shallow water” is used to describe a body of water in which the boundaries are
close to the ship only in the vertical direction. When the water shallows, the resistance of
the ship moving through it will become greater. The three-dimensional motion of the
water will approach a two dimensional character. The pressure set up by the ship’s
motion will be greater and ;chis extra pressure in shallow water causes waves larger than
those in deep water. In shallow water the lengths of waves accompanying the ship at a
given speed, are greater than for the same speed in deep water. Furthermore, the change
in stream velocities past the surface of the ship when in shallow water will increase the
resistance somewhat.

It is important to know what happened if a hull form optimized for deep water operates
in shallow water. In shallow water there is a phenomena commonly referred to as squat
that increases draft of a ship, while it is steaming in shallow water. Ship squat or
decrease in under keel clearance when a ship moving in shallow water, is one of the most
important and well known phenomena affecting safe operation of ships in restricted
waters. Squat is present also in deep water. Sinkage and trim, or squat is important in
very shallow water because of its practical consequences to under-keel clearance. In

shallow water it is common for a vessel to reach a state of operation known as critical



speed where instead of a combination of diverging and transverse waves seen in deep
water, a wave pattern is created and moves in the forward direction as the ship. This wave
pattern is typically large and takes much energy to create and can lead to severe
environmental problems near the shore. At speed greater or less than critical speed, the
steepness of created waves and the resulting resistance are greatly reduced. Therefore, it
is required to estimate the speed range through shallow water areas and the wave making

resistance for primary hull form design.

It is necessary to mention here that Bangladesh is a riverine country. Some major rivers
flow through this country and finally discharge into the Bay of Bengal, which surrounds
the southern part. River craft, big and small play a very important role in the
transportation of goods and passengers through the country. There is no doubt that the
rivers and the Bay of Bengal are very significant in relation to the economic
development. A striking feature of many rivers of Bangladesh is the vast shallow water

areas, which necessitate strict draft requirement for ship.

The catamaran or twin hull concept has been employed in high-speed craft design for
several decades, and both sailing as well as powered catamarans are used. The
resistance of a catamaran is mainly affected by the wetted surface ratio [wetted surface

2 *], the slenderness ratio [length/(volume-displacement)'”],

area/ (volume-displacement)
and the hull spacing . The wetted surface ratio is relatively high compared with mono-
hulls of same displacement. Consequently catamarans show poor performance at low
speed (F, < 0.35) where skin friction is predominant. At higher speeds (in the hump
region, F, ~ 0.5) the low trim angles associated with the slender demi-hulls of the
catamaran lead to a favorable performance. The hull spacing ratio is associated with the
interference effecfs between the component hulls. These effects consist of wave
interference effects and body interference effects. Wave interference effects are due to
the superposition of two wave systems, each associated with a component hull in
isolation. The body interference effects are caused by the change of flow around one

demi-hull due to the presence of the other hull. The wave interference may influence the

resistance to a large extent. Beneficial wave interference is achieved by the cancellation



of part of the divergent wave systems of each demi hulls, whereas adverse wave
interference arises on interaction of the transverse wave system. The generation of
vertical hydrodynamic lift and the associated change of hull form because of trim and rise
of the center of gravity , may have a significant effect on the interference effects.

The wavemaking resistance characteristic of high-speed catamaran ship is improved by
the use of hydrofoil, streamlined bodies of revolution placed between the demi-hulls, etc.
Many ships operating on seaway now have conventional bulbous bow, which can reduce
the wave resistance by hydrodynamic interaction of the waves between the main hull and
the bulb. However, results of the minimum wave resistance theory show that the higher
speed the optimum bulb radius becomes the larger. In a practical sense, those results are
not applicable to most high-speed ships of displacement. In high-speed range, the
wavelength of the elementary waves generated by a disturbance becomes so large that the
so-called wavemaking length becomes large too. According to this consideration, the
relative position of the bulb to the main hull is one of the important factors. In the case
catamaran, airship form bulb is introduced instead of conventional bulb. The airship form
bulb is expressed as an axis-symmetric streamline body formed by the combinatic;n of a
hydrodynamic point source and line sink.

In order to solve a hydrodynamic optimization problem like ship hull forms
optimization, following elementals are necessary, an evaluation method of an objective
function related to a hydrodynamic performance, a numerical optimization technique of
the objective function and a numerical shape deformation method of ship hull form in the

optimization process.

1.1 Previous Research

1.1.1 Mono Hull in Shallow Water and Deep Water

The effect upon resistance due to the changes in flow in shallow water has attracted the
interest of scientist for many years. Michell, J. H. (1898) first derived an analytical
expression for the wave resistance of ship moving in calm water. Havelock, T. H. (1922)
studied the effects of shallow water on the wave resistance and wave pattern for a point

pressure impulse traveling over a free surface. Kinoshita M. & Inui, T. (1953) extended



Havelock’s theory to satisfy bottom boundary condition more exactly. Kirsch, M. (1966)
used linearized wave theory to calculate the wavemaking resistance for simplified hull
form in different water depths and channel widths. Muller, E. (1985) carried out
extensive experiments and theoretical calculations based on linearized wave theory to
investigate the effect of shallow water on wavemaking resistance. Yasukawa, T. (1989)
has developed first order panel method based on Dawson’s approach for the linear free
surface condition and shallow water effect is undertaken by replacing the bottom surface
with Rankine sources. Tarafder, M.D., Suzuki, K. and Kai, H (2002, 2002) used Morino’s
panel method (1976) into the influence of finite depth on the wave resistance of ships.
The other researchers who have important contribution in ship resistance in shallow water

are Maruo and Tachibana (1981), Lee (1992), Kim et al. (1996) respectively.

1.1.2 Catamaran Hull

The wavemaking resistance characteristic of high-speed catamaran ship with airship form
large bow and stern bulbs installed on the center plane of a catamaran are suggested and
their wavemaking characteristics to reduce the wavemaking resistance acting on the
catamaran in high speed range by means of model experiments and numerical analyses
based on panel method has been investigated By Suzuki. K., Kai, H. and Tatsunami, H
(2003, 2003) and about 40-45% reduction of wavemaking resistance can be expected.
Also resistance characteristics of Ship hull forms with airship form bulbs have been
investigated and the airship form bulb which minimize the wave resistance in high speed
range by hydrodynamic interaction with the main hull proposed by Suzuki, K. et. al
(1994), Ikehata, M. and Suzuki, K. (1995).They found that the shape of the main hull
becomes more slender and bulb size becomes larger according to the increment of design
speed and if optimizing the bulb position, it changes and protrudes larger with increasing
the design speed. Ando, J. and Nakatake, K. (2004) has been done hull form
improvement of catamaran using genetic algorithm. Zotti, I. (2003) has investigated
hydrodynamic improvement of catamaran with streamlined bodies of revolution having
different length to diameter. Research on resistance reduction in catamaran also have
been investigated by Séding, S. (1997) and Zotti, I. (1997) and made great contribution

on the research of wave resistance of catamaran.



1.2 Present Research

1.2.1 Optimization of Mono Hull (Wigley and Series 60, Cg = 0.6) in
Shallow Water

In this study, a hydrodynamic optimization is carried out at a design Froude no
F, = 0.316 on Wigley Mathematical hull (Cg = 0.444) and practical Series 60 (Cg = 0.6)
in shallow water.

In the present, the hydrodynamic shape optimization system for three-dimensional bodies
is constructed based on panel method, PAFS (Panel Applied to Free Surface Flow) and a
numerical optimization method called SQP (Sequential Quadratic Programming). In the
optimization procedure the wavemaking resistance has been selected as a single objective
function. A body shape is defined by the design variables and the combinations of design
variable which gives the body of hydrodynamic extremity such as minimum wave
resistance under certain geometrical and hydrodynamical constraints is sought. If the
sinkage is large, under-keel clearance will be low for a particular depth of water and may
cause a ship to scrape the bottom. This circumstance should be borne in mind while
ensuring the safety operation of ships with a restricted draft in the design process. So
sinkage is an important factor in shallow water, this method specially considered as a
hydrodynamic design constraint. The critical speed is related to the depth Froude
Number. The critical depth Froude number is 1.0. The optimization is carried out at
Froude number lower than critical depth Froude number since most of the ships operating

in shallow water below critical speed at a particular depth of water.

1.2.2 Optimization of Catamaran Hull

A hydrodynamic optimization problem for catamaran ship hull with and without bow
and stern bulbs installed on the center plane of demi-hulls has been treated. The body
shape of demi-hull without and with airship forms bulbs installed on the center plane of
demi-hull optimized to achieve lower wave resistance hull and to observe the
hydrodynamic interaction between demi-hull and bulbs. Relatively high Froude numbers
(0.45 and 0.50) are selected, as most of catamaran ships run in high-speed range and the

selected Froude numbers are around the last hump of the wavemaking resistance curve.



In the optimization PAFS used as three-dimensional flow solver and SQP, a numerical
optimization tool. Bulb position and bulbs size didn’t optimize but only the body shape of

main hull.



CHAPTER 2

Numerical Modeling of Potential Flow Method

2.1 General Nonlinear Boundary Value Problem

The flow around a ship moving with a steady forward speed U under the influence of
incoming waves defines a boundary value problem for the velocity potential. The
problem is analyzed by introducing two co-ordinate systems as show in Figure 2.1. The
first is the inertial axis system x-y-z advancing in space with steady speed U in the
positive x direction, y directed to starboard and z vertically upward. The origin of this
system is in the plane of the undisturbed free surface above the center of gravity. The
other axis system x-y-z is fixed to the body. The two systems coincide with each other
when there is no motion. The fluid is assumed to be inviscid and incompressible and the

flow is irrotational such that the velocity potential @ can be defined as

Fig. 2.1 Definition sketch of co-ordinate system

O=Ux+¢ @.1.1)

where ¢ is the perturbation velocity potential due to the presence of the body. The
velocity potential @ satisfies the Laplace equation

VO =0 (2.1.2)
in the fluid domain V. The hull boundary condition requires that normal velocity potential

on the hull must be zero.



V®-n=0 (2.1.3)

The kinematic and dynamic boundary conditions on the free surface can be respectively

written as:
DL, +DL, -D,=0 at z=C (2.1.4)

1 ) ‘ B
g§+5[V<D.V(I)—-U]=O at z=¢ (2.1.5)

Combining Equation (2.1.4) and Equation (2.1.5)
VCD.V[%(V(D.V@)} +g®P, =0 at z=¢ (2.1.6)

Finally energy condition requires that the velocity potential approaches the uniform onset
flow potential. There are no waves far upstream of the ship and waves always travel in
the downstream direction.

The problem described in equations (2.1.1) to (2.1.5) is nonlinear since the free surface
conditions (2.1.4) and (2.1.5) themselves are nonlinear and should be satisfied on the

true free surface which is unknown and should be obtained as a part of the solution.

¢ 2.1.1 Linearization of Free Surface Boundary Condition:

In order to analyze the above (Equation 2.1.4 and Equation 2.1.5) nonlinear free surface
problem, the first step is to introduce appropriate smallness parameter, with respect to
which the above expressions are to be perturbed. Here we define the smallness parameter
&= B/L, where B and L are the Beam and length of the ship. Then the surface of the ship
can be written as

y=¢f(x,2)

¢ 2.1.2 Free Surface Boundary Condition for Uniform Flow

As the perturbation velocity potential of the fluid motion generated by a thin ship is small
in order of ¢, one can expand the velocity potential in a power of series such as
(Maruo, 1966):

=P, €70, Frerrrrrrranene 2.1.7)

D =Ux+ed, +€°0, + e (2.1.8)



The corresponding wave elevation can be written as

E=88,+&%C, +vvrrern (2.1.9)
Substituting equation (2.1.8) into equation (2.1.6)

1

—2—U.V[U2 +82UV, +£7(V9,.V4, +2UV9, )|+

Levo, V[U? +e2Up, +£2(Vo, Vo, + 2058, )]+ (2.1.10)

2

%82V¢2.V[U2 +£20.V¢, ]+ g[sd)lz + 82¢Zz]+ 0O(E*)=0

Rearranging Equation (2.1.10) and obtain

[UV(UVH,)+gdy, ],

SZ[U-V(U.W)Z) +20,, + %U.V(Vq)l.vq)] )+ V4,.V(UVs, )] (2.1.11)

z=(

Using the following vector identities into Equation (2.1.11)

SUN(74,V6,)= Vo, 9(U6,)
UV(V9,.V9,) =V, V(UVo,)+ Ve, V(UVs,)

we obtain

1 ‘
[-Z—VCD.V(VCD.VCD)+ g®, L = e[UV(UV§, )+ gby, ], + 2.112)

e’ [UV(UVY,)+gh,, +UV(V,V9,)],.. =0

The boundary condition is to be evaluated at the unknown position, z = £. To avoid the
difficulties we choose to satisfy a boundary condition at mean value of { (at z = 0, still

water plane) by using Taylor’s theorem. The function @(x,y,z) can be written
O(x,5,2) = D(x,y,0)+ D, (X, ,0) + %Czd)zz 6190 Z0) E —
Similarly

