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Abstract

We investigate the spin-averaged virtual photon structure functions, which can be measured from two-photon
processes in the future e*e™ collider experiments. Especially we focus on F %’ (x, 0%, P?) in the kinematical
region A> <« P> <« Q?%, where —Q? and —P? are the mass squared of the probe and target photons, respec-
tively, and A is the QCD scale parameter. In such a region, the photon structure functions can be calculated
by the perturbative method without any experimental data input. The analysis is performed in massless
QCD up to the order aay, which corresponds to the next-to-next-to-leading order (NNLO), and in leading
twist approximation. We show that the NNLO contributions to F’ ; are not small, particularly at large x. We
also examine the longitudinal structure function F z(x, 02, P?) up to the order aa;, which corresponds to the
next-to-leading order (NLO).
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Chapter 1

Introduction

The Large Hadron Collider (LHC) experiments will be started soon and it is much expected that signals for
the new physics beyond the Standard Model (SM) will be discovered [1]]. Once these signals are observed, it
is preferable that they are examined more closely in a next generation electron-positron linear collider, i.e.,
the International Linear Collider (ILC) [2]. The outcomes of these experiments will open the door to deeper
and wider understandings of the nature of our world, and will lead us to the next stage in the progress of the
particle physics within a few decades.

However, to analyze these signals from the new physics and extract the maximum information from the
experimental data, the knowledge of the SM, especially, of Quantum Chromodynamics (QCD) will be more
important than ever before. It is important not only to explore the possibilities of the new physics but also
to scrutinize phenomena arising from the known physics, because they can be sources of background in the
high precision tests. For example, it is known that, in e*e™ collision experiments, the cross section for the
two-photon processes ete” — ete"yy — eTe X shown in Fig. [[.1] dominates at high energies over other
processes such as the annihilation process ete™ — y — X. In particular, the two-photon process, in which
one of the virtual photon is very far off-shell (large Q%> = —¢?) regarded as a probe photon, while the other
is small P? < Q? (small P> = —p?), can be viewed as a deep-inelastic electron-photon scattering where
the target is a photon instead of a nucleon [3]]. In this deep-inelastic scattering off photon targets, we can
study the photon structure functions, which are the analogs of the nucleon structure functions. The photon
structure functions are defined in the lowest order of the QED coupling constant @ = ¢?/(47) and, in this
work, they are of order .

For the unpolarized (spin-averaged) structure function F g(x, 0?) in the case of the real photon target
(P? = 0), the leading order (LO) corrections to the point-like parton model result [S) 6] were derived long

Figure 1.1: Deep inelastic scattering on a photon in the e*e™ collider experiments.
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ago [[7], and the next-to-leading order (NLO) contributions were calculated a few years later [8]], but only
recently the next-to-next-to leading (NNLO) contributions have been completed [9].

A unique and interesting feature of the photon structure functions is that, in contrast with the nucleon
case, the target mass squared —P? is not fixed but can take various values and that they show different
behaviors depending on the values of P?>. The photon has two characters: The photon couples directly
to quarks (pointlike nature) and sometimes it behaves as vector bosons (hadronic nature) [10]. Therefore
the real photon structure function F g (x, 0%) may be decomposed as the pointlike piece and the hadronic
piece. The former can be calculated, in principle, in a perturbative method, but the latter can only be
computed by some non-perturbative method like lattice QCD, or estimated by vector meson dominance
model (VDM) [10].

It was pointed out by Uematsu and Walsh [[11]] that the situation changes significantly when we consider
the following kinematical region:

A’ < P? < Q7 (1.1)

where A is the QCD scale parameter. In this kinematic region, the hadronic piece in F ;(x, Q?, P?) is negli-
gible and decreases as powers of P2. Therefore we can calculate whole structure functions, in principle, up
to all orders in QCD by the perturbative method. Indeed, the spin-averaged virtual photon structure function
F g (x, Q2, P?) was studied before in the LO [[I1]] and NLO [12} [13]]. Meanwhile, the spin-dependent virtual
structure functions g“{(x, 02, P*) and g;(x, Q?, P?) for the kinematical region Eq. (I.I)) have been also studied
in QCD [[14}[15,16]. Recently, the first moment of g?(x, Q?, P?) was calculated up to the NNLO [17], and the
transition of gT(x, Q?, P?), when the target photon shifts from real to highly-virtual region, was investigated
by using VDM for the estimation of the non-perturbative effects on the photon matrix elements [[18]].

In this thesis, the analysis of F ; (x, @%, P?) in the kinematic region Eq. (L) is performed in massless
perturbative QCD, up to the order a@a, which corresponds to the NNLO, and in leading twist approximation.
We use the operator product expansion (OPE) and the renormalization group (RG) approach. It is shown
that the NNLO corrections are not small in comparison with the LO and NLO contributions, in particular
at large x. We also discuss the longitudinal structure function F Z(x, 02, P%) up to the order aa,, which
corresponds to the NLO.

This thesis is organized as follows. In the next chapter the photon structure functions for the virtual
photon target are defined. Moreover some aspects of QCD are reviewed, for later use. In Chapter 3, using
the operator product expansion (OPE) and the renormalization group (RG) method, we obtain the moment
sum rules of the structure functions F g (x, 0%, P?) and F Z(x, 0%, P?) up to the order aa;. We also provide
the necessary ingredients for the analysis, such as the coefficient functions and anomalous dimensions of
the relevant operators, and photon matrix elements of these operators, all of which are calculated in the MS
scheme [19]. In Chapter 4, we invert the moment sum rules to obtain the structure functions F ;(x, 02, P%)
and F Z(x, Q?, P?) as functions of x. Chapter 5 is devoted to the summary of our study and the future outlook.



Chapter 2

Preliminaries

In this chapter, we introduce the structure functions of the (virtual) photon, which is our subject in this thesis,
through the discussion about the two-photon process in e*e~ collision. Additionally, we review some aspect
of tools for our analysis, for later use. More detailed arguments may be found in a number of textbooks and
reviews; please refer to, for example, Refs. [20, 21]].

2.1 Structure of the Photon

2.1.1  Two-photon Process in e*e™ Collision

Let us consider the particle production in e*e™ collision such as e*e™ — e*e”X. The dominant process at
high energy is the two-photon process [3, 4]

e (INe” () — e~ (e y)y(@)y(p) = e (IDe” 1NX(Px), 2.1)

which is depicted in Fig. 21E. The momenta of the incoming and outgoing leptons are denoted by /1, b, [/
and /), respectively, and the momenta of the photons are expressed as

g=hL-1, ¢ =-0"<0,

2.2)
p=h-1, p*=-P*<0.

Note that p and ¢ are in general space-like for this process. For later use, we also define the Bjorken scaling
variable x
2
x:Q—, v=p-q. (2.3)
2v
Since (p + ¢)* > 0 for the physical particle production, x is in the range of 0 < x < 1.

This process can be regarded as the deep inelastic electron-photon scattering and we can investigate yy
scattering through this process, using an analogy from the study of yp scattering via the experiments on the
deep inelastic electron-proton scattering. P> shall be smaller than Q°, P?> < Q?, and the probe photon and
target photon refer to the photon with their virtuality P> and Q?, respectively.

Differential Cross Section The differential cross section for the process Eq. (2.1) is given by

1 AN A
do = , - IMP@r)*6H(p + g — Py)dT, 2.4)
4N ) =t Qn2E] 2n)2E; le =X

#'Potentially there exist the contributions from other diagrams, s- and z-channel bremsstrahlung diagrams where hadrons in the
final states are produced by the bremsstrahlung photon, and Z boson exchange diagrams, can be ignored when appropriate cuts are
used. At first, the s-channel diagram is suppressed by a factor E~2. Secondly, the two-photon process has at least one more power
of a collinear logarithm In(E/m,) than the t-channel diagram. Finally, Z boson exchange diagrams have no effect if the virtualities
of the boson are not too large than the mass of the Z boson.
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Figure 2.1: The particle production via two-photon process in the lepton-lepton scattering, e~ (l1)e* (lr) —
e~ (IDe* () y(q)y(p) — e~ (I)e"(I;)X(Px). The subprocess above dashed line can be regarded as the deep
inelastic scattering on a virtual photon. The mass squared of the probe and target photons are —Q” and —P?,
respectively.

where E| = l’lO and E/, = 1'20 are energy of the outgoing leptons, m, is the electron mass, M is the invariant
matrix element and

nx

nx d3pl
Py = Z;Pi, dl’ = E[W, (2.5)

are the total momentum and the phase-space volume, respectively, of the produced hadron system X.
For the two-photon process, it is convenient to rewrite the cross section Eq. (2.4)) as the following form,
by separating into the leptonic part and the hadronic part (Fig. 2.2)

LUl (4na)’ 1

T 2EREN20° PP@ 4Ny ) — i

P 2 Wi 2.6)

Figure 2.2: The squared amplitude for the two-photon process can be separated into the leptonic part and
the hadronic part.
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v, (a") \if Z, U, (a)
o) D P R()

Figure 2.3: Forward scattering of a photon with momentum ¢ and another photon with momentum p. a, b,
a’ and b’ are the helicities of the final state and initial state photons, respectively.

In the leptonic part, the photon density matrix p}” and pf" are (summed over final spins)

v 1 -_ !’ I'N—=r1 ’ v
"= Dl sy udts, spuds, sy ulh, i)
5

(2.7a)
_ ( y CI“CZV) QL — gyl — g 2ime™Ps1,qp
=78 —— 2 - 2 )
q q q
1 s ’ '\N—/1 ’
pgT - —_172 Z v(lp, s2)y™ (15, s5)v(L5, s5)¥°v(la, 52)
& (2.7b)

P PT) QL —pyQhL—p) 2imee ™ syapp

i
- (gp P2 p? p? ’

where sy, 52, s and s} are polarization vectors of the incoming and outgoing leptons, respectively, and
normalized as s? = —1. The hadronic tensor W, is defined by@

1 .
(47)Wipr = 5- > f dT M, My x (21)*6*(p + q - Py), (2.8)
X
where M, is the amplitude of the y(q) + y(p) — X subprocess.

2.1.2 Hadronic Tensor and Structure Functions

According to the optical theorem, the hadronic tensor Wy, is related to the absorptive part of the photon-
photon forward scattering amplitude for y(g) + y(p) — ¥(q) + y(p) (Fig.R.3):

Type(p,q) = i f d*xd*y d*z P OIOIT (J,,(x)J,(0),(1)J(2))|0), (2.9)

(where J is the electromagnetic current) as follows

Wapr(p, q) = L d*y d*z % elP OO T* ()T, (W) T (J,(0)J(2))I0)
2n (2.10)

1
= ; Im T,uvp‘r(p, CI)

In general, taking into account P-, T- and gauge-invariance, the tensor W), can be decomposed in terms
of the basis of eight independent tensors, which are constructed from the vectors ¢, p and the metric tensor
g (22,123, 24)]. Here we construct W, from eight structure functions along with Ref. [22].

#2Note that, in our definition, the structure tensor W,,ypr is proportional to a.
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Helicity Amplitudes At first, let us define the helicity amplitudes as follows

W(a,bld',b') = €,(q, )€, (p, L)W " €,(q, " )e:(p, '), (2.11)
where €(a) represents the photon polarization vector with helicity a, and a = 0,+1. Similar ones for
the other polarization vectors (See Fig. 2.3). There are constraints reducing the number of independent
W(a,bla’,b") to eight. W(a,bla’,b") vanishes unless it satisfies the condition a — b = a’ — b’ due to the

angular momentum conservation. And parity conservation and time reversal invariance lead to

W(a,bla',b") = W(—-a,-b| - a’,-b") parity conservation

) o (2.12)
=W(d,b'|a,b). time reversal invariance
We may take eight independent helicity amplitudes as
W, 1|1, 1), wa,-11,-1), W(1,0[1,0), W(0, 110, 1), W(0,00,0), (2.13)

W(1’1|_ 1’_1)9 W(191|0a0)’ W(l,OlO,_l)

The first five amplitudes are helicity-nonflip and the last three involve helicity flips. Note that the helicity-
nonflip amplitudes are semipositive

W(a, bla,b) > 0, (2.14)

but not the helicity-flip ones. And besides, there are three independent positivity constraints on these ampli-
tudes due to the Cauchy-Schwarz inequality [25]]

\W(a,bla’,b")| < \W(a, bla,))W(a’ ,b|a’, b'), (2.15)
or explicitely
IW(, 1], -1, -1 < W(1, 1|1, 1), (2.16a)
IW(1,1]0,0)| < VW(1, 1|1, 1)W(0,0/0,0), (2.16b)
|W(1,0[,0,-1)| < \/W(I,Oll,O)W(O, 110, 1). (2.16¢)

Construction of Hadronic Structure Tensor Due to the completeness and orthogonality relations for
(space-like) polarized vectors in Eq. (Z.11), Wy, can be expressed in terms of the helicity amplitudes:

Winpr = Y €u(g, )ep(p, )W a, bla', b)es (g, @ )ei (p, b). 217

ab,a’ b’
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The gauge-invariance is ensured by construction due to g - €(g) = p - €(p) = 0. We use the following eight
structure functions instead of the helicity amplitudes:

1 X
Wrr = 5 [W(L 1L D + W, -1]1, -] = oTTSs (2.18a)
2 4rla
Wsr = W(0,1]0,1) = (2.18Db)
X
Wrs = W(1,01,0) = VX ——ors, (2.18¢)
71'
X
Wss = W(0,0/0,0) = \/2_ Usss (2.18d)
(04
1 X
W?T=§[W(1,1I1,1)—W(1,— I1,-D)] = \/_TTT, (2.18¢)
X
Wi =W 1 -1,-1) = \/2_ T, (2.18f)
a
. _ 1 VX
Wrs = 5 [W(L,10,0) = W(1,00, - D] = -—5—77s, (2.18g)
1 X
Wi = 5 IW(L1j0.0) + W(1,00. ~1)] = v_qy (2.18h)
CL’

where 0 ,’s are the total cross section of y(gq, a)y(p,b) — X(Px) scattering with photon polarization a and
b:

Oab = ﬁ X 2m)(4na)Wyp, (2.19)

with X = (p - 9)> — p*>¢*. Since the helicity-nonflip amplitudes are semipositive, the first four quantities are
positive definite but the last four are not. Then it follows that W), is written as [22, 26]

W,uva = (PTT),UVPT WTT + (P‘%T)#VPT W?"T + (PT T)MV/)TwT + (PST);W/)T WST

(2.20)
+ (Prs Y™ Wrs + (Pss """ Wss — (Ppg V"™ Wrg — (Prg Y™ Wrs,
where P;’s are the following projection operators:
(Ppr)Y*™PT = RYRPT, (2.21a)
(P4 )"PT = RWR™ — R R, (2.21b)
1
(PLp YT = E(R”pRVT + RTRP — RMRPT), (2.21c)
(Ps7)Y™"" = K{k{RFT, (2.214d)
(Prs )™ = RIS, 2.21e)
(Pss YT = KKV KOKS, (2.211)
(Pys ™™ = ROKIKS + RTKIKS + KGR + KGR, 21g)
(PR Y7 = RV ~ R + IR ~ KGR, @21
with
1
RY = =¢"+ < @' v’ + P'a) - PP - PPa'q’ (2.22)

_q2 y _p2 v
oyl g lrr) @2
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The (virtual) photon structure functions W; in Eqs. (2.18) are functions of three invariants, i.e., v, Q> and
P?, and have no kinematical singularities. The subscript “7” and “S” of the structure functions refer to
the transverse photon (¢ = +1) and time-like photon (a = 0), respectively. The first subscript corresponds
to the probe photon and the second one corresponds to the target photon. The superscript “r” implies
amplitudes with spin-flip for each of the photons with total helicity conservation, and the superscript “a”
implies polarized ones, i.e., these amplitudes appear in the antisymmetric part of W), under the interchange
of u & vand p & 7. Due to the fact that W, is symmetric under the simultaneous interchange of
(g, 1, v) & (p,p,7) (just turn Fig. 2.3] upside-down), all photon structure functions are symmetric under
interchange of p < ¢, with exception of Wy and Wrg, which satisty Wsr(p, g) = Wrs(q, p).

