# 920 MHz-NMR 用超伝導マグネットシステムの 研究開発

Research and Development of Superconducting Magnet System for 920 MHz-NMR

平成 19 年 3 月

伊藤 聡

# 目次

| 第1章 序 | 論                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| 1.1 荷 | 研究の背景                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1  |  |  |
| 1.2 N | IMR 適用における課題                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  |  |  |
| 1.2.1 | 1.2.1 高磁界化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |  |  |
| 1.2.2 | 磁界安定性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7  |  |  |
| 1.2.3 | 安全性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 |  |  |
| 1.2.4 | 信頼性と実用性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 |  |  |
| 1.3 9 | 20 MHz-NMR 実現へのプロセス                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12 |  |  |
| 1.4 Z | s研究の目的と意義                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 |  |  |
| 第2章 高 | 磁界の発生                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 |  |  |
| 2.1 走 | 習伝導特性の向上                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 |  |  |
| 2.1.1 | マグネット設計における必要条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 |  |  |
| 2.1.2 | 低温化による超伝導特性の向上                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 |  |  |
| 2.2 1 | 私温の生成 しんしゅう しんしゅう しんしゅう しんしょう しんしょ しんしょ | 22 |  |  |
| 2.2.1 | He 発生の方式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22 |  |  |
| 2.2.2 | 熱侵入の評価と冷却効率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25 |  |  |
| 2.2.3 | 温度安定性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31 |  |  |
| 2.2.4 | 運転温度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38 |  |  |
| 2.3 N | Ib₃Sn 線材の特性向上                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 |  |  |
| 2.3.1 | 高 Sn ブロンズによる Jcの改善                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 |  |  |
| 2.3.2 | 製作線材の特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43 |  |  |
| 2.4   | ?グネット設計                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44 |  |  |
| 2.4.1 | 設計条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44 |  |  |
| 2.4.2 | コイルパラメータ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44 |  |  |
| 2.5   | とめ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48 |  |  |
| 第3章 磁 | 界安定化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51 |  |  |
| 3.1   | イル部の残留抵抗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51 |  |  |
| 3.2 栫 | 送器配置条件                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51 |  |  |
| 3.2.1 | 超伝導接続および PCS の特性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51 |  |  |
| 3.2.2 | 配置構成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52 |  |  |
| 第4章 安 | 全性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56 |  |  |
| 4.1 3 | そ全性に関する課題                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56 |  |  |

| 4.2   | クエンチの抑制                                  | 61  |  |  |  |  |
|-------|------------------------------------------|-----|--|--|--|--|
| 4.2.1 | 4.2.1 応力基準 6                             |     |  |  |  |  |
| 4.3   | マグネット保護                                  | 63  |  |  |  |  |
| 4.3.1 | 1 He におけるクエンチシミュレーション                    | 64  |  |  |  |  |
| 4.3.2 | 2 Nb₃Sn 線材の高耐力化                          | 69  |  |  |  |  |
| 4.4 7 | 容器設計                                     | 71  |  |  |  |  |
| 4.4.1 | 1 クエンチにおけるエネルギー放出                        | 71  |  |  |  |  |
| 4.4.2 | 2 安全弁設計基準                                | 75  |  |  |  |  |
| 4.5   | まとめ                                      | 80  |  |  |  |  |
| 第5章 実 | <b>ミ機製作</b>                              | 83  |  |  |  |  |
| 5.1   | 全体構成                                     | 83  |  |  |  |  |
| 5.1.1 | 1 マグネット                                  | 86  |  |  |  |  |
| 5.1.2 | 2 クライオスタット                               | 89  |  |  |  |  |
| 5.1.3 | 3 システム信頼性                                | 92  |  |  |  |  |
| 5.2 言 | 設置および立上げ                                 | 94  |  |  |  |  |
| 5.2.1 | 1 設置                                     | 94  |  |  |  |  |
| 5.2.2 | 2 冷却結果                                   | 96  |  |  |  |  |
| 5.2.3 | 3 励磁結果                                   | 101 |  |  |  |  |
| 5.2.4 | 4 NMR 測定結果                               | 103 |  |  |  |  |
| 5.3   | まとめ                                      | 105 |  |  |  |  |
| 第6章 約 | 総括 · · · · · · · · · · · · · · · · · · · | 108 |  |  |  |  |
| 6.1   | 結論                                       | 108 |  |  |  |  |
| 6.2   | 今後の課題                                    | 110 |  |  |  |  |
| 謝辞    |                                          | 112 |  |  |  |  |
| 研究業績  |                                          | 113 |  |  |  |  |

## 第1章 序論

### 1.1 研究の背景

Kamerlingh Onnes が 1911 年に超伝導現象を発見してからおよそ一世紀が経つ。その歴史 のなかで、超伝導現象の発現機構の解明に長い年月が費やされてきた。しかしながら、多くの研 究によって明らかにされた様々な成果にもとづき、超伝導の特性である臨界磁界 *Hc* と電流密度 *Jc* が高められるようになってはじめて超伝導を利用した超伝導マグネットが実用装置として使われ るようになってきた。このため、実用的な超伝導マグネットの歴史は 40 年程度と比較的浅い。

超伝導マグネットが実用に供するレベルに至った大きな要因は、超伝導材料には第1種超伝導 材料と第2種超伝導材料があるということが明らかにされたところにある。第1種超伝導体と第2種 超伝導体において、超伝導現象の発現そのものに両者の差異はない。しかし、前者は臨界磁界 *Hc*まで完全反磁性であるマイスナ状態を保ち、*Hc*を超えると不連続的に磁化ゼロの常伝導状態 に移る(図1.1 (a))。ところが、後者は*Hc*よりも低い磁界*Hc*1(下部臨界磁界)から磁束が侵入し始 めるものの、*Hc*より高い磁界 *Hc*2(上部臨界磁界)に至るまでに連続的に磁化がゼロになる(図 1.1 (b))[1]。このような第2種超伝導体の理解とその特性を有する材料の開発によって、超伝導マ グネットの開発が加速することになる。

第2種超伝導体の活用によって実用的な超伝導マグネットの発生磁界強度が得られることを世 に知らしめたのは、1961年米国のベル研とWestinghouse社の共同開発による、Nb<sub>3</sub>Snを用い て6Tを発生した超伝導マグネットであった。これを契機に、第2種超伝導体の材料探索と超伝導 マグネットの高磁界化が加速する。超伝導材料の研究開発は、1985年の酸化物系超伝導材料発 見以後も旺盛であり、Nb<sub>3</sub>Alの製法改善による臨界磁界の更新、MgB<sub>2</sub>の発見による金属系超伝 導材料の臨界温度更新は記憶に新しいところである。

1



図 1.1 超伝導体における磁化の磁界依存性

一方、Onnesは超伝導現象を発見する3年前の1908年、世界で初めてヘリウムの液化に成功 している[2]。また、彼はヘリウムを液化したその日のうちに、液体ヘリウムを減圧することで2K以 下の温度発生も達成している。このときの液体ヘリウムの状態が、粘性ゼロ、熱伝導率無限大とな っていたことは、その後の研究で明らかにされる。1938年にKappitzaがこの状態のヘリウムを「超 流動ヘリウム(以下 HeIIと称す、これに対し常流動ヘリウムを HeIと称す)」と名づけた。ヘリウム の超流動現象は、量子統計論の発展に大きな意義を残した。物質はフェルミ粒子とボーズ粒子で 構成され、温度(エネルギー準位)を下げることでボーズ粒子の振る舞いが顕在化し、パウリの禁則 に反して運動量がゼロとなってしまう(最小のエネルギー準位に落ち込む:ボーズ凝縮)。これが物 性に非常に特徴的な現象を引き起こす。4Heにおいては、超流動転移温度である2.17Kを境に、 粘性ゼロ、熱伝導率無限大という極めて特殊な物性が現れるが、これはボーズ凝縮による作用そ のものである。超流動ヘリウムの発現機構の解明に至る研究は量子統計論を推し進めるうえで非 常に重要な意義を果たした[3]。超伝導現象の発現機構も、この量子統計論から発展して BCS 理 論として結実する。しかしながら、超流動ヘリウムは、量子物理学の研究を中心にその価値が見出 され、冷媒としての存在意義に目を向けられる機会は少なかった。ところで、超伝導特性の一つで



図 1.2 超伝導 NMR の高磁界化の変遷

ある Hcは高い温度依存性を持つ。さらに、超伝導における臨界電流密度 Jcは Hcと相関をもって 同様に温度依存性を持つ。つまり、通常の超伝導マグネット運転環境として用いられる大気圧飽和 状態での液体へリウム(4.2 K)における Hc4.2は、単に温度を下げることのみによってその値を大き く上昇させ得る余地がある。これは、超伝導マグネットの運転に超流動へリウム冷却の手法を持ち 込めば、既存の超伝導材料であってもさらに高い電流密度が得られることを意味する。

実用的超伝導材料の開発にともなって、超伝導マグネットの実用化・高磁界化も加速されたが、 それと同時に、超伝導マグネットの応用研究も広がりを見せた[4]。そのひとつが超伝導マグネット を用いた NMR (Nuclear Magnetic Resonance = 核磁気共鳴)である。NMR による最初のシグ ナルは F. Bloch によって 1945 年に観測された。その後 1950 年にケミカルシフトが発見されて以 後、NMR の有用性が認められて世の中に広まったといわれる。初期の NMR 用マグネットは鉄芯 を用いた電磁石であったため、その発生磁界は 3~4 T 止まりであった。しかし、NMR の分解能は 磁界の 3/2 乗に比例する(信号強度  $\propto$  H<sup>3/2</sup>)ことから、NMR 用マグネットの高磁界化への要請は 高く、これに対して最初の超伝導マグネットを用いた NMR が 1970 年に登場する(Bruker 社製 270 MHz=6.3 T)。これを機に、NMR 用超伝導マグネットの高磁界化の歴史が始まる。その開発



図 1.3 NMR 用超伝導マグネットの発生磁界と分析可能な分子量

の経過は図 1.2 に示すように、年を追って右上がりで上昇する発生磁界強度の推移から端的に見 て取れる。なお、NMR 用超伝導マグネットで用いる磁界強度の表記である Hz 単位は、プロトン <sup>1</sup>H の共鳴周波数を示すものであり、42.5759 MHz=1 T である。

NMR 用超伝導マグネットが高磁界化するに従って、より多くのかつ複雑な化学分子構造の解 明に NMR が利用されるようになってきた。このような複雑な分子構造の同定利用は生体を構成す るタンパク質の解析が最たるものとして挙げられる。この 10 年来、ゲノムプロジェクトのもとにとト遺 伝子の構造解明作業が全世界的に進められ、現在ではその大半の解読を完了している。しかし、 解明された遺伝子構造(DNA)は人体を構成するタンパク質のいわば設計図(Blue Print)であり、 実際の医療(オーダーメード医療、遺伝子治療)や新薬(ゲノム創薬)開発には、タンパク質の構造 とその機能を解明することが必須とされている。人体を構成するタンパク質は分子量が非常に大き く(4 万~8 万)かつ立体的で複雑な構造である。このため、その解析には高分解能 NMR 装置が 必要であり、NMR 用超伝導マグネットの高磁界化はこの要請と符合し、近年の成果につながる。 現 在 の NMR 分析 手法としては、TROSY 法(Transverse Relaxation-Optimized SpectroscopY)が有効とされているが、それによれば人体を構成する大半のタンパク質構造を同 定するには、NMR マグネットの発生磁界にして 24.66 T(1.05 GHz)が必要であることを示唆して いる[5]。一方、現在工業的に生産されている高磁界用超伝導線材である Nb<sub>3</sub>Sn を用いるかぎり、 24 T を超える磁界の発生は困難である。しかしながら、図 1.3 に示すように、少しでも超伝導マグ ネットを高磁界化することは、NMR による被検物質であるタンパク質の構造解析に有用であること は明らかである。

## 1.2 NMR 適用における課題

超伝導マグネットを高磁界化して NMR に適用するためには、端的には次のような課題がある。

- 高磁界化
- · 磁界安定性
- · 高均一磁界
- 安全性
- 信頼性と実用性

このなかで、高磁界化は本研究における920 MHzの発生そのものであり、NMR 分解能向上の ための最重要課題である。磁界安定性は、NMR 測定における本質的なものであり、高磁界化によ る信号強度の向上(S/N向上)とは分けて捉える必要がある。高均一磁界も NMR 測定においては 本質的な部分であるが、これは高磁界化に関わらず磁界分布を均一に補正することによって得ら れるものであり、NMR 用超伝導マグネットに通常備えられる機能である。安全性とは、超伝導に特 有のクエンチ現象に対するものである。また、信頼性と実用性は、連続運転に供されるマグネットシ ステムにおける停電・機器故障への対応可能なシステム構築を意味するとともに、NMR 測定作業 が円滑に進行できるシステム設計も含む。

このような NMR 用高磁界超伝導マグネットに関する課題について、以下に具体的に詳述する。

1.2.1 高磁界化

NMR 測定における信号強度は磁界の 3/2 乗に比例して増大するから、マグネットの高磁界化

| 表 1.1 | NbTiと Nb | ₃Sn の超信 | 云導特性比較 |
|-------|----------|---------|--------|
|-------|----------|---------|--------|

| 材料    | 臨界温度 <i>T<sub>C</sub></i> [K] | 上部臨界磁界 |
|-------|-------------------------------|--------|
| NbTi  | 9.2                           | 14.5   |
| Nb₃Sn | 18.3                          | 27.9   |

は、直接的に NMR 信号の S/N 向上すなわち分解能の向上に寄与することになる。このため、 NMR に用いる超伝導マグネットは、可能な限り磁界強度を高めることが望まれる。しかし、発生磁 界強度の限界は、超伝導材料自身の特性によって規定される。現在実用超伝導線材として用いら れている超伝導材料は NbTi と NbaSn の 2 種のみである。両者の基本的超伝導特性を表 1.1 に 示す。NbTi は合金材料であり、展性・延性に優れるため加工性が良く安価だが、上部臨界磁界 *Bc*2は 14.5 T(4.2 K)にとどまる。一方、NbaSn は *Bc*2が 27.9 T(4.2 K)と高く、高磁界マグネッ トの作製には不可欠である。しかし、NbaSn は金属間化合物のため難加工材であるとともに、耐歪 特性も低く、高い応力を受けると超伝導特性が劣化する欠点を持つうえ高価格である。したがって、 高磁界超伝導マグネットでは、このような両者の長所を生かし、短所を補完する構成をとる。すなわ ち、マグネット中心付近での高磁界発生には NbaSn を用い、これをバックアップするように外径側 に NbTi で構成したコイルを配置する。このことにより、マグネットの大半を安価で加工性の良い NbTi で構成したコイルを配置する。このことにより、マグネットの大半を安価で加工性の良い

しかしながら、このような構成とした場合でも、本研究におけるマグネットでは、NbsSn が置かれ る磁界は21 Tを超える。超伝導材料における臨界電流密度  $J_C$ はゼロ磁界において最大値を取り、  $B_{C2}$ においてゼロとなる。したがって、21 Tを越える磁界中において実用的な  $J_C$ を得るには、 $B_{C2}$ そのものを向上しなければならない。その唯一の手法が運転温度を下げることである。超伝導マグ ネットは通常大気圧飽和状態の液体へリウム(4.2 K)の中で運転される。しかし、液体へリウムが置 かれた環境圧力を減圧すれば、飽和温度を下げることが可能である。 $J_C$ の温度依存性について は第2章で詳述するが、例えば温度を2.0 Kまで下げると、その値は4.2 Kと比較しておよそ2 倍に向上することが期待できる。

ところで、運転温度を下げるためには、冷却システムが必要になるが、1.2.4 節で述べるように、 この冷却動作はいかなる場合、例えば停電が発生しても運転を継続しなければならないため、非 常用発電設備を併設する。また、冷却システムにおける機器構成上の制約条件や不安定性を考

 $\mathbf{6}$ 

慮した温度変動も考慮しなければならない。本研究では、実用に供し得る NMR 用マグネットシス テムを構築することを主眼としているので、このような事情を網羅したうえで、確実に維持できる運 転温度を定め、このときに得られる Jcを超伝導マグネットの設計根拠としなければならない。

なお、実際のマグネットにおいては、線材断面における電流密度、即ち Overall Jcを向上する ことも実効的な手段となる。特に高磁界領域では中磁界領域とは異なる Jcの振る舞いがあり、線材 断面積あたりの Nb<sub>3</sub>Sn 比率を上げることが必要になる。ブロンズ法 Nb<sub>3</sub>Sn において Nb<sub>3</sub>Sn の生 成量を増大することは、反応に必要な Sn 量を充分に供給することである。そのためには、反応基と なるブロンズ中の Sn 濃度を増やす必要がある。ブロンズ相図上の Sn 固溶濃度限界は 15.8 wt% であるが、実際にブロンズを溶製すると、固溶限界付近では異相が析出する。このため、従来の Nb<sub>3</sub>Sn 線材に用いるブロンズ中の Sn 濃度は 14 wt%程度が上限とされてきた。見方を変えれば、 現行線材に対してブロンズ中 Sn 濃度を向上できれば、Jcは改善の余地が残されていると言える。

以上から、NMR 用超伝導マグネットの高磁界化への課題は Jc向上であり、具体的には下記 2 点である。

- ・ 運転温度の低温化による Jcの向上
- ・ Nb<sub>3</sub>Sn の高磁界領域における Overall Jcの向上

#### 1.2.2 磁界安定性

NMR 用超伝導マグネットでは、発生磁界の時間的安定性が要求される。これは、NMR 測定の 条件に由来するものである。NMR で測定されるスペクトルの分裂には、ケミカルシフトによるものと スピン結合によるものがある。ケミカルシフトは外部磁界に対する分子内の遮蔽電流に由来するも のであるから、磁界に比例する。一方、スピン結合は結合電子によって原子核が感じる磁界が変化 することに由来し、環境磁界には依存しない。したがって、スピン結合によるスペクトルの分裂を測 定するには、磁界の時間的安定度として理想的には 0.5 Hz/h 程度が必要とされる[6]。本研究で 目標とする磁界 920 MHz においては、0.5 Hz/h の変化は 0.0005 ppm/h に相当する。ただし、 実際の NMR スペクトロメーターでは、室温部分に銅コイルを持ち、磁界の時間変化をある程度補 正できるよう構成されている。しかし、これを考慮しても超伝導マグネット自身には 0.01 ppm/h 以 下の磁界安定度が要求される。なお、0.01 ppm/h の減衰は 21.61 T の初期磁界が 10 年後にお いても 21.59 T を保持していることに等しい。また、これを電気抵抗に置き換えると、線材全長 188 km において  $3 n \Omega$  (=1.6×10<sup>-15</sup>  $\Omega$ /m) に相当する。

このような事情から、NMR 用超伝導マグネットは永久電流スイッチ(PCS: Persistent Current Switch)を用いて閉回路を構成する所謂「永久電流運転」状態として使用される。しかし、超伝導 マグネットにおいても、ごく微少な残留抵抗が存在し、電流は除々に減衰(ドリフト)する。残留抵抗 は、構成コイル同士を接続する超伝導接続(および PCS との超伝導接続)と超伝導線材自身にお いて発生する。超伝導マグネットを構成する場合、多数のコイルを直列結合するから、超伝導線同 士の接続(超伝導接続)も多数必要になる。超伝導接続とは、超伝導線内部の超伝導フィラメント 同士をバルクの超伝導体を介して接続するものである。したがって、その特性は磁界依存性が高く、 強磁界中では超伝導特性すら維持できない。しかし、低磁界中において超伝導特性を維持する 限りにおいてはその抵抗はほぼゼロと見なすことができ、材料の臨界電流 $I_c(B)$ 以下であれば通 電電流値に依存しない。一方、超伝導線材に発生する抵抗は通電電流値に依存する特性を持つ。 超伝導線材では通電電流を増やしていくと、ある値から急激に電圧が発生(見かけの抵抗発生)し てくる特性があり、この変曲点の高低を表す指標として、式(1.1)で定義されるn値を用いて評価す る[7]。実際のn値は、製作された超伝導線材の短尺サンプルに通電することでFV曲線を取得し、 別途測定した $I_c$ 淘定時の基準電圧との関係からこれにフィットするn値を求める。

| $V = V_0 \bigg($ | $\left(\frac{I}{I_c}\right)^n$ |                  | (1.1)           |
|------------------|--------------------------------|------------------|-----------------|
| ここに、             | V                              | : I- V曲線取得時の発生電圧 |                 |
|                  | Ι                              | :通電電流(または運転電流)   |                 |
|                  | $I_C$                          | :線材の臨界電流         |                 |
|                  | $V_0$                          | :Ic を求めるときの基準電圧  |                 |
| 承亡は安             | していたよい                         | ~~~ ルモンズ除した電用た用い | 1. 測会味の甘油香口は冒險挿 |

なお、電圧は実際にはサンプル長さで除した電界を用い、*Ic* 測定時の基準電圧は国際標準に よって 0.1 µV/cm に定められている。n 値をパラメータとして、920 MHz-NMR 用超伝導マグネッ トで想定される最内層のコイル(Nb<sub>3</sub>Sn)の *Ic* 予定値をもとに通電電流値と発生電界の関係を図 1.4 に表す。この図から、n 値が大きいほど、電界の立ち上がりが高い電流値まで発生しないことが わかる。

実際の線材特性妥当性評価においては、n 値の大小のみでの議論は難しいため、式(1.2)によって絶対値評価を行う。我々はこれを評価関数と呼び、その定義は、式(1.1)右辺の括弧部(乗数



図 1.4 発生電界の n 値依存性

nを含む)を運転電流値 Iop における線材の代表電圧として、これをさらに Iopで除したもの、つまり仮想抵抗を表すものである。この評価関数の値が概ね 10<sup>-10</sup> 以下であれば、経験的にマグネットの磁界ドリフトも低いものが得られることがわかっている。

$$F = \frac{\left(I_{OP}/I_{C}\right)^{n}}{I_{OP}} \tag{1.2}$$

以上のことから、マグネットの低ドリフト化を実現するには、高いn値を有する超伝導線材が必要になる。n値が高ければ設計上の電流密度を $J_c$ 近傍まで高めることができるが、n値が低ければ $J_c$ が高くても設計電流密度は低く抑えざるを得ない。NMR 用途に用いる超伝導線材においては、このn値と運転電流 $I_{op}$ との関係から、マグネットとしての設計がなされる。例えば、25程度のn値を有する超伝導線を用いた場合、 $IopI_c$ は0.4とすれば、評価関数は10<sup>-10</sup>乗台となる、といった関係が得られる。

以上から、NMR 用超伝導マグネットにおける磁界安定性実現の課題は下記となる。

- n 値による超伝導線材残留抵抗を考慮したマグネット設計
- ・ 超伝導接続および PCS の適正磁界領域への配置

1.2.3 安全性

超伝導マグネットに固有の問題として、超伝導状態が突然破れるクエンチ現象がある。クエンチ が発生すると、超伝導マグネット自身が自己の電磁力によって損傷する可能性があるばかりか、液 化冷媒容器であるクライオスタット内部での急激な圧力上昇によって、周囲に危害を及ぼす可能 性もある。特に NMR 用途においては、クエンチが発生するとその復旧に要する時間は測定を中 断しなければならない。この時間は本研究によるマグネットの規模では6ヶ月にも及ぶと試算される。 このため、実用システムを構築するうえでは、できるだけクエンチを発生しないマグネットを開発す ることが何よりも重要である。

しかしながら、クエンチを完全に排除することは不可能である。このため、万が一クエンチが発生 した場合でも、マグネットを損傷から守る保護策が必要になる。特に、本研究による 920 MHz の磁 界を発生する超伝導マグネットでは、その蓄積エネルギーが非常に大きく、エネルギーの適切な 放出手段を講じなければならない。これを超伝導マグネットの保護と呼ぶ。超伝導マグネットにお いてクエンチに対処すべきは、磁界中での過渡的高電流による電磁力、高電圧による地絡および 焼損である。超伝導材料の許容応力を超える電磁応力が作用した場合、超伝導線材には歪みが 発生する。NbaSn は化合物系合金であり、非常に脆く、耐歪特性が低い。このため、マグネットの 保護回路設計において、クエンチ過程での電磁力を適切に予測し、素線に生じる最大応力をその 機械特性の許容範囲に押さえることが重要である。同時に、超伝導線材の許容応力を向上させる ことも重要な意味を持つ。

一方、液化冷媒に浸漬冷却されて運転する超伝導マグネットにおいては、クエンチに伴う発熱 によって冷媒の気化・放出が発生するため、容器内圧の上昇に対して装置本体および周囲に対 する安全策を講じる必要がある。特に本研究ではマグネットが大型化するため、その蓄積エネルギ 一の放出を適正化することが課題である。さらに、超流動へリウム(HeII)を用いる場合、その特性 の考慮も必要である。

以上、安全性に関する課題をまとめると、以下のようになる。

- ・ クエンチ発生率の低減
- ・ マグネット保護回路設計の適正化
- ・ クエンチ時に対する容器安全設計の適性化

10

#### 1.2.4 信頼性と実用性

本研究における 920 MHz 超伝導マグネットは、加圧超流動ヘリウム冷却を適用する。これは、 外部エネルギー(電力)を用いて冷却作用を得るものである。さらに、超伝導マグネットはこの冷却 作用による低温運転を前提として設計されるため、温度の上昇は磁界安定性に影響を及ぼすこと が考えられる。また、温度が上昇すれば、マグネットを構成する超伝導線材の特性が低下するから、 クエンチ発生の危険も生じてくる。このため、冷却装置は機器故障に対する信頼性を確保しなけれ ばならないと同時に、停電に対する用意も備えなければならない。このように、信頼性とは、超伝導 マグネットシステムが間断なくその運転を連続的に継続できることである。

一方、冷却に必要とされる冷媒(液体ヘリウム、液体窒素)は、定期的に補充しなければならない。 この冷媒補充作業は超伝導マグネット本体に直接的に操作を加えるため、その振動等によって NMR 測定に支障を来たす。このため、NMR 測定では冷媒補充作業中、その測定を中断しなけ ればならない。そこで、NMR 用超伝導マグネットでは、冷媒補充間隔を可能な限り延長するため の方策が必要になる。本研究による超伝導マグネットでは、NMR 測定の連続測定期間は10日程 度になる。このため、約 2 週間は冷媒補充を経なくても冷却運転を継続できる必要がある。また、 NMR 測定は上記期間中昼夜連続で実施される。このため、冷却運転は無人でも安定して継続さ れる必要がある。つまり、基本的には非制御(自律温度安定性)であることが望ましい。