Y Y +~;—§2[ I

Now expanding Equation (2.1.12) we obtain

10



[UUS)+ &b, Lo +2L [UT(UTH,)+ g0, ]., +

8% 2 ;Z—Zz[U.V(U.V(bI ) + g¢lz ]z:O +¢ [U'V(U'V¢2 )+ g¢22 + U'V(V¢1 'Vd)l )]z=° + @l 13)

0
L [UV(UVG,)+2bs, +UV(V4,.V4, )], =0
Substituting Equation (2.1.9) into Equation (2.1.13) we get

sUV(UV,)+gby, ], , +82[g1 %(U-V(U-V¢l)+g¢u)z=o} + 2i14

e’ [UV(UVs,)+gd,, +UV(VH,.V$, )], =0

Now taking the coefficients of &, & on each side of Equation (2.1.14) and substituting
g/UZ = Ky, we have

e: UV(UVY,)+gh,=0 on z:O}

0 Kb, =0  on z=0 (2.1.15)
¢ UV(UV0,)+ g, = -UN(T4,98,)- &, — [U5(UT8,)+ g, ]

Orne + Koo, =1£(9,) on z=0 : (2.1.16)
_ __l_i 2 2 2y __a_
00 =~ 5 (0 + 0L, +01.)- 6 —(bue + Kob)

Similarly expanding Equation (2.1.5) we obtain the equations of wave profiles for the 1%

order, 2™ order approximation respectively as

CI =~}—(U.V¢1)=_H¢1x
g g
g =_l[lv¢ Vo, + UV, +& —a—(UVd) )}
2 gl 2 ¥ T2 IGZ ’
1 1, 2 2
= __g-[U'(be +—2—(¢1x +¢1y +¢lz)+U€1¢1xz:l

Finally the equations of the wave profiles

¢ =-Zo, @.117)
g

G ==L 2 b~ (02 +02, +42) (2.1.18)
g g 2g

11



¢ 2.1.3 Free Surface Boundary Condition for Sinkage and Trim

The total velocity potential can be represented by means of two small parameters £ and &,
the first one ¢ pertaining to the steady motion due to uniform flow and second one ¢ to
the first order oscillatory motion of the ship (Timman et al. 1985),

O=Ux+¢+d0

=Ux+ is“(bn + éS(scpS + t(pt)

n=]

(2.1.19)

where ¢ is the steady potential due to unit sinkage and ¢ is the steady potential due to
unit trim. s is the sinkage (positive upward) and ¢ is the trim angle (trim by the stern is
positive).

For the second order approximation (5 ~ &) the velocity potential and the wave elevation

are written as

©=Ux+ed, +&*(9, +5¢, +19,) (2.1.20)
=g, +&* (5, +5¢, +1C,) B

Substituting the second order terms of velocity potential and wave elevation in Equation

(2.1.16) and (2.1.18), we have
g% 1., +K,0, =0 for sinkage
P + K9, =0  for trim

2

e”: =——Ig~j—(psx for sinkage

€, = —E(ptx for trim

¢ 2.1.4 Linearization of Body Boundary Condition

The second order fluid velocity vector on the instantaneous wetted surface Sy can be
obtained as

VO =W +¢*(Vo, +Vo) (2.1.21)
where

W =Ux + €V,

12



The local velocity vector V@ on the instantaneous wetted surface Sy of the ship may be
expanded about the mean position of the body surface Sy using the vector form of

Taylor’s theorem as:

| 2
VO|, =|VD|, +(a.V)VD|, +=(a.V)|VD). +.........
ok, =[vol, +(v)vok +L@vP[vel, o1z
=[vo],, +(@.v)ve], +0(?)
a 1s the oscillatory displacement of the ship and will be obtained from the transformation
of co-ordinate system. The normal vector on the instantaneous hull surface Sy is

Ny = (n +Qx n)so for first order approximation.

£2 denotes the rotation of the ship. Neglecting second order terms of Equation (2.1.22) the
linearized body boundary condition at the wetted surface reduces to

[VCI) + (OL.V)V(DHn +Qx n] =0

VOn+(a.V)VOn+VO(Qxn)+0(3>) =0

Substituting the value of V@ we get

W.an+Vé, -n+Von+{o.V)W}n+{W(Qxn)=0

Vo-n=[Qx W-(oc.V)W]-n

Vo-n= [Vx(oc-W)]‘n

The body boundary condition derived by Timman and Newman (1962) to account in a
consistent manner for the interaction between the steady and oscillatory flow field.

Accrording to Ogilvie and Tuck (1969) the body boundary conditions for the steady

oscillatory motions of the ships can be expressed as

00,
N
with mi+mj+m,k=~n V)W | (2.1.23)

m,i+mgj+mk= —(n-V)(xx W)
W is the fluid velocity due to the steady forward motion of the vessel in the ship fixed co-
ordinate frame. The normal derivative of the steady potential due to oscillatory motion of
the ship represents the change in the local steady flow field due to the motion of the body.
The m-terms are written in terms of derivatives of the steady potential and normal vector

consist of second derivatives of the steady potential.
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2.2 Potential Flow Hydrodynamics in Deep Water
¢ 2.2.1 Linear Boundary Value Problem in Deep Water

Consider a closed three-dimensional domain ¥ with boundary S, the unit normal vector n
to S being oriented to ¥ as shown in Figure 2.2. The boundary surface S is composed of
hull surface Sy, wake surface Sy, free surface S and a large hemi-sphere S in the lower B
half space. The body is subject to the inflow velocity U. With the assumption that the

fluid is incompressible, inviscid and irrotational, there exists a velocity potential

P N

= U Y S

qa(&n.c Sk

P(X.y,2)

Fig 2.2 Application of Green’s theorem for a body in deep water

O=Ux+¢+d5¢p
) 2.2.1)
=U-x+¢€d, +¢ (¢2 + 50, +t(pt)
which satisfy the Laplace equation
V?® =0 in the fluid domain ¥ (2.2.2)

A boundary value problem can be constructed by specifying boundary conditions on the

boundary as follows:
() The boundary condition on the hull surface requires that the normal velocity

component of the fluid particle at the wetted surface of the ship must be zero.

14



e:V¢, n=-U-n,
g’ :Vo, n=0
and with respect to sinkage and trim r (2.2.3)

g?:Vo, -n=m,

g?: Vo, -n=m;

J

in which n=n_i+n,j+nk denotes the unit normal vector on the hull surface and is

positive into the fluid.

(b) The free surface boundary conditions are
€: ¢lxx +K0¢lz =0

82 :¢2xx +KO¢2Z = f((bl)
with respect to sinkage and trim pon z =0 (2.2.4)

N

£ ¢y, +K,0,=0

" 1@y + Ko, =0

(c) The wake surface Sy is assumed to have zero thickness. The normal velocity jump

and the pressure jump across Sy is zero, while a jump in the potential is allowed

(Ap),s, =p"-p =0

%) _(o0) _(20) _
A(an)msw‘(an) (an) °f 223

(d) For the steady lifting problem, the potential jump across the wake surface is same as

the circulation around the body and is constant in the stream-wise direction.

(Ad)ors, =67 =4 =r}
(A(p)onsw = (P+ _(P_ =I

(2.2.6)

A kutta condition is required at the trailing edge to uniquely specify the circulation. In its

most general form, it states that the flow velocity at the trailing edge remains bounded

15



IV¢|TE< oo}
2.2.7
Vol < o @2.7)

(e) In addition, it is necessary to impose a radiation condition to ensure that the free

surface waves vanish upstream of the disturbance.

¢ 2.2.2 Solution of Free Surface Problem in Deep Water:

The boundary value problem for the velocity potential outside the body surface can be
transformed into an integral equation, upon consideration of a fictitious fluid ¥, which is
the domain internal to the body surface Sy. Thus the velocity potential any point p within

the fluid domain ¥ can be expressed as

4mEd(p) = j[¢(q) #'(@)] ———ds j——— 6() - ¢'()Jads +
' (2.2.8)

qu)(q)an ds- | a;’iq) GdS

From the condition at infinity for G and ¢, it is easy to see that the integral on Sk goes to

zero as R — co. The source potential can be written as

1 1
- 2.2.9
R,(p;q) T R,(p;q) 22.9)

where

p(x,y,z) = field point where influence coefficient is calculated

q(&,n,c) = source point where singularity is located.

R, =(x-&) +(y-n) +(z-¢)’
R, = \/(x—é)z +_(y—n)2 +(z+g)2

But it is mentioned here that ¢ is zero on the free surface and R; will be equal to Ry. In

order to obtain an approximate solution of the integral equation, the internal velocity
potential ¢’ is assumed to be zero and the surfaces Sy, Sw and Sr are divided into small

quadrilateral elements. The values of ¢ and (J#/ch) are constants over each elements. The

integral equation is to be satisfied at the centriod of each element and may be written as

16



4mEY(p) = Z_j I«b(q) N Z j-——-¢(q>Gds+

) (2.2.10)
Z jA¢(q) 45— 2] @) g

=1 sy, J=lg, q

where E=% on Sy and S,
’ I on S;

Nu, Nr and N,, are the number of element of hull surface, free surface and wake surface

respectively. The normal velocity component on the free surface can be written as

B__%__o 2.2.11)

oz on 2

Introducing the normal velocity components given by (2.2.3) into integral equation

(2.2.10) and substituting equation (2.2.10) into equation (2.2.4) one can find for

¢ 2.2.3 First Order Linear Equation in Deep Water

¢(p)—— J¢ <q>—dS+—~ I(U n )Gds+— jA«p (q)——dS-

j 5@ 45 on S,
27t 2

oG 1 0°G oG
—-—-j¢<> (an S+ESH(U n)oSds+ JA¢<> (an S-

q q

J‘Gl(q) jS ___K Gl(q)=0 on S
4n 2 ox? ) - F

¢ 2.2.4 Second Order Linear Equation in Deep Water

j %D G4s on s,
2

Sp

1 oG 1
¢2(p)=5755£¢2(q)55§d3+5%s£‘3¢2 )—dS -
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—~—I¢(> [5G S+——jA¢2<> (jf s-

I%(q) ziS ~Kocz(q)=f(¢1) on S,
47r 2 x 2

¢ 2.2.5 Second Order Linear Equation for Sinkage in Deep Water

0, (p)—— f¢s(q)~—dS+ jm GdS+— jAcp Qq )———ds-

j 5@ Gas on S,
2n 2

—j ()axz[—-——}n j dS+—

IG (@) o 213 _Koffs(q)___O on S,
4n 2 0x 2

¢ 2.2.6 Second Order Linear Equation for Trim in Deep Water:

1 oG | 1 oG
() =-— jcm(q)adm fmsGdS+—2—7-;S{Agot(q)Eds-

IG (@) GdS on Sy
27r 2

2 J7 <>ax2[ s+ s Sras o foo. @25 [jf s-

q

47t 2 8x 2

The resulting algebraic system of equations can be written in the matrix form as
¢2.2.7 Matrix Form of First Order Linear Equation in Deep Water

[(S—DH) S: Hd)u}{spl J{U.nx}+[gw }{A(b]j} (2.2.12)

Dy 0.5(K8+Spa )]0 | S Wi
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where & means the Dirac delta function and the other symbols represent the influence
coefficients at the collocation point I due to sources and dipoles distributed on panel j and

are defined as

0 if ixd
5= .1 .17&.)
1 if i=j
2
2ngong \R, R, 2ng ox” ong (R, R,
2
SH=_1_ 1,1 ds sm=__1~_[52 L+._1_ ds
ang\R, R, 2y ox’\R, R,
2
b L 21, 1) Dy, =L (22 (1, 1)
2ngon (R, R, 2ng 0x* ong \R, R,
2
Sin —1—dS SF“=—1—I62 —1—-dS
2ng R, 2mg 0x” \ R,

¢2.2.8 Matrix Form of Second Order Linear Equation in Deep Water
(5 - DH) Sg ¢2j 0 Dy, ‘

= ‘ Ad,; 2.2.13
[—DHXX 0.5(K 3 +Sge )|y [~ |=£00) | 7| Dy {805, (2.2.13)

The matrices given by Equations (2.2.12) and (2.2.13) are built up by the Green’s
function and its derivatives. The Coefficients Dy, Dy, Sy, Sr and the derivatives are
calculated according to Morino’s analytical formula based on the assumption of
quadrilateral elements as described in Appendix B. In order to satisfy the radiation
condition, the second derivatives of Dy, Dy, Sy and Sr are computed by Dawson’s
upstream finite difference operator given in Appendix C. The circulation Vg; or Ve, is

unknown and will be determined as described in Appendix D.
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¢ 2.2.9 Matrix Form of Second Order Linear Equation for Sinkage in

Deep Water

d-Dy S P S, D,
[(— Dy ) 0.5(K 8+, )Hc } - {Sm }msj + [DW }{A%j} Q'Z'M)

¢ 2.2.10 Matrix Form of Second Order Linear Equation for Trim in

Deep Water
(5-DH) Sk 0y S, D,
LDHXx 0.5(K ,8 +S;,, ) oy | Sy ms; + D, {A(Ptj} (2.2.15)

The m-terms are derived from normal derivatives of the fluid velocities due to the steady
flow on the body surface. The velocity potentials of the fluid velocities on the body and
in the fluid a small distance An away from the body along the normal direction can be
computed from the known solution to the steady Newman- Kelvin problem. Once the
velocity potentials are known, a simple finite difference can be used to determine the
required derivatives.