The unit vectors k1, kp and the symmetric tensor R*Y, the metric tensor of the subspace which is orthog-

onal to ¢ and p, satisfy the following relations:
q-ki=p-k=0, k=k=1. (224
¢"Ryy = P"Ruy = K{Ryy = k3R, =0, R¥R)Y = —R™, R“R,, = —g""R,, = 2.

With the aid of these relations, one can find the following orthogonality and normalization relations:
(Pi)'uypT(Pj)uva =0, for i# j,
(PTT)HV'DT(PTT)/pr =4, (PC;"T)IJVPT(PC%T)yva =4, (P;T)#VPT(P;T),uva =2,
(PST)#VpT(PST)prT =2, (Prs )#VPT(PTS)quT =2, (PSS)HVPT(PSS);W,DT =1,

(P;S )'quT(P‘]r"S )ﬂvp‘r =38, (P;Cfg )WPT(P% )pvpr =38

(2.25)

2.1.3 Spin-averaged Structure Functions and Unpolarized Cross Section

The hadronic structure W, essentially represents the scattering of a probe photon on a target photon.
For unpolarized target photon, as usual, one can average over spins of the target photon and introduce the
structure functions for the spin-averaged target photon. This is done by contracting (4th. rank) hadronic
tensor W, with the polarization vectors of the target photon, and then we obtain the 2nd. rank tensor W,,,.
This tensor can be decomposed into two functions™ just as familiar structure functions of spin-1/2 targets,
e.g., protons and neutrons.

Spin-averaged Structure Functions We take the spin average for the target photon and define the spin-
averaged structure tensor:

IS
Wo(p.d) = 5 D & (p.@)Winpe(p. )€ (p.a)
a

1
= — Egl)‘r W,uva(p’ q) (226)

1 i
= 51’ fd4x e'l x(')’(p)l]y(x)]v(o)b’(p»spin ave-
It relates to the absorptive part of the corresponding forward scattering amplitude
Tup, @) = i f d*x T T ()T ODY(P))spin aves (2.27)

such as

1
Wh(p.q) = —Im T}, (2.28)

#The spin-1 structure tensor (which consists of eight functions) can be decomposed into a spin-averaged (two functions), a
spin-dependent symmetric (singly-polarized; four functions) and a spin-dependent antisymmetric part (two functions) [27, 28]
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From the expression of Wy, given in Eq. (2.20), we obtain

1
W), = Ry [WTT - EWTS

1
+ kiukiy [WST - EWSS]

Quq 1
= - (guv - ’;—;) [Wrr - EWTS] (2.29)

+ ~ Y oV L (W + wsr = Lwps - Lw
Pu qzq” Dy qz% x | TT ST = 5Wrs = 5Wss |-

On the other hand, the spin-averaged tensor WZV can be expressed in the standard form in terms of the
structure functions £ = W; and 2F, = vW, as spin-1/2 targets:

y
y Audv\ .y v v 2F2
W/n/ == (g,uv - 7) Fl + (Py - ?Clu) (Pv - ?%/) T (2.30)
By comparing Egs. (2.29) with (2.30), we find
1
Fl =Wrr — 5 Wrs, (2.31a)
FY = 2\ Wer + Wy — ~Wrg — 2w (2.31b)
2= 3 TT st = 53 Wrs =5 Wss |, .

where

[ _4ng_2. 2:32)

The longitudinal structure function Wy, is given by
1
W) = K[k\W), = Wsr — EWSS’ (2.33)
and F Z with the appropriate normalization satisfies the usual relation when P> < Q% (8 ~ 1):
F) = xW) = B*F) — xF) ~ F} - xF?, (2.34)

and then our expression for the spin-averaged structure tensor is

F7 + F
()L (g, 2t n P -
q X 1% X

WZV = (gyv
Unpolarized Differential Cross Section Next let us see how the structure functions appear in the differ-
ential cross section of e*e™ — e*e”X. For unpolarized e*e~ beams, the photon density matrix o} and "
Egs. 2.7) becomes (averaged over initial spins)

. @\ Q- qreh - gy
Pﬁ'(vunpolﬁ—(g" -1 )— L T (2.362)
q q
: T\ Q- pPQCh - py
z<unp01>=—(8” —p; 4 )— 2P > 2P (2.36b)

and finally one can obtain the ee — eeX cross section for unpolarized beams in terms of yy — X cross
sections [20, 22-b, 29, [30]

31 3317
hd’l,  o? (p-q)?* - Q°P?

K 16m* QP2 N (I - h)? —m¢

d60'(unp01)(ee — eeX) =

2.37
X [4/)1**/)5 Yorr +200°p3 ost + 207 pP0rs + piOp5 s 2.37)

+2loip3 lrrr cos 2¢ - 8lo}’p3 lrrs cos b,
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where ¢ is the angle between the scattering planes of the scattered ¢* and e~ in the center-of-mass system

of the colliding photons, and p?b ’s are elements of the photon density matrix:
1 m? 1 m2
++ _ 2 e ++ _ 2 e
2p] —§(2ll-p—v) +1—4@, 205 —)—((212-q—v) +1—4E,
2 2
P =201 -2+ 4%, Py =203 -2+ 4%, (2.38)

i l=pf =1 107% = P + Dip} .

Note that yy — X cross sections o, relates photon structure functions W,;, by Egs. (2.18) and spin-averaged
structure functions are related to some of them by Eqgs. (2.31). It is noted that all these quantities are
expressed in terms of the measurable momenta [y, [, [; and [} only, and hence are completely known.

2.2 Quantum Chromodynamics and Related Topics

2.2.1  Quantum Chromodynamics

Quantum Chromodynamics (QCD) [31] is the non-Abelian gauge theory which describes the strong interac-
tion between quarks via exchanging the gauge boson called gluon, and one of the constituents of the standard
model of particle physics together with the Weinberg-Salam model of electroweak interactions [32, 33]].

Let the quark field ¢; transform in the fundamental representation of SU(N) where i is the color index
running over i = 1,--- , N, with N = 3 for QCD. It transforms as

Yi(x) = Uiy j(x), (2.39)

where Uj; is an group element of SU(N), i.e., U is N X N matrix satisfying UU' = 1 and det(U) = 1, and
can be parameterized as

Uij(x) = (¢7") (2.40)

ij

Here 6%(x) is an real parameter (for the local gauge transformation, it depend on x) and ¢ is the generator of
this transformation. The generators of SU(N) group are represented by N> — 1, N x N matrices which are
Hermitian and traceless. The Lie algebra is defined by the commutation relations of %,

[, 1] = if e, 2.41)

where f%¢ is the structure constant. The basis for the generators #* can be chosen as the trace of two
generators satisfy

tr(14”) = Tps, (2.42)

and we take T = 1/2. In this basis f%¢ is totally antisymmetric.

Lagrangian The classical Lagrangian of QCD is of the form which was originally written down by Yang
and Mills [34]]

_ 1
Lev = D Uy —mp)y = 3 (F)’. (2.43)
f
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Here ¢/ is a quark field with its mass m and f labels distinct quark fields (quark flavor u, d, c, s, t,b). The
covariant derivative D, is given by

D, =8, — igAgt”, (2.44)
with the strong coupling g and the gluon field Aj. F7,, is the field strength which consists of A} as
Fi, = 0,A% — 0,A% + g f*° AL AS. (2.45)
Then it is easy to see that the Lagrangian Eq. (2.43) is invariant under local gauge transformationd®:

Yy — ¥y = Uyy, (2.46)

At — AL = U [AZt“ - éU*(aﬂU)} U (2.47)

Note that the introduction of the quark-gluon interaction via the covariant derivative D,, is inevitable for
maintaining local gauge invariance, canceling troublesome term 9, U which appears in the transformation
of the quark kinetic term (i@ s

However, the gauge invariance of the classical Lagrangian L¢;, actually triggers some troubles in the
quantization. The solution to this problem is adding the gauge-fixing terms Lgr to break this invariance.
The most common choice of LgF is so-called covariant gauges

]
Lor = _2_6(8 - A2, (2.48)

where £ is the gauge parameter, most familiar choice of which is the Feynman gauge, & = 1.
Furthermore, in the covariant gauges, we must add the Faddeev-Popov Lagrangian [35]]

Lrp =7c“(=0- D), (2.49)
where ¢ and ¢ are scalar ghost and antighost fields, respectively, and Dy is given by
DL = 8,6 + gf AL (2.50)

These ghost fields anticommute in the quantization procedure, despite their spin. In a quantized non-Abelian
theory, the ghost fields are needed for canceling the unphysical states of the gauge bosons, which preserves
the unitarity of the S -matrix.

2.2.2 Renormalization

In tree-level calculation, the dynamical behavior of quark-gluon processes in QCD does not appear, which
is fundamentally linked to the properties of QCD. So the evaluation of the loop diagrams is needed, but
beyond the tree-level, we often suffer a sever problem. These are the ultraviolet divergences, which have
originated as infinite loop momentum.

1t is useful to note that D, and F' 4 transform as
D, — UD,U',  Fi' = é[Dﬂ,Dv] — U(F4,U",
and the second term in Eq. (2.43) can be written as

1 a \2 _ 1 a 2
~1 ) = —mtr[(Fwt") |-
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The essential point for solving this problem is, a physical parameter A,,swhich can be observed in the
actual experiment is the sum of a bare paramter Ap,e Which is contained in the tree-level contributions and
a loop correction Ajop Which may be infinite:

Aobs = Abare + Aloopa (251)

and we cannot separately observe Apae OF Ajoop. Therefore if we can absorb the divergences from the loop
contributions into the bare parameter in a consistent fashion (renormalization), we are left with the physical,
renormalized parameter which is finite and measurable.

Since divergent integrals are not mathematically manageable, in the intermediate stage before the renor-
malization, we need the process which makes divergent integrals suitably convergent ones (regularization).
To give an actual example of the regularization method:

1. Cut-off method
One of the simplest and naive regularization is the cut-off method in which the large momentum

) A
f dk — f dk. (2.52)
0 0

The original integral is recovered as A — oo. It, however, breaks translation invariance and rough

region is cut off in the divergent region:

treatment for the surface term often leads puzzling results. Also gauge invariance breaks in this
regularization. Therefore the cut-off method is not suitable for the regularization of gauge theories.

2. Pauli-Villas regulator method
In this regularization, the propagator in the integrand of the divergent integral may be replaced by

1 1 1 M? — m?

- = . 2.53
E—m  R-m R-ME (K —md)E - M) (2.53)

Then, the large momentum behavior of the modified propagator Eq. (2.53) is better (O(1/ k*)) than that
of the original one (O(1/k?)). The additional term in Eq. (2.33)) is called the Pauli-Villas regulator [36]].
The original propagator is recovered as M — oo. This method respects translation and Lorentz
invariance and, in fact, gauge invariance is preserved in the quantum electrodynamics. However,
in this method, the proof of the unitarity of the massless Yang-Mills theory is found to be rather
difficult. Furthermore, in the massive Yang-Mills theory such as Weinberg-Salam theory, the Pauli-
Villas regulator method does not maintain gauge invariance in a consistent way.

3. Dimensional regularization
In this regularization, the integral is regarded as a function of the number of the space-time dimension

d=4-2e
f d*k - f d’k. (2.54)

The original divergence will show up as a pole at d = 4. Since in this regularization, nothing is
violated except that space-time is not 4-dimensional, Lorentz invariance, gauge invariance, unitarity,
etc. are preserved. Therefore the dimensional regularization is the most suitable for gauge theories in
a lot of cases.
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After the regularization process, the renormalized quantity A, and unrenormalized quantitiy Ay, which
is regularized by some cut-off parameter A (e.g., € in the dimensional regularization), is connected as

Aren(p, 1) = Z7N (4, 1) Aun(p, ), (2.55)

where Z is the renormalization constant, p denotes the momenta of the external lines, and u is the renor-
malization scale, a new mass, at which the infinities are absorbed into Z, and which is not included as a
parameter in the original unrenormalized theory. To begin with, u can be taken arbitrary scale absolutely,
and may differ from integral to integral. Moreover,

Since Aen(p, 1) in Eq. 2.33) is renormalized and thus finite, all infinities in Ay,(p, A) are absorbed into
the renormalization constant Z(A, u). However, there is still freedom to choose the finite term in Z(A4, ).
In order to fix this arbitrary finite term, we need an additional requirement which sets up a renormalization
scheme. There are two basic classes of schemes widely used:

1. Momentum subtraction scheme
In this scheme, we choose

Arem(po, Ho) = Ao, (2.56)

with pg being some fixed set of external momenta, i.e., we fix A, such as that it has a specific form
at some point.

2. Minimum subtraction (MS) scheme
This scheme is due to 't Hooft [37]] and is specific to the dimensional regularization. In this scheme,
we eliminate only the pole terms 1/e. Because of its simplicity, this scheme is used in many QCD
calculations. In practice, the combination 1/e€ — yr + In(4m) always appear. Therefore it is usuful to
eliminate these constants together; such a scheme is called by MS scheme [19].

Now, because Aem(p, 1) is a physical quantity, it should be independent of our choise of u, and this
leads renormalization group (RG) equation:

d
ﬂd_Arem(puu) =0 (2.57)
u

This equation holds exactly if we have the exact solution of the theory, but we usually use perturbative series
expansion, then there are errors of the order of the first uncomputed perturbation expansion. This will be a
useful approximation if the coupling is small, which leads us to our next topic, asymptotic freedom.

2.2.3 Asymptotic Freedom

The notable characteristic of the strong interaction is twofold. Hadron spectra are very well described by
the quark model, but quarks have never been seen in isolation. All attempt to detect a single quark failed.
Evidently, the forces between quarks are strong. Paradoxically, however, certain high energy phenomena
are quite successfully described by the parton model, in which quarks behave as they do not interact at all.
Asymptotic freedom refers to the weakness of the short-distance interaction, while the confinement of quarks
follows from its strength at long distance.

An amazing feature of QCD is its ability to describe both kinds of behavior. To see these feature, it is
useful to introduce the renormalization group equation for the QCD coupling constant g,

dg(u)

p— = = Blew)). (2.58)
u
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where ((g(u)) can be calculated by perturbation. Up to the one-loop level we have [138}139]

3 11 2
B(g) = —%ﬁo +O).  Po=5Ca- 3y, (2.59)

where C4 = 3 in QCD, and ny is the number of quark flavors. The positiveness of 8 means that as u
increases, the observed coupling decreases. This is what we mean by asymptotic freedom. At the same
time, as u decreases, the coupling decreases. This shows that perturbation theory will not be applied at low
energies, where obviously the interaction force is strong. In this fashion, a perturbative description at high
energies is compatible with confinement at low energies.

Note that by changing the color factors C4 — 0, ny/2 — 3n f<ez>, we can obtain Sy for the quantum
electrodynamics, which is negative. Indeed, among the known renormalizable quantum field theories in four
dimensions, only non-Abelian Yang-Mills theories have the property of asymptotic freedom [40, 41]].