このような背景から、NMR に超伝導マグネットを適用し、かつこれに強制冷却手段を用いる場合の信頼性および実用性への課題として、下記が挙げられる。

- ・ 機器故障、停電への対策
- 冷媒消費量の低減
- 非制御運転の実現

## 1.3 920 MHz-NMR 実現へのプロセス

前節で述べたような超伝導マグネットの NMR への適用に関する課題に対し、本論文は以下の ようにその実現へのプロセスを進める。第1章では、NMR 分解能に対する高磁界化の必然性、測 定における磁界安定性目標レベルに対する超伝導特性の考慮点の明確化を中心に、超伝導マグ ネットの NMR への適用課題について明らかにした。 第2章では、これらの課題について、主に高 磁界を得るための方策である超伝導特性改善を目指した運転温度の低温化について議論する。 そのなかで、先ず低温化によって得られるであろう特性改善について検証し、その効果を定量化 する。これを踏まえたうえで、実用的に可能な運転温度を定め、かつこれを安定に発生させるため の手段について詳細に検証する。また、その結果を踏まえ、超伝導線材の特性を実際に評価し、 最終的にマグネットの設計を決定する。第 3 章では、NMR に必要な磁界安定性を得るために講 ずべき方策について検証し、その実施について述べる。一方、実用に供する高磁界 NMR として 必要となる安全性について第4章で議論する。安全性とは、第一には超伝導マグネットがクエンチ を発生率を低減することである。次に、万が一クエンチが発生した場合においても、マグネット本体 が損傷しないための方策を考慮する。これは、クエンチにともなうエネルギーの分散放出を行うもの であり、シミュレーションによって予測・対処する。特に、加圧超流動ヘリウム中でのクエンチを適切 にシミュレートすることが設計妥当性に通じることから、その熱的な振る舞いを考慮して検討する。 また、クエンチにおいては、冷媒へのエネルギー伝達によって、液化冷媒貯槽であるクライオスタッ トから短時間に多量のガスが噴出することから、安全機構の妥当な設計が必須である。とりわけ、加 圧 HeⅡ クライオスタットでは、低温安全弁を設置することから、その設計を適正化するため、マグネ ットからのエネルギー放出メカニズムを明らかにしてこれを適用する。第5章では、上記第1章から 第4章までの検討を踏まえるとともに、信頼性、実用性も考慮して実機を製作し、これらの検証の妥 当性を評価する。

以上のように、本論文は 920 MHz-NMR 用超伝導マグネットシステムを開発するにあたって必要なプロセスを一つひとつ解決し、最終的に実用に供し得るマグネットを完成させる過程を述べるものである。

12

## 1.4 本研究の目的と意義

1.1 節で述べたように、超伝導、極低温、NMR の分野においてそれぞれ発展してきた技術に根 ざし、本研究はこれらの融合によって、実用に供する 920 MHz・NMR 用超伝導マグネットシステム を実現することにその主眼が置かれる。即ち、超伝導の応用装置である NMR における高分解能 化(高磁界化)の要請に端を発し、これを実現するために、超流動へリウム冷却の適用(=低温化) によって超伝導線材の特性を高める。同時に、マグネットとして構成された装置において、線材特 性を考慮したコイル設計を適用して、NMR に必要な磁界安定性を得る。また、超伝導現象を利用 する上で避けて通れないクエンチに対しても、その発生率の低減を目指すとともに、万が一これが 発生してもマグネット自身およびその周辺に対して安全であり、かつ連続運転に供する信頼性の 高いシステムを確立することが本研究の目的である。このような NMR 用超伝導マグネットの高磁界 化によって、NMR 測定分解能が高められ、高分子物質の分析能力が向上できる。その典型がタ ンパク質の立体構造解析能力の向上であり、その意義は、医薬分野におけるオーダーメード医療 や創薬発展への寄与にある。

一方、足元の超伝導技術への寄与を考える場合、本研究の目的は下記のように表すことができ る。

- ・ 高磁界領域での超伝導特性に対する低温化の効果を明らかにし、高磁界化へのアプローチ の基礎とする。
- 加圧超流動へリウム冷却方式の実用装置への適用性を明らかにし、超流動冷却技術をより簡易に超伝導マグネットに適用可能とすることで、今後とも継続されるであろう超伝導マグネットの 高磁界化に対応する。
- 超伝導マグネットのクエンチリスクを低減する設計指針を与えることで、実用装置に適用する際の信頼性を確保する。
- クエンチに対するマグネット保護および周辺保護の方策を明らかにし、超伝導装置の安全設 計指針を確立する。
- ・ 上記目的に対して有意な結論を導くことで、超伝導マグネットの高磁界化への指針を確立し、 これを適用した 920 MHz-NMR 用超伝導マグネットシステムを完成させ、実用化を実証する。

なお、本研究による 920 MHz-NMR 用超伝導マグネットの開発は、1996 年にスタートした物 質・材料研究機構殿による「1 GHz 級 NMR 用スペクトロメーターの開発」プロジェクトの一環として 遂行されたものである。プロジェクトにおいて、筆者が所属する神戸製鋼所は 21.6 Tを発生する超 伝導マグネットの設計・製作を役割とする。そのなかで、筆者は超伝導マグネット開発の技術キー マンとして、超伝導線材・マグネット・クライオスタットからなる各技術要素の整合性を図り、920 MHz 超伝導マグネットシステムを実用機として完成させることに従事してきた。特に、低温化技術 全般とこれに基づくマグネット設計への反映、および信頼性向上のための全体システム開発を主 に担当した。このように、筆者の主たる活動は、高磁界 NMR 用マグネットを実用機として確立する ため、基礎からエンジニアリングに渡るアプローチを実践してきものであり、その成果として本論文 に纏めるものである。

#### 参考文献

- [1] 低温工学協会編, "超伝導・低温工学ハンドブック", オーム社, 1993
- [2] 長谷田泰一郎, 目片守, "低温", NHK ブックス刊, 1975
- [3] 伊達宗行, "物性物理の世界", 講談社刊, 1968
- [4] 山崎昶,"核磁気共鳴分光法",共立出版刊,1988
- [5] Pervushin, et al., Proc. Natl. Acad. Sci. USA 94, 1997, 12366
- [6] 木吉司, "1 GHz 級 NMR マグネットの開発", 低温工学, Vol. 37, No. 1, 2002, pp.10-17
- [7] Y. Iwasa, "Case Studies in Superconducting Magnets", 1994, Plenum Press New York

## 第2章 高磁界の発生

920 MHz の発生による NMR の分解能向上は、超伝導マグネットの高磁界化そのものである。 一方、実用性を考慮して現行の超伝導材料をベースにこれを目指す場合、最も有効な手段は運転温度の低温化による超伝導特性の向上である。つまり、高磁界化の目指し得る上限は、運転温度をどこまで下げられるかに依存すると言ってもよい。そこで、本章では、マグネット設計から必要とする超伝導特性を明らかにし、これに対して運転温度の低温化が寄与し得る特性向上を検証する。 そして、必要な温度条件を実現するための手段として、冷却システムの構築プロセスを示す。また、設定温度に対して、実際に得られる超伝導特性をもとに、最終的にマグネットの設計結果を示す。

### 2.1 超伝導特性の向上

超伝導材料はその臨界電流密度において強い磁界と温度の依存性を持つ。このため、超伝導 線材を用いて高磁界マグネットを作製する場合、マグネット自身が発生する磁界によって、特にマ グネット内層側では臨界電流密度が低下し、マグネット中心における発生磁界強度が制約される。 一方、臨界電流密度の温度依存性を考えると、運転温度の低温化によって臨界電流密度を向上 し、マグネット中心における発生磁界を増大させることができる。本研究では、この低温化による超 伝導特性の向上に着目し、超伝導マグネットの発生磁界強度高めようとするものである。本節では、 マグネットにおける制約条件を明らかにしたうえで、低温化によって期待される超伝導特性の改善 効果を検証し、必要な運転温度の条件を導く。

#### 2.1.1 マグネット設計における必要条件

NMR 用超伝導マグネットは通常、ソレノイド形状のコイルによって構成される。マグネットの中心 で高磁界を発生させる場合、このソレノイドコイルの巻き数を増やし、各層での発生磁界の中心磁 界への寄与分を積分して、中心において最大磁界を得る。したがって、ソレノイドの半径方向にお いては、外径側から中心に向かうにしたがって磁界が増大する磁界分布を発生する。このような構 成による超伝導マグネットを高磁界化するうえでは、特に NMR 用途を考慮した場合、その設計に おいて次に挙げる制約が発生する。

- 電磁力による制約
- 臨界電流密度による制約
- 発生抵抗による制約

ソレノイドが発生する磁界方向は、巻線部では概略マグネット中心軸と並行であるから、1 ターン あたりのコイルでは磁界がコイルを直行して貫く。このとき、コイルには磁界と電流による電磁力が 作用し、その方向はコイルを構成する素線の周方向となる。超伝導マグネットにおいては、素線の 電流容量が大きいため、この電磁力は 100 MPa を超える値となるのが通常である。一方、超伝導 マグネットにおいては、超伝導状態が突然消失するクエンチ現象がある。その発生原因は、電磁 力によって素線が微少に動く(ワイヤーモーション)ときに発生する摩擦発熱が考えられている。特 に超伝導マグネットは極低温中で運用されるため、材料の比熱が非常に小さい。このため、僅かな 発熱によっても超伝導線材の温度が上昇し、臨界温度に達してクエンチに至る。そこで、超伝導マ グネットを構成する場合、クエンチを回避する方策として、コイル(素線)に生じる電磁力をある値以 下としてワイヤーモーションを抑える設計をおこなう。これが電磁力による制約条件となる。なお、こ のようなコイル周方向に発生する電磁力を *Bjr* (*B*:磁界、*j*:電流密度、*r*:半径)と呼ぶ。

超伝導特性における臨界電流密度 Jcには温度 Tと磁界 Bの依存性がある。詳細は2.1.2節で 述べるが、その本質は、ソレノイドを構成する場合、内径側に近づくにしたがって素線の環境磁界 が高くなり、Jcが低下する、というものである。本研究で対象とする 920 MHz では、中心付近の磁 界は 20 Tを超えるため、高磁界用超伝導線材として用いられる Nb<sub>3</sub>Sn においても、その特性は 大きく低下する。したがって、高磁界においては超伝導線材に流し得る電流値が限られてしまい、 結果として高磁界化の制約を来たすものである。

ところで、単に高磁界のみを発生する超伝導マグネットであれば、外部の電源に接続した状態

16



(c) Bjr、Jc および n 値を考慮したマグネット

図 2.1 マグネット設計における制約

で運転を継続することができるが、NMR 用超伝導マグネットにおいては、第1章で述べたように高 い磁界安定度が必要とされる。このため、NMR 用超伝導マグネットは永久電流運転で運用される とともに、超伝導線材の抵抗成分による影響(電流減衰)を極力排除するため、1.2.2節で述べたよ うに、n 値に基づく評価関数を考慮しなければならない。その結果、超伝導線材の臨界電流密度 *Jc*よりも低い運転電流密度 *Jop*で運用しなければならず、このために磁界強度が制約されることに なる。この影響も超伝導特性の磁界による低下と同様、マグネットの内径側において生じる。内径 側においては、前述の臨界電流密度の低下も来たすため、同一のn値であれば、式(1.2)に従い、 運転電流も下げざるを得ない。

以上のような制約条件について、その例を示す。図2.1は、あるマグネットを想定し、半径方向位 置における磁界強度、電流密度および *Bjrを*プロットしたものである。想定マグネットは、内半径 40 mm、外半径 400 mm である。また、発生磁界は最内部で21 T、最外部で3 T とし、その間は直 線的に変化すると仮定した。図中(a)は *Bjrを* 160 MPa としたときの運転電流密度 *Jop*の半径方 向分布を示したものである。マグネットの中層部分から外層部分において、*Bjr*の制約によって *Jop* が低い値しか取り得ないことがわかる。一方、磁界による臨界電流密度 *Jc*の低下および n 値によ る制約を考慮したプロットが(b)である。ここでは、n 値の制約を簡易的に *Jop/Jc*=0.5 として仮定し た。この図からわかるように、内径に向かうに従い、*Jop*は一義的に低下する。これは、*Jc*の磁界 *B* 依存性に伴う低下に加え、式(1.2)による評価関数にしたがって *Jop/Jc* が制約されることを合わせ たものである。これらの制約を反映してソレノイドを設計した場合、すなわち、(a)と(b)を組み合わせ ると(c)のようになる。内層側では超伝導特性による制約を受け、中層から外層にかけては、*Bjr* に よる制約を受けることがわかる。

*Bjr*はクエンチを回避するための必要条件であり、マグネットの製造方法(例えば含浸方法)を根本的に見直さないかぎり、その境界値を変更することは難しい。しかし、*Jc*については、例えば運転温度を見直すことによって、その向上を図ることができる。この点に関し、次節でその可能性について検証していく。

#### 2.1.2 低温化による超伝導特性の向上

920 MHz の磁界 (21.6 T)を発生することの課題は、コイル断面における電流密度の向上である。特に、超伝導マグネットの内層側、すなわち高磁界発生領域において用いられる Nb<sub>3</sub>Sn がその役を主に担う。*Jc*が磁界 *B*と温度 *T*に依存することは超伝導の特性そのものとして知られている。本研究では、特に高磁界中での *Jc* が温度 *T*の低温化によって向上することを前提とする。そこで、先ずその向上余地について以下で定量化する。

Nb<sub>3</sub>Sn における臨界電流密度 Jcの磁界 Bと温度 Tの依存性は次式による実験的近似式で表される[1]。

18

$$J_{C}(B,T) = CB^{-1/2} (1-t^{2})^{2} b^{-1/2} (1-b)^{2}$$

$$\Box \Box \iota, \quad b = B/B_{C2}(T)$$

$$t = T/T_{C0}$$

$$C = const.$$
(2.1)

他方、上部臨界磁界 BC2(T)は、次式で表記される。

$$B_{C2}(T) = \kappa(T) \alpha T_{C0}(1 - t^{2})$$
ここに、  $\kappa(T)$  GL(Ginzburg-Landau)パラメータ
$$\alpha$$
温度、磁界に依存しない係数
GLパラメータ  $\kappa(T)$ は実験的補完式として

ここで、GL パラメータ $\kappa(T)$ は実験的補完式として、

$$\frac{\kappa(T)}{\kappa(0)} = \left[1 - 0.31t^2 \left(1 - 1.77\ln t\right)\right]$$
(2.3)

で表される。よって、式 (2.2) と式 (2.3) より、上部臨界磁界は

$$B_{C2}(T) = \kappa(0)\alpha T_{C0}(1-t^2) \left[1 - 0.31t^2(1-1.77\ln t)\right]$$
(2.4)

として表される。

 $\kappa(0) lpha T_{c0} = B_{c2}(0)$ だから、式 (2.4) は次式のように書き換えられる。

$$B_{C2}(T) = B_{C2}(0)(1-t^{2})[1-0.31t^{2}(1-1.77\ln t)]$$
(2.5)

いま、4.2 Kにおける上部臨界磁界 $B_{c2}(4.2)$ が判れば、式(2.5)より、Nb<sub>3</sub>Snの任意温度における上部臨界磁界 $B_{c2}(T)$ は、

$$B_{C2}(T) = B_{C2}(4.2) \frac{(1-t^2) \left[1 - 0.31t^2 (1 - 1.77 \ln t)\right]}{(1-t_{4.2}^2) \left[1 - 0.31t_{4.2}^2 (1 - 1.77 \ln t_{4.2})\right]}$$
(2.6)

となる。これを式 (2.1) に代入すれば、

$$J_{C}(B,T) = \left[ \left(1 - t^{2}\right)^{2} b^{-1/2} \left(1 - b\right)^{2} \right] / \left[ \left(1 - t_{4,2}^{2}\right)^{2} b_{4,2}^{-1/2} \left(1 - b_{4,2}^{2}\right)^{2} \right]$$
(2.7)



図 2.2 4.2 K で規格化した Jc の温度依存性

を得る。式(2.7)より、本研究で対象とする磁界環境である 21 T において、4.2 K での臨界電流密度によって規格化した値 (=  $J_c(T)/J_c(4.2)$ )をプロットすると、図 2.2 のようになる。図から、21 T における規格化臨界電流密度は、4.2 K での値に対し、2 K 以下に冷却することで 2 倍以上に達することが判る。

次に、磁界安定性に関わる超伝導線材のn値について考える。n値を支配する要因としては、 超伝導フィラメントの不均質性(例えば、ソーセージング)による電界発生が従来から考えられてい る[2]。また、Nb<sub>3</sub>Sn線材においては、最終熱処理前の中間焼鈍工程におけるNb<sub>3</sub>Sn相の生成等 によるフィラメント表面の「荒れ」もその原因となる。つまり、n値は主に超伝導線材の伸線工程に依 存し、線材の製法・中間処理による結果として現れるものであるため、n値を定量的に予測すること は困難である。一方、n値は  $B_{C2}$ 近傍では 1 に漸近することが示唆されている[3]。このことから、 同一の加工によって製作された線材であれば、n値は  $B_{C2}$ の温度依存性を踏まえて間接的に運 転温度に依存することになる。式(2.5)から、 $B_{C2}(0)=27.9$  Tとしたときの上部臨界磁界  $B_{C2}$ の温度 依存性をプロットすると、図 2.3(a)のようになる。これを仮に磁界 0 T において n=100 とし、 $B_{C2}(T)$ において n=1 として模式的に表すと、図 2.3(b)を得る。パラメータは(a)図における  $B_{C2}(T)$ である が、凡例表記は温度で示してある。図中、21 T にガイドラインを置くと、4.2 K と 1.8 K の間で n 値

いま、4.2 K、21 T において non-Cu  $J_C$  = 40 A/mm<sup>2</sup>、n 値 = 20 の超伝導線があったとする。



図 2.3 B<sub>C2</sub>および n 値の特性(凡例)



図 2.4 運転電流密度の温度依存性(評価関数=1×10<sup>-10</sup>)

 $J_c$ およびn値の温度依存性を考慮し、かつ式(1.2)による評価関数が $F=1 \times 10^{-10}$ を満たすことを 条件としたときの超伝導線単位断面積あたりの電流密度について、温度を横軸にプロットすると、 図 2.4 のようになる。この図からわかるように、同一の超伝導線であっても、運転温度が低ければ低 いほど電流密度は向上し、高磁界を発生させることができる。その向上率は、2 K 近傍では、約 3 %/0.1 Kとなる。よって、運転温度をたとえ 0.1 K でも低下させることができれば、有意な  $J_c$ 向上 が得られる。このような特性をもとに、低温発生において実現可能な温度について次節で詳述す る。

## 2.2 低温の生成

前節より、超伝導線材における特性は運転温度を下げることによって大幅な改善が得られること は明らかである。その効果は、たとえ 0.1 K の差であっても有意なものとして現れる。また、低温化 による寄与は、Jcの向上のみならず、Bc2の向上によって間接的にn値向上にも影響する。これら のことから、その上昇余地を最大限に活用できる運転温度の可能性について、その冷却温度を液 体へリウムが超流動転移する 2.17 K 以下を前提として以下に検討する。

#### 2.2.1 HeⅡ発生の方式

HeIIを発生するクライオスタットとしては、図 2.5 に示すように、いくつかの方式か挙げられる[4]。 液体ヘリウムは大気圧下では 4.2 K の沸点を持つが、図中(a)は、超伝導マグネットを 4.2 K で運 転するクライオスタットを示し、その単純な構造から最も一般的に用いられるものである。液体ヘリウ ムの置かれた環境圧力を低下させれば、沸点も低下して 4.2 K よりも低い温度が得られる。(b)のよ うに、排気装置を接続したクライオスタットでは、運転圧力 Pbを5 kPa以下にすれば、液体ヘリウム は超流動転移温度(2.168 K: λ 点)に達し、さらに圧力を降下させれば、さらに低い温度を得るこ とも可能である。しかし、この方式では、超伝導マグネットが置かれたヘリウム槽は常に減圧される



図 2.5 超流動ヘリウム発生方式の比較

ことになり、初期に貯液した液体へリウムを消費しきると、それ以後の運転継続ができない。そこで、 (c)のように、ヘリウム槽中に排気装置に接続した熱交換器を配置する方式が用いられることがある。 この方式であれば、運転圧力を大気圧に維持したまま液体へリウム温度を4.2 K以下に冷却する ことが可能である。ただし、熱交換器より上部にある液体へリウム温度 7kの下限は4.2 Kとの温 度差による液体へリウムの熱伝導と熱交換器によって冷却される液体へリウム温度 7kの下限は4.2 Kとの温 度差による液体へリウムの熱伝導と熱交換器による冷却能力がバランスする点となる。He II は非 常に大きな熱伝導率を有するため、この方式では、超流動転移温度である 2.168 Kを下回る 7k を得ることは困難である。本研究におけるクライオスタットでは、7kを可能な限り下げる必要がある から、(c)の方式からさらに発展した形態である(d)のような構成とした。これは、大気圧飽和液体へリ ウム槽(He I 槽)とマグネットが設置されるへりウム槽(He II 槽)とを分離し、両者をポペット式の安 全弁(低温安全弁)のみを介して接続するものであり、Claude らによって提案されたことから、 Claude型He II クライオスタットと呼ばれる[5]。これによって、He II 槽への熱侵入は低温安全弁の シート面に残留する微小隙間(コミュニケーションチャンネル、またはシートギャップ)に浸入した He II による熱伝導のみとなり、7kを2点以下とすることが可能である。

ここで、HeIIの冷却サイクルについて、JT 弁およびその周辺の作用を述べておく。図 2.6(a)に 加圧 HeIIクライオスタットの概念図を、同(b)に T·H 線図上での冷却プロセスを示す。以下、(a)図 の各ポイント表記数値(1~6)の流れとともに T·H 線図上で冷却行程を示す。初期 1 においてに



図 2.6 加圧超流動ヘリウムクライオスタットの基本構成

4.2 K であった液体ヘリウムは、予冷熱交換器(図(a)では Precooler、以下 JT 熱交換器と称す [6])を経て2のλ点近傍まで大気圧のまま冷却される。この状態でJT 弁を通して等エンタルピー 膨張させると3に至る。膨張後の温度はJT 弁出口の圧力に依存した飽和温度である。このとき、 液相と気相のエンタルピー比は[h5-h3]: [h3-h4] となる。つまり、この条件における He II の液化率 は、

$$\eta = \frac{h_5 - h_3}{h_5 - h_4} \tag{2.8}$$

と表される。したがって、JT 弁前段の予冷による到達温度が低いほど、液化率の向上が期待できる。JT 膨張によって生成された気液混相の HeIIは、HeII熱交換器を通過してその液成分の蒸 発潜熱を利用して冷却能を発生する(T·H 線図上では、3-5)。HeII熱交換器内で全ての液成分 を気化させ、気相のみとなったガスへリウムは JT 熱交換器に再び導入され、図中 5-6 の過程にお いて余剰寒冷を放出(入口ラインと熱交換)する。

#### 2.2.2 熱侵入の評価と冷却効率

機械式の冷凍機等を持たないクライオスタットにおいては、断熱施工により冷媒消費レートを減 少させる方策をとるのみならず、蒸発する冷媒の寒冷(エンタルピー)を有効利用しながら外部から の熱侵入を低減することが重要である。ただし、熱侵入の低減によって冷媒蒸発量が減れば、外 部からの熱侵入を低減させる余力がなくなり、逆に全体熱侵入が増加してしまう。つまり、クライオス タットの設計は、熱侵入低減と蒸発量低減というトレードオフの関係にある作用について、いかに最 適化するかということが重要なポイントである。この要請に対する方策として、本研究で対象とする 加圧 HeIIクライオスタットにおいて、主に HeII 槽への低温安全弁を経由した熱侵入の適正評価 と、冷却回路における効率向上に重点を置いて検討した。

加圧 HeII 冷却の構成は図 2.6 に示すように、4.2 K の液体ヘリウムを貯液する He I 槽とマグ ネットが設置される HeII 槽からなる。両槽の間は初期に液体ヘリウムを HeII 槽へ充填するための 供給弁、マグネットのクエンチ時等の急激な HeII 槽における圧力上昇を開放するための安全弁 (低温安全弁)によって連接され、これらを配置した部分を HeIIと He I を分離するという意味から セパレータと呼ぶ。このような構成における HeII 槽への主たる熱侵入源は、低温安全弁の弁体と 弁座の隙間(シートギャップ)に介在した HeII による熱伝導、支持部材や配線等による熱伝導、 HeII 槽を取り囲む高温面からの輻射の 3 点である。特に、HeII 成分による低温安全弁を経由し た熱侵入は、実装上での製作誤差も含めてその影響が大きいことから、下記に具体的な検証を実 施した[7]。

低温安全弁は、マグネットのクエンチ等、突発的な HeII 槽の圧力上昇が発生したときにこれを 開放するための安全機構として、加圧 HeII クライオスタットにおいて必須の構成要素である。一方、 低温安全弁は常時は閉じた状態であるが、使用環境が極低温の HeII 中であることから、完全なシ ールをともなう密閉は不可能である。このため、加圧 HeII 冷却クライオスタットにおける低温安全 弁は、ある程度の弁体と弁座のシートギャップを許容することで成立する。このシートギャップには HeII が浸透することになるが、HeII の極めて良好な熱伝導特性を考慮すると、この部分を介した HeII 槽への熱侵入量が槽全体の熱侵入量の大半を占めることになる。

He II 中での伝熱については、次の GM (Gorter-Melink) 方程式が成り立つ。

$$\nabla T = \left(A_{GM}\rho_n/S\right)\left(q/\rho_s ST\right)^3 \tag{2.9}$$

ここに、 A<sub>GM</sub> :Gorter-Melink 定数

 $\rho_n$ 、 $\rho_s$ :常流動成分(He I )、超流動成分(He II)の密度

S:超流動ヘリウム単位質量あたりのエントロピー

いま、長さL、両端の温度がTおよび $T_{\lambda}(T < T_{\lambda})$ のチャンネルについて求めると、次式を得る。

$$\dot{q} = L^{-1/3} \left[ \int_{T}^{T_{\lambda}} \left\{ \left( \rho_{s} ST \right)^{3} S / A_{GM} \rho_{n} \right\} dT \right]^{1/3}$$
(2.10)

Bon Mardion らはこの式(2.10)に相当する関係を多くの実験から求め、次の関係式を導いた[8]。

$$\dot{q} = L^{-1/3.4} Z(T) \tag{2.11}$$

ここに、*Z*(*T*)は図 2.7(a)で示される値である。この関係は、円筒形チャンネルについての式である ことから、Claude 型クライオスタットに用いられる、図 2.7(b)に示されるような円錐形安全弁に適用 した展開式が佐藤によって提示されている[9]。

$$Q = Z(T) \cdot 2\pi a \delta_r \left[ \frac{2.4(1 - b/a)}{L\{(b/a)^{-2.4} - 1\}} \right]^{1/3.4}$$
(2.12)