The derivatives of the velocity potentials with respect to x and y (such as ¢, @) are
computed by fitting a 2™ degree polynomial function passing through the potentials at the
centroids of the three adjacent panels on the surfaces. For the evaluation of ¢, the
velocity potentials are calculated at three different positions along the normal direction
and the same procedure applied to get the derivative. The matrix of linear system of

equations is solved by LU decomposition method.

¢ 2.2.11 First Order Wave Profile Equation in Deep Water

The equation for the first order wave elevation is

g =-Zo, 2.2.16)
g

Differentiating Equation (2.2.10) with respect to x and get
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q

op,(p) 1 oG aG 1 o | 6G
= = —j¢<>—( qjds - I(U axp +ES£A¢‘(C‘)5Z(3T S

- .[ (q)ﬁds on z=0
47t 2 6x

The above equation can be written as

Z[cb D, +(U-n,)-Sg |+ ZA¢ Dy, - fchFx

j=1

where

1 (0 (1 1 1 co(1 1
Dy, =— [—=——| —+—1dS Sp =— |=| —+—1ds
™ om !Eﬁx@n (Ro le ™ om IGX(RO R,]
11 1 o1
Dyy == [ | —4—1dS 8, =— [Z]| 2 las
w 2nsv-[8x6n [RO le ™ on IGX(ROJ

¢ 2.2.12 Second Order Wave Profile Equation in Deep Water

The Equation for second order wave elevation can be obtained as

5=GitG, | | 2.2.17)
=¢, +€2 +S(;s +t§t ’
where
G = _Hd)lx
g
gz = "p_‘bzx _y_g ¢1xz (¢1x +¢1y +¢1z)
g g
G = —Ewsx
g
C.»t = _E(Ptx
g

Differentiating equation (2.2.10) with respect to x and y
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a¢(p) f¢1() (aG]dS —I(U )(;G)ds

P

oG c,(q) 8
—I¢()—[an }‘S 4n-[ 5 ax—pdS on z=0

q

2,(p) _ 6G 1 G
dy, J-¢1( )“—[E]ds + EE‘SJ(U‘HX)(&,YP st

2 9 )96 c,(9) 0
I‘b()ay {an}s 4nj. 5 éy—dS on z=0

q
The above equation can be written as

[, +(U-n, )5, )+ ZA¢ Dy, - chh

3-—1

0y = Z[¢jDHy + (U-nx)SHy]+ZA¢jDWy ‘EZGjSFy

i1 =1

O __ % _ o

1574 on 2

=
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2.3 Potential Flow Hydrodynamics in Shallow Water
¢ 2.3.1 Linear Boundary Value Problem in Shallow Water

Consider a closed three-dimensional domain ¥ with boundary S, the unit normal vector n

to S being oriented to ¥ as shown in Figure 2.3. The boundary surface S is composed of

the hull surface Sy, wake surface S, vertical cylindrical surface S, far away from th¢
body, the mean free surface Sy, and sea bottom S inside S, The body is subjected to the
inflow velocity U. With the assumption that the fluid is incompressible, inviscid and
irrotational, there exists a velocity potential

O =Ux+6+8p

2.3.1
=Ux+ed, +£°(9, +50, +1t0p,) @3.1)
which satisfies the Laplace equation
V2® =0 in the fluid domain V (2.3.2)
]
Z Yy \
= Sk [ Se
U N : *n
vV, ¢
EnsG) -
So P(%.y,2) V, o S

Figure 2.3. Application of Green’s theorem for a body in shallow water

A boundary value problem can be constructed by specifying boundary conditions on the

boundary as follows:

(a) The boundary condition on the hull surface requires that the normal velocity

component of the water particles at the wetted surface of the ship must be equal to zero.
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€:Vd, -n=-U-n,_
e’ :Vo, - n=0
with respect to sinkage and trim f

g’ : Vo, -n=m,

g’ : Vo, -n=m, J

(2.3.3)

in which n=ni+n j+nk denotes the unit normal vector on the surface and is

positive into fluid.

(b) The free surface boundary conditions are
g1, +Ki9, =0

g’ (00 +Kob,, =1(4)

with respect to sinkage and trim  at z=0

g2 1o, +K,0,=0

e2 10 K0, =0

(c) The boundary condition on sea bottom
e:Vp,'n=0

g?:Vd, - n=0
with respect to sinkage and trim ;
g?:Vo, -n=0

g’ :Vo, n=0

! (2.3.4)

(2.3.5)

(d) The wake surface Sw is assumed to have zero thickness. The normal velocity jump

and the pressure jump across Sw is zero, while a jump in the potential is allowed

(Ap)onsw = p+ -p =0

a. (&) 3) !
on)ys, \on on

RCECE
N )ys, \On on
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(e) For the steady lifting problem, the potential jump across the wake surface is same as

the circulation around the body and is constant in the stream-wise direction.
(A¢)onsw = ¢+ —q)— =T
(A(P)on Sw = (P+ - (P— = r

A kutta condition is required at the trailing edge to uniquely specify the circulation. In its

(2.3.7)

most general form, it states that the flow velocity at the trailing edge remains bounded

\% :
Ve < OO} (2.3.8)
lV(p,TE < 0

(D In addition, it is necessary to impose a radiation condition to ensure that the free

surface waves vanish upstream of the disturbance.

¢ 2.3.2 Solution of Free Surface Problem in Shallow Water

The boundary value problem for the velocity potential outside the body surface can be
transformed into an integral equation, upon consideration of a fictitious fluid ¥, which is
the domain internal to the body surface Sg. Thus the velocity potential any point p within

the fluid domain V can be expressed as

4nEd(p) = j[¢(q> $'@] ——ds j— $(@) - ¢'(@]cas + IA¢<q)
2@ 36(q) . @39)
j GdS+ j¢( 128 45— j—a—n—Gds

Sp q q Sg q
The control S, is a control surface at a large distance from the body and is chosen as the
surface of circular cylinder of large radius. So the integral over the surface ., must be
zero as the radiug of cylinder increases infinitely. The Green’s function G satisfies the

Laplace equation and can be approximated as

N S | (2.3.10)
Ro(q9) R,(p;q)

In order to obtain an approximate solution of the integral equation, the internal velocity

potential ¢/ 1s assumed to be zero and the surfaces Sy, Sw, Sp and Sy are divided into small

25



quadrilateral elements. The values of @ and (S@/ch) are constants over each elements. The

integral equation is to be satisfied at the centriod of each element and may be written as

B () =" j¢(q> 5 > j—¢(q)GdS+Z jAci»(q)

=1 s S Fao O (2.3.11)
2 j %) GdS+Z f¢( )2 dS Z j %) Ggg

where, E = 3+ on S,,S;andS,
1 on S;

N, Nr,Np and N,, are the number of element of hull surface, free surface, bottom surface

and wake surface respectively. The normal velocity component on the free surface can be

written as
%__%__o (2.3.12)
0z on 2

Introducing the normal velocity components given by Equations (2.3.3) and (2.3.5) into
integral Equation (2.3.11) and substituting Equation (2.3.11) into Equatlon (2.3.4) one

can find for

¢ 2.3.3 First Order Linear Equation in Shallow Water

1 oG 1 1 oG
= —dS+— |(U-n, JGdS+-— | Ad,(q)—dS +
%) 2ng!¢1<q>5q an{( n, )G 2%{ @5

1 oG 1 (o,(9)
— —dS-— |-1*~GdS S
2ns'!¢l(q)5 q 27cs! 2 on Sy

0(0) = j¢1<q>—4s:+_ Jon Joas s L JA¢I(q)_9ds+

1 c,(q)
5‘;8{4)1((1)%(1 o J‘ GdS on S,

-—j¢1(> [ f )+ L jmbl() (;G S+

q

oG 0,(q) 8 _g. 9@ _
j¢1() ( S4njz&7ds K,=%=0 on
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¢2.3.4 Second Order Linear Equation in Shallow Water

¢, <p>—— f¢ <q>—dS+— jA¢ (q)——ds+— f¢2( {

f-l

ijfz(—q)(}ds on S,

q

¢2<p>=§ j¢2(q>———ds+-— jA¢ @@ >~—ds+— j¢2< )(

—Ljfz—(q—)Gds on S,
2m g

2
—f¢2(> (aG S+5- A )—(gang‘ —I¢<> [;G s-
c,(q) &’ o, (@ _
4n'[ 2 st TR, =) on S

¢ 2.3.5 Second Order Linear Equation for Sinkage in Shallow Water

‘]

1 oG 1
<ps<p>=% jcm(q)gdm ImngSfrE;s{Ams( )—ds+— j@ (q)—ﬁls-

j %@ G548 on S,
27t 2

7.0 = Jq%(q)—{iswu fm3GdS+—- f A<p5<q>—ds+-—«J XC )—ds-

j 9D Gds on S,
21'6 2

_I (@2 [ j dS+— (;G S+

o,(9) 9°G os(q) _
__J (q)"—f[?an_ 4nj ; gz{1s -K,—==0 on 8,
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¢ 2.3.6 Second Order Linear Equation for Trim in Shallow Water

1 8G . 1
<pt<p)=—?; jcm(q)adw ImsGds+2—nsvjv Ap.(a )—ds+— Jcm(q)——ds—

J.c AC), GdS on Sy
27!: 2

1 oG 1 oG
cpt(p)=-2—7; Jotag, s+ JmGas o [0 >————ds+——— Jn@zres-

j D Gas on s,
27t 2

L() [jf s+ fm g AP IA&) {jf S+

“'J' () — C;(q)——dS _Kc(q) =0 on S;
Pl V5 47: 2 x° )

The resulting algebraic system of equations can be written in the matrix form as

¢ 2.3.7 Matrix Form of First Order Linear Equation in Shallow Water

(5 '"DH) "DB ‘ SF ¢1j SH Dw
-D,  (5-Dy) S 91 (=|Su {U-n}+| Dy {A¢1j} (2.3.13)
_DHxx —DBxx 05(:[<08 + SFxx) G]j SHxx DWxx

where 6 means the Dirac delta function and the other symbols represent the influence
coefficients at the collocation point I due to sources and dipoles distributed on panel j and

are defined as

5[0 if Q%]
1 if i=j
‘ 2
Dyel (21 l)s p, oL@ 01, L)
2mgoon, \R, R, 2mJox* ang (R, R,
2
L A (0 S PP U -G (D B B P
2ngon (R, R, 2ng 0x” ong\R, R,
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2
L= (2 Ly L s D, - 5_2_5__1_ 1 s
2moon, (R, R, 2ngox* ong (R, R,
2
SF=_1_ —LdS Sm:i. 62 LdS
2n R, 2m Jox® (R,

¢ 2.3.8 Matrix Form of Second Order Linear Equation in Shallow

Water
(B_DH) —DB SF ¢2j 0 Dw
-D, (5-D,) S, by 0=|0  |+|Dy [{Ad,,} (2.3.14)

_DHxx —DBxx 0'5(K06+SFXX) Gy _f( 1) DWxx

The matrices given by equations (2.3.13) and (2.3.14) are built up by the Green’s
function and its derivatives. The Coefficients Dy, Dw, Sw, S¢ aﬁd the derivatives are
calculated according to Morino’s analytical formula based on the assumption of
quadrilateral elements as-described in Appendix B. In order to satisfy the radiation
condition, the second derivatives of Dy, Dy, Sy and Sr are computed by Dawson’s
upstream finite difference operator given in Appendix C. The circulation Vg or Ve, is

unknown and will be determined as described in Appendix D.

¢ 2.3.9 Matrix Form of Second Order Linear Equation for Sinkage in

Shallow Water
(5 - DH) - DB SF Py SH Dw
-D, (5-D,) S, 0y ¢=|Sa |my;+|Dy |{Ag,) (2.3.15)
Do =Dy 05(K8+8eq)][0;| | Suw Dy,
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¢ 2.3.10 Matrix form of Second Order Linear Equation for Trim in

Shallow Water
(5 - DH) —-Dy SF Py SH Dy,
-D, (5-D,) S, ¢0;t=|Sy |ms;+| Dy [{Ag,} (2.3.16)
~ Dy — Dy 0‘5(K06+SFXX) Gyl . Stice Dy

The m-terms are derived from normal derivatives of the fluid velocities due to the st'eady
flow on the body surface. The velocity potentials of the fluid velocities on the body and
in the fluid a small distance An away from the body along the normal direction can be
computed from the known solution to the steady Newman- Kelvin problem. Once the
velocity potentials are known, a simple finite difference can be used to determine the
required derivatives.

The derivatives of the velocity potentials with respect to x and y (such as ¢, ¢) are
computed by fitting a 2™ degree polynomial function passing through the potentials at the
centroids of the three adjacent panels on the surfaces. For the evaluation of &, the
velocity potentials are calculated at three different positions along the normal direction

and the same procedure applied to get the derivative. The matrix of linear system of

equations is solved by LU decomposition method.