2.2.4 Operator product expansion

It is often useful to consider how the product of the two fields A(x)B(y) behaves when x — y (or near
lightcone (x — y)*> — 0). Wilson suggested that there is a convergent expansion of such products as a sum
(possibly infinite) of local fields [42]:

ABY) ~ Y Cilx~y)0; (x—;ry) for x — , (2.60)

where O; is a local operator which is regular when x — y, and C' is a corresponding coefficient which is
singular when x — y. This operator identity was justified in the framework of the perturbation theory by
Zimmermann [43]].

Let d4, dp and d; be the mass dimension of the operators A, B and O;, respectively. Then C  must behave
as

, for x — y. (2.61)

) da+dp—d;
Cix—y) ~[—
(x=y) (x y)

Therefore the terms which contains lower dimension operators in the right-hand side of Eq. (2.60) are
dominant, and we should consider only such operators. More realistic application of the operator product
expansion (near lightcone) appears in the next chapter.



Chapter 3

Theoretical Framework

As we have seen in the previous chapter, the spin-averaged virtual photon structure tensor WZV is given by

1 .
Wh(p.q) = 5 § (P, @Wypr(p, Q€ (p, @)
a

1
= _EngW,uvp‘r(pv q) (3.1

1 .
- Z{ fd4xelq.xh/(p)l‘]#(x)JV(O)W(p))spin aves

and it relates to the absorptive part of the corresponding forward scattering amplitude

Tp(p.q) = i f d*x &y (P)T (Ju(X) T (O)Y(P)Dspin aves (3:2)
such as
y 1
Wyv(p, q) = 7_1' Im Tyv- (3.3)
On the other hand, in terms of two independent structure functions F’ ;y and F Z, WZV can be written as
1 1
WP, @) = ew—F](x, 0% P!) + dy—F3 (x, 0%, P). (3.4)

and the tensors e, and d,,, are given by

quq qupPv + Puq Pup
e;u/:gyv—%, duy =~y uDv t Puqy ulv 5

— q‘
q Pq (p-q?

(3.5)

In this chapter, we analyze the photon structure function Fg(x, Q?, P?) and FZ(x, Q?, P?), using the
theoretical framework based on the operator product expansion (OPE) and the renormalization group (RG)
method, in the kinematical region A?> < P> < Q?, where A is the QCD scale parameter. In the kinematical
region A% < P2, the photon matrix elements can be calculated in the perturbation, and for P> < Q? we can
neglect corrections from kinematical mass effects and from higher twist corrections, which have the form
(P2/Q* (k=1,2,---).

15
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3.1 Moment Sum Rules From OPE and RG

Moment Sum Rules By applying OPE for the product of two electromagnetic currents at short distance
we obtain

l'fd“xeiq'xT(J#(x)Jv(O))
2 \" i n Q2 7
- ; (@) [(guv - ;—z)qmquzcu (ﬂ_z’g(llz),a)

2
+ (_g/lmgvyzq T 8 v, T v ud — guVCI/quuz) Cg,i (

(3.6)
2
f—z, 2, a)l
X Gy - qﬂn0¢1""“”(lu2) oo,

Here all quantities are assumed to be renormalized at the renormalization scale y and g(u?) is the effective

running QCD coupling constant at this point. « is the fine structure constant. O}

are spin-n twist-2
irreducible operators (hereafter we often refer to Oil 1 as 07). Cj; and Cj ; are the coeflicient functions
corresponding these operators and contributing to the structure functions F Z and F %’ respectively. The sum
on i runs over the possible twist-2 operators and - - -7 represents other terms with irrelevant operators and
coefficient functions. Actually, the relevant operators O} are flavor singlet quark (¢), gluon (G), flavor

nonsinglet quark (NS) and photon (y) operators as follows:

oL = %in—l%,{mDuz DRIy, (3.7a)
0t = %in—zGa{mDuz .. DM GO (3.7b)
Ol = Ly e Do (@2, — 1), @7)
o — %i”‘ZFa{”‘a”z .. G-t fHn) (3.7d)

Here D denotes the covariant derivative and it is understood that the symmetrical and traceless part is taken
1

NS>
unit matrix, th is the square of the ny X ny quark-charge matrix, with ny being the number of the active

quark (i.e., effectively massless quark) flavors, and (e?) = (Z:Z 1 e%) /ny is the average charge squared where

e; is the electromagnetic charge of the active quark with flavor i in the unit of proton charge. It is noted that

with respect to the Lorentz indices y; - - - i, in the curly bracket. In quark operators OZ and O%, LisnyXny

we have a relation tr(Qgh —(e*)1) = 0. The essential feature in the analysis of the photon structure functions,
in contrast to the case of the nucleon counterparts, is that the photon operators O’ appear in addition to the
. . .
familiar hadronic operators 03, Og, and O} [7].
The spin-averaged matrix elements of these operators sandwiched by the photon states with momentum
p are expressed as

P2 _ .
GPIO ™ 1y (p))spin ave = A (F,goﬂ),a)p“" cepfl. o for i=y,G,NS,y, (3.8)

Using the OPE in Eq.(3.6) with the photon matrix elements in Eq. (3.8), we can write the forward scattering
amplitude 7, in Eq. (3.2) as

1 n
T =Y (}) (eCl, + duyCh ) AL, (3.9)

n,i
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which is an expansion in terms of 1/x for unphysical x — co. The continuation of this result to the physical
region 0 < x < 1 is done by a dispersion relation in the complex x-plane, and using the relation Eq. (3.3) we
finally obtain the moment sum rules for F' ; and F Z as follows [44]:

G A . (O - (P
— fo dx X 2F(x, Q2 P) = ) cz,,.(f—z,gm,a A7z 80).a). (3.102)
i=y,G,NS,y
1+ 1" (! _ 2 P2
el R Y SR WS Co Ry Y] Co - PoN R CR S
2 0 i=y.GNS.y H H

We can freely choose the renormalization point u due to the fact that the left-hand side of Eqs. (3.10) does
not depend on it. We later take 4> = —p*> = P? as a matter of practical convenience. Note that because F. g
and F Z are symmetric function in p - g, this moment sum rules apply only for even .

The photon structure functions are defined in the lowest order of @ and, through this work, they are of
order a. Since the coefficient functions Cg’,y and Cz’y are O(a), it is sufficient to evaluate A7 at O(1), and
thus we have

P _ .,
A; (F,g(ﬂ ),oz) =1. (3.11)

On the other hand, the matrix elements A? (i = ¢, G, NS) for the hadronic operators start at O(a). For
—p? = P2 > A2, we can calculate these photon matrix elements of the hadronic operators perturbatively, in

each power of g2. Choosing u? at P?, we get them in the form as

=2 P2
-2 [A(.l)’" + MAEZ)’" +0E*P)|,  for i=y,G,NS.

PZ
A'(g(P?), @) = A —, 3(1?),
i @(P7), @) ,(#2 g(ﬂ)a) 1 | 162

/12:1.)2
(3.12)

Let us analyze the structure function F g (x, 0%, P?). We will evaluate its moment sum rule up to the
NNLO (aay). The longitudinal structure function F Z(x, 02, P?) can be evaluated in a similar manner. To
the lowest order in «, the Q2—dependence of the coeflicient functions Cg’i(Q2 /,uz, g(ﬂz), @) in Eq. (3.104) is
governed by the RG equations.

0 O\ . (O . . (Q°

with i, j = ¥, G, NS and y. Here S(g) is the QCD beta function and 4"(g, @) is the anomalous dimension
matrix. To the lowest order in «, this matrix has the following form:

n [ Y@ |0
Y¥(g a) = (W)’ (3.14)

where 4" (g) is the usual 3 X 3 anomalous dimension matrix in the hadronic sector

Y& V5,8 0
¥'(®) =176® 766 0 |, (3.15)
0 0 vys(®

and K" (g, a) is the three-component row vector

K"(g.) = (Kj}(2,0) Ki(g,@) Kiyg(g,a)), (3.16)
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which represent the mixing between photon operators and remaining three hadronic operators
If we choose > = —p? = P2, the solution of Eq. (3.13) is given by
(3.17)

2(P?) n 5
¥"'(g, @) . (Q . )

d = =1, al.
\fg(Qz) ) Dij 2j\p2 80, @

The T-ordering in Eq. (3.17) is necessary since [v"(g, @), ¥"(g’,@)] # 0, and is defined as
g1 n ne ot

f gf dgY (g.a)v (g:a)+
) B  BE)

2
G, (Q Lg(P?), a) [T exp
(3.18)

Y8, @)

B(®)
With the aid of Eq. (3.17), for even n, the moment sum rule for F? in Eq. (3.10a) becomes
"(g. @) _
- l] cs,(1.8@.a). (3.19)
ij

fg(Pz)
dg
2(0?) B(©)

fexp U K Wn(g’a)] “f B

A"(3(P?), @) (T exp

1
f dxx"2F}(x, 0%, P?)
0 i=y,G.NS.y
Furthermore, the T-ordered exponential in Eq. (3.19) has the form as [§]]
2(P?) M" |0
T exp f PRt ( . | ) (3.20)
won - B© X" |1
where M" is a 3 x 3 matrix and X" is a three-component row vector, one can find from Eqs. (3.14)
and (3.20),
S(p2
Q@ ) fg“’) 7@ |
M"|=,2(P°)|=Tex dg (3.21a)
(P2 ¢ Pllaoy ““ B
o W K'(g,a) <A
X" (—z,g(Pz), a) = f dg———=——T exp [f dg'— ] (3.21b)
P 20 B(g) gon - PE)
Therefore, with the following notations
A'(g, ) = (A)(g,@) AL(g,0) Alg(g,0)), (3.22)
and
cs,(1.8)
i =| Cioe | Clga)=Cl(Lga. (3.23)
Cyys(1,8)

(3.24)

we finally write down Eq. (3.19) as
2
(Q ,g(PZ)) . C3 (2(0%)

f dx X" F}(x, 0%, P*) = A" (3(P*). ) - M"
0
+ X" (Q L8P, a) C; (2(0M) + €5, (3(0%). @)

This expression is valid to any order in the effective running QCD coupling constant g~ and to the first order

in a.
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Expanding Moment Sum Rules up to NNLO To evaluate M"(Q?/P?,5(P?)) in Eq. (3.21a), we first
expand 4"(g) in powers of g2 up to three-loop level as follows:

7@ = 7@ + 4@ + 4P (@) + -

4 6 .
8 s 2 (2).n O(gg). (3.25)

g (0),
e T en 2)37

167r27

Then the T-ordered exponential of M "(Q?/P?, g(P2)) can be expanded such as
T exp [ f dg (g)}
@ ,B(g)
_ [ fgl ﬁ“”’”(g)]
= exp dg
pa B)

“ [ ,ﬁ(o)’"(g’)]'?(”’"(g) [ fg ,‘Y(O)’"(g’)]
d d dg' ———
" fg § &P fg STy | B ). B

g ’ ﬁ“”"(g)] 5D(g) [ ¢ ,&<°>»"<g')]
d d do ——=~
§ <xp fg S8y | B P|). Y B

1 [ 2,0),np 7 (l)n 2,0),n0 7
d d d d
T, BT fg $ TRy | B Jo P, TRy

(D,n O),np 517
o (g)ep{fdn (g )}Jr
&

(3.26)

+

T

0%

og
I

B B(g"”)

To evaluate these integrals, we make a full use of the projection operators obtained from the one-loop
anomalous dimension matrix 4?+" in the second line of Eq. (3.23) [8]:

FOm= X Py (3.27)
i=+,—,NS

0),n

where A7 (i = +,—,NS) and P are eigenvalues of ¥ and the corresponding projection operators, re-

spectively. Explicitly,

1l © 0 0 0 0 (0 0
1= Lm0 o0 P a0 | Gas)
and
(0).n n 0).n
n 1 yw(o)—n/l O ° n 00
P! = T YuG Yoo — A5 Of, Py, =10 0 0], (3.29)
T 0 0 0 00 1
which have the following properties:
P'P! =P/ > opr=1 (3.30)
i=+,—,NS
Expanding 3(g) in powers of g2 up to the three-loop level as
& & Py 0
= - - - +0(g), 3.31
B(&) =~ b0 Tor® ~ eyt T 0 (3.31)
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we find that the exponential in the Eq. (3.26) can be reduced to, up to desired order,

d" " n2
s 40y A E-2p &g (B g (@ - ()
xp dg _ZPI vl B L > 5 di - vl PN N2 2
o B(g) ,- g 167 Bo ' (16m22 (B2 Bo) 2 (l6m)? g2 2

(3.32)

>

where

4t = /1—? (3.33)
" 2B

Then it is a straightforward task to expand Eq. (3.26)), or M"(Q?/P?, g(P?)) up to the NNLO. The final form
of M"(Q?/P?,g(P?)) is given in Eq. (AI) in Appendix [Al Similarly, expanding K" (g, @) in powers of g>
up to three-level as

2 4
a 8
K'(g,a)=-—— |KO"+ = KOy =K@ 1 0(g° 3.34

&) =-7 1672 (16 2)2 @] (339
one can evaluate X"(Q?/P?,3(P?), @) in Eq. (3.21D) up to the NNLO, which is given in Eq. (A.2).

Finally, expansions are made for the photon matrix elements of the hadronic operators A"(g, @) as well
as the coefficient functions Cg(g) and ng(g, @) up to the two-loop level as follows:

A'(g, ) = [A“)” 1§ A" 4 O(g )] (3.352)
2 4
Cig) = CO" + Sy 5P o), (3.35b)
2 2 1672 2 (16 2)2 2
C3y (8 ) = [Cély’" li 1O+ 0<g4>]- (3.350)

Then putting Egs. (A.I), (A.2) and (3.33) into Eq. (3.24)), we find that the expression for the moment sum
rule of F' g (x, 9%, P?) up to the NNLO (a«;) corrections is summarized as follows:

fol dx X" 2F)(x, 0%, P?)

e 2o ()|
-] [ 2] e o
+ %52)(2 D} [1 - (Zig;)d_ll + Za;? 1- (zig;)d}

N
T )],
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with i = +, —, NS. The coefficients L, A}, B, C", D7, &, F" and G" are given by

1
(0), 0),
L} = K""P'C, nd” T (3.37a)
,Y(l) n pn ,3
n_ _On L C(O)n + KO PnC(O)n 1
7 Z/l’?—/l?+2/30 2 2 Bo d”
1
+ K(l) nPnc(O)nd - 28 A(l) nPnc(O)n (3.37b)
l
pr4 O p; 1 |
n _ 1-0),n J On__ ~ 0),n pn ~(1).n
gz K Zﬂ" ST A I A
dar
0).n pn (0);1,31 i
- KRy T (3.37c)
C" =26 (" + AV ), (3.37d)
nz(1),n pn n _
D = K(O)nPnC(O)n ﬂl ) 1 1 i\ KO Z uc(om,ﬁ dj -1
! B2 Bod!—1 2 V=1 +28y 2 Bod!—1

nf\(l)n n n nx(2),n pn
SOy 7B conBr () gom 3 IR o]
< =AM+ 480 2 Bo dar—1 S L LY R |
J J ! j J i i

nz(1),n png(l),n pn
KOn Z P v P P 0),n 1 + KO nPnC(O) nlBl
(= A+ 2/30)(12 —Al+4By) 2 dl -1 2 Bo

PnA(])nPn 1 1
(1), ! (0), 2), (0),
- K "Z /l".—/l’?+2,3002 nd?’—l +KO"PIC, nd"—
i !