図 2.7 Bon Mardion らによる超流動ヘリウム熱伝導係数

- ここに、 2a :円錐型弁体上部直径
  - 2b : 円錐型弁体下部直径
    - $\delta_r$ :弁体と弁座の隙間

この式(2.12)から、本研究で開発したクライオスタットにおける低温安全弁についての He II 中での 熱伝導量が算出できる。

一方、実際の低温安全弁のシートギャップは、弁体と弁座の加工精度によって決まると考えられる。加工による表面粗度のみの考慮であれば、完成した安全弁について測定すればよいが、実際には弁体、弁座のテーパー加工精度や平滑度によって両者の隙間を定量化することは難しく、安全弁を用いた実環境における熱侵入の測定が唯一の評価となる。このため、安全弁について、図2.8 によるクライオスタットを用いて、シートギャップの幅と熱侵入の関係を実測した。使用した低温安全弁の吹出口径は φ 34 である。図 2.9 にその結果を示す。パラメータとするバルブリフトは実測



図 2.8 低温安全弁評価用クライオスタット

による弁体のリフト量であり、低温安全弁に取り付けたステムを介して、室温部分での変位として測定した。また、シートギャップは弁体のテーパー角より幾何学的に求められる。図中の実線はシート



図 2.9 安全弁隙間と熱侵入の関係実測値

ギャップ仮定値から算出した計算値であり、この結果から、バルブリフトがゼロのときは、計算上で のシートギャップ 5 µm に相当することがわかる。なお、バルブリフト 100 µm におけるシートギャッ プは計算上 10 µm である。一方、弁体および弁座の表面粗度測定結果(最大値 *R<sub>max</sub>*)は、それぞ れ約 3 µm であったから、両者の合計はおよそ 6 µm である。したがって、クライオスタットの設計に おいて、表面粗度最大値相当のシートギャップを仮定すればよいことがわかる。ただし、弁の形状、 大きさや施工方法(溶接等)によって全体の歪みが生じることも考えられるので、実際の設計では 若干の余裕を見る必要がある。本研究におけるクライオスタットの実用機設計においては、5.1.2節 で導出されるように、低温安全弁の吹出口径が φ 113 であり、上記実験による低温安全弁の約 3 倍の直径が必要となる。このことから、シートギャップにも 3 倍の余裕を見て 15 µm とした。

920 MHz-NMR 用超伝導マグネットにおいては、装置の実用的な運用を考慮してクライオスタット全体の液体ヘリウム消費量が規定されるが、実際には上記構成のように、4.2 K でのヘリウム蒸発量と超流動発生のためのヘリウム消費量(Hell 槽への熱侵入を相殺するに等しい量)の合計が



図 2.10 加圧超流動ヘリウムクライオスタットのフロー図

|                   |       | LN2 Vessel | GCS   | HeI Bath | Lambda Plate | HeII Bath |
|-------------------|-------|------------|-------|----------|--------------|-----------|
| Rad               | [W]   | 24.9       | 0.296 | 0.0438   | -            | 0.220     |
| Cond(Support)     | [W]   | 3.24       | 0.175 | 0.0665   | 0.00539      | 0.0365    |
| Cond(Neck)        | [W]   | 5.17       | 0.442 | 0.0869   | -            | 0.0000    |
| Feedthrough       | [W]   | 0.281      | 0.134 | 0.238    | 0.478        | 0.0494    |
| Cooling           | [W]   | -3.67      | -1.05 | -0.276   | -0.743       | -         |
| Heat Flow         | [W]   | -          | -     | -        | 0.183        | -         |
| Com.channel       | [W]   | -          | -     | -        | -            | 0.255     |
| Total             | [W]   | 29.9       | 0.000 | 0.159    | -0.0770      | 0.560     |
| Boiloff / JT Flow | [g/s] | 0.150      | -     | 0.00766  | -            | 0.026     |
|                   | [L/h] | 0.680      | -     | 0.222    | -            | 0.769     |

表 2.1 クライオスタットの熱バランス計算結果(Tb=1.7 K)

Tgcs=41.1 K



図 2.11 超流動冷却回路の詳細構造

全体の消費量に相当する。図 2.10 による実際のクライオスタット全体構成におけるフローから算出 した各部の温度および熱侵入量の関係を表 2.1 に示す。He II 槽への熱侵入合計は 0.56 W であ る。その内訳のなかで寄与が最も大きいのは、前述による低温安全弁のシートギャップを介した He II による熱伝導(表中、Com. Channel:コミュニケーションチャンネル)である。また、He II 槽への 熱侵入を相殺して冷却を発生させるに必要な液体へリウム消費量は、0.769 L/h となり、He I 槽か らの自然蒸発量 0.222 L/h を加味した全体での消費量の8割近くを占める。He II 槽冷却に要する 液体へリウムは JT 弁に導入されて消費される。JT 弁を経由して膨張した気液混相へリウムは、He II 熱交換器においてその液相成分の蒸発潜熱を冷却能力として用いたあと、気相のみとなって排 出されるガス温度は He II 熱交換器出口において He II 槽温度 Tb に等しい。このため、He II 熱交 換器以後の低温ガスは最終的に室温部分に引き出されるまでにエンタルピーの回収余力を持つ ことになる。本クライオスタットでは、これを有効活用する構成を考案した[10],[11]。

図 2.11 にセパレータ前後に配される機器構成を示す。JT 弁への吸い込みロ(サクション)は He I 槽側にある。ここから吸い込まれた液体ヘリウムは、He II 熱交換器の排気ライン内に仕込まれた JT 熱交換器(第2予冷熱交換器)を経てJT 弁に導入される。この冷却回路において、あらたに第

1 予冷熱交換器を設けてある。これは、排気ライン内を通過するヘリウムガスの寒冷を回収するた めのもので、その冷熱によって He I 槽に突き出した銅バッフルを介してセパレータ上部にある液 体ヘリウムを冷却する。この作用から、He I 槽にある 4.2 K の液体ヘリウムは、セパレータにいたる までの温度勾配を設けることができる。この第 1 熱交換器によって、サクションに導入される液体ヘ リウム温度は常に λ 点 (=2.168 K) 近傍まで予冷される。このため、第 2 予冷熱交換器に導入され る液体ヘリウム温度も λ 点となるため、第 2 予冷熱交換器出口すなわち JT 弁入口の液体ヘリウム 温度は約 1.9 K まで予冷可能となる。よって、4.2 K の液体ヘリウムを JT 膨張させるのに対し、液 相生成効率が約 5 %改善される。なお、第 1 予冷熱交換器は He I 槽にバッフルを張り出した形状 であるため、液体ヘリウム補充作業等にともなう He I 槽内での液体ヘリウムの攪拌を抑える役割も 果たすことが期待される。

2.2.3 温度安定性

運転温度の変動は、何らかの外乱を受けることにより、冷却回路でのパラメータ(流量、温度、圧 力等)が変化することによって発生する。このため、先ず外乱による影響について、想定し得る要因 からその変動幅を定量化し、パラメータの変動量によって引き起こされる HeII 槽の温度変動を導 く。さらに、このような温度変動変動に対して、冷却回路が安定に機能するための条件を検討す る。

| <b>成款</b> | 安敷原因                                  | 一次的変化                    | 二次的变化                  | 加压缩流数温度安化          |
|-----------|---------------------------------------|--------------------------|------------------------|--------------------|
| 炉気速度      | 室温またはポンプ<br>温度変化                      | Tr=293±5K                | 3=85.41±0.6043m3/h     | Te=1.7±0.01254K    |
| 」工業量      | ヘリウムトランスファー<br>による内圧 (JT弁入口<br>圧力) 変動 | Pn=0.1084<br>-+0.1013MPa | Qnr=0.1343<br>→0.1245W | Ts=1.7<br>→1.764K  |
| 加压缩流動槽內圧  | ヘリウムトランスファー<br>による内圧変動                | Px=0.1084<br>→0.1013MPa  |                        | Ts=1.7<br>→1.712K  |
| λプレート直上温度 | ヘリウムトランスファー<br>による内部流体操作              | TL=2.168K<br>→4.222K     | Q⊨=0.1343<br>-+0.4440W | T⊭=1.7<br>→>2.168K |

表 2.2 加圧超流動ヘリウムクライオスタットにおける外乱要因と影響

加圧 He II 冷却では、JT 弁や排気ポンプを用いること、定期的に液体ヘリウムの補充作業を実施すること等から、大気圧変動、ポンプ特性変動、人為的操作に基づく内圧変動および操作に起因する内部温度分布変化が外乱要因として想定される。以下、想定される外乱要因に対する He II 槽温度の変動を検討した[12]。

表 2.2 に、外乱要因とそれによる He II 槽の温度変動を試算した結果を示す。算定において、基 準温度は 1.7 K とした。また、定常冷却能力(=He II 槽熱負荷)は 0.134 W としている。He II を発 生するための減圧源として油回転式ロータリーベーン型真空ポンプを用いる。真空ポンプは容積 排除式であるから、動作環境(温度)によって排除容積が変動し得る。室温に設置されるから、室 温による排気速度の変動も想定される。しかし、表からわかるように、室温変動は±5 ℃程度であ り、このことによる温度変化は±10 mK 程度であり充分小さい。

クライオスタットが設置された環境においては、大気圧の変動を受ける。この変動は、冷却回路 を構成する JT 弁の入口圧力の変動でもある。ここでは He II 槽の内圧がおよそ 6.5 %変動した場 合を想定した。これは、大気圧にして 1084 hPa から 1013 hPa に変化するのに相当し、通常の天 候変動においてはこの範囲内と想定される。このとき、JT 弁の入口および出口圧力の比は P2 /P3 ≪1 であることから入口圧力のみが流量を支配し、出口圧力に依存しないチョーク流である。したが って、大気圧変動比は即ち JT 流量変動比である。また、JT 弁入口の圧力変動(現象)はヘリウム 物性におけるエンタルピーの減少をともなう。この両者を考慮した冷凍能力の低下は約 7 %であり、 この冷凍能力低下にともなう温度上昇は 0.064 Kと見積もられ、運転温度初期設定を 1.7 Kとして いる場合、温度上限は 1.764 Kとなる。

 $\lambda$ プレートの直上温度は低温安全弁のシートギャップに介在する He II 成分による熱伝導によっ て、常時は $\lambda$ 点温度(2.168 K)である。しかし、定期的なヘリウム注液作業を経る際、4.2 K のヘリ ウム貯槽内の液体ヘリウムが攪拌されるため、 $\lambda$ プレート直上温度も4.2 K に達することが考えられ る。前節で述べたように、定常状態( $\lambda$ プレート直上温度=2.168 K)においては He II 槽への熱侵 入を支配するのは低温安全弁のシートギャップを介した He II による熱伝導である。しかし、He I の熱伝導率は He II と比較するまでもなく小さいため、 $\lambda$ プレート直上温度が 4.2 K になった場合 でも、低温安全弁のシートギャップの温度勾配に大きな変化は発生しない。むしろ、このような状態 になると、セパレータを構成する構造材およびこれを貫通する超伝導線による固体熱伝導が支配 的となる。 $\lambda$ プレート直上温度と He II 槽への熱侵入の関係を図 2.12(a)に示す。この図から、He II 槽への熱侵入は定常時の 3 倍にも達することがわかる。また、ヘリウム注液作業は連続運転に



図 2.12 ラムダプレート直上温度と He 槽への熱侵入

おける一時的な作業であるものの、一旦 λ プレート直上温度が 4.2 K になると、これを再び冷却さ せ得る作用はセパレータを介した He II 槽からの冷却にたよるため、JT 流量を増加させる操作を 伴わない場合、温度の回復には図 2.12(b)に示すように数 10 日を要することが予想された。この問 題に関しては、前述したように、冷却回路の高効率化を目的とした 2 段階から構成される予冷熱交 換器のうち、主に第1予冷熱交換器の作用により、ほぼ温度変動を排除できることが実測から確認 できている。

以上の検討から、外乱による温度変動を評価した。そのなかで、液体ヘリウムの定期補充作業 が及ぼす影響が大きいことがわかった。これは定常的に温度勾配を持つ He I 槽が補充作業によ って攪拌され、セパレータ直上温度の上昇をもたらすためである。したがって、セパレータ直上に おいて、このような攪拌作用を物理的に遮蔽する手段(本研究では、第1予冷熱交換器)を設ける ことが有効である。

次に、外乱によって引き起こされる変動を受けた場合の冷却回路における不安定性を検証する。 HeII冷却において不安定要因とされるものに、フラッディングがある。これは、HeII熱交換器内部 にある飽和 HeII液が必要以上に増加し、熱交換器内部全てを満たしてしまう現象である。このフ ラッディングが発生すると、例えば図 2.11による冷却回路において、HeII熱交換器内部全てが飽 和 HeIIで満たされ、かつその液面がさらに上昇すれば、排気ライン内をも満たして HeI 槽に接 することになる。このような状態になると、HeII槽とHeI 槽が飽和HeIIによって熱的に連接される。 HeIIの熱伝導特性は無限大に近く、フラッディングが発生すれば、高温側である HeI から低温


図 2.13 二相流の流動状態(Baker 線図)

側の HeIIに多量の熱流入を生じ、HeII 槽の温度は急激に上昇してしまう。超伝導マグネットは HeII 槽内の温度に冷却されることを前提に設計されるから、このような温度上昇が発生すると、マ グネットがクエンチに至る危険性がある。したがって、フラッディング現象を避けることが HeIIクライ オスタットによる超伝導マグネット冷却においては必須の条件となるが、その発生については従来 明確化されていなかった。これは、HeIIクライオスタットの用途が小型の実験用途である場合、フラ ッディングの発生による影響が軽微であったことや、大型装置では、HeII熱交換器内部の液面状 態をモニターすることで電気的に制御可能なシステムを備えていたことによる。しかし、本研究にお ける NMR 用超伝導マグネットにおいては、基本的に非制御無人運転を前提とすることから、フラッ ディングを発生しない、自律的な安定運転の実現が必要である。このため、以下にフラッディング の発生条件とその回避策について検証する。

HeII冷却回路において、温度を自律的に安定化できる条件について、その構成機器であるJT 弁、熱交換器、排気ポンプについて、相互に連関する作用を検討した。各機器の配置構成は図 2.6と同一である。先ず、HeII交換器内の流動状態を推定した。気液2相流における流動様式に ついてはベーカー線図が知られており[13]、これを液体へリウムに適用したものが示されている [14]。図 2.13 にその状態図を示す。Gは質量流束を示し、サフィックス0 は液相を、g は気相を示 す。本研究による HeII 熱交換器内部の流動状態は図中に示すように吹霧流領域にあることがわ かる。HeII熱交換器は液相成分が気化する際の蒸発潜熱がその冷却源である。したがって、JT 弁によって温度降下した気液 2 相流のなかで、液相のみが熱交換作用を担う。よって、HeII熱交 換器内では、液相は熱交換器の壁面に接触して直ちに蒸発するものとし、有意な膜厚またはバル クとしての液体は存在しないものと仮定する[15]。

排気速度、排気圧力、質量流量および Hell 熱交換器の面積は次に示す相互関係がある。

$$S = \frac{3600}{1000} \frac{\dot{m}_{JT}}{\rho_{(293, P_p)}}$$
(2.13)

$$T_{hex} = f(P_{hex}) \tag{2.14}$$

$$Q_{ref} = kA_{hex} \left( T_b - T_{hex} \right) \tag{2.15}$$

$$\therefore A_{hex} = \frac{Q_{ref}}{k(T_b - T_{hex})}$$
(2.16)

\_

$$\therefore k = \frac{1}{\frac{1}{0.07T_b^3} + \frac{\delta}{\lambda} + \frac{1}{0.07T_{hex}^3}}$$
(2.17)

ここに、
$$T_b$$
 :HeII槽温度(=1.7 K)  
 $m_{JT}$  :JT 流量 [g/s]  
 $T_{JT}$  :JT 弁入口温度(=2.168 K)  
 $S$  :ポンプ排気速度 [m<sup>3</sup>/h]  
 $T_{hex}$  :超流動熱交換器温度 [K]  
 $P_{hex}$  :超流動熱交換器内排気圧力 [Pa]  
 $Q_{ref}$  :冷凍能力 [W]  
 $A_{hex}$  :超流動熱交換器実効面積 [cm<sup>2</sup>]  
 $\delta$  :超流動熱交換器壁厚さ(=0.1 cm)  
 $\lambda$  :He II 熱交換器壁の熱伝導率(OFHC の場合~1 W/cm<sup>-</sup>K)



図 2.14 超流動冷却回路の諸特性

であり、0.07 $T_b^3$ および 0.07 $T_{hex}^3$ は He II 熱交換器外壁および内壁におけるカピッツァコンダクタ ンスを表す。なお、S はポンプによって固有の特性であり、使用するポンプに応じて異なる。このよ うな関係式から、ある型式のポンプを用いた場合、JT 流量を横軸とした各パラメータの変化につい て図 2.14 に示す。dT は He II 熱交換器内外の温度差を示す(= $T_b - T_{hex}$ )。図から、 $m_{IT}$ を増 加させることにより $Q_{ref}$ を増大させることが可能だが、 $m_{IT}$ が 0.02 g/s 近くになると、dT は急激に 減少するとともに  $A_{hex}$ が急激に増大する。このことは、He II 熱交換器の熱交換能力が飽和するこ とを意味する。この状態がさらに進行すると、He II 熱交換器内は液体 He II で満たされ、さらに進 めば、図 2.11 に示す He II 熱交換器後流の排気ラインまで飽和 He II 液が溢れてくるフラッディン グ状態に至ると考えられる。液面がセパレータ上面まで達したときに、排気ライン管壁を介して  $\lambda$  点 以上の温度にある液体へリウムと熱交換を開始することになるから、He II 熱交換器内の飽和 He II 液は瞬く間に温度上昇を開始し、結果として He II 槽温度も急激に上昇することになる。このように、 フラッディングに至る定性的理解が以下のように想定される。

### 外乱によって JT 流量 m」T が増加

### ポンプの排気特性に応じて He 熱交換器内圧力が上昇し、飽和温度も上昇

## 熱交換器温度差 dT が減少し、これを補完すべく必要熱交換面積 A<sub>HEX</sub>が増大

### He 熱交換器内部が飽和液体 He で満たされ、フラッディングに至る

このため、図 2.14 から、フラッディングを避けるには、下記の手順に従えばよいことがわかる。

- クライオスタット内部機器の配置構成や全体のコンパクト化を考慮した He II 熱交換器形状(熱 交換面積 A<sub>hex</sub>)を定める。
- 2) 所望の冷凍能力 $Q_{ref}$  (クライオスタット全体設計から定まる)を確保するに必要なJT流量 $m_{JT}$ を定める。
- 上記式(2.13)~(2.16)の関係から排気速度Sおよび排気圧力P<sub>hex</sub>が求まり、配管圧損を考慮したうえでこれを得られる排気ポンプ能力(型式)を選定する。

なお、実際の装置構成を決定した後に変数になるのは $m_{JT}$ であり、その変動幅は前述した外乱 要因によって定められ、およそ10%以内と想定される。他方、HeII熱交換器はその内部全面を有 効伝熱面として利用することは困難である。これはJT弁からフラッシュされる噴霧状態の気液混相 流が直接熱交換器壁面に当る確率に依存するためと考えられる。このため、HeII熱交換器面積 のなかで有効伝熱面を1/10と仮定すると、図 2.14よりHeII熱交換器における温度差*dT*を0.1 ~0.2 K程度確保すればよいことになる。この構成により、安定な(フラッディングに至らない)運転 が可能と考えられる。これを確認するため、図 2.11 による冷却回路を用いて実際の運転を行った 場合の状態を観測した。HeII熱交換器の入口および出口には内部を流れるガス温度を測定する ための温度センサー(CERNOX)を設置した。熱交換器壁温度と明確に分離して測定できるよう、 センサーは HeII熱交換器流路断面の中心に配置した。JT 流量が少ない場合、入口温度  $T_{HEX-in}$ はJT弁からフラッシュした後の飽和 HeII液温度を示し、出口温度 $T_{HEX-out}$ はHeII槽温 度 $T_b$ とほぼ同じ温度を示す( $T_{HEX-in} \leq T_{HEX-out} = T_b$ )。この状態から、JT 流量を除々に増加させ ると、熱交換器温度差 $dT = T_b - T_{HEX-in}$ も減少し、 $dT \cong 0.025$  K 近くで $T_{HEX-out}$  が急激に降下 して $T_{HEX-in}$ に一致する現象が確認された。これは、HeII熱交換器出口まで液相が達したことを示 し、フラッディング現象が発生していると見なせる。この温度差における実効熱交換面積 $A_{hex}$ は、



図 2.15 加圧 He 槽熱侵入および運転温度

図 2.14 より約 1000 cm<sup>2</sup>と予測され、実際の熱交換器総伝熱面積 750 cm<sup>2</sup>とほぼ一致している。 以上のことから、少なくとも熱交換器温度差 dT を 0.1 K以上確保する機器条件とすれば、JT 流 量変動幅(±10%)を考慮しても、自律的な安定運転を継続可能であると考えられる。

## 2.2.4 運転温度

マグネット設計においては、運転温度を前提に、超伝導線材の特性を考慮して進める。このため、 前節による外乱の影響と冷却回路の自律安定性基準をもとに、実用に際しての制約条件を考慮し て、920 MHz-NMR 用超伝導マグネットの運転温度を以下に定める。加圧 He II 発生に必要な冷 却能力は、He II 槽への熱侵入量に相当し、その値は概ね図 2.15(a)のようになる。この図におい て、横軸には運転温度を、縦軸には加圧 He II 槽への熱侵入量を示している。運転温度が低いほ ど He II 槽への熱侵入が増えるのは、主に低温安全弁のシートギャップ内の He II 成分を介した熱 伝導の影響によるものである。2.0 K 運転と 1.5 K 運転とを比較してその差は 2 倍程度になる。一 方、加圧 He II 発生機構における種々の制約から、運転温度が下がるほど各種損失(ポンプ効率、 配管内圧力損失、必要熱交換面積等)は加速度的に大きくなる。図 2.15(b)に運転温度とポンプ 排気圧力、排気速度およびポンプ投入動力の関係を示した。図中投入動力に着目すると、運転温 度が 2.0 K の場合と 1.5 K の場合では、所要動力は 10 倍にもなる。また、その絶対値は 1.57 K において 10 kW を超えてしまう。これは、真空ポンプの原理が容積排除式であるため、排気圧力 が低いほど排除容積が大きくなり、より大きな排気速度を持つポンプが必要になるためである。第5 章で述べるように、本装置は連続無停止運転(瞬断を除く)が前提であることから、停電対策として 非常用発電機を設置する。その際、装置の価格・外形・維持費は発電能力に依存するため、大容 量ポンプを導入することには運用上種々の制約を生じる。ポンプの種別を圧力に応じて使い分け る方式(メカニカルブースターとロータリーポンプの組み合わせ等)もあるが、長期無人運転に対し ては、動力機器類は最小限にすることも考慮しなければならない。一方、図 2.15(b)に示すポンプ 排気圧力は HeⅡ熱交換器からポンプに至るまでの配管内圧力損失を加味した値である。図中で 各曲線が 1.5 K で途切れているのは、配管内圧力損失が超流動熱交換器内圧力絶対値よりも大 きくなる、すなわち運転が不可能となる限界を示している。ポンプは許容設置環境磁界およびマグ ネット本体への振動伝達を低減するため、マグネットから10m以上の配管を経由して配置される。 この配管による圧力損失を低減するには配管径を太くすればよいが、無制限に大きくすることは現 実的には問題がある。一方、図 2.15(a)において、 $dT_{_b}/dQ_{_{HeII}}$ すなわち曲線の傾きは JT 流量変 動に対する Hell 槽温度応答性を示すものであり、図中曲線の傾きが小さいほど条件変化による 温度変動が大きい。これは、運転温度の変動要因に直接的に影響される要因であり、これも加味 すると、マグネットの運転温度を規定する条件は次のように整理される。

- 1) ポンプ :単段ロータリー式
- 2)入力 :10 kW 以下
- 3) 配管長および径 :15 m、 \$\phi\$ 114mm
- 4) 運転温度変動幅 :±0.1 K

この条件から、本研究で対象とする加圧 He II 冷却運転における運転温度は 1.7 K±0.1 Kとし、 このことから、運転温度の上限は 1.8 Kとなる。この温度における超伝導線材特性を元に、マグネット設計をおこなうことにする。なお、、He II 熱交換器温度は 2.2.3 節より dT > 0.1 K であるから、これを運転温度下限に対して適用し、 $T_{hex} < 1.5$  K とする。つまり、0.1 K < dT < 0.3 K となる。

39

# 2.3 Nb<sub>3</sub>Sn 線材の特性向上

2.2 節による運転温度の低温化によって、超伝導線材における  $J_c$ の大幅な向上が期待でき、かっその条件は 1.8 Kとする。一方、 $J_c$ の温度依存性は式(2.7)によって期待される向上が得られない場合も想定される。これは、中磁界領域では  $J_c$ が侵入磁束に対するピンニングカ  $F_P$ に依存するのに対し、高磁界領域( $B/B_{c2} \ge 0.8$ )では  $F_P$ が飽和してしまうことによる[16]。一般に、 $F_P$ を向上するには、ピン止め中心となる結晶粒界を多数生成するために、NbaSn ではフィラメント径を小さく、熱処理時間を短くして反応相の生成が過剰に進行しないように配慮される。しかし、高磁界領域では  $F_P$ が飽和してしまうため、 $J_c$ を向上するにはむしろ結晶粒を大きくすることが有効であり、そのためにはフィラメント径を大きく、熱処理時間を長く取る必要がある。ただし、NbaSn 線材でこのような構成を取る場合、線材断面における Nb フィラメントが熱処理によって反応するときに必要とする Sn 量の適切な供給を考慮しなければならない。本節では NbaSn 線材を高磁界領域で使用するためのフィラメント径拡大にともなうブロンズからの Sn 量供給との整合を図ることによる  $J_c$ 改善の結果と、実際に低温化を適用した場合に得られた超伝導特性を示す。

# 2.3.1 高 Sn ブロンズによる Jcの改善

本研究による超伝導マグネットにおいて、高磁界領域で使用する超伝導線材はブロンズ法によ る Nb<sub>3</sub>Sn である。ブロンズ法に基づく Nb<sub>3</sub>Sn は、Cu-Sn 合金 (ブロンズ)と Nb を反応させることに より、650℃から 700℃といった低温での熱処理によって Nb<sub>3</sub>Sn を生成するものであり、 Tachikawa らによって考案された[17],[18]。実際のマグネットにこれを用いる場合、熱処理前の素 線を巻枠に巻線したのち、熱処理を加えてブロンズ中の Sn と Nb フィラメントを反応させて Nb<sub>3</sub>Sn 相を生成するプロセス (ワインド・アンド・リアクト: wind and react)を経て作製される。熱処理による Nb<sub>3</sub>Sn 生成過程の模式図を図 2.16 に示す。ブロンズマトリックスに埋め込まれた Nb フィラメント は、熱処理によって Nb と Sn が反応することで Nb フィラメントの外皮側に Nb<sub>3</sub>Sn を生成する。こ のとき、Nb フィラメントの芯部に未反応部を残してしまう。Nb は超伝導物質ではあるが、磁界特性 が低く、高磁界では線材全体としての超伝導特性に寄与しない。このような未反応部を残す要因