¢ 2.3.11 First Order Wave Profile Equation in Shallow Water

The equation for the first order wave elevation is

& = _Ed)lx 2.3.17)

Differentiating Equation (2.3.11) with respect to x and get

%.(p) )———fdn( )——( aGst -—j(U )——~dS+ J’ Ad,(q )—-—[ % ks

ox on,
oG c,(q) 6G
1 I¢1( )—_[——;-]ds vy j 2 B —dS on z=0
The above equation can be written as
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0y = Z[¢jDHx + (U n, ] Z¢ Dy +ZA¢ Dy — Z_F:GjSFx

j=1

where

Dy, _ 10690 _1__+L ds SHX=‘1"— J'i L+_1_ ds
2ng 0x o \R, R, 2ng ox\R, R,

D,, _1 (8o _1_+_,1__ ds D, -1 .[_6__8_ _1_+L ds
2ndox on, (R, R, 2nglox on, (R, R,

¢ 2.3.12 Second Order Wave Profile Equation in Shallow Water

The Equation for second order wave elevation can be obtained as

€= Cl + Qz
=G, +G, +58, + 15, @18
where
Cl = _E‘bu
g .
__u U RN
CZ - g ¢2x g €1¢1xz 2g (d)lx +¢1y +¢1z)
CS = MH(PSX
g
€ = _H(Ptx
g

Differentiating equation (2.3.11) with respect to x and y

8¢1(p) Iq)( )——(;?st —--j {sprJdS+ f¢1( )__[a%q]ds

P q q

1 c,(q) 9G
— [A —*Ps D22 dS 0
Z”svjv h(@ axp(énq 47r;[ 2 o, T

P
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8¢1(p 8 [ 8G _ oG 1 0 [ 8G
o, Id)]() [&ljds 2nsj(U )(ades j¢1<>ay[aans

q H q
oG o,(q) oG
— | A —| — @S- 22 —4dS on z=0
275st; ¢1(q)6‘yp(8nq}d 475! 2 oy,
The above equation can be written as

j=1

¢1x = %[d)JDHX +(U'nx)SHx]+1'\IZB¢jDBx +ITIZWA¢]‘DWX _ll.\lzj:chFx
by =200 +(0 05} 54D, + a0, -1 5 o,

_]_
O _ % __ o

oz on 2
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2.4 Sinkage and Trim Calculation

In order to calculate the forces and moments on the ship, the pressure must be evaluated
on the actual instantaneous position of the ship hull. However, it is quite inconvenient to
have a changing domain of integration, especially since finding domain is part of the
problem. A priori, the location and orientation of the ship at any instant are unknown and
so one does not know where to evaluate the pressure. Therefore, we choose to express the
pressure at a point of the hull surface Sy in terms of the pressure at the corresponding

point of Sy, the undisturbed position of the hull.

The fluid pressure acting on the instantaneous wetted surface Sy during oscillatory
motions of the ship can be written by Bernoulli’s equation

1
p-p.. =5p( 2 _V®-VO)-pez 2.4.1)
Unfortunately knowledge of the position of Sy is necessary if this expression is to be
used. Newman (1978) suggests that this difficulty may be overcome by relating the
pressure on the surface Sy to the pressure on the surface Sy by Taylor series expansion.

Thus
b-p.l. =[1+(a.v)+%(a.v)2 N J[p_pw]so 242)

Now the total fluid velocity vector on the instantaneous wetted surface for second order
approximation Sy can be obtained as

VO =W+¢’(Vo, + Vo)
with W =Ui+eVe,

(2.4.3)

It is assumed that the oscillatory motions of the ship is so small that the second order
terms of the unsteady components may be neglected, then the linearized form of the

pressure on the wetted surface Sy becomes

P=P, = %P(Uz -VO. V(D)+ %—p(o(. . V)(UZ -V Vq))_ pgz
1
= ‘P[E(WZ -U%)+ W-V%J—pgz—p[s-(w-vms)ﬂ-(W.V<pt)] (2.4.4)

0 o1
-tz —+ (s —tx) = =pW? + O(a*
{z (s x)az}zp ‘(oc)
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This approximation implies that the oscillatory flow and the motion of the ship are
linearized but steady flow due to steady forward motion remains nonlinear. The
hydrodynamic forces (k = 1, 2, 3 indicates surge, sway and heave) and moments (k = 4,
5, 6 indicates rolling, pitching and yawing) in the k™ direction can be represented as

(Yasukawa, 1993):
F, == [(p—p. )n,dS ~ F +SE; +F! (2.4.5)

where

F = ij(W2 ~U?)+ W-v¢2]nkds

E =p W-V¢S+lﬁwz]-nkds
20z

1( , 0 , 0
E; =pJ{VV-V(pt +E(Z P EJWZ]-nde

and n i+nj+nk=rxnr=xi+yj+z%k

The “sinkage” and “trim” of a ship moving in shallow water can be computed by
equating the vertical force and pitch moment to the hydrostatic restoring force and
moment. The resulting calculations are practical importance in predicting the “squat” of a
ship, and ultimately the occurrence of grounding due to increased draft. The theory is
invalid near the critical Froude number F; = 1, but in other respects it agrees fairly well
with the experiments. For typical ships the vertical “sinkage” is the dominant effect in the

subcritical regime, whereas “trim” is dominant in the supercritical regime.

Suppose the ship responds to these forces and experiences a sinkage s defined as the
downward vertical displacement at x = 0 and trim ¢ defined as the bow up angle of
rotation about y = 0. Now the following equations are obtained from the static

equilibrium of forces:

L/2

F,=pg I(S 'tx) £, (x)dx

-L/2

L/2 L/2 (24.6)
= pgs J.fw(x)dx—tpg '[fw(x)xdx

-L/2 ~L/2
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L/2

F, = —pg I(s - tx)vfw (x)xdx

-L/2

L/2 L/2 (24.7)
= —pgs .ffw(x)xdx+tpg ffw(x)xzdx
-L/2 -L/2

fw(x) is the width of the water plane area at the still water level and L denotes the length
of the ship. Combining equations (2.4.5), (2.4.6) and (2.4.7) we have

s(E; —H, )+ t(F! +H, )= —Ff}

S(FsS -H, )+ t(FS‘ ~-H, ) = —F? (2.4.8)

The values of s and ¢ are obtained from these two simultaneous equations. The symbols
are defined as

L/2 A
H, =pg [f, (x)dx
-L/2
L/2
H, =pg [f,(x)xdx
-L/2
L/2
H, =pg J'fw(x)xzdx
)

-L/2

(2.4.9)

—
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2.5 Pressure Computation on Hull Surface
¢ 2.5.1 Direct Method

After computing the discrete values of the potentials on the boundary surfaces, the

pressure distribution on the surface can be determined by applying Bernoulli’s equation.

In accordance with the pressure along the stream surfaces remain constant:

poo 1 2 _

—+—U" =Constant (2.5.1)
p 2 .

where U is the inflow velocity and p., the pressure far away from the body. The total

velocity vector can be decomposed as:

V=U+Vo

with sinkage and trim (2.5.2)

V=U+Vd+5Vop

To determine the pressure distribution on the body, it is first necessary to determine the

velocity ¥ at the control points on its surface. If # is the unit normal vector on the surface

of the body, then according to kinematic boundary condition on the body

(U+Vé)n=0 (2.5.3)
The perturbation velocity can be written as

Vo=V,o+V.donS (2.5.4)
where the term V;¢ correspond to the component of perturbation velocity tangential to
the body surface.

ag@=(ggn={Um}n 2.55)
Combining equations (2.5.4) and (2.5.5) we have

V=U-[U-nh+V, (2.5.6)

if §and 7 are the unit vectors tangential to the surface along the two grid directions as

shown in Figure 2.4 , the following equations are obtained:

=g =V @5.7)
=@= \% 2.5.8
b= =n¥,p ‘ (2558)
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By using equations (2.5.7) and (2.5.8) V¢ can be express
A1 (2 o)]e 22— (1.
5 [e-(&-nn]+ an[” (n-e)]

j&xnf

The quantities (-Z;g] and (—aij correspond to the projections of the perturbation velocity

on

along the two grid directions and these will be obtained numerically from the derivative

th) =

(2.5.9)

of the 2™ degree polynomial function passing through the potentials along each

circumferential strip.

Fig 2.4 Definition sketch of the local coordinate system (&,m) and panel distributions

If we consider the sinkage and trim to be order of second, the fluid velocity vector will be

obtained as ‘

V=U-[U-njh+m,n+V, (p+¢) for sinkage (2.5.10)
V=U—[U-n]n+m5-n+Vt(¢+(p) for trim (2.5.11)
The pressures are finally expressed in terms of the pressure coefficient Cp that is defined

as:
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¢2.5.2 Yanagizawa’s Differentiation Scheme

The velocity and pressure on the surface can be obtained by numerically differentiation
of velocity potential over the body surfaces as proposed by Yanagizawa (Hoshino, 1989).
The distribution of the velocity potential ¢ is approximated by a quadratic equation
passing through the potentials at the centroids of three adjacent panels as

d=as’+bs+c (2.5.12)
where s is the surface distance and a, b, ¢ are the coefficients of the quadratic equation.

Then the derivative of the potential tangential to the surface can be written as

B st (2.5.13)
0Os

In terms of local coordinate system &7, the perturbation velocity potential can be
expressed as

¢=a@2+b@+cl}

, (2.5.14)
d=a,n +b,n+c,

Differentiation of the above equation yields the velocity along the tangent direction & and

n to the body surface respectively,

?""‘ ¢, =2a,E+b,
5 (2.5.15)
or=b, =2+,

After making a circle passing through the centriods of the three adjacent panels the
position vector Ry can be expressed as (Figure 2.5)

Ry=a+spB+t.y (2.5.16)

- o - @V
* 2B - (1))
o LBl
" 2By Bl
The unit vectors #,, 1, and A are defined as
a—-R, Bxy b

"l FTR

where

n, =
’a—RJ
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Let e; and e be the unit vector in the direction of & and 7 respectively and e;is in the
direction perpendicular to e; as shown in Figure 2.4. The derivative of the potential along

e; and e, can be expressed as

_%
0., = e (2.5.17)
S
i
PiJ

Z Oc
Ro

Fig. 2.5 Yanagizawa’s differentiation scheme

— ¢)e3 —(el 'e3)¢el
%22 (2.5.18)

“Tawn ¢

The perturbation velocity tangential to the body surfaces can be obtained by
Vt¢ =¢el 'el +¢ez ‘62 (2519)

¢,

Rewriting the Equations (2.5.19) as
Vid=9, &+, -In-(E-nk] (2.5.20)
Adding the tangential component of inflow velocity U we obtain the total velocity

tangential to the body surface as

V=U-(U-n)n+V,¢ (2.5.21)
=U-(U-nn+¢, -&+9, - (Enk] -

where n = e; xe, and the terms &and 7 can be found as
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= Dn X Ilt )
5= Due XM } (2.5.22)
n= nnn X 1’1m

If we consider the sinkage and trim to be of second order, the fluid velocity vectors will

be obtained as

V=U-(U-n)n+m, n+(@+0), 6+ +0), br-(En)-E} (2523)

V=U-(U-n)n+m; n+(+0), &+ +9), -En)-& (2.5.24)

The pressure on the body surface can be written as '
A

c, =1 (U) (2.5.25)
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2.6 Calculation of Wave Making Resistance of Ships

+2.6.1 Wavemaking Resistance in Fixed Condition

The pressure at any point on the hull surfaces can be expressed as

P—Po =%P(U2 —VQJ'VCD)— pgz (2.6.1)
where
VO=U+Vop,+Ve, for 2" order approximation

VO=U+V¢, + (Vd)2 + V(p) for 2" order approximation with sinkage and trim

The hydrodynamic force in the x-direction is obtained by mtegrating the pressure over

the instantaneous wetted hull surface as follows:

Ry =— [(p-p.)n,dS (2.6.2)

S+8'
]. 2 l 2
R, =— —2—p(U ~V®-VO)-pgzn dS- Ep(U ~V®-VD)-pgzin dS  (2.63)
S s

where S is the mean wetted surface and § is the fluctuating part of the wetted surface
between still water plane , z = 0 and the waterline along the hull , z = ¢. For the
simplicity, let the body have a vertical wall near the water line. The second integral can

be transformed into a line integral along the water line. The pressure along the water line,
P =Peo

1 (0

Ep(U ~V®-VO)-pgl=0

%p(U2 -V V<I>)= pgl

The force on the hull surface in the x-direction can be expressed as

R, =- [[—-21— p(U? -V - vo)- ng}lde - |(pet-pgzhn dz L. (2.6.4)
S s

R, = —J‘ij(U2 —VCD-VCD)— pgz:lnde -%pg JCfnx dL (2.6.5)
S wL -

¢ is the relative wave elevation. After calculating the pressure coefficient on the hull

surface by Equation (2.5.25) the wave making resistance coefficient can be obtained as
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Yol

—pSU?

) p

N,

B 2.6.

ZijnxJAS pg rj.gfnde (2.6.6)
= _ wL )
- Ny 2

where Ny is the number of panels on the hull surfaces » Iy 18 the x component of normal

and A4S; is the area of j panel respectively.