Pn,s,(])nPn ﬁ
+ 2/30A<1>»"Z mc@)” 280AV" P ”ﬁl &' =28y AP PICO", (3.37e)

- Py pr
n _ 1-0).n pn (Unﬁl KOmn ! (l)n (1),n pn (l)n
& = KO PIey di Z —/1" 77250 7t KV prcs 7

nz,(1),n pn
_ K(O)’nP-nC(O) n'Bl (dn — )+ K(O),n Z Pl 2 Pj C(O)Jlﬁ_l i 1
TR A=A+ 20 2 Bo df
nz(1),n pn ng(1),n pna(1),n pn
+K(O)nz PR, C(O)nﬂl B (O)nz Py By By o 1
; A= A+ 2B 2 (' - /1" + 2B0)(A} = A} +2Bo) 2oar

na(1),n pn
_ K(l),nPflC;()),nﬂ_l + K(l),nz ‘Pl 7 P] Céo),ni
i n n
Bo 7 /li - /lj + 200 d?
ng(1),n

Py
— 2By A" Z mc@” + 280 AV Pr e [; Lar —280AV PN, (3.376)
J

2,(1),n pn
n _ 1O pne~Qn_ 1 0),n pn ~(1),nP1 O),n J (1),
Fi = KOaprcy K P'CS ﬁdn_l”+K Z/l'?—/l’;+2ﬁo > nd?+1

n n2(1),n pn n
+ KO PnC(O)n :ﬁ B 1|4 K(O),nz P C(O),n& 4]
B /l”—/l’}+2,30 2 ,Bod?-i-l
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nz,(1),n pn n nz,(2),n pn
_ KOn Z Py P cOnBL | _ 4] L KOn Z Py P cOn_L
A=A+ 2 o d'+1 A - A Apy 2 dl+ ]
nz(1),n png(l),n pn
fEOnY By o L 1 |gon ! (337g)
S -2 - +2B0 A -A+AB) T dl ]
G" = 2B (C" + AV O 4 AP CPM). (3.37h)

The LO (aa;l) term L7 was obtained by Witten [7]. The NLO (a) corrections A7, B! and C" without
terms including A(D" were first derived by Bardeen and Buras [8] for the case of the real photon target (i.e.,
P? = 0). Later Uematsu and Walsh [[12] analyzed the NLO () corrections for the case of the virfual photon
target (P? > A?) and the terms including AV”* were added to A and C". The coefficients D7, &, F" and
G" are the NNLO (aa;,) corrections and new.

These coefficients have, formally, singularities in their expressions Eqs. (3.37a)-(3.37h), however,
Eq. (336) never diverge by these superficial poles. In fact, for n = 2, one of the eigenvalues, A"=2, in
Eq. (3.28) vanishes and we have d"=> = 0. This is due to the fact that the corresponding operator is the
hadronic energy-momentum tensor and is, therefore, conserved with a null anomalous dimension [8]]. The
coefficients A"=2 and &"=2 have terms which are proportional to 1/d"=2 and thus diverge. However, we see
from Eq. (3.36) that these coefficients are multiplied by a factor [1— (as(0%)/ cyS(Pz))dfzz] which vanishes. In
the end, the coefficients A"~ and &= multiplied by this factor remain finite [12]. Moreover, we will extend
this sum rules to real n (and complex n-plane) later. In that situation, for example, the factor 1/(A” — A% +200)
in A"} diverge when d” — d} + 1 — 0. However, such poles have corresponding counterparts, e.g.,

dn d"
ay(0H\" On PPAVPE ) ] as(0H\"
AN - -KWh'——— = _C37"— |1 - s 3.38

l (a«PZ)) lﬁ g T R L ey (35

d+1 d'+1
as(0H)\" ©) pPraynpr a1 as(0H)\"
"1 - K%' —— (" 1- . 3.38b
5 [ (a/s(Pz)) l - AV =+ 2By F dM+1 ag(P?) ( )

These two terms exactly cancel if " — d} + 1 — 0. Consequently, one can see that Eq. (3.36)) is analytic on
the real axis forn > 1.

3.2 Necessary Quantities in the MS Scheme

All the quantities necessary to evaluate the NNLO (aay) corrections to the moment sum rules of

F ;’ (x, 0%, P?) have been calculated and most of them are presented in the literature, except for the two-loop
@).n
2 2 2 Voo
dimensions Ké, " K (G)’" and KI(\,_;’", we only have approximate expressions in the forms of photon-quark and
photon-gluon splitting functions (i.e., x-space).

photon matrix elements of hadronic operators A Ag)’" and Aﬁ;" Also for the three-loop anomalous

If not otherwise mentioned, all the expressions listed in this section are the ones calculated in the modi-
fied minimal subtraction (MS) scheme [19].

Quark-charge Factors and S-Function Parameters The following quark-charge factors are often used
below:

nf nf
1
55 = (€% = > Dl ens=1, oy=3ugehy=3> . (3.39)
Ji=1 i=1
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The B-function parameters Sy, 81 and 8, which are defined by

dg g g g’ 9
a8 _ - _ _ - + 0%, 3.40
H B(g) = —1¢—ho a 6ﬂ2)2ﬂ1 a 6ﬂ2)3ﬂz &) (3.40)
are given by [43]40]
11 2
Bo = ?CA - gnf, (3.41a)
34 10
Bi = =—C% — —Cuns - 2Cpny, (3.41b)
3 A 3 f f
2857 1415 205 79 11
B = ?cj, - ?cinf ~ g CaCrny + gcAn]% +Ciny + 3CFn}, (3.41c)

with C4 = 3 and Cr = 4/3 in QCD.

Coefficient Functions As shown in Egs. (3.35b) and (3.33d), we need the hadronic coefficient functions
(7, with i =, G and NS, and the photon coefficient function C; ,upto the two-loop level.
At the tree-level, we have

0), 0), 0), 0),
=0, Cy'=0,  CY¥e=ons,  Cy"=0. (3.42)

The one-loop coeflicient functions were calculated in the MS scheme in Refs. [[19}/47]. The MS results are
written in the form as

R - ’ _ -
Cy)" =0sBy, Gy =0sBG,  CyNg =onsByg,  Cy"=6,B), (3.43)

where B’J = Bl;\/s and Eg are obtained, for example, from the MS scheme results for Bz = B} and B given
in Egs. (4.10) and (4.11) of Ref. [19] by discarding the terms proportional to In(4m — yg). 1§$ is related to
E’é by E; = (2/nf)§g. L

The two-loop coefficient functions corresponding to the hadronic operators were calculated in the MS

scheme in Ref. [48]. They were expressed in fractional momentum space as functions x. The results in
Mellin space as functions of n are found, for example, in Ref. [49]]:

CE)" = 05 [ ™) + 52 + 5P ()] (3.44a)
Cy' = 65 (m), (3.44b)
Coivs = Ons |50 0m) + 27 (m)], (3.44¢)

where <), ¢ (n), 52 (n) and ¢ (n) are given in Egs. (197), (198), (201) and (202) in Ap-
pendix B of Ref.[49], respectively, with N being replaced by n. The two-loop photon coefficient function

CEZ;’" is expressed as

CO" = 6yc5) (), (3.44d)

where c(zz’;(n) is obtained from c(zz,;(n) in Eq. (3.44b)) by replacing C4 — 0 and ny/2 — 1 [50].

Anomalous Dimensions The one-loop anomalous dimensions for the hadronic sector were calculated

long time ago [51} 52]]. The expressions of yg\(,);’" = yg);’”, yl%’”, yg);’" and yg)é:" are given, for example, in

Eqgs.(4.1), (4.2), (4.3) and (4.4) of Ref. [8]], respectively, with f being replaced by ny. As for the one-loop
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photonic anomalous dimension row vector K@ = (Kélo)’", K g) . K](\?;’"), we have K g) M — 0 and Kg))’"
and K/(;);" are given, respectively, in Egs. (4.5) and (4.6) of Ref. [8] with f being replaced by n; again.
The two-loop anomalous dimensions for the hadronic sector were calculated in Ref. [47] and recalcu-
lated using a different method and a different gauge in Ref. [S3]]. The results by the two groups agreed with
each other except in the part of yg();" proportional to C2, however, this discrepancy was solved later [54].

They are given by
e () (3.452)
Yoo =2 )+ 7] (3.45b)
Y = 27 ), (3.45¢)
Yau' = Wed (), (3.45d)
Youl = 2y (), (3.45¢)

where ygs)J’(n) is given in Eq. (3.5) of Ref. [55]], and ygs)(n), yflg (n), ygq) (n) and ygg)(n) are given, respectively,

in Egs. (3.6), (3.7), (3.8) and (3.9) of Ref.[56], with N being replaced by n. The factor of 2 in Egs. (3.43)
appears since, in Refs. [55]] and [56]], the anomalous dimension vy of the renormalized operator O is defined
as dO/dIn(u*) = —yO instead of dO/d In(u) = —yO.

The two-loop photonic anomalous dimensions bel)’", Kl(vl;" and Kg " can be obtained from y{%"
yg();’" by replacing color factors with relevant charge factors [8]. Moreover we need an additional operation

and

for Kg ) They are given by

Ky = —6ng(eMki ), (3.46a)
Kg™" = =6k (n), (3.46b)
Kys" = —6ns (") = (€)7) kg (), (3.46¢)

where k{(n) and k{"(n) are obtained from iy (n) and (y4y(n) — 2n;Cr), with ¥\ (n) and ¥, (n) in

Egs. (3.43), by replacing ny/2 — 1 and C4 — 0. The term 2nCr in ygg) (n) must be subtracted since
this term has originated as the gluon self-energy contribution and should be dropped for the photonic
case [57, [58]. The factors 3nf<ez) and 3ny (<e4> - <e2>2) in Egs. (3.46) are the relevant charge factors,
and the sign difference is due to the our convention for K" in Eq. (3.34). The extra factor 2 is, again,
originated in the difference in the definition of the anomalous dimensions.

The three-loop anomalous dimensions for the hadronic sector have been calculated recently in Refs. [55]
S6[]. They are expressed as

ra =2 o), (3.47a)
Yo =2y ) + v ). (3.47b)
Yoo = 2Yge (), (3.47¢)
Yor' = e (), (3.47d)
Yo = 2y (n), (3.47¢)
where yffg”(n) is given in Eq. (3.7) of Ref. [55]], and 71(3;)(”)’ y((fg) (n), yﬁl) (n) and y(gzg)(n) are given, respectively,

in Egs. (3.10), (3.11), (3.12) and (3.13) of Ref. [56], with N being replaced by n.
Concerning the three-loop anomalous dimensions K;,z)’", K(G2 " and Kﬁg’", the exact expressions have
not been in literature yet. Indeed, the lowest six even-integer Mellin moments, n = 2,---,12, of these

anomalous dimensions were calculated and given in Ref. [50]. Quite recently, the authors of Ref. [50]] have
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Table 3.1: Numerical values of kr(l?(n) and kf(f)(n), and numerical values of the corresponding approxi-

kﬁ)’approx(n) and ké,z)’ap Pf% (1) for the lowest six even-integer values of n. The values for

mated expressions
kflzs)(n) and kfgz)(n) are found in Eqgs. (3.1) and (3.3) of Ref. [50] (Analytic expressions of them are given in
Egs. (A.1)-(A.12) of Ref. [S0]). The values of kﬁ)’ap PIO% () and kéz)’ap PIO% (n) are obtained from the expres-

sions given in Egs. (B.2)-(B.3) in Appendix

ki (n) ke (n) kg () kg (n)
- 86.9753+1.47051 n; - 86.9844+1.47104 ns|  31.4197 +5.15775 n;  31.4155 +5.15803 n;

-102.831 +1.47737 ny -102.848 +1.47787 ny 23.9427 +1.10886 ny 23.9419 +1.10888 ny
-109.278 +1.65653 ny -109.299 +1.65699 n 15.6517 +0.695953 ny 15.6507 +0.695944 n¢
-111.167 +1.69550 ny -111.192 +1.69592 ny 10.9661 +0.498196 ny 10.9651 +0.498178 ny
10 -111.035 +1.67061 ny -111.062 +1.67099 n 8.16031+0.379060 n ¢ 8.15953+0.379038 n/
12 -109.943 +1.61908 ny -109.972 +1.61943 ny 6.34829+0.300274 ny 6.34777+0.300250 ny

o N B~ DB

presented compact parameterizations of the three-loop photon-non-singlet quark and photon-gluon splitting
functions, ng;)y(x) and P(gzy)(x), instead of providing the exact analytic results [9]. It is remarked there that
their parameterizations deviate from the lengthy full expressions by about 0.1% or less. They also gave in
Ref. [9] the analytic expression of the three-loop photon-pure-singlet quark splitting function Pgs)y(x).

It is true that we can infer the analytic expressions for some parts of bez)’”, K(G2 " and K®", from the

NS
known three-loop results of yszc);’" and y(Gzé”. For instance, the part of the expressions of Klf)’" and K](\%;’"

(2),n
YG
color factor nfC%. Also the terms of K(G2 ) with the color factors nyCr and Cfv are related to the ones of

y(G%" with the color factors nf,C rand n fC%, respectively. But at present we do not have the exact analytic

which have the color factor C% are obtained from " by taking the terms which are proportional to the

. (2),n (2),n (2),n
expressions of K, Kg and K¢ as a whole.
Under these circumstances we are reconciled to use of approximate expressions for Kl(;)’", K(G2 " and

KI(\?;’". They are obtained by taking the Mellin moments of the parameterizations for J (x) and P(%y) (x), and

nsy g
of the exact result for P2 (x), which are presented in Ref. [9]]. Then we have

psy
KD~ —6mp(e2) [k PP () + ki ()] (3.482)
K™ = ~6n,(eMkS P (), (3.48b)
K](\i;,n ~ —6l’lf (<€4> _ <€2>2) kﬁi),aPPrOx(n)’ (3480)

where the explicit expressions of ko2 PP (), kg,z)’appmx(n) and kg)(n) are given in Egs. (B.2)-(B.3) in Ap-
pendix Bl As mentioned above, the lowest six even-integer Mellin moments, n = 2, - - - , 12, of these anoma-
lous dimensions were given in Ref. [50]. In Table 3.1l we give the approximated expressions kr(lzs)’appmx(n)
and ki,z)’appmx (n) as well as the corresponding exact expressions kg?(n) and ki,z)(n) in numerical form for the
lowest six even-integer values of n. We see the deviations of both knzs)’ap PIO% () from kgs)(n) and kéz)’ap PO (1),

from ki,z) (n) are far less than 0.1% for these values of n.

Photon Matrix Elements The two-loop operator matrix elements have been calculated up to the finite
terms by Matiounine, Smith and van Neerven (MSvN) [59]]. Using their results and changing the color-
group factors, we can obtain the photon matrix elements of hadronic operators up to the two-loop level. First
we clear up a subtle issue which appears in the calculation of the photon matrix elements of the hadronic
operators. The one-loop gluon coefficient function E’é in Eq. (3.43) was calculated by two groups; the first
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group is Bardeen, Buras, Duke and Muta (BBDM) [19], and second one is Floratos, Ross and Sachrajda
(FRS) [47]. Both groups evaluated one-loop diagrams contributing to the forward virtual photon-gluon
scattering as well as those contributing to the matrix element of the quark operator between gluon states,
and they took a difference between the two to obtain E’é. But actually BBDM calculated the gluon spin
averaged contributions, i.e., multiplying g, and contracting pairs of the Lorentz indices p and 7, whereas
FRS picked up the parts which are proportional to g,,. Thus the BBDM results on the contributions to the
forward virtual photon-gluon scattering and the gluon matrix element of quark operator are different from
those by FRS, however, the difference between the two contributions, i.e., E’é, is the same as it should be.