図 2.16 ブロンズ法による Nb<sub>3</sub>Sn 線材の断面構成

は、ブロンズからの Sn 供給量の不足によるものである。特に、高磁界領域で Nb3Sn を用いる場合、 Nb フィラメントの直径を大きく取る必要があり、Sn 供給量の確保は重要な課題である。Sn 供給量 を増加させる有効な手法はブロンズ中の Sn 濃度を高めることである。一方、ブロンズ中の Sn の固 溶限界濃度は相図から 15.8 wt%Sn である。しかし、実際にこの組成のインゴットを溶製すると、異 相が析出する。このような異相が介在すると、ブロンズの機械的特性が劣化することが考えられる。 特に超伝導線材として Nb3Sn 線材を製作する場合、図 2.16 で示すように熱処理前の状態である



図 2.17 13%Sn および 15%Sn 線材 non-Cu J<sub>C</sub>の磁場依存性

Cu、Nb、Cu-Sn からなる複合体の状態で伸線加工されるため、ブロンズの延性等が劣化すれば 加工プロセスにおいて断線等のトラブルを引き起こす。このため、従来の Nb<sub>3</sub>Sn 線材では、原材 料となるブロンズの Sn 濃度は、製品加工の確実性の観点から 14.5 wt%Sn 程度を上限としてきた [19]。転じれば、ブロンズ中の Sn 濃度を増加させることができれば、更に高い電流密度を得られる 余地があると言える。

本研究における超伝導マグネットでは、特に最内層に配置する NbaSn を用いたコイルの特性が 律則となるため、僅かな Jc特性の向上であってもマグネット設計条件を大きく緩和することができる。 このため、ブロンズ中 Sn 濃度の差異による機械特性を再検証し、現実的な Sn 濃度上限を知るこ とで Jc向上を図った。ブロンズは、Sn 濃度 14, 15, 16 wt%Sn の 3 種を溶製したが、15 および 16 wt%Sn インゴットには明らかに異相の析出が観測された。これらのブロンズについて、機械的 特性を測定した。その結果、伸線工程において最も重要になる「伸び」や「絞り」は、室温から 300℃の範囲で Sn 濃度に依存し、濃度が高いほど両者ともに低い値となるものの、15 wt%Sn で あれば、30 %程度を有することがわかった。実際の伸線工程では、その加工率は通常 10 %~ 20 %である。このため、従来の加工率を適用する限り、異相析出をともなった 15 wt%Sn ブロンズ であっても伸線加工に耐えられるとの見通しを得た。

この結果を受け、ブロンズ中 Sn 濃度を 15wt%Sn とした線材を試作し、比較対照のため、



図 2.18 15%Sn 実機用線材の特性

13wt%線材も製作してその特性を評価した[20]。図 2.17 に測定結果を示す。この図から、ブロン ズ中 Sn 濃度 15wt%の試作線材が 13wt%試作線材に対し約 20 %の *Jc*向上が得られることがわ かる。また、試作線材の断面 SEM 観察から、13wt%Sn 線材では 16.8 %であった Nb 残芯率が、 15wt%Sn 線材では 10.5 %まで減少し、Nb<sub>3</sub>Sn 生成量が増大することによって、non-Cu *Jc*も増 大したことがわかる。

## 2.3.2 製作線材の特性

2.3.1節での15wt%SnによるNb<sub>3</sub>Sn線材試作の結果を踏まえ、実機に用いる長尺線材を製作 し、その特性を測定した。図 2.18 にその結果を示す。比較対照のため、13wt%Sn による Nb<sub>3</sub>Sn 線材特性も併記した。この結果から、21 T at 4.2 K における 15wt%Sn 線材の non-Cu Jcは 50 A/mm<sup>2</sup>であり、これを 2.1 K にすることで、1.8 倍に、1.8 K にすれば、2.1 倍の特性向上が得られ、 その値は 100 A/mm<sup>2</sup>となることが確認できた。なお、図 2.2 に示す Jcの低温化による向上は 4.2 Kと 1.8 K の比において 2.45 倍であったが、上記実測から実際には 2.1 倍に留まっている。これ は、式(2.3)による実験的補完式が中磁界領域での特性を考慮したものであり、本研究で対象とす る高磁界領域においては、この補完式の修正が必要であるためと考えられる。

なお、実機用 Nb<sub>3</sub>Sn 線材でのn 値は、21 T at 1.8 K において、30 が得られた。18 T を想定し たブロンズ法 Nb<sub>3</sub>Sn 線材の従来材のn 値は、18 T at 4.2 K において 32 程度であるから、これを 図 2.3 によるn 値特性図から拡張予測すると、21 T at 1.8 K で約 22 になる。上記実機用線材に おいてn 値 30 を得られたのは、伸線工程における中間焼鈍の見直しによる効果と考えられる。多 段階の伸線工程を経る超伝導線の製造においては、次工程伸線での材料延性を確保するため、 中間焼鈍を行う。このとき、その処理温度が高いと、Nb フィラメント表層に Nb<sub>3</sub>Sn が生成されてしま い、フィラメント表面性状が劣化する。このため、これを抑える方法として、実機用線材の製造にお いては、中間焼鈍温度を 475℃以下としており、結果としてn 値が向上する。

43

# 2.4 マグネット設計

運転温度の低温化と、Nb<sub>3</sub>Sn 超伝導線材の高磁界特性改善の結果を踏まえ、マグネット設計を おこなった。以下にその条件と決定パラメータを示す。

## 2.4.1 設計条件

2.2.4 節から、運転温度は 1.8 K 以下と規定する。また、2.3.2 節より、マグネット内層に用いる高 ブロンズを用いる Nb<sub>3</sub>Sn 超伝導線材の電流特性は、1.8 K at 21 T にて 100 A/mm<sup>2</sup>の non-Cu *Jc*が得られるものとする。また、n 値は同条件で 30 である。中間層に用いる Nb<sub>3</sub>Sn 超伝導線材に ついては、5.1.1 節によるクエンチ時の最大応力を考慮し、0.2 %耐力を 270 MPa 以上確保するも のとする。電磁応力条件は、4.2.1 節で示す、クエンチの抑制に対する基準を考慮し、*Bjr* < 162 かつ *Fz* < 0.57 *Bjr* + 143 とする。磁界安定性を確保するため、式(1.2)による評価関数 *F*を考慮 し、その値を 1×10<sup>-10</sup> 以下とする。

## 2.4.2 コイルパラメータ

図 2.19 にマグネット設計の結果に基づく各コイルの配置構成を示す。図中隙間で分離されてい るのは、巻枠が異なる部分である。図中にはコイル名称を付記しており、NS は Nb<sub>3</sub>Sn 線材を用い る部分、NT は NbTi を用いる部分を表す。NS-0~3 は、2.3 節で述べた高 Sn ブロンズによる Nb<sub>3</sub>Sn 線材を用いている。NS-4~5 は、4.3.2 節で述べる Ta で補強した高耐力 Nb<sub>3</sub>Sn 線材を 用いる。マグネットの中間から外層側には NbTi を用いたコイルを配置しているが、本研究によるマ グネットでは、Nb<sub>3</sub>Sn と NbTi の使用境界を 10.4 T とした。

このような構成において確定したコイルパラメータを表 2.3 に示す。運転電流 244.4 A は、PCS やジョイントの適用可能な電流容量や、高磁界領域(内径側)で Jc が低下することにともなう線材の太径化に対する巻線施工の作業性も考慮して決められる。内層の NS-0~3 においては、評価



図 2.19 920 MHz-NMR 用超伝導マグネットのコイル配置構成

関数 Fが律則となっている。NS-0 における non-Cu  $J_c$ は実績値を参照して 100 A/mm<sup>2</sup>としてい るが、現実的には余裕度がゼロとなるため、パラメータ上では n 値に対する安全を見込んでおり、 2.3.2 節で得られた n 値 30 に対して、2 割の余裕を見て 25 を設計参照値とする。Fのしきい値を およそ 1×10<sup>-10</sup>とすると、Iop/Icはおよそ 0.5 近傍になる。なお、NS-0 の線材断面は 3.50 mm× 1.75 mm(被覆無しの場合)であり、銅比は 0.3 である。この巻内径は 78.4 mm であり、巻線作業 を行ううえでは、これ以上の太い線材の施工は難しい。

中層では、*Bjr*が律則となる。その値は約 160 MPa であり、数値出処は 4.2.1 節で示す。表中では NS-4~5、 NT-1~4 がこれに相当する。このような領域では、運転電流密度 *Jop*を制限しなけれ

ばならない。一方、n 値は低磁界において向上するから、評価関数 F の余裕度が生じるため、Jc も小さな値が取れる。その結果、線材断面積に占める超伝導部分の面積比を小さくできる。このこ とは、超伝導線材の価格においてそのメリットが大きい。中層域で、銅比が大きくなっているのはこ のためである。

外層では、ソレノイドの「肩(端部)」に相当する部分で中心軸から磁束方向がずれてくるため、コ イルには軸方向の力が作用する。この詳細については 4.2.1 節で述べるが、この成分の力はクエ ンチ発生に影響するから、これを抑えるために、 *Jop*を *Bjr*による制約値よりも低く設定してある。

コイル名称Cは補正コイルと呼び、中心部での大きな磁界不均一成分を補正するものである。こ のため、C2 は他のコイルに対して、通電方向を逆転した反転磁界を生成する。なお、細かな磁界 不均一成分は、ここに表示されていないが、超伝導シムコイルを用いて補正する。

以上のようなコイルパラメータによるマグネット設計の結果に基づく Bjr、Overall Jorおよび磁界 強度 Bをグラフに表すと図 2.20 のようになる。内層では、Jcと評価関数 Fによる制約によって、Jor が低く設定され、Bjr に対しては大きく余裕がある。中層から外層にかけては、Bjr による制約によ って、Jorを押さえ、最外層では Bjrの制約以上に Fzによる制約が生じることによって、やはり Jor を抑えた設計となる。以上から、高磁界を発生しながらも、磁界安定度を確保し、かつクエンチに対 する考慮がなされたマグネット設計が成立する。



図 2.20 実機マグネット設計における各特性

| のコイル設計  |
|---------|
| ž       |
| Й,<br>Ч |
| 用超伝導マ   |
| MHz-NMR |
| 920     |
| 表 2.3   |

ΈĮ

| 中心磁場            | $B_{_{O}}$                             | 21.6               |         | [T]     |          |         |         |         |            |         |          |         |         |         |         |         |         |         |
|-----------------|----------------------------------------|--------------------|---------|---------|----------|---------|---------|---------|------------|---------|----------|---------|---------|---------|---------|---------|---------|---------|
| 運転電流            | $I_{OP}$                               | 244.4              |         | [Y]     |          |         |         |         |            |         |          |         |         |         |         |         |         |         |
| インダクら           | J Z Z                                  | 1128.1             |         | Ē       |          |         |         |         |            |         |          |         |         |         |         |         |         |         |
| 蓄積エネル           | $L \neq - E$                           | 33.7               |         | [fM]    |          |         |         |         |            |         |          |         |         |         |         |         |         |         |
| 材料種別            |                                        |                    |         |         | $Nb_{3}$ | Sn      |         |         |            |         |          |         | LqN     | 5       |         |         |         |         |
| 巻枠              |                                        |                    | #1      |         | #2       |         | #3      | #4      | 2#         | 1#      | 3        |         | L#      |         |         | 8#      |         |         |
| コイル名称           |                                        |                    | 0-SN    | NS-1    | NS-2     | NS-3    | NS-4    | NS-5    | NT-1       | NT-2    | NT-3     | NT-4    | NT-5    | NT-6    | C1-A    | C1-B    | C2-A    | C2-B    |
| コイル形状           | 内径                                     | [mm]               | 78.4    | 136.4   | 165.2    | 185.6   | 240.8   | 365.4   | 504.6      | 607.7   | 654.6    | 725.2   | 784.1   | 811.6   | 836.8   | 836.8   | 836.8   | 836.8   |
|                 | 外径                                     | [mm]               | 124.0   | 165.2   | 185.6    | 230.4   | 353.0   | 487.8   | 586.8      | 654.2   | 704.6    | 783.7   | 811.3   | 816.4   | 909.6   | 909.6   | 880.4   | 880.4   |
|                 | 長さ                                     | [mm]               | 600.0   | 830.0   | 830.0    | 830.0   | 1080.0  | 1240.0  | 1440.0     | 1520.0  | 1520.0   | 1520.0  | 1520.0  | 1520.0  | 258.0   | 258.0   | 195.0   | 195.0   |
|                 | 中心位置                                   | [mm]               | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0     | 0.0        | 0.0     | 0.0      | 0.0     | 0.0     | 0.0     | -489.0  | 489.0   | -174.0  | 174.0   |
|                 | 層数                                     | [layer]            | 12      | 8       | 9        | 14      | 34      | 36      | $^{24}$    | 14      | 16       | 20      | 10      | 7       | 30      | 30      | 18      | 18      |
|                 | 巻数                                     | [turn]             | 1956    | 2320    | 1872     | 4536    | 13804   | 16452   | 13224      | 8302    | 9872     | 13160   | 7370    | 1678    | 4260    | 4260    | -1926   | -1926   |
| 線材仕様            | 裸線幅                                    | [mm]               | 3.50    | 2.70    | 2.50     | 2.40    | 2.50    | 2.55    | 2.53       | 2.48    | 2.38     | 2.23    | 1.98    | 1.73    | 1.73    | 1.73    | 1.73    | 1.73    |
|                 | 祼缐高                                    | [mm]               | 1.75    | 1.65    | 1.55     | 1.45    | 1.50    | 1.55    | 1.58       | 1.53    | 1.43     | 1.33    | 1.23    | 1.08    | 1.08    | 1.08    | 1.08    | 1.08    |
|                 | アスペクト比                                 | ī                  | 2.00    | 1.64    | 1.61     | 1.66    | 1.67    | 1.65    | 1.60       | 1.62    | 1.66     | 1.68    | 1.61    | 1.60    | 1.60    | 1.60    | 1.60    | 1.60    |
|                 | Cutt                                   | ī                  | 0.3     | 0.3     | 0.3      | 0.3     | 0.8     | 0.8     | 1.3        | 3.0     | 3.0      | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     | 3.0     |
|                 | 面積(超伝導部)                               | [mm <sup>2</sup> ] | 4.652   | 3.367   | 2.921    | 2.617   | 1.778   | 1.891   | 1.734      | 0.946   | 0.849    | 0.739   | 0.607   | 0.465   | 0.465   | 0.465   | 0.465   | 0.465   |
|                 | 面積(Cu部)                                | $[mm^2]$           | 1.396   | 1.010   | 0.876    | 0.785   | 1.422   | 1.512   | 2.255      | 2.839   | 2.546    | 2.218   | 1.820   | 1.395   | 1.395   | 1.395   | 1.395   | 1.395   |
|                 | 占積率                                    | [%]                | 86.5    | 85.0    | 84.0     | 83.0    | 72.9    | 73.8    | 89.1       | 89.0    | 88.3     | 87.6    | 86.6    | 86.8    | 84.4    | 84.4    | 84.2    | 84.2    |
|                 | 線材長さ                                   | [m]                | 622     | 1099    | 1032     | 2964    | 12876   | 22049   | 22671      | 16457   | 21076    | 31192   | 18469   | 4291    | 11686   | 11686   | 5195    | 5195    |
|                 | 線材重量                                   | [kg]               | 33.5    | 42.8    | 34.9     | 89.8    | 366.8   | 667.8   | 696.8      | 512.7   | 588.9    | 759.2   | 368.9   | 65.7    | 178.9   | 178.9   | 79.5    | 79.5    |
| 磁場条件            | 局所最大磁場                                 | [T]                | 21.6    | 20.6    | 19.8     | 19.1    | 17.4    | 13.8    | 10.4       | 8.2     | 6.9      | 5.6     | 5.3     | 4.7     | 4.6     | 2.6     | 4.6     | 2.6     |
|                 | 最大Bjr                                  | [MPa]              | 51.6    | 91.1    | 113.8    | 144.0   | 161.0   | 160.9   | 160.4      | 160.5   | 160.9    | 160.8   | 125.5   | 102.4   | 98.8    | 136.0   | 98.8    | 136.0   |
|                 | $F_Z$                                  | [MPa]              | -0.7    | -4.7    | -5.7     | -6.2    | -16.8   | -25.4   | -41.5      | -49.6   | -52.0    | -53.3   | -59.3   | -73.1   | -28.3   | -7.0    | 28.3    | 7.0     |
| 特性仕様            | $J_C$                                  | $[A/mm^2]$         | 100     | 120     | 130      | 150     | 130     | 200     | 610        | 1110    | 1340     | 1510    | 1540    | 1580    | 1600    | 1670    | 1600    | 1670    |
| 1 017@ D        | $I_C$                                  | [Y]                | 560     | 480     | 470      | 460     | 520     | 1090    | 1270       | 1260    | 1360     | 1340    | 1120    | 880     | 890     | 930     | 890     | 930     |
| THE DESCRIPTION | $I_{OP} I_C$                           | ī                  | 0.44    | 0.51    | 0.53     | 0.53    | 0.47    | 0.22    | 0.19       | 0.19    | 0.18     | 0.18    | 0.22    | 0.28    | 0.28    | 0.26    | 0.28    | 0.26    |
|                 | n-index                                | Ξ                  | 30      | 30      | 30       | 30      | 35      | 35      | 25         | 25      | 25       | 45      | 60      | 60      | 60      | 60      | 60      | 60      |
|                 | $\mathbf{F}^* = (I_{OP}/I_C)^n/I_{OP}$ | P [-]              | 8.2E-14 | 8.6E-12 | 1.7E-11  | 2.9E-11 | 1.2E-14 | 7.4E-26 | 5.2 E - 21 | 6.3E-21 | 9.4 E-22 | 2.5E-36 | 9.8E-43 | 1.5E-36 | 1.2E-36 | 6.3E-38 | 1.2E-36 | 6.3E-38 |

# 2.5 まとめ

本章では、高磁界発生の見通しと実現への検証を進めた。以下に得られた結論をまとめる。

- 臨界電流密度 Jcの温度依存性から、21 Tにおいて運転温度を2 K以下に下げた場合、その 値は 4.2 K比で2 倍以上となるとともに、n値についても Bc2依存性から、同様に運転温度を 2 K以下に下げた場合、1.5 倍近い向上が得られる見通しを示した。
- 2) 上記超伝導特性向上のための低温発生において熱侵入の支配的要素となる低温安全弁に ついて評価をおこなった。その結果、低温安全弁に残留するシートギャップは、弁体および弁 座の加工精度によって決まることを明らかにし、これをもとに実際の機器設計が行えることを示 した。
- 3) 加圧 He II 冷却クライオスタットの運転における外乱要因を明らかにし、その方策として、2段式 予冷熱交換器から構成される冷却回路を考案し、λプレート上面温度をλ点に安定維持する 構造を示した。また、この2段式予冷熱交換器を適用した加圧 He II 発生回路では、He II 熱 交換器でのJT 膨張における液化効率を約5%改善できる。
- 4) 加圧 He II 発生回路における He II 熱交換器内部状況予測から、He II クライオスタット特有の 不安定要因であるフラッディングの発生への定性的理解を示し、制御を付帯しないシステム (JT 流量固定)の場合、He II 熱交換器内外温度差を 0.1 K 以上とすることで安定運転を確保 できる見通しを示した。これは、He II 熱交換器の実効伝熱面積が全伝熱面積の 10 %程度の 状態に相当する。
- 5) 以上の低温発生における機器制約、不安定性を考慮し、かつ超伝導特性向上の見込みを踏 まえて運転温度の低温化余地を検討し、その実用的温度を1.8 Kとした。
- 6) 1.8 K at 21 T をマグネット最内層コイルの設計条件とし、Nb<sub>3</sub>Sn の non-Cu Jc 目標値を 100 A/mm<sup>2</sup> とした。これは、線材断面形状と評価関数から導出されるものである。この値に対し、Nb<sub>3</sub>Sn はフィラメント径の太径化、ブロンズ中の Sn 濃度増加(13wt%→15wt%)によって、上記目標を満たすものが得られた。また、中間焼鈍条件の見直しによって n 値は 30(at 1.8 K、21 T)が得られる。

7) 1.8 Kによって得られる超伝導特性を根拠に、920 MHz-NMR 用超伝導マグネットの設計を おこなった。その結果、線材総重量 4.57 ton からなる構成によって、その実現目処を得た。た だし、律則はなお最内層の NbaSn における Jcにあり、この特性が向上すれば更に高磁界の 達成が見込める。また、総重量を決める大きな要因は Bjrの規定にある。このため、クエンチ現 象の発生メカニズムを更に解明することで Bjr 基準を緩和することができれば、一層の重量軽 減可能性がある。

#### 参考文献

- L. T. Summers, M. W. Guinan, J. R. Miller and P. A. Hahn, "A model for the prediction of Nb3Sn critical current as a function of field, temperature, strain, and radiation damage", IEEE Tansactions on Magnetics, Vol. 27, No. 2, 1991, pp.2041-2044
- [2] W. H. Warnes, D. C. Labalestier, Cryogenics, Vol. 26, 1986, pp.643
- [3] H. Kurahashi, Y. Monju, M. Shimada, M. Taneda, S. Hayashi, R. Ogawa, Y. Kawate,
   "The characterization of Nb3Sn conductors for high field magnet", Adv. Cryog. Eng.,
   40, 1994, pp.861-866
- [4] 伊藤聡, "NMR 用超伝導マグネットの超流動冷却クライオスタット",低温工学、Vol. 36, No.
   12, 2001, pp.643-650
- [5] ジェラール・クロードら、"超流動ヘリウム生産装置"、特許公報、昭 60-4124(優先権主張 1974年2月22日/フランス/7406206)、1985
- [6] G. Bon Mardion and G. Claudet, "A counterflow gas-liquid helium heat exchanger with copper grid", CRYOGENICS, SEPTEMBER, 1979, pp.552-553
- [7] 伊藤聡,林征治,嶋田雅生,川手剛雄,佐藤明男,三木孝史,永井秀雄,松本文明,和田 仁,野口隆志,"1 GHz 級 NMR 用加圧超流動ヘリウムクライオスタットの開発-加圧超流動 安全弁の入熱量と動作特性-",低温工学・超伝導学会,1997 年度春季
- [8] G. Bon Mardion, G. Claudet and P. Seyfert, "Practical data on steady state heat

transport in superfluid helium at atmospheric pressure", CRYOGENICS, JANUARY, 1979, pp.45-47

- [9] 低温工学協会編, "超伝導・低温工学ハンドブック", オーム社, 1993, pp.335
- [10] 佐藤ら、"クライオスタット",特許公開広報,特開 2001-330328
- [11] A. Sato, T. Miki, T. Kiyoshi, F. Matsumoto, H. Nagai, H. Wada, S. Ito, M. Yoshikawa,
   Y. Kawate, S. Fukui, "Development and Testing of Superfluid-Cooled Cryostat for 1
   GHz NMR Spectrometer", Proceedings of ICEC18, 2000, Mumbai, India,
   pp.407-410
- [12] 伊藤聡,林征治,川手剛雄,佐藤明男,三木孝史,永井秀雄,松本文明,和田仁,野口隆志,"1 GHz 級 NMR 用加圧超流動ヘリウムクライオスタットの開発 冷却温度安定性の検討 ー",低温工学・超伝導学会,1998 年度春季
- [13] B. Baker, "Simultaneous flow of Oil and Gas", Oil and Gas J., Vol. 53, 1954, pp.184
- [14] 原口憲次郎, "低温流体の気液二相流の流動様式について", 低温工学研究発表会予稿集, 1895 秋期, pp.27
- [15] H. Lahn, W. Lehmann, M. Stamm and M. Süßer, "Cryogenics for the homer II-high field magnet test facility at the Forschungzentrum Karlsruhe", Presented at CEC-ICMC 2001, Madison, Wisconsin
- [16] 宮崎隆好ら, "東北大学金属材料研究所強磁場超電導材料研究センター平成8年度年次報告書", 1997, pp.120
- [17] A. R. Kaufman and J. J. Pickett, Bull. Am. Phys. Soc., Vol. 15, 1970, pp.833
- [18] K. Tachikawa, Int. Cryo. Conf., Berlin, Iliffle Sci. Tech. Pub., 1971, pp.339
- [19] 岩城源三ら、"東北大学金属材料研究所強磁場超電導材料研究センター平成8年度年次報告書", 1997, pp.124
- [20] T. Miyazaki, Y. Murakami, T. Hase, M. Shimada, K. Itoh, T. Kiyoshi, T. Takeuchi, K. Inoue, and H. Wada, "Development of Nb<sub>3</sub>Sn superconductor for a 1 GHz NMR magnet Dependence of high-field characteristics on Tin content in bronze matrix -", IEEE Transactions on Applied Superconductivity, Vol. 9, 1999, pp.2505-2508

# 第3章 磁界安定化

# 3.1 コイル部の残留抵抗

既に第2章で述べたように、NMR 用超伝導マグネットにおいて、磁界安定性を確保するうえで、 n 値が重要な要素となり、マグネット設計ではこの特性を考慮して進めなければならない。実際の マグネット設計は、2.4.2節に示すコイルパラメータによって構成され、そのなかにn値による寄与、 すなわち式(1.2)による評価関数 Fを絶対値として考慮する。

なお、マグネットが完成した初期においては健全であった超伝導線材部の残留抵抗特性が、ク エンチを経たあと悪化する場合がある。これは、クエンチによる高応力の発生にともない、特に耐歪 特性の低い Nb<sub>3</sub>Sn 線材において、残留歪を生じることによって Jc 特性も劣化する場合、Fにおけ る Icも低下するため、みかけの残留抵抗が増大するものである。これを避けるためには、Nb<sub>3</sub>Sn 線 材の高耐力化が必要であるが、詳細については 4.3.2 節に述べる

# 3.2 機器配置条件

# 3.2.1 超伝導接続および PCS の特性

個々のコイルは巻線の始点(スタート)と終点(エンド)が存在し、それぞれは隣接するコイルの端 末とのあいだで超伝導接続(ジョイント)を施さねばならない。本マグネットは多分割構成となるため、 ジョイントの総数は154箇所におよぶ。その内訳は、Nb3SnとNbTiの接続が64箇所、NbTi(多 芯線)同士の接続が79箇所、超伝導シムコイルのNbTi(単芯線)の接続箇所が10箇所、ジョイント部磁気シールドコイル用NbTi(単芯線)の接続箇所が1箇所である。ジョイントは、接続すべき2本の超伝導線内部の超伝導フィラメント同士をバルクの超伝導体を介して接続するものである。しかし、バルク超伝導体は磁気的不安定性が高いため、強磁界中では超伝導を維持することが難しい。