#2.6.2 Wavemaking Resistance in Free Condition:

After calculating the values of sinkage and trim, the wavemaking resistance can be
obtained from Equation (2.4.6) as follows:

R, =F’ +sF +tE (2.6.7)
The displacement of ship in relation to steady moving coordmate system can be

expressed as (described Appendix A)

00 =5(81,80,85 )+ Q84,85 )x X+ 0(5%) 268
= +Ez-Eey)i+ (5, +Ex-E,2)j+ (E, +E.y-E.x)k

So the relative wave elcvaﬁon due to the motion of the body and wave system is given by

Ce=C—(& +E,y-E:x) oo
=- (s - tx) for sinkage and trim 6.

Now the total wavemaking resistance can be defined as

R, =F’ +sF +tF —%pg j@znx dL- ch}"(s—tx)x@L (2.6.10)

The 4™ term of Equatlon (2.6.10) is the correctlon factor due to the difference between

the real and still water level and 5th term is due to changes of sinkage and trim. We can
use (E +sF’ +tF) instead of F,’. But as we have considered the sinkage and trim to be

of second order or higher order, it is reasonable to take F° 1.
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CHAPTER 3

Nonlinear Optimization Technique

Optimization might be defined as the science of determining the best solutions to certain |
mathematically defined problems, which are often models of physicals reality. It involves
the study of optimality criteria for problems, the determination of algorithmic methods of
solution, the study of the structure of such methods, and computer experimentation with
methods both under trail conditions and on real life problems. There is an extremely
diverse range of practical applications. The applicability of optimization methods is
widespread, reaching into almost every activity in which numerical information is
processed (Science, Engineering, Mathematics, Economics, Commerce, etc.).
Optimization techniques, is used effectively, can greatly reduce the engineering design
time and yield improved, efficient, and economical designs.

Numerical optimization techniques offer a logical approach to design automation,
and many algorithms have been proposed in recent years. Some of these techniques, such
as linear, quadratic, dynamic, and geonietric programming algorithms, have been
developed to deal with specific classes of optimization problems. A more general
category of algorithms referred to as nonlinear programming has evolved for the solution
of general optimization problems. As is frequently the case with nonlinear problems,
there is no single method that is clearly better than others. Methods for numerical
optimization are referred to collectively as mathematical programming techniques.

Sequential Quadratic Programming (SQP) has arguably the most successful
method for solving nonlinearly constrained optimization problems. The SQP is a general
method for solving nonlinear optimization problems with constraints. The mathematical
formulation of the present design oriented (SQP) problem, which finds an optimum shape
of the ship with minimum resistance subject to geometric and hydrodynamic constraints

can be expressed as
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Minimize  f(x) 3.1)
Subjected to h;(x)=0, 1 =LN

g; (x)s 0, i=1LM

where x is a vector representation of design variables defining the hull surface and hull
form characteristics. The ship wave making resistance is used as an objective function f
The geometrical and hydrodynamical design constraints about the hull surface are
contained in both the equality (h;) and inequality (g;) constraints, N is the number of
equality constraint and M is the number of inequality constraints respectively.

At first this design-constrained problem is converted to an unconstrained one
associating penalty for any constraint violation. Thus the Equation (3.1) is transformed
into the following function
F60 = 1)+ '8, 62)
where Nrc is the total number of constraint , 01 is the penalty coefﬁ01ents for constraint i
and ¢i(x) is a penalty term related to the i™ constraint.

F is a nonlinear optimization problem since the objective function, the wavemaking
resistance of ship and the constraints are implicit, non-linear functions of the design
variable x. F'is in many cases non-convex and has often multiple minima. In fact, there is
no general reliable optimization method available to find a global minimum and no
general agreement on the best approach to solve non-linear multivariable constrained

problems. A method that works well on one problem may perform very poorly on another

problem of same kind.

Merit Function:
The SQP algorithm can be made more robust by adding a step-length control.
Thus, the basic iteration of a practical method for solving nonlinear constrained problems
is written as follows:
x®) = x® 4 qd (3.3)
The direction d is computed by solving the quadratic programming sub problem.
In the case of unconstrained problems, the step length is computed by minimizing the

objective function along the computed direction. In the case of constrained problem, a
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merit function that takes into consideration both the constraints and the objective function
is used during step length calculations. The following merit function is commonly used

with the SQP method:
¢(oc) = F(xk + ocd)+ rlii ’hi (xk + ocd] + ilmin{o,gi (xk + ad)}’] . (3.4 -

where r is a scalar penalty parameter,

An inequality cohstraint is violated if g; > 0. For equality constraint, any nonzero value
indicates a violation of that constraint. Hence, for equality constraints, an absolute Value
is used in the above definition. If all constraints are satisfied (all g; <0 and h, =0),

then the merit function is the same as the objective function. The penalty parameter r is

introduced to allow for an additional control over the definition of o.

Minimizing the merit function:

To determine a suitable step length « along a computed direction d, the merit
function ¢(@) needs to be minimized. Theoretically, this is the same as the one-
dimensional line search presented for unconstrained problems. But constrained problem
a numerical search procedure is used because from the definition of # ) it is not a
differentiable function. In the numerical search procedure the following line search

procedure is based on Armijo’s rule for unconstrained problems.

Approximate Line-Search Procedure

The procedure starts by first computing the merit function value with & = 0. This

value is identified as d(e) and

b, () = F(xk )+ rl:g 'hi (xk 1 + glmin{o, g, (Xk )}[’ (3.5)
Then

(o) = F(xk + OLd)+ r[i 'hi (Xk + ozd] +§=_:;'min{0,gi (xk + ocd)}]] (3.6)

i=1
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values are computed successively with o =1,1/2, 1/4 ,.. until an o is found that satisfies

the following criteria.
8(er) < () ~ o]’
where ® is an additional parameter introduced to provide further control over search
process. o is typically set to 0.5. As can be seen from this criterion, instead of finding
the true minimum of ¢(«), in this line search we accept a that reduces the initial value of
@by a factor occo”d“2. Since a is included in this factor, as the trial step length is reduced,

the expected reduction becomes small as well. Hence , as long as d is a decent direction,

the test must pass after a finite number of iterations.

SQP Algorithm

Given the penalty parameter r (r =1) and step length parameter © (® = 0.5)

0

Step 1. Set an iteration counter k = 0. Starting initial estimates x, u’,v° and a symmetric

positive definite matrix H° .

Step 2. Solve the problem
Minimize ~ P(d)=F(x® )+ VFT[x®] d+ %dT H® .d

_ h,[x® |+ VhT[x®|.d=0 i=1,N
Subjected to y _
g[x®]+verx®]-d<o i=1M
Solving Kuhn-Tucker conditions for the original problem using Newton’s method
for solving nonlinear equations directly leads to above form in which matrix H
represents the Hessian of the Lagrangian
N M
H=V*F+> u,V’h; + ) v;V’g
i=1 i=1
where u=(u1,u2,u3 ...... uN)T amdv=(vl,vz,v3 .......... VM)T are the
Lagrangian multiplier for equality and inequality constraints respective. The

Lagrangian function is defined in terms of variables x, and Lagrangian multipliers
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(u, v), so a feature of the resulting methods is that a sequence of approximations

x®, u® and v to both the solution vector x and the vector of optimum Lagrange

multipliers (u, v) is generated.

Step 4. Update the penalty parameter r

@ Set 1 = 4_0{1 O+ %[i abs(v;) + gui :”

i=1
(ii) F(Xk )+ I‘kHV(Xk ) > F(Xk )+ rkV(xk ) need to restart, go to step 1. Otheﬁise,

continue to step 5.

Step 5. Compute the step length a using approximation line search as follows:

h, (xk l + izhj;!min{o,gi (xk )}'i| . Seti=0.

()  Compute ¢,(c)= F(Xk)+ r[i

(i)  Seta=(1/2)
(iii) Compute d¢(o)= F(xk + ocd)+ r{ilhi (xk + ocd} + ilmin{o, g (xk + ocd)}ﬂ

Giv) If d)(oc) <d,— oco)”d“2 then accept o.. Otherwise set i=i+1land go to step (ii)

Step 6. Set the new point as
x® =x® +ad

Step 7. Check for convergence. If "d" < tol (a small number), then stop. Otherwise go to

Step 8.
Step 8. Update the H® in such a way that H*V remains positive definite. Then set k =

K+1 and go to Step 2.
The Hessian matrix is updated by using the BFGS (Broyden, Fletcher, Goldfarb

and Shanon) method as follows:

vt H®ss"H®
q's sTH®g

H&D — H* +

where
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s=x® _x®  g=v &V _y 1®

N, M;
VXL =VF+ Zuthi +Z Vngi
i=1

i=1
y=0q+(1-0)H% .5

1.0 if q's>0.2s"H®s

0=| 0.8s"H® .5

4 T Trr(k)
STH(k)S—qu if q's<02s"H™s
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CHAPTER 4

Results and Discussions

4.1 Optimization Method for Hull Form

The numerical optimization can be carried out by systematically iterative evaluations of
the objective function as shown in Figure 4.1. In the general engineering optimization
problem, the objective functions are nonlinear with respect to the design variables and
complex design constraints are imposed. To solve those optimization problems a
nonlinear programming (NLP) techniques should be employed. In the present study, SQP
(ASNOP, 1991 & Bhati, 2000) (Sequential Quadratic Programming) is selected as one of
NLP to minimize the objective function under design constraints.

The method of finding a form with lower resistance is as follows. Optimization is
carried out so as to yield the hull form with lower resistance. The objective function is the

wave resistance coefficient.

Fig. 4.1 Iterative process of shape optimization
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4.2 Hull Form Deformation Function

The role of a shape modification function is to provide a link between the design
variables and the body shape, which should be defined geometrically. In an optimization
system, design variables and shape modification method should be selected with a
compromise between flexibility and simplicity. Since an optimization procedure‘searches ‘
an optimal solution in the space defined by the design variables, the final shape is optimal
among the shapes, which can be defined by the combination of design variable values.
Thus the design variables and a shape modification method should be flexible and
enough to cover a wide variety of body shapes. On the other hand, the number of design
variables should be as small as possible and shape modification should be as simple as
possible from the efficiency point of view.

The shape modification method used here is based on a weight function. First the initial
ship hull form is assumed to be

y=1,(x,2) 4.1
In case of practical ship hull form, fj(x,z) does not necessarily take an explicit functional
form. Instead it is given numerically as the coordinates of a body surface grid.

The modified shape is then defined as ‘

y=1,(x,z2)w(x,z) (4.2)
where fy(x,z) is the original hull surface defined in longitudinal and vertical coordinates
(x, z). w(xz) is a weight function to provide transverse-directional expansion and
reduction ratio and the design variables are the parameters defining w(x,z). In this form
depth-wise modification is not considered.

Thus a grid point on an original body surface whose locations is given by (xo,yo,zo)
moves to (XO,W(XO, yo)yo,zo) on a modified body. A new surface grid is obtained with

the re-distribution of surface grid poiﬁts along the grid lines in the girth direction.

¢ 4.2.1 Weight Function of Hull Form Deformation of Monohull

The weight functions of hull deformation during the optimization procedure of Wigley

hull and the Series 60 hull are expressed below:
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For fore body

w(x,z)=1->" > o, sin{n(l——xﬂ——j }

m=1 n=1 Xmin ~ X0 (4 3)
. B _z n+2 )
X SINS T BeT -L/2<x<0
and for aft body
m+2

w(x,z2)=1-) Y a,, sin n(—}_—xi—j

m=1 n=1 Xmax _XO

4.4)

n+2
xsin{n(BB;;J } 0<x<L/2

where X, Xmax, Xmin, T are parameters for characterizing the hull form modification (hull
form parameters) and @, and f are taken as the design variables in the optimization

procedure.

¢ 4.2.2 Weight Function of Hull Form Deformation of Catamaran Hull

The weight functions of catamaran hull deformation of inside and outside part expressed

as for fore body
_ Lo m+2
W (x,2)=1-) > o, sin{n(H] }
m=1 n=1 X7 "min —X "0
4.5
BI’O —y n+2 ( )
X sin n(Bm%—T] -L/2<x<0
and for aft body
. _JLo m+2
W x,2) =1-> > o, sin{n(%-x—ol,o} }
' m=1 n=1 X7 max —X70
4.6
oy (49)
X sin n(mJ 0<x<L/2

where x,- 0, Xmar 0, Xmin>C, T are parameters for characterizing the hull form modification

(hull form parameters) and o, and S are taken as the design variables in the

optimization procedure.
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4.3 Optimization of Wigley Hull in Shallow Water

In the optimization of mono hull in shallow water, first a mathematical Wigley hull is

used to carry out the numerical optimization. The equation of this type of hull surface is

By X ,
y(X,z) = 28(2)[1 (L/Z)Z] 4.7)

where L, B, and T are the ship length, beam and draft and S(z) is a function define the

frame line of ship cross-section. For rectangular cross-sections S(z) =1, for triangular
cross-sections S(z) = 1+z/T, and for parabolic cross-section S(z) = 1-(z/T)* . The
symmetric parabolic frame lines and parabolic waterlines are used in the present
numerical optimization procedure. The principal particulars and the design speed and
design constraints for optimization problem of Wigley hull are shown in Tables 4.1 and

4.2.