We have defined the spin-averaged structure tensor WZV as Eq. (3.1), taking a spin average of the target
photon for the structure tensor W,,,,,r. Therefore we should adopt the BBDM result rather than that of FRS.
Then we get for the photon matrix elements of the hadronic operators at one-loop level,

A" = 3@l ). (349)
Ag" =0, (3.49b)
AGs" = 3ns ey = ) al (), (3.49¢)

where aél)(n) is given in Eq. (B.3) in Appendix [Bl Actually, afll)(n) is related to the BBDM result on
the one-loop gluon matrix element of quark operator Afg” given in Eq. (6.2) of Ref. [19] as Afé‘” =
(a5 /4m)(ns /)y ().

MSvVN have presented in Appendix A of Ref. [59] full expressions for the two-loop corrected operator
matrix elements which are unrenormalized and include external self-energy corrections. The expressions
are given in parton momentum fraction (z) space. Taking the moments, the unrenormalized matrix elements
of the (flavor-singlet) quark operators between gluon states are written in the form as (see Eq. (2.18) of
Ref. [59]),

2 2 2 2
; -~ 1\ _ euys(, =P~ 1\, zeom(, =P~ 1\..@ _ smai, =P~ 1\
Aqg’pT (l’l, #—2, z) = Aqg (n, #—2, ; TpT + Aqg n, /J—z, ; TpT + Aqg n, 7, Z Tp‘r s (350)
where
A -p* 1 A -p* 1
AL, (n, —, —) = fdzz"‘lA’;g (z, — —), k = PHYS, EOM, NGI, (3.51)
u> € u> e
and the expressions of Ag;ws(n, —pz/,uz, 1/e), A%)M(n, —pz/,uZ, 1/€) and Aglfl(n, —p2/,u2, 1/€) are given in

Egs. (A7), (A8) and (A9) of Ref. [59]], respectively. For the explanation of the “PHYS”, “EOM” and “NGI”
parts, please refer to Ref.[59]. The tensors T,()’T) (i =1,2,3) are given by (see Eqgs (2.19)-(2.21) of Ref. [59]
and note that we have changed the Lorentz indices of gluon fields from uv to p7),

I 2
1) ppA‘r + App‘r ApATp n
T, = - + A-p)t, 3.52
or = |8 A @A) (A-p) (3.52a)
[ Ar + A A, A p?
T/(J%) _ PpPr PpQc pPt 4o P (A-p), (3.52b)
a A-p (A-p)?
I 2
3) _ _ppAT + Appr ApATp Y
Ty = » N + AP (A - p)t, (3.52¢)

where A, is a lightlike vector (A =0).

The expressions in Appendix A of Ref. [59]] contains various polylogarithms such as Li,(z) and S, (),
but all of them can be translated into the harmonic polylogarithms [60]. The Mellin transform of the har-
monic polylogarithms can be expressed in terms of the harmonic sums, and such method is implemented in
the program package HarmpoL written in Form [60} 61}, [62].
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The renormalization of A’;g or(n, — p?/u?, 1/€) proceeds as follows. First the coupling constant and gauge

constant renormalization is performed. Then the remaining ultraviolet divergences are removed by multi-
plication of the operator renormalization constants. Up to the two-loop order, we get the finite expression at
u? = —p? as following form:
2
A -p- 1
Ao 1.5

2

s (1>( )+( ) a2(n )} 7D 4

o

Here af]i?(n) in Eq. (3.53) is made up of the terms proportional to nyC, and is, therefore, irrelevant to the

(1)( )+( ) b2n )] 7@

2=

ur=—p

(3.53)

photon matrix element of the quark operator. Now multiplying g°* and contracting pairs of indices p and 7,
we get

— | g (m) - —b“)(n)

(&) [ 0w ~ b8 ~ sl
(3.54)

1 1. -p? 1)
T~ A n, —, —
28 (A py fIg,pT( w2 e .

-pP

Indeed, the FRS result for the one-loop gluon matrix element of the quark operator corresponds a(l) (n),
while the BBDM result corresponds to the combination [a(l)(n) - b(l)(n)/2 ie., a( )(n) in Eq. (IB,__il) is
written as (n17)/2a$(n) = [aly (n) — by (m)/2].

The two-loop photon matrix elements of the quark operators are derived from the combination
[agg)(n) b(z)(n)/Z] in Eq. (3.54) with the following replacements: C4 — 0, (nf /2)? — 0 and ngCrp —
(relevant charge factor) X Cr. The terms proportional to (ny/ 2)?in a;?(n) and b(z)(n) come from the exter-
nal gluon self-energy corrections and must be discarded for the photon case. Then we have

Aff)’” = 3np(eHa (n), (3.55a)
A" =3ns (e = )?) a(m), (3.55b)

where agz)(n) is given in Eq. (B.6) in Appendix
Similarly the renormalized matrix elements of the gluon operators between gluon states at u> = —p? are
written as (the unrenormalized version is given in Eq. (2.33) of Ref. [59])@,

)
fggpr 1. 2 1) <“(>+( o) (2)(n>}Tf,l’ & + (&) o >]T£3>

Aggpr (" ,u2 "
Salion +( ﬂ) a®n )] TS,

o (3.56)

The one-loop results a(l)(n) b(l)(n) and a( )(n) are irrelevant to the photon matrix elements because they are
proportional to the color factor C4, or proportlonal to ny but due to the external self-energy diagrams. Also
the two-loop result agz(n) is made up of the terms proportional to C Zorn rCa and is irrelevant. Then, to
obtain Ag)’", we take the combination [a (2)(11) b(z)(n) /2] and make replacements, C4 — 0, (ny/ 2)? - 0and
nyCr — (relevant charge factor) X Cr, with dropping the external gluon self-energy terms corresponding
to anfCFTF(S(l —2)(=55/3 + 16£(3)) in Eq. (A.12) of Ref. [59]]. Finally we obtain for the photon matrix
elements of the gluon operators,

AP = 3n(e?)al (n), (3.57)
where a(GZ)(n) is given in Eq. (B.7) in Appendix

(O)bf W4 ((,),)b;’é” are missing in the e-independent terms of Eq. (2.35) of Ref. [S59]. The both are needed in order

“Two terms v,
to extract bi,g)(n) correctly
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Longitudinal Structure Function FZ(x, Qz, P%) So far, we have considered the structure function
F ;y(x, 02, P?). We will now mention the moment sum rule of F z(x, 0%, P?). From Egs. (3.10), we can
see that the difference between the moment sum rule of F’ ;(x, 02, P?) and that of F Z(x, 02, P?) is the coef-
ficient functions. Therefore all we have to do is replacing C(k)’” and C; (k)’" by C(k)’” and C; (k)’" (k=0,1,2),

respectively, in the coefficients L7, A", B!, C", D, ', F" and G" in our formula Eq. @) where C(k) "
and C(Lk;’" is given by (see also Eqgs. ( - and @D)

2 4
n (0)n 8 O 8 ) 6

Cile) = + 167 2CL + mCL +0(g"), (3.58a)

Ch (g0 = | O + 1§ L2106 (3.58b)

We note, however, that there is no contribution of the tree diagrams to the longitudinal coefficient func-
tions and thus we have Céo)’" = 0. Therefore, in the case of the longitudinal photon structure function
FJ(x, 0% P?), O(1/ay) coefficient £; Eq. (3.37a) vanishes when we replace Céo)’" - CEO)’" = 0. and the its
LO contribution is of order a.

Now, the moment sum rule of F Z(x, 02, P%) up to the NLO (O(aay)) corrections is given as follows (See

Eq. (3.36) for comparison):

1
f dxx""*F)(x, 0% P%)

0
@ 1 i a (O
- E%{Z B<””’[1 - (asuﬂ)) } +Cu

d'+1
a,(0%) , (0" as(Qz) : . 2
T (Z 8<L>,i[1 (a ) Z wil' \qupy) | TG0 |+ O@y
(3.59)
with i = +, -, NS, and the coefficients By, ., C(;), & ;» F( ; and G are (c.f., Egs. G3D)
1
By, = KO"pre—— i (3.60a)
Cly) = 2B0C1)", (3.60b)
Wb 4~ Py, (n, (1),
n _ K(O) nPn n (0) n l n K(l) nPn n
G = L Bo di Z = A+ 20 1425, Ct d" €L d”
— 280 AV pPrCH (3.60c)
n (1), - pn
1 B4 Py o 1
— K(O) nPn (2),n K(O) nPn (1),n i K(O),n J (),n
(i g et Zzy-z;u&,q a1
(3.60d)
() =2B0(CY" + A CPP). (3.60¢)

The coefficients BZ’L) and CE’L) represents the LO terms [7, 18, [12]], while the terms with S?L)J., 7-'(’1“)31‘ and QZ’L)

the NLO (aay) contributions and new.
The one-loop longitudinal coefficient functions were well-known [19, 63} |64]]. They are written in the
form as

O —bsBy, OBy, N owsBle. G =8B, (6D

LNS v,L>
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Table 3.2: Numerical values of ! (i = +,—,NS) forn = 2,4,---,12 in the case of ny = 3,4.

nln=3 a a di |np=4  a a i

2 0.6173 0 03951 0.7467 0 0.4267
4 1.6376 0.7599 0.7753 1.8523 0.8170 0.8373
6 2.2029 0.9958 1.0004 2.4604 1.0743 1.0804
8 2.5873 1.1599 1.1620 2.8749 1.2521 1.2550
10 2.8816 1.2874 1.2885 3.1924 13900 13916
12 3.1209 13918 1.3926 3.4509 1.5030 1.5040

where BZ,L = B"NS’ I B’é’L and B;’L are given, for example, in Egs. (6.2)-(6.4) of Ref .[8]. The two-loop

longitudinal coefficient functions corresponding to the hadronic operators were calculated in the MS scheme
in [481@. The results in Mellin space as functions of n are found, for example, in Ref. [49]:

CoY = 05[22 ) + 0P ()] (3.622)
CL = 85y, (3.62b)
CNs = Onscra™ (), (3.62¢)
where cf;“(n), c‘Lzﬁfs(n) and cf;(n) are given in Egs. (203), (204), and (205) in Appendix B of Ref. [49],

respectively, with N being replaced by n. The two-loop photon longitudinal coefficient function C(Lz;’" is
expressed as

CO" = 5,0 (), (3.62d)

and c(Lz)y(n) is obtained from C(in,(n) in Eq. (3.62D)) by replacing C4 — O and ns/2 — 1.

3.3 Evaluation of the Moment Sum Rules

With all these necessary parameters listed in the previous section, we are now ready to analyze the moments
of F ;(x, 0>, P%) up to the NNLO (aay), and FZ(x, 0%, P?) up to the NLO (aay). We first evaluate, for
F %’ (x, 02, P?), the coeflicients L, AL B C DY, &L F" and G", which are given in Eqgs. B.37), as well
as d!' defined by Eq. (3.33), with i = +,i, NS, forn = 2,4,---,12 in the cases of ny = 3 and ny = 4. The
results are tabulated in Tables (for a?),B3(L!,--- ,G" for ng = 3) andBA(L!,--- ,G" forny = 4).

In Table 1 of Ref. [12], the numerical values of the NLO coefficients A7, B! with i = +,—, NS and C"
were given for n = 2,4,---,20 for ny = 4. Our results A?, B! and C" in Table [3.4] are consistent with
theirs except for the values of A} and A The discrepancy in the values of A’} and A" arises from
(—6ns(e?) X 4Cr) in K(Gl)’". See the discussion below Egs. (3.46).

The numerical evaluation of the NNLO coefficients D}, D" and D} in Tables and [3.4] are per-

formed by using the exact values of the three-loop anomalous dimensions Kl(f)’", Kg " and KI(\%;’" given in

2The earlier calculations [63] 66| (67, [68]] were found partly incorrect. For quark coefficient functions cfl’"s and cf;’ps (see

Eq. (3.62a) below), there is a complete agreement between Ref. [68] and Refs. [48][69], and for gluon coefficient c(LZ; the result of
Ref. [66] was corrected in Ref. [70]].

#In Ref. [12], the expression in Ref. [47] is used for ygén which is contained in A’} and A" as well as B} and B”. Unfortunately,
it is partly incorrect in the part proportional to C2, but the difference is numerically small, as we can see in the difference between

B" and B" in Table[B.4]and that in Table 1 of Ref. [12].
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Table 3.3: Numerical values of L7, AY, BY, D!, &, F/" (i = +,—,NS),and C" and G" forn = 2,4,--- ,121in
the case of ny = 3. The calculation of O} was performed by using the exact values of Kl@’" in Ref. [50] (at
upper levels) and also by using the approximated expressions of them given by Egs. (3.48)) (in parentheses

at lower levels).

n L L s A A Ay B! B Bys c

2| 0.4690 04267 04248  -2.8403 — 55940 17481  -1.8535 08290  -9.3333

4] 0004336 03639 01836  -05543 26267 -13299 0.07353  3.3149 14607  -10.7467

6| 00005428 02324 0.1164 006133  -1.8806 -0.9403 0.01652 29783 15349  -9.1088

8| 00001493  0.1689 008451  0.009544 -1.6566 -0.8277 0.006245 29612 14906  -7.7504

10| 0.00005803  0.1318  0.06591  0.002817 -1.5336  -0.7664  0.002993  2.8263 14169  -6.7116

12| 0.00002748  0.1075  0.05375  0.001087 -1.4425 07210 0.001652  2.6744 13390  -5.9074

n D, D! Dis &, & Es 7! 7! s g
60.5098 32.9286 63.1965

2| (803014 ) ( 329250 631000) 105867 —  -109168 69729 -13.7973 37817 -251.3619
7.9871 25.9791 11.6147

41 (79873 ) ( 239222) ( 11.5840) ~-93990 239288 -10.5807 13106  48.8620 20.6599 -204.5836
0.01877  -4007.0415  24025.6303

6| ( 001877 ) (40113304 (24030.8843) 18667 240991 -124017 04596 564575 29.3881 -176.9466
0.03222 165.7976 822116

8| ( 0031 ) ( 1659277 ( 822758 03993 20.0367 -14.5993 0.2217  67.5380 34.0579 -157.4181
-0.001732 109.3285 54.5447

10] (0001738) ( 1094000) ( 343847) 0-1453 -32.8877 -164753 0.1249 730111 36.6197 -142.6108
-0.01825 86.8381 43.3780

12 (1001898 ) ( 869019) ( 434008 006532 -35.8891 -17.9598 007764 759024 38.0024 -130.8717

Table 3.4: Numerical values of L}, A}, BY, D!, &, F/" (i = +,—,NS),and C" and G" forn = 2,4,--- ,121in
the case of ny = 4. The calculation of O was performed by using the exact values of K;z)’" in Ref. [50] (at
upper levels) and also by using the approximated expressions of them given by Eqgs. (3.48)) (in parentheses

at lower levels).

n L L L A A A B! B Brs cr
2| 08078 10582 0.6231 27608 — 60944 38774 85894 13076  -163237
4| 0009356 07327 02661 51244 37321  -1.3858  0.1688 04820 21599  -18.7956
6| 0001235 04656 01679  0.09529 29038 -1.0480  0.03909  6.0485 2.2395  -159311
8| 00003465 03374 01215 001953 27046 -09735 001495 59573  2.1613  -13.5552
10/ 00001362 02627  0.09461  0.006354 -2.5904 -0.9322 0007216  5.6671  2.0468  -11.7384
12| 0.00006497 02140  0.07704  0.002598  -2.4906  -0.8963  0.003999 53501 19293  -10.3319
n ! " Diys & & s Fr 7 Fs G'
-84.4549 64.6182 63.5804
2| (844748 ) ( 646102 ( 633723y 132519 — 127900 7.0067 -68.4928  0.8275 -439.6247
-17.3048  -140.7574 647231
41 (173044 ) (140.9078) ( -64dga7) 924633  -24550 -112489 26666 -28.0786 24.5807 -357.8108
0.4163 894.6070  301.7867
6| ( 04163 ) (8950055 (3010492 30154 -37.7241 -139828 10159 992476 37.1197 -309.4744
004747 3265791  116.7791
8| (1004749) (3267480) (1168302 08428 -47.7463 -173117 05046 1210094 439510 -2753197
-0.2306 228.9242 82.2373
10| (102308 ) (2290460) ( 829805) 03366 -558735 -20.1683 0.2888 1324677 477946 -249.4221
-0.7548 183.5002 65.9952
12| (07348 ) (1836024) ( 66.0319) 01600 -622711 -224456 0.1813 1392236 49.9533 -228.8909
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Table 3.5: Numerical values of B”

(Di* &Y, and F" (i = +,—,NS),and C{;, and G

(D). 75 forn=2,4,---,121in

n
(L)
the case of ny = 3.