一方、超伝導マグネットの構成部品である永久電流スイッチ(PCS)は総数 11 個が配置される。 内 1 個が主回路用であり、定格電流は 244 A である。他は超伝導シムコイル用 PCS が 10 個と Nb<sub>3</sub>Sn ジョイント部の磁気シールドコイル用が 1 個であり、最大電流はそれぞれ 20 A である。 PCS は通常のマグネット用超伝導線材と異なり、スイッチ機能として OFF 時の高抵抗値を得るため、安 定化銅に代えて CuNiをマトリックスとした NbTi線材が用いられる。このため、ジョイント同様、磁気 的不安定性が高い。

以上のような事情から、ジョイントおよび PCS の配置場所には磁界による制限を設けており、その値は下記のようになる。

- Nb<sub>3</sub>Sn NbTi ジョイント制限磁界
   <1T(磁界遮蔽コイルを併用)</li>
- ・ NbTi NbTi ジョイント制限磁界 < 0.5 T
- PCS 設置制限磁界 < 0.5 T

## 3.2.2 配置構成

超伝導接続とPCSについては、前節で述べたような配置磁界の制約がある。このため、これらの 機器はそれぞれに応じた磁界環境に配置して、抵抗発生を抑える必要がある。図 3.1 に超伝導マ グネットにおける漏洩磁界の分布を示す。0.5 T以下の条件は He II 槽内にはほとんど存在せず、 わずかにマグネットの赤道近傍に低磁界領域が見出せる。NbTi 線の場合、素線自体に可撓性が あるため、配置自由度は高い。このため、NbTi ・ NbTi ジョイントは、この赤道近傍に配置すること で配置磁界条件を満たすことができる。一方、Nb3Sn ・ NbTi ジョイントでは、Nb3Sn 線材が熱処 理によって生成される化合物であり、非常に脆く、配線の引き回しによって任意の場所に配置する ことができない。このため、Nb3Sn ・ NbTi ジョイントは、超伝導マグネットから鉛直上方に伸ばすこ とで、低磁界領域に配置する。図 3.1 の磁界分布より、その領域はマグネット中心からおよそ 1.3 m



図 3.1 マグネット近傍の漏磁界分布図(計算値)

の位置になる。本研究によるマグネットでは、Nb<sub>3</sub>Sn - NbTi ジョイントをこの領域に配置した。その 結果、HeII槽は上部にNb<sub>3</sub>Sn - NbTi ジョイントを配置するための突起を有する形状となる。ジョイ ントは、超伝導特性を維持するため、冷媒に浸漬されている必要があるが、この突起部上部には液 体 He を充填する開口部が無い。これは、HeII槽と He I 槽を連通する経路が低温安全弁のみで あり、低温安全弁は He I 槽の貯液量を最大限に利用するため、極力鉛直下方に配置しなければ ならない事情による。この矛盾する2つの目的は、低温化によって補われる。すなわち、初期に He II 槽に貯液された液体 He I は、冷却運転によるマグネットの冷却にともない、その温度を低下さ せていく。このとき、He I の飽和蒸気圧力も同時に低下するため、Nb<sub>3</sub>Sn - NbTi ジョイントを配置 した He II 槽の突起部は初期はヘリウムガスであっても、冷却の進行にともなって飽和蒸気圧相当 の減圧雰囲気になる。これが駆動力となって、液面を上端まで引上げる。その結果として、Nb<sub>3</sub>Sn - NbTi ジョイントも最終的には液体 He II の中に浸漬される。

ところで、PCS は内設した電気ヒーターを用いて超伝導線材の臨界温度以上に温度を上げて 抵抗を持たせるという作用によって ON-OFF 操作を行う。必要なヒーター入力は PCS の構造によ って異なるが、概ね1個の PCS あたり約 0.36 W を印加する。 主コイルを励磁する際には主コイル 用 PCS のヒーターを印加することは当然ながら、シムコイルについても主コイルの磁界変化によっ て誘導されないよう、全ての PCS をオープン(ヒーター印加)する。 従って、励磁(および消磁)に際 しては、PCS ヒーターのみの発熱量だけで合計約4Wに達する。一方、HeII冷却能力は2.2.2 節で述べたように、定常状態に必要な能力を賄うことを目安として設定される。その値は表 2.1 から、 およそ 0.56 W であり、超伝導マグネットの励磁および消磁に際して印加される PCS 用ヒーターの 発熱を冷却することができないから、PCS は磁界の制約を排しても Hell 槽内に置くことが不可能 である。この問題は、PCSをHeI槽内の低磁界部に配置することで解決できるが、実装配線にお いて、超伝導マグネットから引き出された超伝導線が Hell 槽と Hel 槽を断熱的に分離するセパ レータを貫通して設置される必要がある。実際の装置では、主コイル用超伝導線が予備を含めて6 本、超伝導シム等用超伝導線が同じく予備を含めて 14 本、合計 20 本がセパレータを貫通する。 これらの貫通線は、耐真空だけでなく、耐超流動のリークを許容しない施工が必要である。実用機 の製作にあたっては、この貫通方法として、ステンレスのパイプ内に超伝導線を通し、断熱真空に 対するリークはステンレスチューブの溶接によって確保し、Hellに対するリークはチューブと線の 隙間にエポキシ樹脂(スタイキャスト)を充填することによっておこなった[1]。この手法によって、He Ⅱによる熱伝導の影響を排除しながら、PCSを適切な場所に配置することが可能になった[2]。

以上から、超伝導線材の使用条件において評価関数の指標をもとにマグネット設計を行い、その基準となる 1×10<sup>-10</sup> 以下での設計がなされることで、超伝導線材の残留抵抗による磁界安定性の問題が解決される。また、耐磁界特性の低い PCS およびジョイントについては、弱磁界領域に 選択的に配置することによって、その特性劣化を防ぐ構造とし、同様に磁界安定性への阻害を抑 えることができる。

#### 参考文献

[1] 特許公開広報, "極低温リードスルー", 特開 2001-274013

54

[2] A. Sato, T. Kiyoshi, H. Wada, H. Maeda, S. Ito, Y. Kawate, "Design of Superfluid-Cooled Cryostat for 1 GHz NMR Spectrometer", ICEC16/ICMC Proceedings, 1997, Kitakyushu, pp.431-434

# 第4章 安全性

超伝導マグネットではクエンチと呼ばれる現象を突然発生することがある。これはそれまで超伝 導マグネットが磁気的に蓄積していたエネルギーを瞬時に放出するイベントである。また、クエンチ が発生すると、マグネット自体には部分的に高電流、高電圧、高応力が発生するから、これに耐え 得るマグネット構造が必要になる。特に、本研究による 920 MHz の磁界を発生する超伝導マグネ ットでは、その蓄積エネルギーが非常に大きく、エネルギーの適切な放出手段を講じなければなら ない。一方、クエンチは周囲に対して危害を及ぼす可能性もある。液化冷媒に浸漬冷却されて運 転する超伝導マグネットがクエンチを発生すると、その発熱によって冷媒の気化・放出に至り、容器 内圧の上昇を生じる。したがって、この急激な圧力上昇を適切に放出する安全策を講じる必要が ある。また、NMR 用途に用いる超伝導マグネットでクエンチが発生すれば、その復旧に多大な時 間を要することになる。本研究で対象とする 920 MHz・NMR 用超伝導マグネットでは、冷却・励磁 に 2 ヶ月、磁界が安定状態に漸近するまで 3 ヶ月、そして最終的な磁界均一度調整に 1 ヶ月、都 合半年の期間を要する。この間 NMR 測定は中断しなければならないから、利用者にとっては、金 銭的な損失に加えて、研究業務が停滞するという不都合を被ることになる。したがって、実用に供 する超伝導マグネットシステムを構築するうえでは、クエンチを極力発生しない設計を適用しなけ ればならない。

# 4.1 安全性に関する課題

超伝導マグネットの高磁界化は超伝導線材の総巻数の増大すなわちマグネットの大型化を意味する。コイルのインダクタンスLはコイル平均半径をa、巻数をNとすれば、L∝aN<sup>2</sup>で表される。いま、電流を一定として発生磁界を増大するなら、コイルの総巻数が増えるから、インダクタンスも2 乗比例して増大する。また、インダクタンスLをもつマグネットの磁気的エネルギー(蓄積エネルギー)は、電流をIとすれば、

$$E = \frac{1}{2}LI^2 \tag{4.1}$$

で表されるから、インダクタンスの増分だけ蓄積エネルギーも増大する。マグネットの発生磁界と蓄 積エネルギーの関係は、実際のマグネットにおいて図 4.1 のようになる。本研究に着手した段階に おける従来の最高磁界は 800 MHz であった。これを 920 MHz まで高めると、磁界強度は 15 % 増であるが、蓄積エネルギーは 5 倍になることがわかる。

クエンチの発生については、種々の現象解析と対策案が提案されているが、これを抑制する数 値的な指標は少ない。このため、実際のマグネットを製作するにあたっては、製作者自身において その標準とする製作手法(例えば、巻線時の張力、含浸材、バインド等)にしたがって、経験的にク ライテリアを知ることが必要になる。また、実際のマグネット構造および応力は極めて複雑であるか ら、ミクロ的な指標よりもマクロ的な観点における指標の導出が実効的であると考えられる。従来の 超伝導マグネットにおいては、この基準として、線材長手方向に生じる応力 *Bjr*が指標とされてきた が[1]、実際はこれに外れるマグネットが存在した。本研究で対象とする大型マグネットでは、クエン チが発生した場合、たとえマグネット本体に損傷が生じなくとも、その復旧には再冷却・再励磁およ



図 4.1 発生磁界と蓄積エネルギーの関係

び磁界調整という一連の人的・物的ロスが生じる。またこの作業には数ヶ月の時間を要するため、 その間マグネットの使用目的である NMR 測定に供することができなくなるという本質的な問題もあ る。このため、本研究においては、実用化に際し、確実にクエンチを回避するための新たな指標を 見出すことが課題である。

なお、大型装置等でクエンチ防止のために超伝導導体を完全安定化する手法が用いられる場合がある。これは、超伝導線材断面における銅(或いはアルミ)の比率を大きくし、超伝導体にミクロなノーマル転移が発生しても、一時的に銅部に分流させて超伝導状態を回復させるものである。 同様の目的で、コイルの巻線における素線において、その周囲に空間を設けて液体へリウムによる 冷却を促進する手法、パイプの中に超伝導素線を通し、素線とパイプの隙間部に超臨界へリウム を強制循環させて冷却を促進するケーブル・イン・コンジット導体(CICC)等もあるが、これらの手 法は何れもコイル断面当りの電流密度を低下させる代償をともなう。例えば、本研究における920 MHz マグネットに使用する超伝導線材の銅比を5として概略試算すると、必要となる線材重量は 400トンにも達する。このため、このようなクエンチ抑制手法を本マグネットに適用することは現実的 に不可能であり、そもそもクエンチを発生しない応力設計が必要となる。

クエンチの発生率を低減する方策の検討とともに、万が一クエンチが発生した場合のための対 処策も重要である。超伝導マグネットでは、クエンチが発生した場合に瞬時に放出される超伝導マ グネットの蓄積エネルギーを消費するため、保護回路を設ける。保護回路は典型的には図 4.2 (a) に示すようにコイルと保護抵抗を並列に配列して構成される。この回路構成において、クエンチが



図 4.2 超伝導マグネットの保護回路とクエンチ時の電流回路

発生した場合は (b) のように超伝導マグネット内に常伝導成分 r が発生するとともに、LR 放電に よって電流が自然減衰する。しかし、マグネットのインダクタンスが大きい場合、常伝導抵抗 r に比 してインダクタンス L が大きくなるため、保護抵抗 R を経由する自然減衰の応答が遅くなり、マグネ ット内でエネルギーが停滞する状態になる。このような場合は、一時的に電磁力あるいは電流の偏 在が生じ、超伝導線材には過大な応力発生、放電、焼損等が起こり、マグネットに甚大な損傷を与 える可能性がある。インダクタンスが大きくなった場合の保護回路として図 4.3 に示すように電気回 路上でコイルを複数のセクションに分割し、各セクションのコイルに並列に抵抗を配置する構成が 提案されている[1]。このような構成に基づくマグネットに対してクエンチシミュレーションを適用する 場合、コイル間のクエンチの伝播は相互誘導による電流上昇が超伝導線材の臨界電流値を超え ることによって発生するとの仮定に基づき、この仮定によるシミュレーションが実際の挙動を良く再 現できることが報告されている[2].[3].[4]。また、高磁界マグネットでは、コイル構成の制約等から図 4.4(b)のような多数に分割された巻枠によってひとつのマグネットを構成する。このとき、前記クエン チシミュレーションの適用結果が現実と一致しない問題があったが[5]、このようなケースでは、巻枠 を異にするコイルに対して、クエンチ時の急速な磁界変化による超伝導導体の交流損失(結合損 失)を考慮することで、適切にクエンチ伝播を再現できることもわかっている[6].[7].[8]。しかしなが ら、本研究では Jc 最大化のため、Hell 中での運転を前提にすることから、クエンチシミュレーショ ンにおいてその特殊な熱伝達特性を加味したマグネットの保護方法を考慮しなければならない。 一方、マグネットの保護においては、超伝導線材の保護も併せて考慮する必要がある。クエンチに おいて、超伝導線材の許容応力を超える電磁応力が作用した場合、超伝導線材には歪みが発生



図 4.3 セクション分割した超伝導マグネットの保護回路



図 4.4 シングルコイルとマルチセクションコイルの形状

する。特に、Nb<sub>3</sub>Sn は化合物系合金であり、非常に脆く、耐歪特性が低い。このため、マグネットの 保護回路設計において、クエンチ過程での予想電磁力に対し、素線に生じる最大応力をその機 械特性の許容範囲に押さえることが重要であり、同時に超伝導線材の許容応力を向上させることも 重要な意味を持つ。

クエンチは突発的な巨大発熱現象であり、その波及作用として液体ヘリウムの急激な蒸発を伴う。 クライオスタットは液化冷媒を貯蔵する容器であり、実用上は圧力容器設計基準に準じた設計思 想が必要である。このため、クエンチによる急激な内部発熱によって生じる冷媒蒸発、そしてこれに 伴う内圧上昇に対し、安全にかつ確実にこれを放出する機構を備えなければならない。クエンチに 対するクライオスタットの安全機構については、マグネットの持つ蓄積エネルギーが熱変換された 場合を仮定して冷媒への熱伝達率を算定し、これに対応する安全弁口径を設定するという方法が 取られてきた。しかし、この方法は時間仮定の根拠が乏しく、危険サイドでの設計を余儀なくされて いた[9],[10]。マグネットの蓄積エネルギーが 33 MJ にも達し、加圧 He II の貯液量が 1,000 Lを 越えるような本研究対象のマグネットにおいては、クエンチにともなう現象を理解し、これに対する 適切な安全策を講じる必要がある。特に本クライオスタットでは、加圧 He II 冷却方式を採用するた めに、極低温冷媒中で動作する安全弁(低温安全弁)を設けなければならず、この特殊な動作条 件における特性の検証と機器設計が必要である。

本章では、これらの課題に鑑み、クエンチ発生の抑制およびクエンチ保護について議論する。

60

# 4.2 クエンチの抑制

超伝導マグネットにおいては、クエンチの発生境界について、線材長手方向に生じる電磁応力 *Bjr* がその指標として用いられる。その値はワックス含浸では 160 MPa 程度であり、これ以下をク エンチが発生しない安全領域、以上をクエンチ発生の危険領域と区別して、マグネット設計におい てはこのクライテリア以下となるよう配慮される。しかし、筆者らが実際に様々な形状、サイズの超伝 導マグネットを製作したなかで、これに外れるマグネットが散見された。図 4.5 に実際に製作された 超伝導マグネットにおけるクエンチ発生数を縦軸に、*Bjr*を横軸として整理した結果を示す。この図 からわかるように、150 MPa 前後からクエンチを発生するケースが見うけられる。つまり、*Bjr*をクラ イテリア以下となるよう応力設計したマグネットにおいてもクエンチを発生する場合があり、その発生 率はおよそ 4.3 %であった。920 MHz・NMR 用超伝導マグネットでは、4.1 節で述べたように、非 常に大きな蓄積エネルギーを有するため、クエンチによる損害は深刻な問題となる。このため、クエ ンチ発生率は僅かでも低減できる方策を見出す必要性がある。

## 4.2.1 応力基準

コイルの巻線部に生じる電磁力は周方向応力 $\sigma_{\theta}$ (*Bjr*)、半径方向応力 $\sigma_{r}$ 、軸方向応力 $\sigma_{z}$ 、 せん断応力 $\sigma_{r}$ 等に分類できる。クエンチに至るワイヤーモーションを駆動する要因はこれらの応 力の何れかあるいは複合した結果として作用するものと考えられる。そこで、それぞれの応力に関 して、クエンチ発生有無の結果を整理し、相関関係を探索した。この作業から、周方向応力 $\sigma_{\theta}$ (*Bjr*)に加えて軸方向応力 $\sigma_{z}$ にも相関関係が見られた。そこで、横軸に周方向応力力 $\sigma_{\theta}$ (*Bjr*)を、縦軸に軸方向応力 $\sigma_{z}$ (*Fz*と表記する)を取り、種々のマグネットクエンチについてのクエンチ 有無について整理した。その結果を図 4.6に示す。図から、クエンチの発生は図中右下がりの直線 で区切った右側でもっぱら発生し、その反対側ではほとんど発生していないことがわかる。つまり、 従来のように *Bjr*のみを基準としたクライテリア(図中 160 MPa の位置に垂直に表記したライン)よ りも、むしろ上記した *Fz* と *Bjr*の両相関による直線が現実を表している。このことから、920 MHz-NMR 用超伝導マグネットを設計するに際しては、この基準を適用した。図 4.6 に●で示した



図 4.5 クエンチ発生と Bjr の関係



図 4.6 クエンチ発生クライテリア

点がその設計結果である。なお、設計においては従来基準である *Bjr*の制約も存続させている。こ れは、を実際のマグネット設計では、クエンチを想定せねばならず、かつクエンチ発生時には非定 常的な *Bjr*の増大を生じることを考慮したものである。以上、本研究で対象とする 920 MHz-NMR 用超伝導マグネットの設計基準を以下のように定めた。

$$Bjr < 162 \quad \text{here} \quad Fz < 0.57 \quad Bjr + 143$$
 (4.2)

この設計基準は現象から導いた経験的なものであるが、定性的には、Fz を考慮することは巻線内 部のせん断応力およびその開放にともなうエネルギー放出を考慮していることと同義であると理解 される。また、この設計指標によって、実績数をベースにしたクエンチ発生率は、Bjr を単一指標と した場合の 4.3 %に対し、新たな指標の導入によって 1.4 %に減少する。このことから、920 MHz-NMR 用超伝導マグネットの実用機設計・製作を進めるにあたり、式(4.2)による基準を導入 することにより、クエンチリスクを大幅に低減できる見込みを得ることができる。

# 4.3 マグネット保護

本研究では、高 Jcを得るため、超伝導マグネットを加圧 He II 中で運転する。しかし、He II は特殊な物性(超熱伝導、粘性ゼロ)を有しており、クエンチが発生した場合の挙動がクエンチシミュレーションによって再現できるか否かを確認する必要がある。このため、小型のモデルコイルを製作して、実際に加圧 He II 中でクエンチを発生させ、クエンチシミュレーションとの整合を図った[11],[12]。

また、クエンチが発生した場合、超伝導線材に流れる電流値は一時的に大きく変化し、その値 はコイルによって定格電流を上回ることがある。その過程はクエンチシミュレーションによって再現 され、最大印加応力をできるだけ低く抑えるような保護回路を設計するが、現実的にはある程度の 応力増加は避けられない。Nb3Sn 材料は金属間化合物であるため延性、耐歪み特性が低いため、 一般的に許容応力(耐力)は 170 MPa 程度である。一方、マグネット設計およびクエンチシミュレ ーションの結果からは、マグネット中層に配置する Nb<sub>3</sub>Sn 線材には 200 MPa 以上の応力発生が 想定される。このため、この応力による歪みが印加されても *Jc*劣化を生じない Nb<sub>3</sub>Sn 線材が必要 である。これに対し、機械的強度を補う部材として Ta を導入した Nb<sub>3</sub>Sn 線材について検証した [13]。

4.3.1 HeⅡにおけるクエンチシミュレーション

図 4.7 にモデルコイルの概略諸元を示す。モデルコイルは 3 つのコイルから構成され、内層には Nb<sub>3</sub>Sn を用い、中層および外層には NbTi を用いている。この構成によるマグネットは、240 A の 通電時に 7 T を発生することができる。マグネットの中層コイル外表面には強制的にクエンチを発 生させるためのヒーターが設置してある。マグネットは図 4.8 に示す加圧 He II クライオスタットに収 めた。このクライオスタットによって、マグネットは 1.6 K の加圧 He II 中で運転が可能である。なお、 モデルコイルの保護回路は図 4.9(a)によるダイオードを含む回路であるが、解析においては計算 の簡略化のため、同(b)のように保護抵抗のみを考慮した回路としている。

以上の構成によるモデルコイルを用いて、先ず4.2Kの飽和液体ヘリウム中で強制的にクエンチを



|       |        | Coil 1   | Coil 2 | Coil 3 | Total  |
|-------|--------|----------|--------|--------|--------|
| 巻線内径  | [mm]   | 83.6     | 138.14 | 197.9  |        |
| 巻線外径  | [mm]   | 120.8    | 176.3  | 235    |        |
| 長さ    | [mm]   | 129.1    | 128.88 | 128.25 |        |
| 層数    | [-]    | 18       | 18     | 20     |        |
| ターン数  | [-]    | 1222.8   | 1529   | 2078   |        |
| 磁場定数  | [mT/A] | 9.335    | 9.462  | 10.391 | 29.188 |
| 線種    | [-]    | $Nb_3Sn$ | NbTi   | NbTi   |        |
| 裸線幅   | [mm]   | 1.74     | 1.42   | 1.16   |        |
| 裸線高   | [mm]   | 0.87     | 0.912  | 0.78   |        |
| コーナーR | [mm]   | 0.3      | 0.1    | 0.1    |        |
| 被覆線幅  | [mm]   | 1.89     | 1.49   | 1.23   |        |
| 被覆線高  | [mm]   | 1.02     | 0.972  | 0.85   |        |
| 銅比    | [-]    | 0.7      | 3.5    | 3.5    |        |
| 線材重量  | [kg]   | 5.0      | 8.0    | 10.5   | 23.5   |

図 4.8 モデルコイルの主要諸元



図 4.8 モデルコイル実験用クライオスタット断面および実装状況



図 4.9 モデルコイルの保護回路



図 4.10 小型モデルコイルの 4.2 K におけるクエンチ



図 4.11 小型モデルコイルの 1.6 K におけるクエンチ(従来解析)

発生させた。図 4.10(a)は実測による電圧挙動を、(b)は解析による電圧挙動を示している。クエン チはコイル 2 に設置したヒーターによって強制的に発生させ、コイル 1 および 3 に伝播する様子を 観察した。クエンチが伝播したポイントを図中黒丸で示している。この結果から、4.2 K におけるク エンチについては、解析が実際をよくシミュレートできていることがわかる。次に、同一の構成のまま、



図 4.12 ヘリウムの熱伝達特性

冷却温度を 1.6 K とした場合のクエンチ挙動について、実測と解析を比較した。図 4.11 にその結 果を示す。クエンチ条件は 4.2 K におけるクエンチと同様、通電電流 240 A、中心磁界 7 T のとき に、コイル2を強制的にクエンチさせた。実測による電圧挙動は図 4.10(a)の 4.2 K における挙動 に近い。一方、これを 1.6 K を初期条件としたクエンチシミュレーションによって再現した結果を図 4.11(b)に示す。(a)(b)を比較すると、解析によるコイル 1 のクエンチ発生時刻が実際よりも早く、か つ電圧ピーク値が大きく下回ることがわかる。これは、実際のコイルではコイル1へのクエンチ伝播 が計算よりも早くに発生しているためと考えられ、その原因は解析におけるコイルの温度上昇を過 剰に見積っていることが想定される。この実際と解析の不一致について、Hellの熱伝達特性に着 目して、その修正を試みた。Hell中の熱伝達はカピッツァ抵抗が支配する。その特性を図 4.12(b) に示す[14]。 膜沸騰に転移する以前の状態がカピッツァ抵抗領域である。 この熱伝達特性を(a)に 示すノーマルヘリウムの場合と比較すると、例えば熱流束 10 kW/m<sup>2</sup>の場合、ノーマルヘリウムで は熱伝達界面における温度差が膜沸騰に転移して数 K になる[15]のに対し、He II 中でのカピッ ツァ抵抗領域では、1 K 程度である。一方、4.4.1 節で示すように、クエンチ過程でのマグネット表 面からの熱流束は、クエンチ突入直後は数kW/m2程度と見積もられるため、1.6Kにおけるクエン チシミュレーションにもこの冷却効果を考慮するものとした。具体的には、クエンチ過程でマグネット 表面の温度を初期温度である 1.6 K に固定して計算する。実際のマグネットのクエンチでは、マグ ネット自身が加熱面となって、周辺の冷媒に対して積極的な攪拌作用を与えると考えられるため、



図 4.13 小型モデルコイルの 1.6 K におけるクエンチ(He 特性を考慮)

マグネット表面は常に冷媒と接すると考えられる。つまり、マグネットと冷媒との熱伝達率は、図 4.12(b)から得られる値よりもさらに大きな値になるはずである。この点からも、上記仮説は有効であ ると思われる。なお、解析において、コイル内部の熱伝導も考慮した。その値は、コイルマトリックス (超伝導線材、含浸材)の熱伝導率を複合則より求めた。この修正によるシミュレーション結果と実 測値の比較結果を図 4.13 に示す。解析結果はコイル 1 の発生電圧ピーク値および発生時刻とも に現実を精度良く反映できるようになり、加圧 He II 中でのクエンチにおいて、マグネットの表面冷 却が重要な考慮点であることが明らかになった。

以上の結果をもとにした実機への適用結果については第5章で述べるが、その最大応力はマグ ネット中層(NS-5)において230 MPaとなる。この値を指標として次節によるNb<sub>3</sub>Snの高耐力化指 標として300 MPaが導出されている。なお、実機である920 MHzマグネットは、工場内検査励磁 中に冷却系統のトラブルによって運転温度が上昇し、約890 MHz 発生中に実際にクエンチを経 験した。不意のクエンチであったため、詳細データは得られなかったが、マグネットはその後再び 定格励磁可能であり、磁界安定度も正常であったことから、実機においてもクエンチシミュレーショ ンに基づく保護回路設計が適切であったことが確認されている。