Table 4.1 Principal Particulars of Wigley Hull

Particulars Wigley hull
L/B -1 10

T ’ 16

Block coefficient Cgs 0.444
Midship coefficient Cm 0.667
Waterplane area coefficient C,, 0.667

Since the body is symmetric about the center plane of ship, one half of the computational
- domain is used for the numerical calculation. The panels from 1.5L upstream to 3.0L
downstream cover the free surface domain. The free surface domain along the transverse
direction is 1.5L. The domain of sea bottom along the longitudinal direction is
5.0L 2 x > -3.0L and along the transverse direction is 0 > y 2 -2.0L. The number of panel
on the ship hull, the free surface and the bottom surface are 40x10, 70x15 and 40x10
respectively. The panel distributions of the Wigley hull, the free surface and the sea

bottom surface are shown in Figure 4.2. The total number of design variables is 10.
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Table 4.2 Design Speed and Constraints for Wigley Hull

Particulars Constraints

Hull surface y(x,z) >0

Volume Displacement (V) 0.0995V, <V<1.005V,
Longitudinal Center of Buoyancy, LCB | LCB, + 0.02 Ly,
Water plane area coefficient, Cw Cw > Cwo

Sinkage, s s <sp

Fn 0.316

The first application is for the optimization of Wigley hull (Cp = 0.444) form with respect
to the minimum wavemaking resistance. This hull form is optimized at water depths
b/T =235, 3.0, 4.0, 5.0 and deep water in order to compare the hydrodynamic behavior in
shallow and deep water.

Convergence histories of the wavemaking resistance and sinkage of Wigley hull
of SQP process are shown in Figure 4.3 and 4.4 respectively. Optimized at h/T = 2.5, 3.0,
4.0,5.0 and deep water yield converged solution at 8, 4, 4, 10 and 5 optimization cycles
respectively. The wave resistance decreased approximately 8% at h/T = 2.5,
approximately 6% at W/T = 3.0 and 4.0, approximately 17% at WT = 5.0 and
approximately 10% at h/T = co.

The application of the optimization procedure produced optimal hulls with the
original body-plans shown in Figure 4.5, Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9
at depth of water h/T = 2.5, 3.0, 4.0, 5.0 and deep water, respectively. The resulting forms
are entirely dictated by the hydrodynamic behavior associated with the changes in hull
shape and optimized hull form has scarcely deviated from the original hull.

Figure 4.10 shows comparisons of sectional areas between the original one and
the optimized hulls at different depth of water. The sectional area is decreased near
amidships region and is increased towards the FP and AP. |

The comparisons between the calculated wave profiles of optimized and original
body along the hull are shown in Figure 4.11, Figure 4.12, Figure 4.13, Figuré 4.14, and
Figure 4.15 at /T = 2.5, 3.0, 4.0, 5.0 and deep water respectively. The wave profiles

were taken from the free surface elevation at the panels adjacent to the ship hull surface.
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The optimized hull generates a slightly greater wave height at bow than the original hull.
This is due to the increase of steepness of creative waves at the bow. The amplitude of
stern waves is lower than the original hull and this is due to the reduction of transverse
wave system.

Figure 4.16, Figure 4.17. Figure 4.18, Figure 4.19 and Figure 4.20 give the
contours of the calculated non-dimensional wave pattern for optimized hulls (upper) and
the corresponding wave patterns for original hull (lower) at depth of water h/T = 2.5,
3.0, 4.0, 5.0 and deep water respectively. The difference of wave fields generated by the
optimized hulls and the original hull are clearly observed.

Finally Figure 4.21 shows the comparisons of the wavemaking resistance
coefficient for the optimized hull and original one. It is seen that the reduction in the
wavemaking resistance coefficient has been achieved. Although the wave height at bow
is slightly higher than original one and the hull form has been optimized for a single
speed (Fy =0.316) corresponds to lower critical speed for different depth of water, the

optimized forms have less wave resistance over the wide range of design speed.

—8—h/T=25

1.00 o—h/T =3.0
\ —A—h/T = 4.0
A—h/T =5.0
—k— deep water
0.95 s g »\\\‘

L o0.90 J
vas | N\

ws0

ws

0.80

0 2 4 6 8 10
Iteration Number

Fig. 4.3 Convergence history of wavemaking resistance of Wigley hull at F, = 0.316
for different depths of water
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Fig. 4.4 Convergence history of sinkage of Wigley hull at F, = 0.316 for different
depths of water
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Fig. 4.5 Comparisons of body plans of Wigley hull optimized at F,, = 0.316 at depth of
water h/T = 2.5.
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Fig. 4.10 Comparisons of sectional areas of Wigley hull optimized at F, = 0.316 for
different depths of water.
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Fig. 4.11 Comparisons of wave profiles of Wigley hull optimized at F, = 0.316 at
depth of water h/T = 2.5. ‘
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depth of water h/T = 5.0. :

—e— Original
—0— Optimized
h/T =«

L} L] ' ¥ L] T
-1.0 -0.5 0.0 0.5 1.0
2x/L

Fig. 4.15 Comparisons of wave profiles of Wigley hull optimized at F, = 0.316 at deep
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Fig. 4.16 Comparisons of wave patterns (2gC/U2) of Wigley hull optimized at
F,=0.316 at depth of water h/T =2.5.
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Fig. 4.21 Comparisons of wavemaking resistance of Wigley hull optimized at
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4.4 Optimization of Series 60 (Cg = 0.6) in Shallow Water

For the second example of mono hull in shallow water, a well-known standard ship hull ,
the Series 60 (Cg =0.6) selected as an initial body shape. The principal particulars and the
design speed and constraints for optimization problem of Series 60 hull are shown in
Tables 4.3 and 4.4.

Table 4.3 Principal Particulars of Series 60 Hull

Particulars Series 60 hull
L/B 7.5

L/T 18.75

Block coefficient Cg 0.60

Midship coefficient Cwum 0.977
Waterplane area coefficient C,, 0.95

The free surface domain for the Series 60 (Cg = 0.60) along the longitudinal direction is
~1.5L < x <3.0L and along the transverse directions is —1.5L < y <0 respectively. The
sea bottom domain are —3.0L <x <5.0 and - 2.0L <y <0 respectively. The number of
panel on the ship hull, free surface and bottom surface are 40x10, 70x15 and 40x10
respectively. The panel distributions of Series 60 hull, free surface and sea bottom
surface are shown in Figure 4.22. The total number of design variables for Series 60
model is 10.

Table 4.4 Design Speed and Constraints for Series 60 Hull

Particulars Constraints

Hull surface y(x,z) >0

Volume Displacement (V) 1 0.0995V, <V<1.005V,
Longitudinal Center of Buoyancy, LCB | LCB, + 0.02 Ly,
Water plane area coefficient, Cy Cw > Cwo

Sinkage, s s <sp

Fa 0.316
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The Series 60 hull is optimized at depths of water /T = 2.5, 3.0, 3.5, 4.0,4.5,5.0 and
deep water in order to verify the hydrodynamic behavior in shallow and deep water.

Figure 4.23 and 4.24 show the convergence history of wave resistance and
sinkage of Series 60 hull. Optimized at b/T =2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and deep water
yield converged solution at 20, 32, 25, 27, 44, 36 and 35 optimization cycles respectively.
The wave resistance decreased about 17% at depth of water h/T = 2.5, about 27% at
depth of water h/T = 3.0, about 29% at depth of water h/T = 3.5, about 30% at depth of
water h/T = 4.0, about 31% at depth of water h/T = 4.5, about 32% at depth of water HT
= 5.0 and about 33% at depth of water h/T = co.

The application of the optimization procedure produced optimal hulls with
original body-plans shown in Figure 4.25, Figure 4.26, Figure 4.27, Figure 4.28 Figure
4.29, Figure 4.30 and Figure 4.31 at depth of water h/T =2.5, 3.0 3.5, 4.0, 4.5, 5.0 and
deep water respectively. The frame lines of the fore part become U-shaped for the
modified hull this effectively makes a water plane narrower and moves the volume from
upper region to lower region. The frame lines of the aft part of the optimized hull become
U shape to V-types that’s means the water-plane wider than the original hull to
compensate a displacement loss at bow part and the volume shift from lower region to
 upper region. '

Figure 4.32 shows difference of sectional areas between the original one and
optimized hull at different depth of water. The sectional area is decreased near amidships
region and is increased towards the FP and AP.

The comparisons between the calculated wave profiles along the hull are shown in
Figure 4.33, Figure 4.34, Figure 4.35, Figure 4.36, Figure 4.37, Figure 4.38 and Figure
4.39 at W/T = 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and deep water respectively. The wave profiles
were taken from the free surface elevation at panels adjacent to the ship surface. The
optimized hull generates a slightly greater bow wave than the original hull. The increase
of the bow wave steepness is one of the reasons. The amplitude of stern waves is lower
than the original hull and this is due to the reduction of transverse wave system.

Figure 4.40, Figure 4.41, Figure 4.42, Figure 4.43, Figure 4.44, Figure 4.45 and
Figure 4.46 give the contours of the calculated non-dimensional wave pattern for

optimized hulls (upper) and the corresponding wave patterns for original hull (lower) at
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WT=25,3.0 3.5, 4.0, 4.5, 5.0 and deep water respectively. The difference of wave fields
generated by modified hulls and original hull are clearly observed.

Lastly Figure 4.47 shows the comparisons of the wavemaking resistance
coefficient for the modified hull and original Series 60 (Cp = 0.6). It is seen that the
reduction in the wavemaking resistance coefficient has been achieved. Although bow
wave height is greater the original values and the hull form has been optimized for a
single speed (F, =0.316) corresponds to lower critical speed for different depth of water,
the optimized forms have less wavemaking resistance over the wide range of design

speed.

Iteration No

Fig. 4.23 Convergence history of wavemaking resistance of Series 60 hull optimized
at F,, = 0.316 for different depth of water.
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Iteration No

Fig. 4.24 Convergence history of sinkage of Series 60 hull optimized at F,, = 0.316 for
different depth of water.
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Fig. 4.25 Comparisons of body plans of the Series 60 optimized at F,, = 0.316 at depth
of water, h/T = 2.5.
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Fig. 4.26 Comparisons of body plans of the Series 60 optimized at F, = 0.316 at depth
of water, /T = 3.0.
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Fig. 4.27 Comparisons of body plans of the Series 60 optimized at F,, = 0.316 at depth
of water, h/T = 3.5.
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Fig. 4.28 Comparisons of body plans of the Series 60 optimized at F, = 0.316 at depth
of water, h/T = 4.0.
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Fig. 4.29 Comparisons of body plans of the Series 60 optimized at F, = 0.316 at depth
of water, h/T = 4.5.
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Fig. 4.30 Comparisons of body plans of the Series 60 optimized at F, = 0.316 at depth
of water, h/T = 5.0
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Fig. 4.31 Comparisons of body plans of the Series 60 optimized at F, = 0.316 at
deep water.
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Fig. 4.32 Comparisons of sectional areas of the Series 60 optimized at F, = 0.316 for
different depth of water.
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Fig. 4.33 Comparisons of wave profiles along the hull of the Series 60 optimized at
Fn=0.316 at depth of water, h/T = 2.5.
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Fig. 4.34 Comparisons of wave profiles along the hull of the Series 60 optimized at
Fn=0.316 at depth of water, h/T = 3.0.
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Fig. 4.35 Comparisons of wave profiles along the hull of the Series 60 optimized at
Fn,=0.316 at depth of water, h/T = 3.5.
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Fig. 4.36 Comparisons of wave profiles along the hull of the Series 60 optimized at
F,=0.316 at depth of water, h/T = 4.0.
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Fig. 4.37 Comparisons of wave profiles along the hull of the Series 60 optimized at
Fn=0.316 at depth of water, h/T =4.5.
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Fig. 4.38 Comparisons of wave profiles along the hull of the Series 60 optimized at
Fn,=0.316 at depth of water, h/T = 5.0.
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Fig. 4.39 Comparisons of wave profiles along the hull of the Series 60 optimized at
Fn,=0.316 at deep water.
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Fig. 4.40 Comparisons of wave patterns (2g5/U?) of the Series 60 hull optimized at
F,=0.316 at depth of water, h/T =2.5.
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Fig. 4.41 Comparisons of wave patterns (2g¢/U?) of the Series 60 hull optimized at
Fn,=0.316 at depth of water, h/T = 3.0.
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Fig. 4.43 Comparisons of wave patterns (2g¢/U?) of the Series 60 hull optimized at

Fn=0.316 at depth of water, h/T = 4.0.
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Fig. 4.44 Comparisons of wave patterns (2g/U?) of the Series 60 hull optimized at
Fn=0.316 at depth of water, h/T = 4.5.
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Fig. 4.45 Comparisons of wave patterns (2g£/U?) of the Series 60 hull optimized at
Fn=0.316 at depth of water, /T = 5.0.
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4.5 Optimization of Catamaran Hull

In the optimization of catamaran ship hull paper, a mathematical hull is employed as
demi- hulls of catamarans and airship form bulbs defined from a hydrodynamic point
source and a line sink (Thompson, 1968) are employed as large bulbs. The catamaran
with airship form bulb configuration is shown in Figure 4.48. For the purpése of
fundamental studies, the following simple mathematical hull form is employed as the

demi-hulls of catamaran,

y=i—§cos%{l-(&z—) } ‘ (4.8)

where L, B, and T are length, breath and draft of demi-hulls. In the present case the
maximum sectional area of airship bulb is 40% area of the maximum sectional area of
both demi-hulls. The principal particulars of Catamaran hull, Airship forms bulbs and

design constraints for optimization problem are shown in Table 4.5, 4.6 and 4.7.