BZ’L)& B?L)ﬁ B?L),NS CE’L) S?L)Hr S?L)ﬁ S?L)JVS 7‘_(rz)ﬁr 7‘_(ri)r 7—_(rz)’NS ?L)
01042 22756 07552 16.0000 0.6312 — 90448 37360 43.0080 19.4570 -145.8462

n
2
41 -0.01985 0.4248  0.1958 6.4000 2.5372 -3.0666 -1.4185 -1.0919 13.1850 7.3012  -71.1680
6
8

-0.002791  0.1822  0.08867  3.4286 -0.3153 -1.4745 -0.7164 -0.2100 8.5456  4.0084  -41.6470
-0.0007395 0.1015  0.05008  2.1333 -0.04728  -0.9951 -0.4905 -0.06713 52598  2.5718  -27.4745
10| -0.0002690 0.06440 0.03196  1.4545 -0.01306 -0.7494 -0.3716 -0.02783  3.6483  1.8031 -19.5670
12| -0.0001186 0.04432 0.02205  1.0549 -0.004690 -0.5948 -0.2958 -0.01355  2.6990 1.3400 -14.6901

Table 3.6: Numerical values of B’ZL) P S?L)l. and " (i = +,—,NS), and C’(L) and QE’L) forn=2,4,---,121in
the case of ny = 4.
Bl Bl Blyws Clyy S S~ Glws Fips T F s w
-0.7180 5.6437 1.1076 ~ 27.9835  -2.4540 — -10.8345 -25.1262  102.7244 25.8712 -255.0808

-0.04757 0.8719  0.2838  11.1934 -26.0571 -4.4410 -1.4782 -2.6019 55.6466  9.7196 -124.4708
-0.006807  0.3677  0.1279 59965 -0.5251 -2.2930 -0.7985 -0.5074 15.8890 5.3484  -72.8394
-0.001817  0.2034  0.07202 3.7311 -0.1024 -1.6306 -0.5769 -0.1634 9.8180  3.4379  -48.0521
10| -0.0006639 0.1287  0.04587  2.5440  -0.03097 -1.2686 -0.4520  -0.06805 6.8065 24139 -34.2221
12} -0.0002936 0.08836 0.03161 1.8451 -0.01174 -1.0284 -0.3677 -0.03325 5.0356  1.7960  -25.6925

o N B~ NB

Ref. [50] forn = 2,4, ---, 12 (at upper levels) and also by using the approximated expressions of them given
by Egs. (3.48) (in parentheses at lower levels). The coefficients A” and &" cannot be evaluated at n = 2
because they become singular there. We will come back later to consider this singularity in more detail.

The coefficients D and D7,¢ in Tables [3.3]and 3.4 take exceptionally large values at n = 6. This is due
to the fact that D7 and D} ¢ have the terms with the denominator 1/(d” — 1) and 1/(dy¢ — 1), respectively, in
their expressions Eq. (3.37€)). As we can see in Table[3.2] a@” and d},; happen to be very close to one at n = 6
both for ny = 3 and ny = 4. We see, however, from Eq. (3.36) that D7 and D) in the moment sum rule are
multiplied, respectively, by the factor [1 — (as(0%)/ aS(PZ))dE_I] and [1 — (as(0%)/ as(Pz))dfvs _1], which are
very small if d” and dy,¢ are close to one. Therefore the contributions of the parts with D7 and D¢ to the
6-th moment of F g (x, 0%, P?) do not outstand from the others.

For F Z(x, 02, P?), we also evaluate 8&),1” ’(“L), S?L)’l., ('i)’l. and gyL) given in Egs. and tabulate

them in Tables [3.5] (for ny = 3) and[3.6] (for ny = 4). The coefficient &/}, _ also become singular at n = 2.

Sum Rule for the Second Moment The second moment sum rule for the structure function F' ;

1
f dx F)(x, 0%, P?), (3.63)
0

can be studied by taking the limit # — 2 in Eq. (3.36). At n = 2, one of the eigenvalues of v"~2(g), the
anomalous dimension matrix in the hadronic sector given in Eq. (3.13)), vanishes, due to the conservation of
the hadronic energy-momentum tensor. Thus we have a zero eigenvalue A"~ = 0 for the one-loop anoma-
lous dimension matrix v("=2(g), and therefore we get d"=2 = A"=2/(28;) = 0. Among the coefficients
which appeared in Eq. (3.36), A" and &" would develop singularities at n = 2, because they contain terms
with the factor 1/d". However, as we can see from Eq. (3.36), both A" and &" are multiplied by a factor
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Table 3.7: The ratios of the NLO (a) and the NNLO (a«a;,) corrections to the LO (cm;l) for the second
moment of F g(x, 02, P?) in several cases of Q% and P?. For QCD running coupling constant a, we have
used the formula given in Eq. (3.67) with A = 200 MeV.

0%/ GeV>  P?/ GeV? ay0% P NLO/LO NNLO/LO NNLO/(LO +NLO)
ng=3 30 1 0.1696  0.3253  -0.2063 -0.07910 -0.09966
100 1 0.1461 03253  -0.1649 -0.05576 -0.06676
100 3 0.1461  0.2487  -0.1949 -0.06339 -0.07874
ny=4 30 1 0.1853  0.3546  -0.1950 -0.07996 -0.09934
100 1 0.1595 03546  -0.1541 -0.05506 -0.06509
100 3 0.1595 02717  -0.1855 -0.06503 -0.07984

|1 = (@s(Q?)/as(P?)* ], which also vanishes at n = 2. Therefore, recalling that (1/€)(1 - x¢) = —In(x) in
the limit of € — 0, we find that the A” and &” parts of Eq. (3.36) give finite contributions as
ar 2
. a,(0%) Zin=2,.. ¥s(07)
lim A" |1 - = — A" , 3.64
e [ (o) © e o
2\ 42 B 2
limer |1 - (X)) | 2 g2y Q) (3.64b)
n—2 a’s(Pz) a’s(Pz)
where A"=2 and "2 are given by
_ pryhapr 8
A = |-KO" Y L — " - KO pre? T+ KOrpred || (3.652)
- /lj + 280 Bo
) n=2
ng(1),n
&2 = —K(‘))’”Pj’cél)’"’g—‘ KO iy ciV" + KO pros”
Bo — 1+ 260
nz(1),n pn ng(1),n pna(1),n pn
_ O Z PIy P C(Oxn/ﬁ _ K(O)’”Z Py P B o (3.65b)
=428 * Bo L (= + 20X+ 2B0) 2
pryhnpr
K(l),n J (0),n
" Z —/l? + 2,30 2
! n=2
The numerical values of A2 and &2 are
for np=3, A?=-13274, &' =5.7664, (3.66a)
for np =4, A2 =-22857, &' =18.5530. (3.66b)

To estimate the impacts of the NLO (@) and NNLO (aa;) corrections compared to the LO (aa;l) term
in the second moment sum rule for F' g (x, 0%, P?), we now evaluate them numerically in several cases of 0?
and P2. For the QCD running coupling constant a(Q?), hereafter we use the following formula which takes
into account the 8 function up to the three-loop level (See Eq. (9.5) in Ref. [[71])),

a (@) _ 1

_ B, 1 (ﬂl )2
= ——— —_— n —_—
4r BoL  (BoL)? Bo (BoL)* \ Bo

L+

InL 12+
n__
2

BoB2 5 1
ﬁ‘ﬂ”(ﬁ)

, (3.67)
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Table 3.8: The ratios of the NLO (aay) corrections to the LO (@) for the second moment of F Z(x, 02, P?)
in several cases of Q? and P?. For QCD running coupling constant a,, we have used the formula given in
Eq. (3.67) with A = 200 MeV.

0%/ GeV? P? ] GeV? (0% a,(P%) NLO/LO
ny=3 30 1 0.1696 0.3253 -0.09483
100 1 0.1461 0.3253 -0.07881
100 3 0.1461 0.2487 -0.08450
ny=4 30 1 0.1853 0.3546 -0.1046
100 1 0.1595 0.3546 -0.08671
100 3 0.1595 0.2717 -0.09316

where L = In(Q%/A?) and Bo, B1 and B, are given in Egs. (3.41). Here we take, for instance, (0%, P?) =
(30GeV?,1GeV?), (100 GeV?, 1 GeV?) and (100 GeV?,3 GeV?), with A = 200 MeV. These parameters are
considered to satisfy the condition A> < P> < Q2. The results are given in Table For the kinematical
region of Q% and P> which we have studied, the NNLO corrections are found to be rather large. When
P2 = 1GeV? and Q2 = 30-100GeV?2, or P2 = 3GeV? and Q2 = 100GeV?2, and ny is three or four,
the NNLO corrections are 7%-10% of the sum of the LO and NLO contributions. We already know that
the NLO contribution takes negative values [12]. We find that the NNLO corrections also give negative
contributions to the sum rule. In fact, we will see in the next chapter that the NNLO corrections reduce
FJ(x, Q% P?) at large x.
The analysis for the second moment sum rule for F} (x, 0, P?),

1
f dx F)(x, Q% P?), (3.68)
0

can be studied in the same way. For n = 2, the &) _ part of Eq. (3.39) becomes

2y\ 42 B 2
lim &, [1 - (%) l =& In %. (3.69)
n— ’ g ’ g
where é:’;f_ is given by
prynpn
g2 = |-KOmprcEL _ pa D P kOrpres| (3.70)
(L), 2 Bo A+ 28, 2 2
j J
n=2
The numerical values of SZL:)Z_ is
for ny =3, & =-7.0795, (3.71a)
for ny =4, é{ff_ = —12.1905. (3.71b)

We list in Table 3.8 the NLO contributions to the second moment sum rule for F Z(x, Q2, P?), with the
parameters same as Table 3.7 We can see that the NLO corrections give negative contribution to the sum
rule.



Chapter 4

Numerical Analysis

In the previous chapter, we obtained the moment sum rules for the spin-averaged virtual photon structure
functions F g (x, 0%, P?) up to the NNLO and F z(x, 02, P%) up to the NLO, corresponding to the order aa;.
Now, our main concern is x-dependence of the structure functions rather than the moments of them. This will
be achieved by numerically inverting these sum rules, but this operation requires complete n-dependence of
the sum rules over the complex n-plane. The moment sum rules Egs. (3.36) and (3.39) are valid only for
even n, however, all (complex) moments for n are uniquely fixed by analytic continuation from these even n
results.

In this chapter, we will first discuss how the continuation can be done, and then execute the inversion to
obtain the structure functions.

4.1 Numerical Evaluation of Sum Rules

Harmonic Sums As we can see from Eqgs. (3.36) and (3.37) (or Egs. (3.39) and (3.60) for F Z(x, 02, P?)),
the n-th moment sum rules are written in terms of coefficient functions, anomalous dimensions and photon
matrix elements. These ingredients, which are necessary to evaluate the aa; corrections to the sum rules,
are often expressed in terms of the rational functions of #n and the various harmonic sums [61]]. The single
harmonic sums are defined by

n 1 n (_ 1)]
Simy == Sam= ) (.1)
j=1 J Jj=1 J
where k = 1,2, ---. The higher multiple sums are defined recursively:
n n i
1. . =D
Sa(m) =) S S = > Sl (4.2)
=1 =1

To invert the (even) n-moment sum rules so that we get the structure functions as functions of x, we need to
obtain the representation of these sums analytically continued from their values on the (even) integer n.

There are several proposals for the numerical continuation [72} (73], however, we use here a naive
method; we use the asymptotic series expansions of the sums together with the translation relations of them.
As a simple example, first we consider S ;(n). The asymptotic series expansion of S |(n) is well-known, and
we can expand it up to arbitrary order:

S1(n) =Inn) +yg + L ! ! (4.3)

—_— + _— + cee
2n 12n%  120m*
This form has simple analytic properties, and reproduces values at integers quite well for large n. On the
other hand, S (n) satisfies the following translation relation:

1
Si =Si(n+ 1)~ ——. (4.4)

34
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This relation is valid not only for integer n, but also for complex n. Therefore, our algorithm to evaluate
S 1(n) at arbitrary n is as followsal:

e For |n| > ng, where ng is some real constant at which the asymptotic series expansion well converge
within an accuracy we need, we use the asymptotic expansion Eq. (£.3)) to evaluate S |(n).

e For |n| < ng, we use the translation relation Eq. (£.4) and shift n — n + 1 recursively in order to reach
S 1(n) with |n| > ny.

Indeed, a similar method has been used to evaluate the digamma function ¥(n) = S1(n) — yr — 1/n as well
as other polygammas, e.g., [74].

Now, it seems quite natural to evaluate the multiple harmonic sums in a parallel manner. Consider the
evaluation of a more complicated harmonic sum S ;> 1(n) as an example. S 12 (n) can be straightfor-
wardly expanded from everfvalues as

C1,1 In(n C1,0
ST, (1) = co In*(n) + co. In(n) + cop + cln@)

" (4.5)
coln(n) 20 30 carlnm)  cao  cs1ln(m)  csp
T Tt P e e
where
Cp2 =C1,1 = —%{(3) =-0.37564278 - - - ,
ey = -2 {(3) - i52(2) = —0.63658940
0,1 = 8715 20 =-0. ,
3 2(2) - R (3) — In(2) Li 1 llnz(Z) 3) + 11n3(2) (2)

Co,0 = 407E§ 1675? 5] 16 4 5 /4

1 s 1 1 (1)
~ 35 I0°(Q2) + ZL2UB) + 5U(5) - Lis (E) = -0.89930722 - - ,
5 3, 5 .
e10 = ~7evEl3) = 25 02(2) + 12{(3) = 0.057348080 -,

5
2,1 = —{(3) =0.062607130 - - - ,
96
1
160
5
€30 = a{(?a) = 0.093910695 - - -,

5 5 15
€20 = ggVECB) + 1o5 (D) = £¢(3) = ~0.22868296 -

1 1
c41 =< ——=(3)=0.11873928 - -- ,

8 192
S 5(3)+1 _ ] 2Q) - > Z(3) = 0.064238415
0= "9 7E 87F ” 1600 2304 = .
9
= = 05625
=716 :
L O 43) = —0.090335594 4.6)
€50 = 717 167 " 38400 =0 : -

The translation relation for ST, | (n), which we need to shift n, is given by

1 1
SEN () = SN (n+2) - (— +

1
— m) SN M+ + ———— SN +2).  (47)

(n+H(n+2)" 2!

#11n fact, at n near the negative real axis, the expansion Eq. @.3) do not work well even if |n| > ny. Therefore, to be exact, if n is
in the region Re(n) < ng A |Im(n)| < ny, we shift n by using Eq. @.4) until Re(n) > ny. More details are given in Appendix [Cl

“Since the moment sum rules of F}(x, 0%, P?) and F)(x, Q% P?) are valid for even n values due to the crossing symmetry of
them, the analytic continuation should be performed from even n. Therefore whenever (—1)" appears, it should be replaced by (+1).
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Note that the right-hand side of Eq. (4.7) is written in terms of S$", | (n) itself and lower harmonic sums

ST | (n) and S (n) with larger argument n+ 2. Then S77 | (n) and S ©%| (n) can be evaluated in a similar

fashion, therefore we can shift the argument of S'{" , | (n) as n — n + 2. Using Eq. (4.3) with Eq. @.7), as

in the case of §1(n), we can evaluate ST, | (n) on the whole complex plane.