68

# 4.3.2 Nb<sub>3</sub>Sn 線材の高耐力化

マグネットの中層においては環境磁界が低下する分、要求される臨界電流密度には余裕が出 てくる。このため、マグネット設計では寧ろ定常時の電磁応力を4.2節でのべた、クエンチ発生率低 減のための許容値まで高める設計を課す。本研究で対象とする超伝導マグネットのなかで、特に NbaSnを用いたコイルにおいては、図 2.19におけるコイル名称 NS-4 および NS-5 がこれに相当 する。定常時に超伝導線材に印加される周方向応力はマグネット設計における *Bjr* によって制約 され、その値はおよそ 160 MPa である。しかし、超伝導マグネットには不測のクエンチ発生が想定 され、このときコイル間には電流偏在が起こり、このとき超伝導線材には定常応力を上回る応力が 印加されることになる。その値は 4.3.1 節で示すようにクエンチシミュレーションによって 230 MPa と推定された。一方、NbaSn は金属間化合物であるため、延性、耐歪み特性が低く、一般的に許 容応力(耐力)は 170 MPa 程度である。したがって、クエンチシミュレーションの結果から想定され る応力 230 MPa が印加される NS-4、NS-5 においては、この応力による歪みを受けても *Jc*の劣 化を生じない NbaSn 線材が必要である。このような高強度 NbaSn 線材を得る方法として、機械的 強度を補う部材として Ta を導入した NbaSn 線材について検証した[16]。なお、NbaSn 線材の補 強材として Ta を適用する理由は、下記による。

- ・ 体心立法型の結晶構造を持ち、極低温での耐力、強度が著しく向上する
- ・ 融点が 3263 K と非常に高く、Nb3Sn 生成時の熱処理による機械的特性の低下を抑えること



図 4.14 Ta 補強 Nb<sub>3</sub>Sn 線材の断面


図 4.15 Ta 補強線材と非補強線材の 4.2 K における応力 - 歪特性

ができる

#### 4.2 K での抵抗率が 2.9×10<sup>-9</sup> Ωm と比較的低く、安定化材としても有効である

実際に製作した Ta 補強 Nb<sub>3</sub>Sn 線材の断面構成を図 4.14 に示す。中心部に Ta を配置し、こ れを被覆するように Nb を施工する。その外径側にブロンズマトリックスの Nb<sub>3</sub>Sn 領域を設け、その 外径側を Nb バリヤで被覆する。また、最外層には安定化のための Cu を配す。この構成における Ta 補強材の占積率は 10.8 %であり、銅比 (Cu/non-Cu) は 0.5 となる。なお、Ta 材周囲の Nb 層 は Ta と Nb<sub>3</sub>Sn 層 (伸線時はブロンズと Nb のマトリックス)との極端な硬度の差異を埋めるための 中間層の役割を果たし、これによって伸線工程において健全な線材断面を確保することができる。

製作した Ta 補強線材について、液体ヘリウム中における引張試験によってその強度を確認した。 Ta 補強線材と非補強線材の応力 – 歪曲線を図 4.15 に示す。この図より、0.15 %以上の歪量で Ta による補強の効果が著しくなることがわかる。補強をしていな線材の Young 率および 0.2 % 耐力 はそれぞれ約 116 GPa、170 MPa であるのに対し、Ta 補強線材はそれぞれ約 105 GPa、305 MPa となっている。これより、占積率にして 10.8 %の Ta で補強することで、4.2 K の 0.2 % 耐力は 約 1.8 倍となり、クエンチ時に想定される最大応力 230 MPa においても、*Jc* 特性劣化を生じない Nb<sub>3</sub>Sn が得られる。

## 4.4 容器設計

4.4.1 クエンチにおけるエネルギー放出

加圧 He II クライオスタットには He I 槽と He II 槽を分離するセパレータ部に、低温環境で動作 する低温安全弁が備えられる。クライオスタットは液化冷媒を貯蔵する容器でもあるから、この低温 安全弁の設計が適切になされている必要がある。この形状選定基準を見出すため、4.3.1 節で述 べた加圧 He II 中でのモデルマグネットによるクエンチ実験とともに、そのときのガス放出過程から 安全弁の挙動を検証した[16]。

実験装置は図 4.8 に示すものと同一である。He II 槽には 4.3.1 節で示した 7 T で 61.6 kJ の蓄 積エネルギーを有するモデルコイルが設置されている。セパレータに設置された低温安全弁の吹 出口径は φ 34 mm であり、He II 槽の正味 He II 容積は 9 L である。低温安全弁の上部には室温 部まで延長されたステムが接続され、これによって低温安全弁の変位を測定することが可能である。 変位測定には歪ゲージ式トランスデューサーを用いた。また、He II 槽内の圧力はキャピラリを介し て室温部で測定する。この装置を用いて、モデルコイルを強制的にクエンチさせたときの温度、圧 力、低温安全弁変位の挙動について 4.2 K および 1.6 K を初期温度とした場合の実測結果につ いてそれぞれ図 4.16 および図 4.17 に示す。何れの場合も、マグネットの初期磁界は 7 T である。 両図のなかで、温度を示すグラフ中、青線はモデルコイルの巻枠に取り付けた温度センサーの測 定値であり、赤線は He II 槽の温度である。また、圧力グラフでの青線は低温安全弁入口すなわち He II 槽内の圧力を示し、赤線は低温安全弁出口すなわち、He I 槽の気相部での測定値である。

図 4.16 に示す 4.2 K を初期温度とする場合のクエンチでは、HeII 槽温度が約4s でほぼフラット(約4.5 K)になり、この状態が18sまで継続し、その後 HeII 槽温度は上昇過程に入る。HeII 槽は静的には HeI 槽と同圧(大気圧)であるが、低温安全弁の動作状態、すなわち流体の流れを伴う動的な場合は、安全弁の動作抵抗(流体抵抗、弁体自重および弁バネ抵抗)により若干の保 圧状態になる。このため、初期に大気圧 4.2 K であった HeII 槽内の液体へリウムは、クエンチによ る内圧上昇によって、保圧圧力に相当する飽和温度まで温度上昇することになる。これが初期の4 s 間に生じていると考えられる。飽和状態となった液体へリウムは、加熱(マグネットからの放熱)とと もに気化することで大きな体積膨張を引き起こす。このため、圧力および安全弁の変位は液体へリ



図 4.16 4.2 K におけるモデルコイルクエンチ後の状態



図 4.17 1.6 K におけるモデルコイルクエンチ後の状態

ウムが飽和状態に転移するのと同時(クエンチ発生の約 4 s 後)にピークに達し、その値は圧力で 1.45 kgf/cm<sup>2</sup>、安全弁変位で 12 mm であった。

一方、図 4.17 の加圧 Hell 中でのクエンチでは、クエンチの約1 s 後に液体ヘリウムの温度が 上昇を開始し、約3 s 後に λ 点に至る(図中桃色で示す領域)。 λ 点を通過する際は、液体ヘリウ ムの超流動転移による比熱ピークを越えるため、温度はん点で一定のままのプラトー状態となる。 測定ではこの領域を超えるのに約2s間を要している(図中青色で示す領域)。その後、液体ヘリウ ムは He I に転移するが、その温度は大気圧飽和温度よりも低い過冷却状態である。このため、マ グネットからの放熱は液体ヘリウムの温度上昇に消費される(図中水色で示す領域)。過冷却状態 から飽和状態へ転移すると、液体への加熱はただちに蒸発に転嫁するから、急激な体積膨張をと もなう。この転移点は圧力の変化から推定され、図中では18sがこれに相当する。飽和状態後は、 エネルギーは液体の気化熱として消費され、液相成分が枯渇するまで継続する(図中緑色で示す 領域)。この枯渇タイミングは76sである。一方、安全弁の変位挙動を見ると、初期の約2s間は短 いサイクルで激しく上下動し、その後収まってくる。Hellは高い熱伝導率や熱伝達率を有するが、 発熱体からの熱流束があるしきい値を超えると、Hellといえども沸騰現象を起こすうえ、条件によ って膜沸騰の発生とその消滅を繰り返すことがわかっている[17]。これは noisy film boiling とよび、 He II に特有の現象であり、また、その周波数は数 Hz から数万 Hz といわれる。図 4.18 におけるク エンチ直後の激しい安全弁の上下動は noisy film boiling による影響、すなわち膜沸騰とその消 滅を繰り返していることが考えられる。4.3.2 節に述べるように、マグネット表面からの熱流束は 5 kW/m<sup>2</sup>以下であるため、図 4.12(b)による静的な状態での加圧 HeⅡの膜沸騰転移熱流束 10 kW/m²よりも低い。しかし、実際のクエンチに際しては、初期の 2 s 間は専ら保護抵抗でエネルギ ーが消費されるため、この部分での熱流束は 100 kW/m²を超え、このことが Hell での膜沸騰を 誘起しているものと考えられる。ただし、λ点以下の温度域では密度は温度に依らずほぼ一定で あることから、気液の相変化による容積変動を起因とした安全弁の激しい上下運動は発生するもの の、Hell 槽からの流体流出は伴わない。最後に液体ヘリウムは大気圧(厳密にはそのときの内圧) 飽和状態となり、加熱はただちに気化に寄与するため、圧力上昇と安全弁リフトは最大値を示す。 測定では、クエンチ開始から約 18 s を経過して両者はピークを迎え、その値は圧力では 1.22 kgf/cm<sup>2</sup>、安全弁リフトでは5mmであった。これらは、図 4.16の 4.2 Kを初期温度とした場合のク エンチ状況と大きく異なる。この状況について、特に変化の過程が多い 1.6 K 加圧 Hell 中でのク エンチについて更にマグネット発熱と対比して次節で考察する。

74

#### 4.4.2 安全弁設計基準

前節で示したモデルコイルにおけるクエンチ挙動を再検証する。図 4.13(a)による 1.6 K を初期 温度としたクエンチにおいて、同時にコイルの中心磁界を測定した。この中心磁界強度はクエンチ にともなう分割されたコイル間の電流分布とは無関係に平均電流を表すと考える。したがって、中 心磁界からマグネットの平均電流がわかり、既知のインダクタンスから各時刻における蓄積エネル ギーを算出することができる。実測による中心磁界と蓄積エネルギーの推算値を図 4.18 に示す。 図からわかるように、クエンチにともなうエネルギーは初期の 2 s 間でその 8 割を消費している。

前節で述べたように、図 4.17 において、温度の推移から、クエンチ発生→ $\lambda$ 点到達→ $\lambda$ 点通過 →過冷却 He I 領域通過、飽和 He I 到達→蒸発完了、までの 4 ステップに分類することができる (図中で色分け)。この 4 ステップにおいて、ヘリウムの状態変化に必要な既知の物性値である熱 量から、各ステップの発熱量が算出できる。図 4.19(a)にその結果を表す。図中縦軸は、クエンチ 発生からの累計冷却量を示す。マグネットがクエンチ前に保持していた蓄積エネルギー61.6 kJ の うち約 34 kJ がヘリウムに転嫁されている(グラフ範囲の 100 s 間)。一方、(a)図の各データ間を 時間微分したものをさらにマグネット全表面積(0.27 m<sup>2</sup>)で除したものを熱流束として(b)図に表す。 マグネット表面からの熱流束はクエンチ直後に急激に立ち上がり、約 4 s 後にピーク値 4.3 kW/m<sup>2</sup>



図 4.18 クエンチ時の蓄積エネルギー変化

を経て、その後急激に減衰する。

マグネットは、超伝導線材を巻枠に巻きつけ、これを含浸材で固めた構造である。含浸材は例え ばエポキシ樹脂やワックスを用いるが、いずれも高分子系材料であり、金属に比して熱伝導率が小 さいことから、熱伝導率の複合則にしたがって超伝導線材と含浸材の複合体であるマグネットの熱 伝導率も小さくなる。このため、実際のマグネット内ではクエンチ直後の全体的な温度上昇を経て、 表面冷却による温度分布が生じると考えられる。これについて、簡易モデルでの計算によって検証 した。モデルは一次元の温度緩和を求めたもので、次式による熱拡散微分方程式から得られる。

$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2} \tag{4.3}$$

$$\hbar \hbar \mathcal{E} \mathcal{L}, \quad a = \frac{\lambda_t}{\rho_t \, C p_t} \tag{4.4}$$

式(4.4)は超伝導線材、絶縁被覆材、含浸材を含めた超伝導マグネットの構成における熱拡散率 である。なお、計算では、初期温度 55 K、表面温度 1.6 K、比熱は銅相当とした。熱伝導率は実 際のマグネットを考慮して、銅と樹脂材料(本例ではワックスおよび絶縁被覆材)の熱伝導率から (4.5)式による複合則に従って求めた。



図 4.19 冷媒状態変化から求めた冷却曲線

$$\frac{1}{\lambda_{t} \cdot V_{t}} = \frac{1}{\lambda_{w} \cdot V_{w}} + \frac{1}{\lambda_{ins.} \cdot V_{ins.}} + \frac{1}{\lambda_{imp.} \cdot V_{imp.}} + \cdots$$
(4.5)
  
ここに、  $\lambda$  : 熱伝導率
  
 $V$  : 体積
  
 $\rho$  : 密度
  
 $Cp$  : 比熱

なお、サフィックス t は複合体全体、w は線材部分、ins.は線材の絶縁被覆、imp.は含浸材をそれ ぞれ表す。マグネットにおける樹脂材料の体積比は 2 割程度であるが、銅と樹脂系材料の熱伝導 率は 4 桁以上の差があるため、マグネット全体の熱伝導率は樹脂系材料に影響され、低い値とな る。計算結果を図 4.20 に示す。(a)は 0 mm を冷却面としたときの時間経過にともなう内部温度分 布の変化を、(b)は冷却表面での熱流束の時間変化を表す。熱流束は冷却表面直近の要素にお ける温度勾配から求めた。マグネットの温度緩和は 2 s 後に既に顕著に現れ、4 s 後の熱流束は 5 kW/m<sup>2</sup>程度まで減少する。このような早い変化を生じるのは、式(4.4)による熱拡散率において、極 低温中では熱伝導率の低下以上に比熱の低下が大きく、熱拡散率が高くなるためである。図 4.19(b)と図 4.20(b)を比較すると、0 s 近傍に差異がある。図 4.18 に示すように、クエンチ後のエネ ルギー放出に 2~3 s を要し、この間にマグネットが 1.6 K から最高温度(約 55 K)まで上昇する。



図 4.20 コイル内温度緩和のモデル計算

しかし、マグネットが最高温度に到達するまでに表面近傍では冷却にともなう温度緩和が進行し、 結果として大きな熱流束値が発生しないものと考えられる。このことを考慮すると、実測による図 4.19(b)の挙動がよく理解できる。

以上の検証から、クエンチにおけるマグネットからの熱流束を支配するのは、マグネット内部の温 度の時間緩和からくる表面近傍温度勾配に基づく表面熱流束によるものであるといえる。その値は 実測から、クエンチ発生の数秒(実験では約4s)後にピーク値4.3 kW/cm<sup>2</sup>となり、その後は急激 に減少する。このことから、熱流束の絶対値は5 kW/cm<sup>2</sup>程度を上限と考える。このとき、図 4.12(a)(b)から、液体へリウムが HeIIまたは He I であっても、核沸騰領域である。しかし、マグネ ットの主たる加熱面は円筒表面(巻線表面)かつ鉛直面であるため、槽内流体は積極的な攪拌状 態になるから、その表面熱伝達能力は図 3.15 による静的な熱伝達特性をさらに上回り、実際には マグネット表面が冷媒温度と一致すると考えられる。このような状況推定は4.3.1 節における加圧 He II 中でのクエンチシミュレーションにおいてコイル表面を1.6 K に固定することで現実と一致を 見ることの証左とすることができる。

上記の結果から、マグネットのクエンチによるエネルギーの放出は、マグネット内部の温度拡散 に支配される。特に、本研究で対象とする密巻・含浸コイルの場合、その最大値は4.3 kW/m<sup>2</sup>であ る。ここで、HeII槽の圧力最大値(低温安全弁のリフト最大値)を規定する要因を考える。流体の 吹出量と吹出面積の関係は圧縮性流体に対して式(4.6)で表される[18]。

| Δ —   |                              |                                                                                                                   |                                             |
|-------|------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| A – – | $548 \cdot \kappa \cdot P_1$ | $\sqrt{\frac{k}{k-1} \left\{ \left(\frac{P_2}{P_1}\right)^{2/k} - \left(\frac{P_2}{P_1}\right)^{k+1/k} \right\}}$ | $\left. \right\} \times \sqrt{\frac{M}{T}}$ |
| ここに   | $P_1$                        | :吹出決定圧力                                                                                                           | [atm]                                       |
|       | $P_2$                        | :背圧                                                                                                               | [atm]                                       |
|       | k                            | :断熱指数                                                                                                             | $k=C_P/C_V$                                 |
|       | M                            | :分子量                                                                                                              |                                             |
|       | T                            | :吹出圧力における温度                                                                                                       | [K]                                         |
|       | W                            | :吹出量                                                                                                              | [kg/h]                                      |
|       | κ                            | :吹出係数                                                                                                             |                                             |
|       | A                            | :必要吹出面積                                                                                                           | $[cm^2]$                                    |

(4.6)

ヘリウムに対しては、k = 1.66、M = 4である。また、安全弁の入口形状から、 $\kappa = 0.5$ とする。なお、 飽和状態のヘリウムの場合、液密度とガス密度の比率を考慮して、実際に吹き出す質量流量は気 化量に対して

$$\frac{\rho_l - \rho_g}{\rho_l} \tag{4.7}$$

を乗じて補正する。サフィックス gはガスを、l は液を表す。

1.6 Kを初期温度とした図 4.17 で、圧力および安全弁リフトが最大値を取るのは、He II 槽中の 液体ヘリウムが飽和状態になる 18 s 後であり、このときの熱流束は図 4.19(b)より、約 2.2 kW/ m<sup>2</sup> である。よって、式(4.6)より、必要吹出面積は A=0.7 cm<sup>2</sup>となり、実測によるバルブリフト(=5 mm) から求まるバルブシートギャップ面積 0.6 cm<sup>2</sup>とほぼ一致する。同様に、4.2 K におけるクエンチで は、図 4.16 より、クエンチ 4 s 後に圧力、バルブリフトがピークを迎え、このときの熱流束は図 4.19(b)から 4.3 kW/ m<sup>2</sup>である。これを式(4.6)に適用して必要吹出面積を算出すると A=1.2 cm<sup>2</sup> となる。これも実測によるバルブリフト(=12 mm)から求まるバルブシートギャップ面積 1.3 cm<sup>2</sup>とほ ぼ一致する。したがって、この検証からも図 4.19(b)で表記した熱流束が実際をよく表すことがわか る。

以上から、最大圧力、最大バルブリフトは、周囲の冷媒が飽和温度に達したときに発生する。そのときの熱流束は図 4.19(b)から読み取ることができる。したがって、クエンチ初期温度は考慮せず、 冷媒が飽和状態に達するまでの所用時間を考慮して実際の安全弁設計を行えばよい。特に、1.6 K を起点温度としたクエンチでは、冷媒が飽和状態に達するまでの猶予時間が長いために、最大 圧力、最大バルブリフトともに 4.2 K を起点としたクエンチに対して小さくなる。また、いかなる場合 であっても、マグネットからの最大熱流束絶対値が決まっているので、これをもとに安全弁の設計を 行えば、セーフティマージンを考慮した設計とすることができる。

79

## 4.5 まとめ

本章では、安全性に関連する項目として、クエンチ抑制、保護および容器安全設計について検 証した。以下に得られた結論をまとめる。

- 1) 超伝導マグネット固有のクエンチ問題について、実際に製作してきた多数のマグネットの応力 条件を再分析し、従来指標であった Bjrに加えて軸方向応力 Fzを併せて評価することがマク ロ的にクエンチ発生有無を分離することに有効であることを示した。この知見から、実用システ ムでのマグネット設計における応力設計基準を、「Bjr < 162 かつ Fz < 0.57 Bjr + 143」と することで、クエンチ発生率従来値 4.3 %を 1.4 %に低減できる。ただし、ここに得た指標はあく までもマクロ的なものである。また、Bjr 自体は素線 1 本あたりの応力を表すものであり、密巻き コイルをバルク状の複合体と捉えた場合、Bjr が全てを表すとは言えない。したがって、今後は さらに仔細に実体を表す指標を導き、クエンチ発生率ゼロを目指す必要もある。
- 2)保護回路設計に用いるクエンチシミュレーション手法について、HeII中でのクエンチに適用 するための条件を実験的に検証した。その結果、マグネット表面温度を冷媒温度と等しく置き、 かつコイル内部での熱伝導率を複合則による現実的な物性として考慮することによって、加圧 HeIIにおけるクエンチシミュレーションが実際をよく再現できることを明らかにした。さらに、He II対応クエンチシミュレーションを用いて実機における解析を実施し、マグネット全体における 最大応力を抑える保護回路設計をおこなった。その結果、マグネット中層域において予測され る最大周方向応力は230 MPa であることがわかった。
- 3) 上記中層域における最大応力を考慮し、この領域に適用可能な Ta 補強 Nb<sub>3</sub>Sn 線材が開発 された。その 0.2 %耐力は 300 MPa に達することから、クエンチ発生においても、残留歪みに よる超伝導特性の劣化は生じない。
- 4) 加圧 HeII 中での超伝導マグネットのクエンチ実験と計算による対比から、クエンチ後の冷媒へのエネルギー放出は、マグネット内部温度の時間緩和によって規定されることを明らかにした。この条件は HeII 中でのクエンチ実験によって得られたものであるが、固体であるマグネット内部の温度変化は冷媒種別によらないから、HeI でのクエンチにも適用可能である。このことにより、従来液体へリウムにおける沸騰熱伝達特性を基準に設計されていたクライオスタット

の安全機構について、より適切な設計が可能になる。なお、この解析ではクエンチ途中の初期 挙動が未考慮であるため、クエンチシミュレーションとの整合を図りながら、今後更に精度を向 上させる必要がある。

#### 参考文献

- [1] M. N. Wilson, "Superconducting Magnets", Clarendon Press Oxford, 1989
- [2] J. E. C. Williams, "Quenching in coupled adiabatic coils", IEEE Trans. Magn., MAG-21, 1985, pp.396
- [3] G. Ganetis, "Results from Heater-induced Quenches of 4.5 m Reference Design D-Dipole for SSC", IEEE Trans. Magn., MAG-23, 1987, pp.495
- [4] A. Ishiyama, "Quench propergation analysis in a adiabatic superconducting windings", IEEE Trans. Magn., MAG-27, 1991, pp.2092
- [5] 尾崎修,奥田正彦,神門剛,吉川正敏,広瀬量一, "マルチセクションマグネットのクエンチ シミュレーション -その 2-",第 52 回 1994 年度秋季低温工学・超伝導学会講演概要集, A2-8
- [6] 神門剛, "加圧超流動型高磁界マグネットシステムの開発(1) マグネット製作と試験-",第
   49回 1993年度春季低温工学・超伝導学会講演概要集, pp.267
- [7] 種田雅信, "加圧超流動型高磁界マグネットシステムの開発(1) システム設計と冷却試験
   –", 第49回 1993 年度春季低温工学・超伝導学会講演概要集, pp.266
- [8] 広瀬量一,"加圧超流動型高磁界マグネットシステムの開発(2)-応力設計-",第49回
   1993年度春季低温工学・超伝導学会講演概要集, pp.268
- D. S. Slack, "Vent rate of superconducting magnets during quench in the magnetic fusion facility", IEEE, 1979, pp.1758-1760
- [10] H. Lahn, W. Lehmann, M. Stamm and M. Süßer, "Cryogenics for the homer II-high field magnet test facility at the Forschungzentrum Karlsruhe", Presented at CEC-ICMC 2001, Madison, Wisconsin
- [11] 尾崎修, 吉川正敏, 広瀬量一, 伊藤聡, 嶋田雅生, 川手剛雄, 湯山道也, 木吉司, 佐藤明

男,和田仁,"加圧超流動ヘリウム中でのマルチセクション超伝導マグネットのクエンチ挙動

(2)-AC ロスの検討-",低温工学・超伝導学会,1997年度春季

- [12] O. Ozaki, M. Yoshikawa, R. Hirose, T. Hase, M. Shimada, and Y. Kawate, "Quench behavior of multi-sectional superconducting magnet in superfluid helium", IEEE Transactions on Applied Superconductivity, Vol. 8, 1998, pp.
- [13] 宮崎隆好,村上幸伸,長谷隆司,宮武孝之,林征治,川手剛雄,枩倉功和,木吉司,伊藤 喜久男,竹内孝夫,井上廉,和田仁,"1 GHz 級 NMR マグネット用超電導導体の開発 – 高耐力 (Nb, Ti)<sub>3</sub>Sn 導体-",低温工学, Vol. 35, No.3, 2000, pp.20-25
- [14] 低温工学協会編, "超伝導・低温工学ハンドブック", オーム社, 1993, pp.315
- [15] 低温工学協会編, "超伝導・低温工学ハンドブック", オーム社, 1993, pp.319
- [16] 伊藤聡, 川手剛雄, 林征治, 嶋田雅生, 佐藤明男, 三木孝史, 永井秀雄, 松本文明, 和田仁, 野口隆志, "1 GHz 級 NMR 用加圧超流動へリウムクライオスタットの開発-加圧超流動 ヘリウム中でのマグネットクエンチによる内圧挙動の検証-", 低温工学・超伝導学会, 1997 年度秋季
- [17] S. W. Van Sciver, "Helium Cryogenics", Plrnum Press, New York
- [18] 低温工学協会編, "超伝導・低温工学ハンドブック", オーム社, 1993, pp.395

# 第5章 実機製作

これまでの第 2~4 章で述べてきたように、超伝導線材、マグネットおよびクライオスタットの各要素技術についての種々の知見が得られたことを受け、920 MHz-NMR 用超伝導マグネットの実機を製作した。本章では、これまでに述べてき要素技術の検証に加え、実機として加味すべき信頼性に関する考慮点およびその施策についても示す。なお、超伝導マグネットは神戸製鋼所高砂工場で組立および検査を行い、その後解体を経て、茨城県つくば市の独立行政法人物質・材料研究機構殿に移設・設置した。

# 5.1 全体構成

超伝導マグネットの概略断面を図 5.1 に示す。920 MHz(=21.6 T)を発生する超伝導マグネット 本体は He II 槽内に配置される。この He II 槽は NbaSn のジョイントを配置するため上部に突起が ある形状を成している。He II 槽と He I 槽は低温安全弁を介して連接される。低磁界かつ発熱を 許容できる場所として、PCS はこのセパレータよりも上部、He I 槽内に配置される。なお、超伝導 マグネットへの初期の通電は、脱着式パワーリードを PCS の上方にある電極に接続して行われる。 パワーリードは極低温部分への大きな熱侵入源となるので、マグネットが定格電流値に達し、永久 電流モードに移行した後に抜き取られる。

全体諸元を表 5.1 に示す。表中には計画値(仕様値)に併せて実績値も記載してある。マグネットの総重量は約 17 トンであり、そのうち巻枠等を含むマグネット本体は 8 トンである。