Figure 4.48. Arrangement of Catamaran ship hull with airship forms bulbs

&1



Table 4.5 Principal Particulars of Catamaran Hull

Length, L . 1.500 m
Breadth, B 0.1178 m
Draft, T 0.075 m
Volume displacement, V 0.006750 m”
Midship Area, Ay 0.007068 m”
Midship coefficient, Cy 0.80

Block Coefficient, Cp 0.5093
Prismatic Coefficient, C,, 0.6366

Table 4.6 Principal Particulars of Airship Forms Bulb

Length, Ly 405.55 mm
Maximum Radius, Rpax 42.5 mm
Volume displacement, V; 0.001244

Maximum Sectional Area, Apmax | 0.005654 m*
Sectional Area Ratio, Apmax/2Anm | 0.40 (40%)
Point source strength, m 0.0006124 m*/s
Line sink, 2a . 380 mm

The free surface domain for the catamaran hull along the longitudinal direction is
—-3.36L <x < 6.0L and along the transverse directions is —2.80L <y <0 respectively.
The number of panel on the ship hull, bow bulb, stern bulb, free surface and wake surface
are 2x30x5, 15x6, 15x6, 75x20 and 1x5 respectively. The panel distributions of
catamaran hull, bulb40, free surface and wake surface are shown in Figure 4.49. The total
number of design variables for catamaran model is 10 (inside part 5 and outside part 5).

Table 4.7 Design Speed and Constraints for Catamaran Hull

Particulars Constraints

Hull surface y(x,z) >0

Volume Displacement (V) 0.995V, <V<1.005V,
Fy 0.45,0.50
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Fig. 4.49 Panel distribution of Catamaran hull, Bulb40, Free surface and Wake Surface
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The conventional minimum wavemaking resistance theory shows extremely large bulbs
are required to reduce wavemaking resistance for high Froude numbers. In the present
case, Bulb 40 means 40% area of maximum sectional of catamaran hulls has been chosen
and placed on the center plane of demi-hulls. The bulb position is defined as the position
of a point source to form an air ship form. The position of bow bulb is 0.633L from the
midship towards the F.P and 0.06L from the water plane in downward direction. The
position of stern bulb is 0.466L from midship towards A.P. and 0.06L from the water
plane in downward direction. The distance between demi-hulls is 0.24L. “The
optimization is carried out at two Froude number s0.45 and 0.5, respectively.

Figure 4.50 shows the convergence history of wavemaking resistance of catamaran
hull with and without bow and stern bulbs installed on the center plane of demi-hulls at
F, =0.45 and 0.50, respectively. The catamaran hull without bulbs optimized at F, =0.45
yield converged solution at 10 optimization cycles of SQP process and the wavemaking
resistance decreased approximately by 16% of the original value. At F, = 0.50 the
catamaran without center plane bow and aft bulbs, the optimized body is obtained after
10 iteration of SQP process and about 25% reduction of wave resistance is achieved. The
wavemaking resistance of the catamaran hulls with bow and stern bulbs at F, =0.45 was
reduced about 28% of the original value of catamaran without bulbs and at F,, = 0.5 was
reduced about 40% of the original value of catamaran without bulbs. The catamaran hull
with bow and stern bulbs at F, = 0.45 and 0.50 yield converged solution at 5 and 8
optimization cycles of SQP process, respectively. At Fn = 0.45, the optimized body with
bulbs shows about 65 % reduction of wavemaking resistance compared to the original
hull without bulbs. The optimized body plans of catamaran hulls at F, = 0.5 show that
about more than 50% reduction of wave resistance is achieved compared to the original
value of catamaran without bulbs.

Figure 4.51 and Figure 4.52 show the optimized body (outside and inside) plans of
catamaran hulls without bow and stern center plane bulbs of fore and aft part at F,, = 0.45.
The frame lines of modified hull (inside part) of catamaran without bulbs become V-
shape and the frame lines of outside part of catamaran hulls slightly modified. This is due
to the fact that the wavemaking interaction of the inner hull is more significant than the

outer hull. Figure 4.53 and Figure 4.54 show the optimized body (outside and inside)
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plans of catamaran hulls with bow and stern bulbs installed on center plane of demi-hulls
at Fy= 0.45. The frame lines of inside body become U-shape and deformed to streamlined
body around F.P. and A.P. The frame lines of outside body become V-shape.

Figure 4.55 and Figure 4.56 show the optimized body plans of catamaran hulls without
bulbs at F,, = 0.50 and show similar properties like the frame lines optimized (no bulbs) at
F, = 0.45. Optimized body plans with bulbs at F, = 0.50 are shown in Figures 4.57 and
4.58 respectively. The inside body frame lines optimized at F,, =0.5 become U-shape and
slightly deformed to streamlined body around F.P. and A.P Outside frame lines become
U-shape.

Figures 4.59 and 4.60 show the comparison of sectional areas of original and
optimized catamaran (inside and outside) with and without center plane bulbs at F, =0.45
and 0.50 respectively and differences between original and optimized are clearly
observed. According to Figure 4.59 and 4.60, the volume displacement of catamaran hull
with center plane bow and aft bulbs shifted towards the outside part.

Figure 4.61 shows the non-dimensional wave pattern of original catamaran hulls
without (upper) and with (lower) center plane bow and stern bulbs at F,, = 0.45. Figure
4.62 and 4.63 give the calculated non-dimensional wave contours of the original (upper)
and optimized (lower) body of catamaran without and with center plane bow and stern
bulbs at F,, = 0.45 respecﬁvely and the difference of wave fields generated by optimized
and original hull with and without center plane bow and aft bulbs are clearly observed.
Figure 4.64 shows the non-dimensional wave pattern of original catamaran hulls without
(upper) and with (lower) center plane bow and stern bulbs at F,, = 0.5.

Figure 4.65 and 4.66 give the calculated non-dimensional wave contours of the
original (upper) and optimized (lower) body of catamaran without and with center plane
bow and stern bulbs at Fy, = 0.5 respectively and the difference of wave fields generated by
optimized and original hull with and without center plane bow and aft bulbs are clearly
observed.

Figure 4.67 and Figure 4.68 show the comparison of the wavemaking resistance
optimized and original catamaran hulls with and without center plane bow and stern
bulbs at F,=0.45 and F, = 0.50 respectively. It is seen that the reduction in wave

resistance coefficient has been achieved around the design speed but for lower Froude no
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the optimized body with bulb shows greater resistance with original one. The optimized

body plans of catamaran with and without air ship form bulbs have less wave resistance
over the wide range of design speed.
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Fig. 4.50 Convergence history of wavemaking resistance of catamaran hulls with and

without center plane bow and stern a1rsh1p form bulbs optimized at F;, = 0.45 and
0.50 respectively.
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Fig. 4.51 Comparisons of body plans of fore part of catamaran without center plane
bow and stern airship form bulbs optimized at F, = 0.45.
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Fig. 4.52 Comparisons of body plans of aft part of catamaran without center plane bow
and stern airship form bulbs optimized at F, = 0.45.
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Fig. 4.53 Comparisons of body plans of fore part of catamaran with center plane bow
and stern airship form bulbs optimized at F, = 0.45.
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Fig. 4.54 Comparisons of body plans of aft part of catamaran with center plane bow
and stern airship form bulbs optimized at F, = 0.45.
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Fig. 4.55 Comparisons of body plans of fore part of catamaran without center plane
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Fn=0.45.

94



0.60

0.55

95

0.40

5 " 1 1
N
n e i .
=0 i H
Lo ; :
AT ; )
O = H 1
Q0
5 M S T -T-
2 a9 —
253 m w0
» 4
o35 09 o =3 .
saf£ £ R
SE33 T
€ =2F Bl it b e
©Wwm NN 1 :
EEEE H H
D D= = ' i
T QO a ) :
O00O0 ! !
1 i
1 )
L. ||||.._ ||||| -NE--O-- |l|“. ||||||||
] »
13 “ T “
] ] 1 ]
1} 1 1 1
1 1 1 3 1
H ; H
| S ey
1 ] 1
|||||||||| .illl\..\h\ '
T i At et be mintiadat el
\.\ ' 1
) : ;
] ] ]
] t ]
] 1 1
(. | _
1 ] [}
/ ] '
T 1 ]
: T |
13 1 ]
...... ) o i
1 L_ IIIII
t 1
1 ]
] '
i 1
: 1
] 1
¥ 1
] ]
1 1
il OO S P VA N " =
] ]
T ]
) ]
i 1
1 1
1 ]
1 v ]
1 " ]
" m +
i R e ) -
I : :
| ' 1 I 1
o © N © <t o
2t ~ -~ o o o
SM
LOLX0

0.50.

Fig. 4.68 Comparisons of wavemaking resistance original catamaran hull and modified

catamaran without and with center plane bow and stern airship form bulbs optimized at

Fy



CHAPETR S

Conclusions and Future Works

A numerical method has been proposed for hull form optimization of mono hull (W: igley |

and Series 60) in shallow water and catamaran hull with airship forms installed on the

center plane of catamaran in deep water with respect to wave resistance. Combining the

numerical method for solving the three dimensional potential flow around a ship moving

at constant speed in calm water in shallow water and deep water with the Sequential

Quadratic Programming (SQP) technique, an improved hull form of lower resistance can

be generated through a series of iteration computation.

The following conclusion can be drawn from the numerical analysis.

The optimized body plans of Wigley hull and the Series 60 hull in shallow water
show lower resistance with the original ones at all water depths.

The optimized body plans of Wigley hull and Series 60 hull show lower sihkage
with original values at all water depth.

The sectional area of optimized Wigley hull decreased near amidships region and
is increased towards the fore and aft perpendiculars.

The frame lines of the fore part of modified Series 60 hull become U-shaped.
This effectively makes a water plane narrower and moves the volume from upper
region to lower region. The frame lines of the aft part of the optimized Series 60
hull become U shape to V-types that’s means the water-plane wider than the
original hull to compensate a displacement loss at bow part and the volume shift
from lower region to upper region.

The optimized hull both Wigley and Series 60 generates a slightly greater wave
height at bow than the original hull. This is due to the increase of steepness of
creative waves at the bow. The amplitude of stern waves is lower than the original
hull and this is due to the reduction of transverse wave system.

The modified body of Wigley hull and Series 60 generate small wave height at far
field region.
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e Significant difference is not observed in the optimized hull forms in deep and
shallow waters. This is due to the selection of hull form modification function
only in beam-wise direction, not in depth-wise. But in shallow water depth-wise
modification is important.

e The modified catamaran hulls in absence of airship form bulb show lower .
wavemaking resistance than original ones. The optimized catamaran hull with
center plane bow and aft airship form bulbs show lower resistance around design
Froude number but below Froude number 0.425 show greater resistance than
original values.

e The frame lines of modified hull (inside part) of catamaran without bulbs become
V-shape and the frame lines of outside part of catamaran hulls slightly modified.
The frame lines of inside optimized body plans of catamaran hulls with bow and
stern bulbs installed on center plane of demi-hulls become U-shape and deformed
to streamlined body around Fore Perpendicular and Aft Perpendicular. The frame
lines of outside body become V-shape.

e The volume displacement of optimized catamaran hull with center plane bow and

aft bulbs shifted towards the outside part.

From this study, it is seen that the maxima of the wavemaking resistance coefficient for
the optimized hull forms (with bulbs) are much bigger than the local maxima of original
ones. If the optimized hull form is to be practically meaningful, it is necessary to impose
some constraints on the maximum of the object function over the whole range of Froude
numbers. . The wavemaking resistance of catamaran hull with bulbs depends on the
wavemaking interactions of hulls, the size of the bulb, the relative position of the bulb
with respect to main catamaran hull, the wavemaking interaction of bulb etc. Since SQP
is based on siﬁgle object function, and the optimization is carried out at a single Froude
number, it is difficult to impose some constraints on the maximum of the object function
over the whole range of Froude numbers. The problem will be solved by the use of the
multi object function based nonlinear programming technique and the optimized hull

forms will be practically meaningful over the whole range of Froude numbers.
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The present study is the fundamental study on the fast catamaran hull form design. When
the bulb position and the bulbs size are also optimized in the body shape optimization
process as will be done as future works, a new concept of fast catamaran operating in

high Froude number with extremely small wave resistance can be obtained

The method presented here is only the beginning of the work done in the development of
a complete optimum hull form design system. No fairness criteria for hull surface
imposed on the optimization process. All the important factors for determining a ship’s
performance have not yet been incorporated in this system. In particular, it is important in
the design of ships that the considerations of propulsion and sea keeping are included at
an early design stage. Besides, the determination of the optimal principal particulars of
the ship is also an integral part of the design process. Further investigation on shape
modification methods and the combination with more complicated flow models such as
self-propulsion or sea-keeping analyzes will enable the system to be applicable to
practical ship hull designs. Although the presented method has not yet been exploited and
tested under enough broad conditions and number of cases, the results point out that the
optimization procedure works and that an optimum hull form can be obtained.