In practice, taking np = 16, we need to expand S1(n) and S7*{", | (n) up to the order 1/n'% and 1/n'8,
respectively, in order the ensure the double precision accuracy (15 significant figures) with a truncation error

at n = ny. See Appendix [l for more details on the evaluation of the harmonic sums.

Numerical Evaluation of Sum Rules Since we can now make analytic continuation of the harmonic
sums from their even values, we can evaluate the n-th moments of the virtual photon structure functions
Egs. (3.36) and. (3.39) with the arbitrary n. In Fig. €1l we plot the moments of the spin-averaged virtual
photon structure function F ;(x, Qz, Pz),

1
M(n, 0% %) = fo dx X2 F)(x, 0, PP), (4.8)

which is explicitly given in Eq. (3.36)), predicted by perturbative QCD for the case of ny = 4, 0? = 30GeV?
and P? = 1GeV?, on the real axis. For the QCD running coupling constant a,(0?), we use the Eq. (3.67)
with the QCD scale parameter A = 200 MeV. Here we plot three curves, the LO (the order of aa;l), NLO
(including « corrections) and NNLO (including up to aa; corrections) QCD results. We can see that the
moments of F’ g (x, 0%, P?) can be obtained as a smooth function of n for n > 1, as expected. We can also see
that the NNLO corrections surely reduce the moments of F g (x, Q%, P?), as we have caught a glimpse of it in
the previous section.

We also plot, in Fig. the LO (@) and NLO (aa;) results of the moments of the longitudinal virtual
photon structure function F Z(x, Q2, P?),

1
M (n, Q*, P*) = fo dx X"2F) (x, 0%, P?), (4.9)

which is explicitly given in Eq. (3.39), for the case of ny = 4, 0> = 30GeV? and P* = 1GeV? with
A =200MeV.

4.2 Numerical Inversion

We now numerically perform the inverse Mellin transform of Eq. (4.8) to obtain F ;/ (x, 0%, P?) as a function
of x. F Z(x, Q?, P?) can be obtained as a function of x from Eq. (4.9) in the same way. By inverting the
moments Eq. @.8) we get

FY(x, 2,P2 1 C+ico
B&OLP) , f dnx"M}(n, 0*, P?), (4.10)
X 2mi

c—ioco
where c is a real constant being larger than a real constant co which has to be such that the integral Mg (n=
¢, 0%, P?) Eq. is absolutely convergent; In our case cg = 1 from the discussion in the previous section.

Integration Contour In practice, it is known that for the good convergence of the numerical integration,
one would be better off changing the contour in the complex n-plane from Cy to C; shown as Fig. [4.3]
(e.g., [74]) :

X 2mi

FY X, 2,P2 1 c c+ooxeti®
RO _ 1 f + f dn x"M}(n, Q*, P?), (4.11)
c+ooxe ¢ c
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Figure 4.1: Moments of the spin-averaged virtual photon structure function F;/(x, 02, P?) in units of
[3n/(e*)a/nIn(Q?/P?)] for Q> = 30GeV? and P> = 1 GeV? with ny = 4 and the QCD scale parameter
A =200MeV. We plot the QCD leading order (LO), the next-to-leading order (NLO) and the next-to-next-
to-leading order (NNLO) results.
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N n,=4 @°=30GeV? P’=1GeV?:

Figure 4.2: Moments of the longitudinal virtual photon structure function FZ(x, 02, P?) in units of
(Bns(e*ya/m) for Q* = 30GeV? and P> = 1GeV? with ny = 4 and A = 200MeV. We plot the QCD
leading order (LO) and the next-to-leading order (NLO) results.
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Figure 4.3: The contour of the integral for the inverse Mellin transform.

This deformation of the integration contour is legal if M;y (n, 0%, P?) has no singularities in the region en-
closed by Co — C; and in our case this is true since all singularities lie on the real axisn = 1,0,-1,-2,---
Furthermore, it is beneficial to rewrite Eq. (.11)) as an integration over a real variable:

Fl(, Q% PY) 1

= — f dz[ex7"M}(n, Q% P?) - e x7" MY(n", Q7 P). (4.12)
by 2ni Jo

where n = ¢ + ze'. Using [M}(n, Q*, PH)]* = M}(n*, 0, P?), we finally obtain®

Fy(x,Q*P*) 1 (% .

R f dz Im [e*x™" M} (n, O, P)|. (4.13)
X T Jo

Formally, the value of this integral does not depend ¢ > ¢g and /2 < ¢ < m, however, it is suitable to choose

¢ > m/2 rather than ¢ = /2 because it gives an exponential dumping like

1
x "~ exp [zcosqbln (;)} , 7 — oo, (4.14)

Numerical Inversion of Moments of F ; and F z In Fig. 4.4l we plot the virtual photon structure function
F ;’ (x, 0%, P?) predicted by perturbative QCD for the case of 0? = 30GeV? and P? = 1GeV? with n r=4.
Here we plot three curves, the LO (the order of aa;l), NLO (including « corrections) and NNLO (including
up to aa, corrections) QCD results. It is noted that here we have used the QCD running coupling constant
a,(Q?), governed by the formula Eq. (3.:67) which is valid up to three-loop level, even for the LO and NLO
analyses, and we have taken A = 200 MeV. The LO and NLO QCD results for the same values of Q%, P>
and ny were already given in Fig. 6 of Ref. [12]. But in their analyses, the formula for a,(0?%), which is
valid in the one-loop level, was used to obtain the LO curve, while for the NLO curve, the formula which is

#Replacing z — sz (s > 0) and identifying se” = —e + i with real constant € (s should be adequately chosen), we can rewrite
Eq. @.13) as
Fl(x,0*,P*) 1

= - f dz Im[(—€ + D)x™"M}(n, Q% P, n=c-e€z+iz,
X T Jo

= %fm dZ{Re[x_nMg(n, QQ,PZ)] _ GIIII[X_HM;(”, QZ,PZ)]}_
0
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Figure 4.4: Virtual photon structure function F}(x, 0%, P?) in units of [3n(e*)a/mIn(Q*/P?)] for Q* =
30GeV? and P> = 1 GeV? with ny = 4 and the QCD scale parameter A = 200 MeV. We plot the QCD
leading order (LO), the next-to-leading order (NLO) and the next-to-next-to-leading order (NNLO) results.

valid up to the two-loop level was used. Moreover they set the QCD scale parameter A = 100 MeV in both
cases. The LO result in Fig. has a similar shape as the corresponding one in Fig. 6 of Ref. [12], but is
different in magnitude; the former is slightly larger than the latter for almost the whole x. This is due to the
fact that the one-loop-level formula for o s(0%) (and a4(P?)) with A = 100 MeV was used for the LO result
in Ref. [12] while we applied the three-loop-level formula even for the LO result with A = 200 MeV. On
the other hand, the NLO curve in Fig. 4.4lis rather similar to the corresponding one in Fig. 6 of Ref. [12], in
shape and magnitude.

Now we can find in Fig. 4.4] that there exist notable NNLO corrections at large x. The corrections are
negative for almost the whole x and thus the NNLO curve comes below the NLO curve. This is expected
from the n-space analysis above.

We have also studied the QCD corrections to F. ;(x, 02, P?) with difference Q% and P? with same n =4
In Fig.[4.3] we plot the case for (a) 0* = 100 GeV? and P?> = 1 GeV? (b) Q? = 100 GeV? and P? = 3GeV?.
In both cases, the NNLO corrections reduce F. g (x, Q%, P?), especially at large x. We have not seen any
sizable change for the structure function normalized by [3nf(e4)cx/7r In(Q?/P?)] for these different values
of 0% and P>. We have examined the n r =3 and ny = 5 case as well in Fig. It is observed that the
normalized structure function is insensitive to the number of active flavors.

In Fig. .6 we plot the longitudinal virtual photon structure function F) (x, Q?, P?) predicted by pertur-
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Figure 4.5: Virtual photon structure function F g (x, 0%, P?) in units of [3n f(e4)a//7r In(Q?/P?)] for (a) Q% =
100GeV? and P* = 1GeV? (b) 0* = 100GeV? and P> = 3GeV? with ny = 3,4,5 and A = 200 MeV.
We plot the QCD leading order (LO), the next-to-leading order (NLO) and the next-to-next-to-leading order
(NNLO) results.



4.2. Numerical Inversion

41

]
T

/ 3n, (e*

Y
FL

]
T

/ 3n, (e*

Y
L

F

Figure 4.6: Longitudinal virtual photon structure function FZ(x, 02, P?) in units of (3nf(e4)oz/7r) for (a)
0% =30GeV? and P? = 1 GeV? (b) 0% = 100GeV? and P> = 1 GeV? with ny = 3,4,5 and A = 200 MeV.
We plot the QCD leading order (LO) and the next-to-leading order (NLO) results.
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bative QCD for the case of 0? = 30GeV? and P? = 1GeV? with ny = 3,4,5 and A = 200 GeV?. Here we
plot three set of two curves, the LO (the order of &) and NLO (including aa; corrections) QCD results for
ny = 3,4,5. We can find from Fig. 4.6 that there exist non-negligible NLO corrections and these corrections
are negative, and the normalized structure function is insensitive to the number of active flavors.

Box-diagram Contributions In Ref. [12] on the analysis of F) (x, 0%, P?) up to the NLO, Uematsu and
Walsh pointed out that in the limit
Q2 P2

< In— 4.15)

In P2 A2

the moments of F' g (x, 0%, P?) approach the ones of the box-diagram contribution. Actually, taking the limit
Eq. @.13), the NLO QCD result of the moments of F g (x, 0%, P?) reduces to the box-diagram result of that.
So let us take same limit Eq. (4.13)) for the NNLO formula of Fg (x, 0%, P?) given in Eq. (3.36). Since the
limit Eq. @.13) means In(Q%/A?%) ~ In(P?/A?), we define

a(0%)
=1 8 4.16
aPy " (10
where || < 1. Then we find in the limit Eq. @.16),
1 n n
w2y 2 p2y @1 nl _oom _ i+ Dd}
fﬂdxx FZ(x,Q,10)_4”2/30{&8@2 ZL [ (d] + D~ =«
+Zﬂn dik ZB"[ @+ Def+C" gy
a/s(Qz)

G"+ O(a/ K, KZ)},

withi = +,—, NS. Then using the expressions of L, A and B7 given in Eqs. (3.37a)-(3.37c) and a relation

4n 0 B 2
———k = ﬁoln———K+O(K ), (4.18)
a0 Bo
we obtain
1
j(; dx x"_zF%/(X, 0%, P?)
a 1 n Q2 n
= ﬂﬁ{z (2;30 In —) +C (4.19)
2 242 2
s(Q07) [—ﬂ" (2,3 In Q—) + B (2,8 In Q—) + G|+ O, agk, KP)
4 |28
where
~ 1
= 5 KOn, C’éo)’", (4.20a)
- 1
A = _gK(O),n,S,(O)’"Cg))’"’ (4.20b)
B = % (KD e+ KO Cf — ADazOacOn), (4.20¢)
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and C" and G" are given in Egs. (3.37d) and (3.37hl), respectively. It is noted that all Bj in the expression of
the right-hand side in Eq. (4.19) are canceled, and these terms are proportional to the charge factor n f(e4)
and a;Crn f(e4). These facts suggest that the right-hand side is the moments of the box-diagram contribution
including corrections of one-gluon exchange, i.e., @ corrections. Note that inverting the some coefficients

in Eq. @.19),

1
f dx X" L(x) = L", (4.21a)
0
1
f dxx"*C(x) = C", (4.21b)
0
1
f dx X" 2 A(x) = A", (4.21c¢)
0
1
f dx X" 2B(x) = B", (4.21d)
0
can be easily done:
L(x) = 12np(e*yx(1 - 2x + 2x%), (4.22a)
C(x) = —48Bon (e x[(1 — 2x + 2x%) In(x) + 1 — 3x + 3x7%], (4.22b)
Ax) = —6Crn{etyx[2(1 - 2x + 4x*) In(x) — 4(1 — 2x + 2x%) In(1 — x) + 1 — 4x], (4.22¢)

B(x) = 12Cpnp(e*)x[(1 = 2x + 4x*) In*(x) + 2(1 = 2x + 2x%) In*(1 — x)
—4(1 = 2x + 2x%) In(x) In(1 — x) + (3 — 4x + 8x%) In(x) + 8x(1 — x) In(1 — x)
+ 14 — 29x + 20x% — 4(1 = 2x + 2x2)Z(2)],
(4.22d)

but the inverse Mellin transform of G" is rather complicated and contains untrivial polylogarithms up to
weight 3.

The box-diagram contribution for F Z(x, Q?, P?) is quite similarly obtained such as Eq. @.19)),

1 2 2
-2 2 ooy @ T a0 s, 0 "
fodxx" FZ(x,Q,P)—47TZIBO{ i+ = | By 26010 = | + G

+ 0(a?, ayk, KZ)}, (4.23)
where

. 1

By = KO-, (4.24)

and CE’L) and QE’L) are given in Egs. (3.60b) and (3.60¢)), respectively. By inverting

1
fo dx X" *Cry(x) = C (4.252)
1
f dx X" B1)(x) = B, (4.25b)
0

1
fo dx X" G )(x) = G, (4.25¢)
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we can obtain

Cy(x) = 968on () x*(1 - x), (4.26a)
@(L>(x) =48Crn f<€4>x[2x In(x) + (1 — x)(1 + 2x)], (4.26b)

2 1
Guy(x) = %ﬁocm f<e4>[—x2(35 +12x%) In*(x) + 4 (- —5x% + 6x4) In(x) In(1 — x)
X
1
+4 (— —5x + 6x4) Liz(—x) — (4 + 28x + 63x* — 66x°) In(x) (4.26¢)
X
+30x%(1 — ) In(1 — x) + 2(2 = 23x + 3x% + 18x) — 4x%(5 — 6x°)¢(2)|.

Note that C(z)(x), @(L)(x) and G(7)(x) vanish both at x = 0 and x = 1.

In Fig. we plot the F)(x, Q?, P?) obtained by inverting Eq. @.19), the leading-logarithm box-
diagram contributions (only £" term), the box-diagram contributions including non leading-logarithm terms
(L and C" terms) and the (conjectured) box-diagram contributions including corrections of one-gluon ex-
change, as well as original QCD predictions. We also plot, in Fig. 4.8] the F Z(x, Q?, P?) obtained by invert-
ing Eq. (@.23), the leading box-diagram contributions (only C’(qL) term) and the (conjectured) box-diagram
contributions including corrections of one-gluon exchange, as well as original QCD predictions. We can see
that QCD predictions show the same tendency of the box-diagram contributions in this kinematic region.
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Figure 4.7: QCD corrections and the box-diagram contributions for the virtual photon structure function
FJ(x, 0% P?)in units of [3ns(e*)a/m In(Q*/P*)] for (a) 0* = 30 GeV? and P* = 1 GeV? (b) 0* = 100 GeV?
and P? = 1GeV? with n r=4and A = 200 MeV. We plot the leading-logarithm box-diagram contributions
(BOX (LL)), the box-diagram contributions including non leading-logarithm terms (BOX), the box-diagram
contributions including corrections of one-gluon exchange which are speculated from Eq. (4.19) (BOX
(ay)), the QCD leading order (LO), the next-to-leading order (NLO) and the next-to-next-to-leading order
(NNLO) results.
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Figure 4.8: QCD corrections and the box-diagram contributions for the virtual photon structure function
F}(x, 0% P?) in units of 3n(e*)a/n) for (a) Q* = 30GeV? and P? = 1GeV? (b) Q* = 100GeV? and
P? = 1GeV? with ng =4and A = 200MeV. We plot the box-diagram contributions (BOX), the box-
diagram contributions including corrections of one-gluon exchange which are speculated from Eq. (4.23)
(BOX (ay)), the QCD leading order (LO) and the next-to-leading order (NLO) results.