以下に、マグネットおよびクライオスタットについて、詳細を述べる。



図 5.1 920 MHz 超伝導マグネットの概略断面

|       | 項目                                                         | 単位                    | 計画値                | 実績値          |
|-------|------------------------------------------------------------|-----------------------|--------------------|--------------|
| 全体    | 全高(脚、突起含む)                                                 | [mm]                  | 5402               |              |
|       | マグネット本体全高                                                  | [mm]                  | 3694               |              |
|       | 直径(容器胴部)                                                   | [mm]                  | 1712               |              |
|       | ボア内径                                                       | [mm]                  | 54                 |              |
|       | 総重量                                                        | [mm]                  | 16987              |              |
|       | 内 クライオスタット                                                 | [kg]                  | 6312               |              |
|       | マグネット                                                      | [kg]                  | 8000               |              |
|       | 冷媒                                                         | [kg]                  | 691                |              |
|       | スタンド                                                       | [kg]                  | 1984               |              |
| マグネット | 参枠最小内径                                                     | [mm]                  | 74                 |              |
|       | 巻線最外径                                                      | [mm]                  | 909.5              |              |
|       | 巻線最大長さ                                                     |                       | 1520               |              |
|       | $Nb_3Sn線材重量$                                               | [kg]                  | 1384               |              |
|       | NbTi線材重量                                                   | [kg]                  | 3449               |              |
|       | インダクタンス<br>運転電流<br>中心磁場<br>蓄積エネルギー<br>磁場均一度 ( @φ10×20 mm ) |                       | 1128.1             |              |
|       |                                                            |                       | 244.4              |              |
|       |                                                            |                       | 21.61              |              |
|       |                                                            |                       | 33.7               |              |
|       |                                                            |                       | < ±0.1             | $\pm 0.078$  |
|       | 磁場安定度                                                      | [ppm/h]               | $< \pm 0.01$       | -0.0014      |
|       | 超伝導シムチャンネル数                                                | [-]                   | 9                  |              |
| 冷却系   | 冷却方式                                                       | [-]                   | Claude式加圧超         | 流動ヘリウム冷却     |
|       | 常流動ヘリウム槽容量                                                 | [L]                   | 504                |              |
|       | 加圧超流動ヘリウム槽容量                                               | [L]                   | 1080               |              |
|       | 液体窒素槽容量                                                    | [L]                   | 582                |              |
|       | 定常時液体ヘリウム消費量                                               | [L/h]                 | < 1.34             | 0.97         |
|       | 定常時液体窒素消費量                                                 | [L/h]                 | < 1.5              | 0.74         |
|       | 定常時JT流量                                                    | [SLM]                 | -                  | $\sim 9$     |
|       | 定常排気圧力                                                     | [Pa]                  | -                  | $\sim 200$   |
|       | 運転温度                                                       | [K]                   | < 1.8              | 1.55         |
|       | 温度安定度                                                      | [K]                   | -                  | $\pm 0.05$   |
| 外部機器  | ポンプ排気速度 ( 50 Hz )                                          | [m <sup>3</sup> /h/台] | 280                |              |
|       | ポンプ到達圧力 ( 50 Hz )                                          | [mbar]                | $8 \times 10^{-2}$ |              |
|       | ポンプ定格電力 (50 Hz)                                            | [kW/台]                | 6.3                |              |
| 制御    | 操作機器                                                       | [•]                   | -                  | JT弁          |
|       | 駆動方式                                                       | [•]                   | -                  | 3相ステッピングモーター |

### 表 5.1 920 MHz-NMR 用超伝導マグネット主要諸元

#### 5.1.1 マグネット

コイル設計:第2章で述べた運転温度の低温化による超伝導線材の高 Jc化、第3章で述べたク エンチ発生率を低減しながら、線材に生じる応力(Bjr)の最大化および超伝導線材の高耐力化を 考慮し、かつマグネットの大型化にともなうマルチセクション化(蓄積エネルギーの増大)への対応 と冷却条件を反映したクエンチ保護を取り入れ、実用機のマグネット設計パラメータを表 2.3 に示 すように確定した[1]。式(1.2)による評価関数 Fの値は何れも 1×10<sup>-10</sup> 乗台以下の値を確保し、 NMR 用マグネットとしての磁界安定条件を満たす見通しが得られている。応力条件については、 式(4.2)に従い、Bjr および Fzを考慮している。

コイル分割(単重):マグネットのコイル分割および保護回路の設計結果は、図 5.2 に示す。図中、 #で示した番号は巻枠番号を表しており、その総数は7個である。それぞれの巻枠には複数のコイ ルが巻かれており、さらに個々の巻枠内でコイルも細分化されている。これは、マグネットの大型化 によって、ひとつのコイル当りに必要な超伝導線材条長(重量)も大きくなるが、超伝導線材を製作 するうえでの初期工程である押し出し加工において、押し出し装置能力の制約から大重量のビレッ トの加工が不可能なためである。現状装置の加工能力から、その上限は 60 kg に制約され、これ 応じて各コイルが分割される。

保護回路設計:保護回路については、4.3.1 節で述べたクエンチシミュレーションによる結果を参照してセクション化されている。回路構成の指標は、クエンチ時に個々の線材に生じる最大応力、 最大電流、最大電圧および保護回路における発熱等が考慮される。図 5.3 にシミュレーションの結 果を示す。解析例はイニシャルクエンチを Coil 1 としたときのものである。このとき、最大応力(*Bjr*) は Coil 5(NS-5)に発生し、その値は 230 MPa である。また、200 MPa 以上の *Bjr*が発生する部 位は何れも NS-5 となっている。このコイルについては、4.3.2 節で述べた Ta 補強高耐力 Nb<sub>3</sub>Sn 線材が用いられており、その耐力は 305 MPa であるから、クエンチが発生した場合の最大発生応 力は許容範囲内に収まることがわかる[2]。

以上、種々の考慮を踏まえて製作されたマグネットの完成写真を図 5.4 に示す。



図 5.2 実機マグネットの回路図



 ● Coil 0 - ● Coil 5-1 ● Coil 5-3 ● Coil 6-1 ● Coil 6-3 ● Coil 7-1 ● Coil 7-3 ● Coil 8-2 ● Coil 8-2 ● Coil 9-1 ● Coil 9-3 ● Coil 9-5 ● Coil 10-2 ● Coil 10-3 ● Coil 8-1 ■ Coil 8-3 ■ Coil 9-2 ■ Coil 9-4 ■ Coil 10-1 ■ Coil 10-3 ■







図 5.3 実機マグネットのクエンチシミュレーション結果



図 5.4 マグネット外観

#### 5.1.3 クライオスタット

クライオスタットは加圧 He II 冷却方式であり、その概略機器構成は図5.5のようなものである。超 伝導マグネットは加圧 He II 槽に設置され、He II 熱交換器によって、1.8 K以下に冷却される。He II 槽には低温安全弁が設置され、クエンチ時の安全性を確保する。超流動冷却器(He II 冷却器) は独立したユニット構成とし、He II 槽に接続されている。超流動冷却のために消費する液体へリウ ムはリザーバ(He I 槽)に貯液され、この液量があるレベルまで低下したら、液体へリウムの補充作 業を行う。これらの容器および機器類は真空槽によって内包され、真空断熱される。このような構成 による加圧 He II クライオスタットに関し、本節で述べる下記事項への考慮を踏まえて、実機の設計 および製作を実施した。



図 5.5 クライオスタット概略断面図

He 冷却器:HeII冷却器は、システム運転のキーコンポーネントであり、マグネット全体を組み立 てるにあたって、その能力が所望の条件を満たしていることを事前に検証する必要がある。また、 PCS を内部に配し、超伝導線がセパレータを貫通する構造も含めて、冷却回路が複雑化している ため、HeII 固有のリーク(スーパーリーク)に対する封止性の確認も必要である。これらを検証する には、HeII 冷却器を単独で実条件(低温)にて検査できることが望ましい。本システムでは、HeII 冷却器のユニット化によって、単独でハンドリング可能な構造となっており、検査用の仮設容器を 施工することによって、容易に単体での冷却試験が可能である。単体冷却試験においては、冷凍 能力、スーパーリーク有無、PCS 動作を検査する。

**解体・再組立施工性**:本システムは1GHz-NMR マグネットの開発プロジェクトの一環として製作さ れたものであり[3]、将来的に酸化物超伝導線材が実用化された場合に、これをコイル化したマグ ネットを本マグネットの最内層(コイル NS-0)と置き換えることが計画されている。このため、クライオ スタットは容易に解体・再組立が可能であることが要求される。液体へリウムを用いる点から、断熱 真空槽へのヘリウムリーク信頼性のために HeII 槽および HeI 槽ともに全溶接構造を採用してい る。その際、溶接後に解体の必要が生じた場合、溶接線を研削除去しても、再溶接可能なように鍔 (リップ)を設けている。この構造によって、新たに部品を製作することなく凡そ 3 回の解体・再組立 が可能である。

低温安全弁:マグネットがクエンチした場合の圧力開放のため、加圧Hell槽には低温安全弁が設 置される。この口径選定は 4.4.2 節に述べた熱流束値および式(4.6)を用いて以下に計算できる。 ただし、安全を見越すため、クエンチは 4.2 K で発生するものと仮定し、そのときの熱流束は図 4.16より 4.3 kW/m<sup>2</sup>とする。マグネットの全表面積を 7.5 m<sup>2</sup>、安全弁吹出係数 κ を 0.5、吹出温度 を 4.5 K とすれば、P=2.0 atm、P2=1.5 atm (室温部に設置した安全弁の圧力損失を考慮)とし たときの必要吹出面積は21.6 cm<sup>2</sup>となり、これに相当する直径は 69.3 cm である。これを踏まえ、 実際の装置においては、低温安全弁の口径は o 11.3 cm (必要吹き出し面積の 1.5 倍)とした。 破裂弁:クライオスタットは構造的には圧力容器に準じるため、安全機構の冗長化が必要である。 このため、本クライオスタットでは低温安全弁に加え、Hell槽から直接大気にガス放出可能な破裂 弁を設けた(図5.1)。破裂弁はHell槽にICFフランジ(銅ガスケット)を用いて直接取り付けられる。 ICF フランジは適正なトルクでボルト締付施工をおこなえば、断熱真空に対するヘリウムリーク(He Ⅱによるスーパーリークも含む)に対しても有効なシール方法である。ガスの排出経路は専用のダ クトとして、クライオスタットの断熱真空槽とは分離されている。また、その空間内は常時は高真空に 排気された状態にある。この構造によって、万が一クエンチが発生した場合、かつ何らかの要因で 低温安全弁が動作しなかったとしても、破裂弁を経由して蒸発ヘリウムガスを大気に放出すること が可能である。このとき、クライオスタットの断熱真空槽にヘリウムガスが流入することは無く、破裂 弁交換の後、再度液体へリウムを充填することで再励磁が可能となる。破裂弁構造はステンレス薄 膜の反転式である。この方式による破裂弁は本来圧縮性流体用であり、液体への適用、特に加圧 He II に対しての動作保証がない。このため、実際に設置する破裂弁は同一形式のものについて、 実使用条件における動作検証を実施した。なお、必要吹出口径は前記低温安全弁と同様に、マ グネットの表面積を7.5 m<sup>2</sup>、吹出係数κを0.5、吹出温度を4.5 Kとし、P=2.0 atm、P=1.0 atm (直接大気に放出するため、P2は1 atm となる)としたとき 18.5 cm<sup>2</sup>となり、これに相当する直径は φ 8.6 cm である。実際の装置においては、破裂弁仕様口径を 80A(φ 8.9 cm)とした。

91



図 5.6 マグネットシステム全体鳥瞰図

#### 5.1.4 システム信頼性

超伝導マグネットはこれを連続運転するために必要な機器および建屋を合わせて全体のシステムが構成される。システム全体の構成を鳥瞰図として図 5.6 に示す。超伝導マグネットは専用の建屋に設置されるとともに、マグネット室(10 m×10 m)は普通鋼によって磁気シールドされ、シールドの外側は5ガウス以下である。HeII冷却のための排気ポンプと運転監視のための制御盤はマグネット室に隣接する機械室に設置される。

制御盤は主にマグネット内の温度状況等をモニターするが、本体または周辺機器に異常や故障 が発生した場合の対処シーケンスが組み込んである。また、異常状態が発生した場合、一般電話 回線を経由して自動的に関係者に通報する機能も有している。2.2.3 節で述べたように、本装置の 冷却運転は非制御による安定性を有しているが、想定と異なる運転温度にする場合や、初期冷却 における自動化に備え、JT 弁制御機能を付与している。この機能は制御盤に併設したパーソナル コンピュータが司る。5.2.2 節に記すが、実際の運転においては、He II 槽温度を 1.6 K 以下として いるため、フラッディング発生を回避するため、現状は JT 弁制御機能を常時稼動状態として運転 を継続している。 排気ポンプは機械装置であるから、何らかの事情で故障を生じることが考えられる。例えば、シ ール不良による吸気圧力の上昇、モーター故障、オイル不足(漏洩)による焼きつき等である。この ため、排気ポンプは2台設置され、1台は定常運転用、もう1台はバックアップとして用いられる。 排気ポンプの流量、圧力は常に制御盤によってモニターされ、異常を検知すれば直ちにバックア ップ機に切り替わるようシーケンスが組まれている。モーター異常の場合も、過電流を検知して同 様にバックアップ機に切り替わる。なお、初期冷却においては排気ポンプを2台同時稼動させ、冷 却時間の短縮を図る。

本超伝導マグネットは 1.8 K以下の運転を継続しなければマグネットとしての特性が得られない ばかりか、温度上昇が発生するとクエンチの危険性も生じる。したがって、排気ポンプは如何なる 場合も運転を継続しなければならず、停電にあっても例外ではない。このため、システムには非常 用発電機が併設され、不測の停電に際しても電力を供給し続けることが可能である。

液体ヘリウムは定期的に補充されるが、その作業のためにマグネット上部にアクセスできるデッキ が設置される。NMR 測定に用いるプローブはマグネット下方から挿入するが、サンプルは上部か らの挿入となるため、アクセスデッキはこの作業のためにも必須であり、利用者と作業者の利便を図 るものである。なお、液体ヘリウムの供給は作業者が実施するが、液体窒素は液体窒素自動供給 装置を併設して、タイマーによって週毎に自動で供給が実施される。



図 5.7 工場内試験状況

HeII 槽には安全性装置として低温安全弁が装備されるが、圧力容器設計に準じて 5.1.2 節に 述べた破裂弁も設置して冗長化している。なお、全ての安全機構が動作せず、内槽破裂が発生し た場合に対しても、クライオスタット底部にドロップオフプレートと呼ばれる開口部(常時は真空差圧 によって閉となっている)を設けてこれに備えてある。また、クエンチが発生した場合は、ガス放出の ための専用の機外ダクト配管を設置し、屋内の酸欠事故を防ぐ構成になっている。

以上のように、本システムは実際の NMR 測定に常用するため、その利便性と信頼性に種々の 配慮がなされている。このような表面的に見え難い部分を確実にシステムに組み込むことが、実用 機として重要なポイントとなっている。

# 5.2 設置および立上げ

#### 5.2.1 設置

920 MHz・NMR 用超伝導マグネットは、1999 年末から 2001 年秋まで神戸製鋼所高砂工場内 で工場試験を実施した(図 5.7)。その後、消磁・昇温・分解して、つくば市の物質・材料研究機構 殿の専用建屋に移設した。輸送に際しては、道路交通法に基づく地上高制限(3.8 m)から、マグ ネットが露出する状態まで分解する必要がある。このため、移設先では工場内での組立作業と同 様の工程を踏む必要があり、専用建屋には 20 tの天井クレーンが設置された。移設先での再組立 にはおよそ 1 ヶ月を要した。後述するように、冷却および励磁を経て、当初仕様を満たすことが確 認され、移設先での再組み立てが正常におこなわれたことが確認できた。専用建屋への搬入・組 立および完成状況について、図 5.8 に示す。

本システムは茨城県つくば市にある物質・材料研究機構に設置された。同所には2台のマグネ ットを設置しており、両機は図5.9のようにそれぞれ独立した棟に配置される[4]。設置にあたっては、 現場での組立作業が必要となることから、20t超の天井クレーンをそれぞれに有する。NMR 測定 での振動影響対策として、地盤振動の伝達低減のため、マグネットが設置される直下は独立基礎



(a) マグネット単独での搬入



(b) 専用建屋内での組立状況



(c) 完成状態(正面)

(d) 完成状態(デッキ部)

図 5.8 設置工事(搬入·組立·完成)



図 5.9 超伝導マグネットの設置状況

構造となっており、その基部には防振シートが施工されている。また、この独立基礎部からの振動 をさらに除去するため、マグネット本体は空圧を用いたパッシブ式除振台の上に設置される。除振 台1台あたりの荷重負荷能力は1トンであり、マグネット単独の総重量15トンに対し、15個の除振 台を配置した。なお、除振台の固有振動数は約1 Hz である。マグネットが設置されたつくば市は 比較的地震の多い環境であり、除振台は免振の機能も担う。マグネット室には普通鋼または電磁 鋼板による磁気シールドが設けられており、マグネット室壁面より外側は5 ガウス以下の漏洩磁界 となる。

#### 5.2.2 冷却結果

移設後の組立を完了したマグネットは、断熱真空層の真空排気およびヘリウムリークテストを経 て冷却を実施した。冷却時の各部温度推移を図 5.10 に示す。(a)は液体窒素による初期冷却お よび液体ヘリウム充填までの過程を表す。(b)は液体ヘリウム充填完了後に排気ポンプを稼動させ ての超流動冷却を示す[5],[6]。

初期の液体窒素による冷却では5日間を要し、9,000Lの液体窒素を消費した。この間、液体

窒素の移送作業は昼夜連続で実施している。使用した液体窒素の可搬容器は OCR と呼ばれる 900 L 入(正味量)容器であり、これを一日あたり 2 基使用するから、単位時間当たりの移送量は 75 L/h となる。液体窒素による予冷過程では、マグネットに発生する熱歪みを考慮して、マグネット の上下温度をモニターしながら、その差が 50 K 以内となるよう進めた。なお、液体窒素予冷完了 後に液体へリウム予冷に移行するにあたって、クライオスタット内に液体窒素が残留することがない よう、液体窒素予冷は 100 K を下限温度とした。

液体窒素予冷完了後に、系統内をヘリウムガスで置換し、液体ヘリウムを充填した。この工程は約6日間連続で実施した。投入した液体ヘリウム量は7,000 L である。このうち、約5,000 L が系 内全体を4.2 K まで冷却するために消費し、残り約2,000 L が容器内に液体ヘリウム貯液するた めに消費された。初期の液体ヘリウム移送速度は概ね80 L/h である。

その後、(b)に示すように、排気ポンプを稼動させ、超流動冷却を実施した。HeII槽上部温度 (図中、HeII bath upper)は超流動冷却開始後約 20 時間を経て、急激に 2.168 K( $\lambda$  点)まで落 ち込む。これは、超流動冷却開始直後から発生しはじめた HeII槽中の超流動成分が常流動へリ ウムとの比重差から、容器底部から溜まり、上記 20 時間後に容器上部まで達したことを示している。 He II 槽内の全ての液体へリウムが超流動に転移した後も冷却を継続し、超流動冷却開始後約 100 h を経て、加圧 HeII 槽内の液体へリウム温度は 1.5 K に達している。なお、この間、JT 弁の 制御は自動化運転され、He II 熱交換器が最大の能力となる  $dT(=T_b - T_{hex})$ を維持するよう制御さ れている。なお、超流動予冷に要した液体へリウム量は約 1,500 L であり、He II 槽内の容積のほ ぼ 1.5 倍にあたる。

装置設置・立上後、本システムは現在まで 4 年半の連続運転を継続している。この間の温度推移について図 5.11 に示す。図からわかるように、He II 槽の運転温度は約 1.55 K となっている。これは、マグネットのクエンチを回避するための「保険」として選択された値であり、本来の計画値である 1.8 K とは異なる。冷却システムにおける温度の安定性は 2.2.3 節に述べたように、JT 流量、排気ポンプ能力および He II 熱交換器性能等に大きく依存するため、設計計画温度よりも低い温度での運転を行う場合、自律的な安定性を望むことができない。本システムで 1.55 K で運転する場合の各状態を図 5.12 に示す。JT 流量は約 0.025 g/s である(図中破線で示す)。このとき、He II 熱交換器の温度差 dTは~30 mK となり、He II 熱交換器所要面積は全面積 790 cm<sup>2</sup>に対して約 1/8 である 100 cm<sup>2</sup>程度となっている。このため、本ケースでは、運転温度を計画値から変更するという事情を踏まえ、フラッディングが発生することが無いよう、JT 流量(JT 弁)の制御を実施して

97





図 5.10 マグネットの予冷状況



図 5.11 加圧超流動ヘリウム槽の温度推移



Leybold 社製 SV300 を使用した場合

図 5.12 実機における超流動冷却特性



図 5.13 液体ヘリウムおよび液体窒素の消費速度推移

いる[7]。制御指標(セットポイント)は He II 槽温度 1.55 K であり、これから高温側に外れれば JT 流量を増やし、低温側に外れれば JT 流量を減らすというものである。ただし、運転条件は He II 熱 交換器のフラッディングによる不安定遷移条件に近い状態であるため、He II 熱交換器内外の温 度差 dTを第2の指標として、これがしきい値(約20 mK)を超えない範囲となるよう制御の二重化 を図っている。このような制御モードでの運転において、He II 槽温度、冷媒消費速度何れの数値 も長期的に安定な運転の継続を示しており、システムとしての信頼性が得られていることが確認で きる[8],[9],[10]。

長期に渡る液体ヘリウムおよび液体窒素の消費速度推移について図 5.13 に示す。注液操作や 環境によって上下動はあるが、その平均値はヘリウムにおいて 1.0 L/h、窒素において 0.75 L/h で ある。これは、表 2.1 による所期の計画値にほぼ一致する。

100

超伝導マグネットへの通電は、2 週間をかけて実施した[11]。図 5.14 にその過程を示す。図中 □で示すのがマグネットの電流値である。電流値が間欠的に上下しているのは、実際の通電作業 が、0A→100A、100A→170Aというようにステップを刻んで実施しているためである。ステップ毎 に、マグネットは一旦永久電流状態とするため、この間の図中の電流値は0Aを指すが、このときも マグネットにはその直前に印加した最大電流が流れている。次のステップに移る際は、電源からの 電流値を直前の最終電流値まで上げ、その後に PCS をオープンにして次の励磁ステップへ進む。 また、励磁過程において、電流値を上げるたびに HeII 槽温度も上昇している。これは、磁界変化 によって超伝導マグネットに生じる交流損失によるものである。段階的に励磁を進めるのは、各電 流域でマグネットからの異常電圧の発生有無を確認しながら進めることと、交流損失によって上昇 したマグネット温度を再度冷却することがその目的である。この励磁操作によって、最終的には



図 5.14 マグネットの励磁経過



図 5.15 磁場均一度実測結果



図 5.16 マグネットの磁場減衰測定値

244.2 A の電流値で定格磁界 920 MHz(=21.6 T)に達した。なお、この電流値は表 2.3 による定格電流値 244.4 A と僅かに異なるが、これは設置場所に施工された磁気シールドによる影響と考えられる。

主コイルの発生磁界が定格値に達した後は、PCS を閉じて永久電流運転に移行した。その後、磁 界が安定するのを待ち、超伝導シムコイルによって、磁界均一度の調整を実施した。測定方法は、  $1 \text{ mm}^3 \text{ on } \text{H}_2\text{O}$  試料を組み込んだプローブを半径 8.5 mm の円筒表面上をらせん状に移動させ、  $^1\text{H}$  の NMR 信号から磁界を測定するものである。図 5.15 にその測定結果を示す。仕様値である 直径 10 mm、高さ 20 mm の領域において±0.1 ppm 以下という条件を満たしていることがわか る。

マグネットの磁界安定度の測定結果を図 5.16 に示す。励磁による定格磁界到達後、およそ 3ヶ 月を経た時点でマグネットのドリフトは・1.3 Hz/h となっている。この値は 0.0014 ppm/h に相当し、 NMR 測定からの要求値である 0.01 ppm/h より一桁小さい。ところで、NMR 用超伝導マグネット では永久電流運転に移行した後、磁界減衰が定常状態になるまで非常に長期間を要する挙動を 示す。この理由は、マルチフィラメント構造の超伝導線材断面における電流再配分といったミクロな 電磁現象や、コイル構成での全体的な磁束侵入として挙動するマクロな電磁現象等が考えられる が、その真相は未だ解明されていない。このような安定遷移の所要期間を短縮する方法として、オ ーバーシュートが有効であることが経験的に判っている。その量は定格電流に対して 1 %以下の 値で充分であるが、マグネットによってその最適値は異なる。本マグネットでは、0.05 %のオーバー シュートを印加したが、上記のように定格磁界到達の 3ヶ月後に・1.3 Hz/h であったドリフトは、さら に 2ヶ年を経て・0.3 Hz/h まで減少したことが確認されている。

#### 5.2.4 NMR 測定結果

超伝導マグネットとしての仕様を満足することが確認された本システムは、NMR プローブをセットして、実際のNMR 測定に供された[12],[13]。図 5.17 は本マグネットによって取得された、0.1% エチルベンゼン/クロロホルムの 920 MHz での<sup>1</sup>H スペクトルである。この試料は NMR の分解能を評価する際に用いられる標準試料である。このスペクトルから、通常用いられる厚肉の試料チューブでの感度(S/N)は 2581、薄肉の試料チューブを用いると 2981 であった。この感度は、600



図 5.17 0.1 %エチルベンゼン / クロロホルムの 920 MHz スペクトル



図 5.18 2D-NOESY による 1mM の卵白リゾチーム信号

MHz に対し約 2 倍である。図 5.18 には 1 mM の卵白リゾチームについての NOESY 測定結果 について、縦軸に側鎖の  $\beta$  プロトンやメチル基に対応する周波数を、横軸にアミドプロトンに対応 する周波数を取っている。また、(a)は 600 MHz による測定を、(b)は 920 MHz による測定結果 を表す。600 MHz では 243 の <sup>1</sup>H - <sup>1</sup>H 位置情報が得られるが、920 MHz ではこれが 1.5 倍の 368 に増加しており、高磁界化による感度の向上が明らかにされた。