The following future works may expected:
e Optimization of practical river ships operating in shallow water

e Optimization of bulb position and bulb size and after that optimization of
catamaran ship hull.

e Optimization of ship hull with respect to total resistance (viscous and
wavemaking).

e Faimess criteria for ship hull surface should be imposed during the
optimization.

e Optimization of submerged ship hull operating near free surface.

e Compare the optimization results with others flow model (Rankine source
method, linear wave resistance theory based on thin ship approximation) and

others numerical optimization tools.
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Appendices

Appendix A: Transformation of Matrix

The position of the ship relative to x-y-z system is to be determined by means of a vector
transformation. For vector « is a structure-fixed system of coordinate the representation A
of the vector x in relation to steady moving system x, is found by a linear transformation
a of the center of structure to steady moving system and a rotation R according to the

following equation (see Figure al):

Fig. A1 Definition sketch of a co-ordinate system for transformation of matrix

OP =0A+ AP (Al)
X =o +Rx’

in which x is known relative to the body fixed system of coordinate x' = (x’, vy, z’). In

case one is interested in obtaining the vector x relative to the structure fixed coordinate
system for a vector x known in steady moving system, the Equation (A1) is written as
x'=R7(x—a) (A2)
in which R is\the inversion of the transformation R. The oscillatory motions of the ship
are represented by §(§I,§Z,<‘33) and Q(&,,& 5,5_,6) in which & are the displacements of the
center of gravity and (2 are the Eulerian angles of ship in space. The Eulerian angles are

the measurements of the ship’s rotation about the axes, which pass through the center of

gravity of the ship. The angular motions due to roll, pitch and yaw are given below:
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The

(2) Rolling: motions about x axis (anticlockwise positive)

1 0 0
A=0 cos&, sin&,
0 -siné, cosé&,

(b) Pitching: motions about y axis

cos & 0 —siné&,
B= 0 1 0
sing, 0 cosé,

(c) Yawing: motion about z axis

cos&, sin & 0
C=|-sin&, cos& 0
0 0 1

combined transformation matrix below:

D =Rx" = CBAx’

, (ost, cost,) ( cos§4sin§6+j [ sin&, sin&, —

sin&, sin&, sin&,
cos&, cosE, — sin&, cos&, +
sin&, siné&, sin&, ' cos§, sin&, siné&

sin& —(sin§4 cos&s) (COS§4 cos&s)

?(cosis sin§6) [

Taking first order quantities after expansion we get

R =

1 §6 _E.w
"E.us 1 ‘5:5 +O(62)
&5 "§4 1

Taking first order and second order quantities we get

-2 4gl) Eoveds) (5488

b 1fer) (grgg) [v0@)
s, o

& -t 1))
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After the decomposition of the above matrix

1 éG —‘Ctas 1 (§§+&§) 0 0
R=|-8 1 &|-|-2%& [+&l) o |+of) (A6)
& -8 1] T|-2eg, -2ek, (2482

1og, &
R=|-&, 1 &, |+H
g, -&, 1
where
1(a§+a§) 0 0
H=_|-285 (5+8) o (A7)

288 -288, (el
Let x denote the position vector of a point on the hull surface Sy measured in a steady
moving reference system and x be the position vector of the same point on the hull
surface, measured in a body fixed reference system. The two systems of axes are assumed
to coincide when the ship in its equilibrium position. When the hull is displaced from the
equilibrium position, the deflection « of any point of the hull can be expressed as

(Newman, 1977 and Chun, 1991)
x—x'=E+Qxx’ +5%Hx'+0(5*)

' ' (A8)
00 =E(5,,E5,85)+ Q0 EsnBe )X X +87Hx
The instantaneous normal vector on the wetted surface Sy is approximated by
n=n'+an’+62Hn’+O(83) (A9)

Now the cross product for six oscillatory motions of the ship in relation to steady moving
coordinate system is '
xxn =[x +&+Qxx'[x [n’+Q><n’+62Hn']+ 0(8%)
=x'xn'+Exn’ +(Qxn')xx'+x'x(Qxn')+Ex (Qxn')+ x'x §Hn' + 0(8%) (A10)
=x'xn’+Exn’ +Qx(x' xn')+x'x(Qxn')+Ex Qxn’ +5H(x'xn')+ 0(83)
If we now consider heaving and pitching motions only, the transformation matrix of the

body can be write
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1 0 - gs
R=|0 1 0 |+0(s?) (A11)
€ 0 1
From this point we will use the symbol s for sinkage and t for trim instead of €3 and &s

respectively, so the above equation become

1 0 -t |
R={0 1 0[+0(5?) (A12)
t 0 1

The deflection of any point on the hull due to heaving and pitching motion becomes
o =£(0,0,€,)+0(0,£,,0)xx'(x',y',z)+0(8°) (A13)
= (tz',0,s — tx')
The instantaneous normal vector due to heaving and pitching motion becomes
n=n’+an’+O(82)=(n;+tn;,n’2,n;—tn;) (A14)
Now the cross product due to heaving and pitching motion in reference to steady moving
coordinate system
xxn=x'xn'+&xn'+Qx(x'xn')+0(3?) |
= (n,,n},n} )+ (~sn},sn!,0)+ (tn’,0,tn}) (A15)
=[(n}, ~sn} +tnf), (n} +snf ), (nf + )]
The cross product in reference to body fixed coordinate system is

x'xn’=(n},n{,n5) = [(yn} ~2'n;), (zn] —x'n;), (x'n, ~y'nj)] (A16)
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Appendix B: Influence Coefficients

Fig. Bl Quadrilateral element for calculation of influential coefficients .

Based on Morino’s Panel method (Morino et al, 1974) all the integrals given in the
boundary value problem can be evaluated by assuming that the surface elements are
quadrilateral and are approximated by a heperboloidal element. Using position vectors
q; (i = 1..4) of four corner points of a panel any position vector q on the panel can be
expressed as (Suciu and Morino, 1976)
q=q, +&q, +Ng, +&nq, -1<&<1, -1<n<l (B1)
The position vectors in terms of the locations of four corner points are obtained as:

o 1 -1 1 1l q

9| 1|1 I -1 -1 |q,

q, | 4[1 -1 1 -1 |q,

q, 1 -1 -1 1 jq,

(B2)

Introducing the base vectors tangential to surface
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5
al(ci,n)=5%=qa +Mq,

az(&n): ;_q =q, +&q,

the unit normal vector is given by

(B3)

a, xa

n(gn)=r—4 | (B4)
’31 x azl

whereas the surface element is given by

do =|a, xa,[dtdn (BS)

All the integral appeared in the influence coefficients will be of the form

11

I= | [£(e,n)dedn | (B6)

-1-1

Note that is

82
=2

Then ,
I=D(1,1)-D(1,-1)~ D(-1,1)+ D(-1,-1)

Similarly

1=8(1,1)-5(1,-1)=5(-1,1)+ S(-1,-1) —g-s tan )sg

D=L i(-l_)ds B7)
2n Yon\ R

S=~—1~ ~1—dS (B8)
2n YR

The coefficients of the integral equations are evaluated by using the relationships

(Rxa,)-(Rxa,) (B9)
RR-(a, xa,)

D&M= wl-—tam’l(

2n
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S(@:ﬂ)=%{—Rxal -n—l—sinh*l[R'a1 J

2] R-a,]

+Rxa, -n—l—sinh”l(R'azj
la, | R.a,|

+R-ntan™ (Rxa1)'(Rx az)
IRIR - (a, xa,)

where

R(En)=q-p=q, +&q, +Nq, +Eng, —p
7= 7,2 (Lhs
270 P on, \R

1 1
V,S=o- pr[E]dS

(B10)

(B11)

(B12)

(B13)

In addition the coefficients of V_D and V.S are evaluated by using the relationships |

1 _1 R-a -(Rxa;) R-a,-(Rxa,)
VpD:—" wi 2 - 2
2TC_IR' Rxa,| R xa,|
(a—ligsinh'l[ Ra, j— 2, xnsihh‘l(
1 [all |R><a1| lazl
VpS=2—<
T — (R'a1)'(R‘az)
\ IRIR‘31X32
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Appendix C: Radiation Condition

The coefficients Dy, Dw, Dg, Sy, Sk and their first derivatives are calculated according to
Morino’s analytical formula based on the assumption of quadrilateral element. In order to
satisfy the radiation condition the second derivative Dy, Dy, Dg, Sy and Sg are éomputed' :

by upstream finite difference operator as recommended by Dawson C.W. (Dawson, 1977)

2

D =L [2[ 25 )og

2n g 0%, | on,

0 o | oG 0 [ v
1
Dy =5 E‘I dS|=——[Dy |
P T Sy aXp 8nq aXP

In general the derivative of a function f{x) at any point x can be written in the form:

N-1
f,(x)= Z e iy (C2)

k=0
where ey are determined by means of Taylor’s expansion. The values of ey for 2-point, 3-
point and 4-point finite difference operator are obtained from the distance between the

points and given in Park(1998) as below:

[1] Two-point finite difference operator (N=2)

) X1 — X (C3)

[2] Three- point finite difference operator (N=3)
e — - (X iz ~ X )2

’ (Xi—l —X; )(Xi~2 - Xi)(Xi~2 - Xi—l)
o = (Xi—l — Xi)z

1 (Xi—x — X )(Xi—z - Xi)(xi—z - Xi—l)

€ = —(62 +el)

(C4)

——
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[3] Four- Point finite difference operator (N=4)
D; = {(Xi—l "Xi)(Xi-z = Xi)(xi—-s "Xi)}x

{(Xi—S — X )(Xi—z X, )(Xi—3 Xy )}X

(Xi-s X, X _3Xi)

e. = (% -x;) (%, —x;)" (%0, — X X + Xy —2X;) \
3 D,
o = _(Xi-l *Xi)z(xi-s _Xi)2 (Xi-s “Xi-l)(xi-z + X “2Xi) |
’ D; r (C5)
o = (Xi—z ‘Xi)2(xi-3 _Xi)2 (Xi—3 — X3 )(Xi—B X3 _2xi)
1 ])i
e, =—(e, +e, +e,)

The tangential derivatives of a function can be expressed in terms of local coordinate

system (& 77) as
of of
%[é - (é-n)n]+5;[n ~(n-¢k]
Vf= 5 (C6)
£ x|
Now the derivative of the function in the x —direction can be obtained as
V=V f +V f ' (C7)

The second derivative of a function is obtained by substituting the first derivative of the
function in equation (C2). We shall get the second derivative with respect to xyz

coordinate system using equations (C6) and (C7)
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Appendix D: Kutta Condition

The perturbation velocity potential on the boundary surface for first order approximation

in deep water is discretized as follows

[(—8 1;3) O.iEKOS + s;xx )Hi:} = E;}{U m, f+ [EXXJ{A%} o

The Kutta condition requires that the velocity at the trailing edge of the body be finite. In
the numerical formulation of the problem, we will implement the Kutta condition by
requiring that the pressure at the upper and lower control points be equal and this can be
expressed as

Ap; =p] —p; =0 forj=1......... N (D2)
where N is the number of elements (one side) at the trailing edge of the body. A direct
solution of the resulting system of equations (D1) and (D2) is difficult due to the
nonlinear character of equation (D2). Therefore, an iterative solution algorithm (Kerwin
etal, 1987) is employed. At the k™ iteration, first solve the linear system of equations (D1)
with the values of Aq)j(k) determined from the (k-1)™ iteration. The values of Ap® are
given by equation (D2), with the values of pressures ij and p;* determined as described

in section of pressure calculation. If Apj(k) is not equal to zero with desired tolerance

(g =107°), then proceed to another iteration with A@(k”) determined as follows:

[A0]" =[A] - [I]" -[Ap)* (D3)
where

[Ap] = [Ap,, AD s, Apy[f

[A0] = [Ad,, Ady e Ay [f

and ‘

[J7" is the inverse of the Jacobian matrix, the elements of which are defined as
I - l:a(Api)] {i =1.... N

Y 8‘A¢ i ) j=1.....L
with the values of partial derivatives approximated numerically as:

8(Ap,) Ap® - Ap®
o(ad;)  29P - A
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where Ap,-m) corresponds to the initial guess A@-(O) and Apj(ﬂ) corresponding to A@(ﬁ) ,a

perturbation to initial guess defined as

AP =(1-B)Ad” L=j
and
AP =A0® for L]

where fis a very small number, which can be 10 The initial guess A@-(O) is taken as the

difference of the potential at the upper and lower control points at the trailing edge of the
body.

A¢§°) = A(i)}J - Ad)jL (D4)

The initial guess is therefore the original Morino Kutta condition.
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