## 5.3 まとめ

本章では、第2章~第4章で示した高磁界化へのアプローチー切を踏まえた実機の製作と評価 について述べ、全ての検証が実証された。以下にその結果をまとめる。

- コイルの分割総数 32 個、超伝導接続数は 83 個、線材重量 4.8トンからなる超伝導マグネット を製作した。また、He II 容量 1080 L からなる加圧 He II クライオスタットを製作し、マグネットを 組み込んで、920 MHz-NMR 用超伝導マグネットを完成した。
- 2)付帯機器の冗長化や非常用発電機の設置により、機器または停電が発生した場合において も、装置運転を継続可能なシステムを構築した。また、安全機構も含めて、信頼性を確保した マグネットシステムを確立し、これを完成した。
- 3) マグネットは冷却の結果、JT 弁の制御をともなった条件で 1.55 K の運転温度を実現し、4.5 年にわたってこれを維持している。また、冷媒消費量は所期の計画に見合う結果(ヘリウム 1.0 L/h、窒素 0.75 L/h)が得られた。ただし、本来の計画による運転温度は 1.8 K でかつ非制御 運転を目指したが、諸々の要因によって現実にはこれより低い運転温度を制御しながら得てい るため、所期運転条件の実証には至っていない。
- 4) マグネット励磁の結果、クエンチを発生することなく定格磁界 920 MHz まで到達し、クエンチ フリー化のための設計応力条件が適正であることが確認された。
- 5) 定格磁界における磁界均一度および磁界安定度は目標値を満たし、マグネット設計における 磁界設計および磁界安定性設計の妥当性を確認した。
- 6) 完成した超伝導マグネットは NMR 測定に運用され、S/N=2981 を得て、従来の測定スペクト
ル比で大幅に分解能が向上することが明らかになった。

#### 参考文献

- T. Kiyoshi, A. Sato. Wada, S. Hayashi, M. Shimada, Y. Kawate, "Development of 1 GHz Superconducting NMR Magnet at TML/NRIM", IEEE Transactions on applied superconductivity, Vol. 9, No. 2, 1999, pp.559-562
- [2] O. Ozaki, M. Yoshikawa, R. Hirose, T. Hase, M. Shimada, and Y. Kawate, "Quench behavior of multi-sectional superconducting magnet in superfluid helium", IEEE Transactions on Applied Superconductivity, Vol. 8, 1998, pp.892-895
- [3] A. Sato, T. Kiyoshi, H. Wada, H. Maeda, S. Ito, Y. Kawate, "Design of Superfluid-Cooled Cryostat for 1 GHz NMR Spectrometer", ICEC16/ICMC Proceedings, 1997, Kitakyushu, pp.431-434
- [4] T. Kiyoshi, S. Matsumoto, A. Sato, M. Yoshikawa, S. Ito, O. Ozaki, T. Miyazaki, T. Miki, T. Hase, M. Hamada, T. Noguchi, S. Fukui, and H. Wada, "Operation of 930 MHz high-resolution NMR magnet at TML", IEEE Transactions on Applied Superconductivity, Vol. 15, No.2, 2005, pp.1330-1333
- [5] F. Matsumoto, A. Sato, T. Kiyoshi, H. Nagai, H. Wada, S. Ito, T. Miki, M. Yoshikawa, M. Hamada, Y. Kawate, S. Fukui, "Testing of superfluid-cooled 920 MHz NMR cryostat", Advances in Cryogenic Engineering, Vol. 47, pp.383-390, 2001, Wisconsin
- [6] H. Nagai, A. Sato, T. Kiyoshi, F. Matsumoto, H. Wada, S. Ito, T. Miki, M. Yoshikawa,
  Y. Kawate, S. Fukui, "Development and testing of superfluid-cooled 900 MHz NMR magnet", Cryogenics, Vol. 41, 2001, pp.623-630
- [7] T. Miki, S. Ito, M. Hamada, M. Yoshikawa, A. Sato, T. Kiyoshi, H. Wada, F. Matsumoto, H. Nagai, T. Noguchi, and S. Fukui, "The Measurement and Control System for 920 MHz NMR Magnet", IEEE Transactions on Applied Superconductivity, Vol. 14, No. 2, 2004, pp.1742-1745

- [8] A. Sato, T. Kiyoshi, F. Matsumoto, H. Nagai, H. Wada, S. Ito, T. Miki, M. Yoshikawa, M. Hamada, Y. Kawate, S. Fukui, "Long term testing of superfluid-cooled 920 MHz NMR cryostat", PHYSICA C, 2002, pp.1346-1348
- [9] S. Ito, T. Miki, M. Yoshikawa, M. Hamada, Y. Kawate, S. Hayashi, A. Sato, T. Kiyoshi, F. Matsumoto, H. Nagai, H. Wada, S. Fukui, T. Noguchi, "Test Results of Long Term Operation of Superfluid-Cooled Cryostat for 1 GHz NMR Spectrometer", IEEE Transactions on Applied Superconductivity, Vol. 12, No. 1, 2002, pp.1347-1350
- [10] S. Ito, T. Miki, M. Hamada, A. Sato, T. Kiyoshi, M. Yoshikawa, F. Matsumoto, H. Nagai, H. Wada, S. Fukui, T. Noguchi, "Long Term Operation of Superfluid-Cooled Cryostat for 920 MHz NMR Spectrometer", IEEE Transactions on Applied Superconductivity, Vol. 14, No. 2, 2004, pp.1715-1718
- [11] T. Kiyoshi, M. Yoshikawa, A. Sato, K. Itoh, S. Matsumoto, H. Wada, S. Ito, T. Miki, T. Miyazaki, T. Kamikado, O. Ozaki, T. Hase, M. Hamada, S. Hayashi, Y. Kawate, and R. Hirose, "Operation of 920 MHz High-Resolution NMR Magnet at TML", IEEE Transactions on Applied Superconductivity, Vol. 13, No. 2, 2003, pp.1391-1395
- [12] K. Hashi, T. Shimizu, A. Goto, T. Kiyoshi, S. Matsumoto, H. Wada, T. Fujimoto, K. Hasegawa, M. Yoshikawa, T. Miki, S. Ito, M. Hamada, S. Hayashi, "Achievement of a 920-MHz High Resolution NMR", Journal of Magnetic Resonance, Vol. 156, 2002, pp.318-321
- [13] T. Kiyoshi, H. Maeda, J. Kikuchi, Y. Ito, H. Horita, S. Yokoyama, S. Ito, T. Miki, M. Hamada, O. Ozaki, S. Hayashi, N. Kurihara, H. Suematsu, M. Yoshikawa, S. Matsumoto, A. Sato, and H. Wada, "Present Status of 920 MHz High-Resolution NMR Spectrometer", IEEE Transactions on Applied Superconductivity, Vol. 14, No. 2, 2004, pp.1608-1612

# 第6章 総括

### 6.1 結論

従来のNMR 用超伝導マグネットの発生磁界を大幅に上回る 920 MHz-NMR 用超伝導マグネ ットの開発研究に取り組みこれを実現した。そのプロセスにおいて、高磁界化、特に NMR 用途に 用いる超伝導マグネットが包含する技術課題とその対策を明らかにした。以下にこれらの経過から 得た結論を示す。

第2章では、高磁界化に臨むにあたっての可能性と課題から、以下のことを明らかにした。

- 1) 高磁界化への最大の課題は、高磁界中での Jc低下をいかに抑えるかであり、その方策として 運転温度の低温化が有効であることを示した。そのなかで、低温化を実用装置に適用する場 合の問題点として、HeII冷却方式における低熱侵入化および高効率化、温度安定化を掲げ、 余剰寒冷を回収利用可能な冷却回路を考案することで、これらの課題が克服できることを示し た。また、冷却機器の特性を反映した評価を行うことで、フラッディング現象を回避する方策を 提案した。これらの結果から、実用的な運転温度として、1.8 Kが妥当であることも示した。この ような HeII冷却を用いた装置は、従来は小型実験用或いは大規模システムといった専門家 が利用する分野にのみ採用されてきたが、本研究の成果によって、これが汎用品である NMR 装置にも適用可能であることを示した意義は大きい。
- 2) 高磁界 NMR 用超伝導マグネットの設計では、高磁界と磁界安定性との両立が重要であるが、 超伝導線材の特性限界がこの律則となっている。Jcとn値はトレードオフの関係にあり、[高磁 界+磁界安定性]を両立するには何れかを犠牲にしなければならない。本研究におけるマグネ ット設計では、評価関数 Fを指標とした設計によって、920 MHzの磁界発生と NMR 適用へ の磁界安定性実現が可能であることを示した。一方、このことは Nb3Sn線材の Jcまたは n値 の何れかのみでも改善されれば、さらに高磁界が得られることを意味しており、今後の更なる 高磁界化への焦点を一層明確化にした結果となっている。

第3章では、磁界安定性について議論し、以下のことを明らかにした。

1) 超伝導線材の残留抵抗による磁界安定性への影響は第2章でのマグネット設計において考慮されている。しかし、磁界安定性では超伝導接続や PCS の影響も大きい。本研究では、実績をベースとしたこれらの機器配置磁界条件に基づいて、主にPCSの配置について新たな手法を考案した。これは、HeIIクライオスタットのセパレータ部に超伝導線を貫通させ、HeI 槽にPCSを配置するもので、ヘリウムリークに対する封止方法の確立によって成立している。この手法によって、NMR 用途のように永久電流運転に供されるマグネットにおいても HeII 冷却の適用が可能になった。

第4章では、マグネットシステムを実用に供する場合の安全性について議論し、以下のことを明ら かにした。

- 超伝導マグネット固有のクエンチ問題について、実際に製作してきた多数のマグネットの応力 条件を再分析し、従来指標であった Bjrに加えて軸方向応力 Fzを併せて評価することがマク ロ的にクエンチ発生有無を分離することに有効であることを示し、クエンチ発生率は 4.3 %→ 1.4 %に低減できる。ただし、この指標はあくまでもマクロ的なものである。また、Bjr 自体は素 線1本あたりの応力を表すものであり、密巻きコイルをバルク状の複合体と見た場合、Bjrが全 てを表すとは言えない。したがって、今後はさらに仔細に実体を表す指標を導きだす必要もあ る。
- 2) 保護回路設計に用いるクエンチシミュレーション手法について、HeII中でのクエンチに適用 するための条件を実験的に検証し、固体としてのマグネットの冷却と温度分布を考慮すること で HeIIにおけるクエンチを再現できることを明らかにした。このことによって、HeIIで用いるマ グネットの保護回路設計が適切に行えるとともに、高応力が発生するセクションにおいて超伝 導線材に必要となる強度を定量的示すことが可能となった。
- 3) 加圧 HeII 中での超伝導マグネットのクエンチ実験と計算による対比から、クエンチ後の冷媒へのエネルギー放出が、マグネット内部温度の時間緩和によって支配されることを明らかにした。この条件は HeII 中でのクエンチ実験によって得られたものであるが、固体であるマグネット内部の温度変化は冷媒種別によらないから、HeI でのクエンチにも適用可能である。このことにより、従来曖昧とした基準で設計されていたクライオスタットの安全機構について、より適切な設計が可能になった。

第5章では、以上の結論をもとに、920 MHz-NMR 用超伝導マグネットの実機の設計・製作および評価を実施し、下記結論を得た。

- 1) コイル分割総数 77 個、超伝導接続数 154 個、線材重量 4.8 トンからなる超伝導マグネットを 製作した。また、HeII容量 1080 Lからなる加圧 HeIIクライオスタットを製作し、マグネットを組 み込んで 920 MHz-NMR 用超伝導マグネットを完成した。同時に、付帯機器の冗長化や非 常用発電機の設置、装置異常時の対処システムを構築し、安全機構も含めて、実用に供する 信頼性を確保したマグネットシステムを完成した。
- 2) 完成したマグネットは冷却に供され、JT 弁の制御によって 1.55 K の運転温度を実現し、4.5 年にわたってこれを維持している。また、冷媒消費量は所期の計画に見合う結果が得られた。 ただし、本来の計画運転温度は 1.8 K でかつ非制御運転であったが、諸般の事情から現実に はこれより低い運転温度を制御を付加することによって得ている。
- 3) 励磁試験の結果、マグネットはクエンチを発生することなく定格磁界 920 MHz まで到達し、クエンチフリー化のための設計応力条件が適正であることが確認された。また、定格磁界における磁界均一度および磁界安定度は目標値を満たし、マグネット設計における電磁設計および磁界安定性設計の妥当性を確認した。
- 4) 完成した超伝導マグネットは NMR 測定に運用され、S/N=2981 を得て、従来の測定スペクト ル比で大幅に分解能が向上することが明らかになった。

### 6.2 今後の課題

本研究から、高磁界化・大型化した超伝導マグネットの設計指針のいくつかを明らかにした。しかし、これらは磐石ではなく、今後の検討余地も残している。以下に今後の課題について整理する。

1) 高磁界マグネットの設計では、内層コイルに用いるNb3Sn 超伝導線材のJc特性が律則となる。 しかし、高磁界に必要なのはコイル断面当りの電流密度(Overall-Jc)であり、超伝導部分の 電流密度(non-Cu Jc)が低くても、線材断面における超伝導比率が高ければよい。この観点 から、Nb<sub>3</sub>Sn の線材設計において、例えばフィラメント径の大径化とブロンズ中 Sn 濃度向上 による反応量の増大、銅比低減による non-Cu 面積の増大への取り組みと等が一層推し進め られることが望まれる。また、抜本的な高磁界化の方策として、Nb<sub>3</sub>Sn に代わる新たな材料の 適用も考えられる。Nb<sub>3</sub>Al、酸化物系超伝導材料がこれに当る。これらの材料は現状では長尺 線材の安定的な製造、超伝導接続技術の確立等種々の問題が残るが、その高磁界特性には 大きな可能性を持っている。今後の開発成果を望みたい。

2) クエンチ抑制について本研究で明らかにしたのは、マクロ的な整理指標としての Bjrと Fzの影響である。しかし、何れの指標も素線 1 本あたりの応力を表すものであり、密巻きコイルをバルク状の複合体と捉えた場合、その適正が妥当とは言えない。これらの応力基準は高磁界化への直接的な障害ではないが、この制約のために、マグネットをコンパクトに設計することができない。つまり、安価なマグネットを設計することができず、商業的見地において問題がある。技術的或いは製造上では高磁界が得られるとしても、その装置が大型で高価であれば、高磁界マグネットは普及しないであろう。今後、マグネットにおける電磁力による振る舞いを仔細に検証するとともに、クエンチと応力の関係をさらに明確化することによって、クエンチ発生率を抑えながら、コンパクトなマグネット設計が可能になるクエンチクライテリアを探っていかなければならない。

謝辞

本論文を執筆するにあたり、主査をお引き受けいただくとともに、様々なご指導ご鞭撻をいただ いた横浜国立大学工学府物理情報工学専攻電気電子ネットワークコース教授塚本修巳様に心よ り御礼申し上げます。また、同専攻教授西村誠介様、大山力様、吉川信行様、雨宮尚之様には、 審査委員としての忌憚なきご意見を賜り、論文の意義向上を図ることができたことに感謝致します。

本研究の対象である 920 MHz マグネットにおいて共同研究の機会をご提供いただくとともに、 様々な先導をいただいた元物質・材料研究機構強磁場ステーション長(現東京大学教授)和田仁 様、物質・材料研究機構強磁場共用ステーション長木吉司様、同上席エンジニア佐藤明男様に御 礼申し上げます。

本研究を業務として取り組む機会を与えていただき、5ヵ年にも及ぶプロジェクトを先導され、ま た本論文の執筆を叱咤激励しながら後押しいただいた元神戸製鋼所理事川手剛雄様に心から感 謝致します。また、同じくご支援いただいたジャパンスーパーコンダクターテクノロジー代表取締役 社長西本善郎様、同技術担当取締役林征治様、同前代表取締役大谷靖彦様、同企画部長宮武 孝之様および神戸製鋼所電子技術研究所所長井上憲一様に感謝致します。

実際の研究・開発活動において、苦楽を共にした神戸製鋼所電子技術研究所超電導研究室室 長濱田衛様、同主任研究員吉川正敏様、三木孝史様、尾崎修様、宮崎隆好様、そして極低温・超 伝導技術の広範囲に渡るアドバイスをいただいた池上技術野口隆志様に感謝申し上げます。また、 詳細設計・製作において種々ご指導いただいたクライオバック常務取締役福井滋夫様、理研社代 表取締役社長菰下昂様および営業グループリーダー佐野勉様にこの場をお借りして御礼申し上 げます。

各種実験や実機装置の製作にあたって、幾多の困難にも屈せず精力的に作業を主導いただい た神戸製鋼所技術開発本部試作実験室超電導班班長福山和宏様、同員藤中隆様および神鋼メ ックス主任部員新居哲様、同員指宿實弘様、元員好田修様に改めて御礼申し上げます。

最後に私事恐縮ながら、本論文執筆にあたって多大な時間を費やす中、常に暖かく見守り応援 してくれた最愛の家族である妻英利子、長男嵩、長女理恵子に心から感謝し、この論文を捧げま す。

112

## 研究業績目録

### 1. 博士論文

- S. Ito, T. Miki, M. Yoshikawa, M. Hamada, Y. Kawate, S. Hayashi, A. Sato, T. Kiyoshi, F. Matsumoto, H. Nagai, H. Wada, S. Fukui, T. Noguchi, "Test Results of Long Term Operation of Superfluid-Cooled Cryostat for 1 GHz NMR Spectrometer", IEEE Transactions on Applied Superconductivity, Vol. 12, No. 1, 2002, pp.1347-1350
- S. Ito, T. Miki, M. Hamada, A. Sato, T. Kiyoshi, M. Yoshikawa, F. Matsumoto, H. Nagai, H. Wada, S. Fukui, T. Noguchi, "Long Term Operation of Superfluid-Cooled Cryostat for 920 MHz NMR Spectrometer", IEEE Transactions on Applied Superconductivity, Vol. 14, No. 2, 2004, pp.1715-1718
- [3] H. Nagai, A. Sato, T. Kiyoshi, F. Matsumoto, H. Wada, <u>S. Ito</u>, T. Miki, M. Yoshikawa, Y. Kawate, S. Fukui, "Development and testing of superfluid-cooled 900 MHz NMR magnet", Cryogenics, Vol. 41, 2001, pp.623-630
- [4] F. Matsumoto, A. Sato, T. Kiyoshi, H. Nagai, H. Wada, <u>S. Ito</u>, T. Miki, M. Yoshikawa, M. Hamada, Y. Kawate, S. Fukui, "TESTING OF SUPERFLUID-COOLED 920 MHz NMR CRYOSTAT", Advances in Cryogenic Engineering, Vol. 47, 2002, pp.383-390

### 2. 参考論文

[1] A. Sato, T. Kiyoshi, H. Wada, H. Maeda, S. Ito, Y. Kawate, "Design of

Superfluid-Cooled Cryostat for 1 GHz NMR Spectrometer", ICEC16/ICMC Proceedings, 1997, Kitakyushu, pp.431-434

- [2] A. Sato, T. Miki, F. Matsumoto, H. Nagai, H. Wada, <u>S. Ito</u>, Y. Kawate, "Development of Superfluid-Cooled Cryostat for 1 GHz NMR Spectrometer – Detailed Design -", Presented at ICEC17, 1998, Bournemouth, UK, pp.613-616
- [3] T. Miki, A. Sato, F. Matsumoto, H. Nagai, H. Wada, <u>S. Ito</u>, Y. Kawate, "Stability Analysis for Pressurized He II Cooling System with Tube Heat Exchangers", Presented atICEC17, 1998, Bournemouth, UK, pp.835-838
- [4] A. Sato, T. Miki, T. Kiyoshi, F. Matsumoto, H. Nagai, H. Wada, <u>S. Ito</u>, M. Yoshikawa, Y. Kawate, S. Fukui, "Development and Testing of Superfluid-Cooled Cryostat for 1 GHz NMR Spectrometer", Proceedings of ICEC18, 2000, Mumbai, India, pp.407-410
- [5] T. Kiyoshi, A. Sato, T. Takeuchi, K. Ito, S. Matsumoto, O. Ozaki, H. Wada, M. Yoshikawa, T. Kamikado, <u>S. Ito</u>, T. Miki, T. Hase, M. Hamada, S. Hayashi, Y. Kawate, R. Hirose, "Development and Operation of Superconducting NMR Magnet beyond 900 MHz", IEEE Transactions on Applied Superconductivity, Vol. 11, No. 1, 2001, pp.2347-2350
- [6] 伊藤聡, "NMR 用超伝導マグネットの超流動冷却クライオスタット",低温工学、Vol. 36, No. 12, 2001, pp.643-650
- [7] A. Sato, T. Kiyoshi, F. Matsumoto, H. Nagai, H. Wada, <u>S. Ito</u>, T. Miki, M. Yoshikawa, M. Hamada, Y. Kawate, S. Fukui, "Long term testing of superfluid-cooled 920 MHz NMR cryostat", PHYSICA C, 2002, pp.1346-1348
- [8] T. Kiyoshi, A. Sato, T. Takeuchi, K. Ito, S. Matsumoto, O. Ozaki, K. Fukushima, H. Wada, M. Yoshikawa, T. Kamikado, <u>S. Ito</u>, T. Miki, M. Hamada, S. Hayashi, Y. Kawate, R. Hirose, "Persistent-Mode Operation of 920 MHz High-Resolution NMR Magnet", IEEE Transactions on Applied Superconductivity, Vol. 12, No.1,2002, pp.711-714
- [9] K. Hashi, T. Shimizu, A. Goto, T. Kiyoshi, S. Matsumoto, H. Wada, T.

Fujimoto, K. Hasegawa, M. Yoshikawa, T. Miki, <u>S. Ito</u>, M. Hamada, S. Hayashi, "Achievement of a 920-MHz High Resolution NMR", Journal of Magnetic Resonance, Vol. 156, 2002, pp.318-321

- T. Kiyoshi, M. Yoshikawa, A. Sato, K. Itoh, S. Matsumoto, H. Wada, <u>S. Ito</u>, T. Miki, T. Miyazaki, T. Kamikado, O. Ozaki, T. Hase, M. Hamada, S. Hayashi, Y. Kawate, and R. Hirose, "Operation of 920 MHz High-Resolution NMR Magnet at TML", IEEE Transactions on Applied Superconductivity, Vol. 13, No. 2, 2003, pp.1391-1395
- [11] T. Kiyoshi, H. Maeda, J. Kikuchi, Y. Ito, H. Horita, S. Yokoyama, <u>S. Ito</u>, T. Miki, M. Hamada, O. Ozaki, S. Hayashi, N. Kurihara, H. Suematsu, M. Yoshikawa, S. Matsumoto, A. Sato, and H. Wada, "Present Status of 920 MHz High-Resolution NMR Spectrometer", IEEE Transactions on Applied Superconductivity, Vol. 14, No. 2, 2004, pp.1608-1612
- [12] T. Miki, <u>S. Ito</u>, M. Hamada, M. Yoshikawa, A. Sato, T. Kiyoshi, H. Wada, F. Matsumoto, H. Nagai, T. Noguchi, and S. Fukui, "The Measurement and Control System for 920 MHz NMR Magnet", IEEE Transactions on Applied Superconductivity, Vol. 14, No. 2, 2004, pp.1742-1745
- [13] T. Kiyoshi, S. Matsumoto, A. Sato, M. Yoshikawa, <u>S. Ito</u>, O. Ozaki, T. Miyazaki, T. Miki, T. Hase, M. Hamada, T. Noguchi, S. Fukui, and H. Wada, "Operation of 930 MHz high-resolution NMR magnet at TML", IEEE Transactions on Applied Superconductivity, Vol. 15, No.2, 2005, pp.1330-1333

### 3. 国際会議発表

S. Ito, T. Miki, M. Yoshikawa, M. Hamada, Y. Kawate, S. Hayashi, A. Sato, T. Kiyoshi, F. Matsumoto, H. Nagai, H. Wada, S. Fukui, T. Noguchi, "Test Results of Long Term Operation of Superfluid-Cooled Cryostat for 1 GHz

NMR Spectrometer", MT-17, 2001, Geneva, Switzerland.

- S. Ito, T. Miki, M. Hamada, A. Sato, T. Kiyoshi, M. Yoshikawa, F. Matsumoto, H. Nagai, H. Wada, S. Fukui, T. Noguchi, "Long term operation of superfluid-cooled cryostat for 920 MHz NMR spectrometer", MT-18, 2003, Morioka, Japan.
- 4. 国内会議発表(登壇および共著)
  - [1] 伊藤聡,林征治,嶋田雅生,川手剛雄,佐藤明男,三木孝史,永井秀雄,松本文明, 和田仁,野口隆志,"1 GHz 級 NMR 用加圧超流動へリウムクライオスタットの開発-加圧超流動安全弁の入熱量と動作特性-",低温工学・超伝導学会,1997 年度春季
  - [2] 尾崎修,吉川正敏,広瀬量一, 伊藤聡,嶋田雅生,川手剛雄,湯山道也,木吉司, 佐藤明男,和田仁,"加圧超流動ヘリウム中でのマルチセクション超伝導マグネットのク エンチ挙動(2)-ACロスの検討-",低温工学・超伝導学会,1997年度春季
  - [3] 伊藤聡,川手剛雄,林征治,嶋田雅生,佐藤明男,三木孝史,永井秀雄,松本文明, 和田仁,野口隆志,"1 GHz 級 NMR 用加圧超流動ヘリウムクライオスタットの開発– 加圧超流動ヘリウム中でのマグネットクエンチによる内圧挙動の検証–",低温工学・ 超伝導学会,1997 年度秋季
  - [4] 伊藤聡,林征治,川手剛雄,佐藤明男,三木孝史,永井秀雄,松本文明,和田仁, 野口隆志,"1 GHz 級 NMR 用加圧超流動へリウムクライオスタットの開発-冷却温度 安定性の検討-",低温工学・超伝導学会,1998 年度春季
  - [5] 伊藤聡,吉川正敏,濱田衛,林征治,川手剛雄,佐藤明男,三木孝史,永井秀雄, 松本文明,和田仁,野口隆志,福井滋夫,"1 GHz 級 NMR 用加圧超流動ヘリウムク ライオスタットの開発-900 MHz 超級励磁における冷却特性-",低温工学・超伝導 学会,2000 年度春季
  - [6] 三木孝史, <u>伊藤聡</u>, 吉川正敏, 濱田衛, 林征治, 川手剛雄, 佐藤明男, 永井秀雄, 松本文明, 木吉司, 和田仁, 野口隆志, 福井滋夫, "1 GHz 級 NMR 用加圧超流動

ヘリウムクライオスタットの開発-900 MHz での長期連続運転-", 低温工学・超伝導 学会, 2001 年度春季

- [7] 三木孝史,吉川正敏, 伊藤聡, 濱田衛,林征治,川手剛雄,佐藤明男,木吉司,永 井秀雄,松本文明,和田仁,野口隆志,福井滋夫,"1 GHz 級 NMR 用加圧超流動 ヘリウムクライオスタットの開発ー計測と制御ー",低温工学・超伝導学会,2002年度春 季
- 5. 関連特許
  - [1] "高磁界均一度超伝導磁石装置",特願 2000-76788
  - [2] "極低温リードスルー", 特願 2000-89529
  - [3] "クライオスタット", 特願 2000-152607
  - [4] "超流動ヘリウム発生装置の制御方法", 特願 2000-279838
  - [5] "加圧超流動クライオスタットの安全弁", 特願 2001-180072

### 6. 本研究に関する受賞

- [1] 平成 12 年 5 月 (社) 低温工学協会 優秀発表賞 (本人)
- [2] 平成 15 年 6 月 (社) 未踏科学技術協会 超伝導科学技術賞(本人他 5 名)