Chapter 5

Summary

In this thesis, we have investigated the unpolarized (spin-averaged) virtual photon structure functions
F g (x, 0%, P?), which is expected to be measured in the future e*e~ collider experiments such as ILC, for
the kinematical region A> < P> < Q? in massless QCD. In this kinematic region, contrary to real pho-
ton case, the asymptotic freedom nature of QCD allows us to calculate structure functions in all orders by
perturbation.

Using the framework of the OPE supplemented by the RG method, we obtained the definite predictions
for the moments of F g (x, 0%, P?) up to the NNLO (the order aa;). The inverse Mellin transform of the
moments was numerically performed to express the structure function F ;’ (x, 0%, P?) as a function of x. We
found that the NNLO corrections are negative for almost the whole x, and not negligible especially at large
X.

We also examined the longitudinal structure function F Z(x, 02, P%) up to the NLO (the order aay). We
found that the NLO corrections to F Z(x, Q2, P?) have negative contributions for almost the whole x.

Although we have ignored in our kinematical region, we should also consider the power corrections
of the form (P%/Q%)¥, which are arising from the target mass effects as well as from higher twist effects.
Furthermore it was conjectured in Eqs. (.19) and @.23) that these expressions coincide with the box-
diagrams contributions including corrections of one-gluon exchange, but we postpone confirmation of this
conjecture to a future study.
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Appendix A

Explicit Form of M"™ and X"

Here we present the explicit form of the integrals needed for evaluating M"(Q?/P?, g(P?)) in Eq. (3.21a)
and X" (Q?%/P?,g(P?)) in Eq. (3.21b) up to NNLO. First, using Eq. (3.26) with Eq. (3.32)), the T-ordered

exponential in M "(Q?/P?, §(P2)) is expanded such as

AM(8) ]
B(g)

[

d!
= Py A PR et S (O _( )zﬁz g-gY
— gt "Bo 1677 ,80 Bo (16772)2 B\ 16n?
2\ 2 d?
1672 4 -~ T\ =20+ 2B ,80 167r2 "¢ &
1 1 ﬁl( dn) 4 g% d; 4 g2 dn
1672 A7 = A% + 40 o 7|81 2 & g
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A=+ 4B, 2\ g A=+ 280 |71 g2 2 |

(A.1)

Next, using the previous result Eq. (A1), one can evaluate the integral in X”(Q?/P?, g(P?)) as
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Appendix B

Explicit Expressions of Necessary Quantities
in the MS Scheme

We give the explicit expressions of some quantities whcih are necessary to evaluate the moment sum rules
but have not been in literature explicitly — the three-loop photon-hadron mixing anomalous dimensions
KDapProx kg)’appmx(n) and kl(fs)(n) which have appeared in Eqs. (3.48), and the photon matrix elements
up to the two-loop level, ag)(n), agz)(n) and afgz)(n) which have appeared in Egs. (3.49), (3.33) and (3.537),
respectively — for even n in the MS scheme. They are expressed in terms of rational functions of 7 and the
harmonic sums [61]]

n

51 5 (=1)/ 1
Sp0 =Y e Sea= DS S = Y S (B.1)
=1

=1

=

Futhermore, they contains values of the Riemann {-functions.

Three-loop Photon-Hadron Mixing Anomalous Dimensions Here we present the approximated three-
loop photon-hadron mixing anomalous dimensions ngS),app "*(n) and ki,z)’appmx (n), and the exact result kl(,zs)(n),
which are appeared in Egs. (3.48). They are obtained by taking the Mellin moments of the parameterizations
for the Pffg)),(x) and ng) (x), and of the exact result for Pl([,?},(x), which are given in Egs. (6)-(8) of Ref. [9].
. (2),approx .
First, k; (n) is expressed as

KPP (1)

1
—f dx x”_l(the r.h.s. of Eq. (6) in Ref. [9])
0

~ 1285 1(n)* s 62.5244S | (n)? ~ 50.08S ;(n)? ~ 2568 2(n)S 1 (n)?

27n n n+1 9n
17538 1(n)*>  195.4S51(n)> 150.24S ((n)> 203.227S,(n)S 1(n)
B n - n? e+ 1) n
150.248,(n)S 1(n)  1024S3(n)S1(n)  128S,(n)? . 785.14S 1(n)
n+1 27n 9n n
32548 (n) 300.48S;(n) 175.3S8,(n) 520.85,(n) 150.24S,(n)
B+ 13 n 2 (m+1)2
591.15183(n)  100.16S3(n)  25684(n)  492.087 . 1262 449.2
n n+1 n n n+l1 n+2

1445 1279.86 1169 4032 160 300.48 512
+ + - +— - — - —
n+3 n? (n+1)2 n3 nt* (m+1D* o’
3251(n)®  258.1428 (n)? . 270S 1 (n)? .\ 269.4S | (n)?
27n n n+1 n?
+535.24452(;1)5 1(m)  905.06S | (n) .\ 5408 1 (n) . 17.046S 1(n)

n n (n+1)?2 n3

+ ngl—
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n3 n+1)% 9nt

(B.2)

Secondly, kéz)’appmx

(n) is expressed as

1
S (. f dxx"_l(the rh.s. of Eq. (7) in Ref. [9])
0

_ 3281} 3281(n)®  79.13S1(m)*  79.13S5(n)*  433.28(n)
T T2 2+ D n a+l 22
+429.644Sl(n)2 _ 862.84482(n)S 1 (n) s 862.8445»(n)S 1(n)
(n+1)>2 n n+1
. 1512.398 () 1512.398 1 (n) . 549.551(n) 707.76S1(n) 24608 1 (n)
n n+1 n? (n+1)2 n3
4185.69S |(n) . 628.6355(n)  628.63S2(n)  2893.255(n)
(n+1)>3 n n+1 n?
+3756.0452(;1) _3324.0383(n) .\ 3324.038 3(n)
(n+1)?2 n n+1
+73.1409 _1673.57 . 318043 1420 .\ 406.7  566.7 . 128
n-1 n n+1 n+2 n+3 n+4 3n-1)7>
6400 3688.39 2247.4 990.14 1600 9438.76 3584
- - + + + -
32 (n+1)2 n3 n+1)3  3n* (m+D* 9w’
3584 2460 2460 2460 2460
Ot 1y 5 - )@+ ( n m)g(z)
n [3251(;1)2 ~ 328 1(n)? _ 9.13351(n)? .\ 9.13351(n)? _ 18.2668 2(n)S 1 (n)
N on 9n+ 1) n2 (n+ 1) n
. 18.266S >(n)S 1 (1) .\ 4642645 1(n) _ 46.4264S (n) . 16.18S 1 (n)

n+1 n n+1 n2
_23.291151(1’1) B 76.66S 1(n) N 113.19251(n) 19.7356S»(n)

(n+1)?2 n3 (n+1)3 n
19.73568>(n)  85.793S,(n) 104.0598,(n) 94.92653(n)
 n+l - n? n+ 12 n
+94.926S3(n) N 40.5597 B 21.1683 N 17.0286 B 93.37 101.05 44.1

n+1 n—1 n n+1 n+2+n+3 i+ 4
+115.341 161.767 52.82 13.3489 128 299

n? (n+1)2 n3 m+1)3 9t (m+ D4

n n+1

. (B.3)

Finally, kl()zs) (n) is expressed as

kD ()

1
—f dxx”_l(the r.h.s. of Eq. (8) in Ref. [9])
0

noCo| 2304 432 72 38360 344 368
TE781m—-1) " n " n+l 8ln+2) n2  (n+ 1)
3584 288 208 448 96 96
— 4 + - =+ —
271n+ 12 nd3  m+1)3 9m+2)3 nt (m+1)
256 64 128
——— = -
3n+2)* n5 (n+1)>

. (B.4)
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Note that kl()%)(n) is an exact result.

Photon Matrix Elements up to Two-loop Level Here we present the photon matrix elements up to the
two-loop level ag)(n), aff)(n) and ai,z) (n) which are appeared in Egs. (3.49), (3.33) and (3.37), respectively.
Then are obtained by taking the Mellin moments of the unnormalized photon matrix elements in Eqgs. (A7)-
(A9), and (A12)-(A14) of Ref. [59], and executing correct renormalizations, and picking up the relevant
terms with changing color factors.

First, a,(;)(n) is expressed as

I IR U S B SO
% (n)—4[ n+n2 (n+1)2+(n+2)2+(n n+1+n+2)Sl(n)}' (B-5)

Secondly, agz)(n) is expressed as

1 2+2
n n+l n+2

4 64
J(=38100° = 452008 1) + =S 3()

~1682,1(n) - 48£(3))
6 8 16 16 40 32
+Sl(”)2(2_n+1+n+2_ﬁ+(n+1)2_(n+2)2)
480 56 16 48 64
n n+l n+2 n2 (m+1)2? (Hm+2)?
32 176 128
_F+(n+1)3_(n+2)3>
6 8 16 40 32
+S2(”)(Z I S §C R +2)2)
LB 70 56 56 198 144 22
n n+l n+2 n2 M+1D? (n+2)? nd
40 128 20 88 }

o = cx

+81(n)(

T mr2p w  rip ®-6)

Finally, afgz)(n) is expressed as

16 4 4 16 8 8 )

2 _ 2 _ _ - -
dg (n) = CF{(Sl(”) +52("))(3(;1—1)+n n+l 3n+2) 2+ 1P

32 32 32 32 32 8

+ + oy —
Omn-1) n n+1 9m+2) n?2 (n+1)?
64 32 48 )

3m+2? n? (m+1)>3
32 32 32 32
S35 " P el D)
L8280 16 856 40 14 64 M
271n—-1) n n+1 27n+2) n?2 m+12 9n+2)? nd
28 128 40 88 }

ThE} 3m+2p A 1)

+81(n)(~

B.7)



Appendix C

Harmonic sums and their asymptotic series
expansions

C.1  Primary Definition and Basic Properties

The harmonic sums [[61]] are recursively defined by

; )
k J
Sean = Y O g G sm=1 w=o2en (&)
’ L
j_
The all indices of the sum, which consist of the leading (left-most) index k and the vector of the remaining
indices 7, can take non-zero integers. sgn(k) represents the the sign of , i.e., (+1) for kK > 0 and (—1) for
k < 0. §(n) indicates the sum with no index. The depth of a harmonic sum is defined as the number of its

indices, and the weight of that is defined as the sum of the absolute values of its indices. For example,

1]
sl,_3,2<n>—z = kz’ (€2)

is one of the harmonic sums with its depth 3 and its Welght 6. Note that, in this convention, the negative
index indicates the alternating series. The following sums may be found in the old literature:

n/2

1
St (E) = Z — =21S(n) + S k)], for even n, k=1,2,---, (C.3)
2 P JK
i "1y A1
Sn) = , —=5_1n). (C.4)
2 l
j=1 =1

The definitions of the harmonic sums Eq. (C.I) implies that they satisfy the following translation relations:
[sgn(o)]™"
(n+ DF
The set of the harmonic sums is not fully independent. For example, from the relation

DN VD VD Y (C6)

n>j1=1  n2j12jp=l  n2j>ji1=21  nxji=j>1

Sram) =Span+1)— Sam+1). (C.5)

n>j>1
one can obtain
[sen(k)]’ [sen(k)]’ . .
Sk] ,I‘?l| (n)S]QJ?lz (n) Z Jlk | Sm1 (J)Sk2 mz(]) + Z TS](] ,I?l| (.])S V?lz(.])
j=1

(C.7)

% [sen(k)) sgn(k))’

Tt (DS ()
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Using Eq. (C.J7) recursively until one of the two sums has no more indices, one can reduce products of the
harmonic sums with an identical argument to the single higher harmonic sums, e.g.,

Sk1 (n)Skz(n) = Skl,kz (l’l) + Skz,kl (n) - Sk]/\kz(n)’ (Cga)
Skl (l’l)S ko k3 (n) = Sk] ko k3 (l’l) + Skz,k],k} (l’l) + Skz,k3,k1 (l’l) - Sk1/\k2,k3 (n) - Skz,k1/\k3 (n)’ (Cgb)
Sty (WS ke dea ks (V) = Sk ey ks by 1) + S ey ke dea s (1) + S ke des ey ey (1) + S ey ks g ey () (C80)
- Sk1/\k2,k3,k4(n) - Skz,k] /\k3,k4(n) - Skz,k3,k1/\k4(n)9
where the pseudo addition operator A is defined by
ki A ky = sgn(ky) sgn(ko)(ki] + ka|) = sgn(ka)ky + sgn(ky)k,. (C.9)

The harmonic sums whose left-most index equals to one are logarithmically divergent when the argu-
ment goes infinity n — oo. The product identities Eq. (C.7) or Egs. (C.8]) can be used to single out the S |(n)
as the divergent part from such sums. For example,

1 1
St112(n) = ES%(H)Sz(n) +81(m)S3(n) —S1(n)S2,1(n) + 554(71) =83,1(n) +S82,1,1(n). (C.10)

The manipulations of these kind are implemented in the program package SumMMmER written in Form [61}162]].
The Mellin transform of the harmonic polylogarithm, which is introduced in Ref. [60], can be written in
terms of the harmonic sums, and the inverse Mellin transform of the harmonic sum is obtained in terms of the
harmonic polylogarithms, reversely. These methods are also implemented in the program package HarmpoL
written in Forwm [60), [61),162]]. More relations of the harmonic sums can be found in Refs. |61} 73} [75]].

C.2 Analytic Continuation

We here consider the analytic continuation of the harmonic sums over the complex plane as a start point of
the asymptotic expansion of these sums. It is well-known that the single harmonic sums can be analytically
continued in terms of polygamma functions " (z) (e.g., [73-b]):

(= l)k (k=1) YE, k=1,
S = e e ion (C.11a)
o (—DF
Skl = (1) = 1),ﬂ(" D+ 1) —nk), k=1, (C.11b)
where
n+1 1
W@ = T T@, AV = S [W(” ) Y (g)l (C.12)

and the Euler-Mascheroni constant yg, the Riemann zeta function (k) and the Dirichlet eta function n(k)
are given by@
ve = im[$1(n) - In(n)], (C.13)

Sl
£(k) = Si(e0) =Zj—k k> 1, (C.14)

(1)’1

n(k) = =S _i(c0) = Z ( = 1)g(k) k> 1. (C.15)

#'Taking the limit of 7(k) as k — 1 one obtain 5(1) = In(2).
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Moreover, the higher harmonic sums can be expressed in terms of Mellin transforms (i.e., integral represen-
tations being analytic with respect to n) of basic functions as well as polygamma functions [73]].

Here we use, however, another method for the continuation of the harmonic sums, from the aspect of
the unified description for all harmonic sums. Eq. (C.I)) can be rewritten as the following form:

[sgn(k))’

S () = Sy (o) — [sgn(k)]" Z L

J=1

San+ ), Sn) =1, k<-1 or 1<k (C.16)

In this form, n is no more the upper limit of the sum as in the case of Eq. (C.I)), and Eq. (C16) is defined
not only for integer n but also for any real and/or complex n values [[72] (see also Appendix of Ref. [[76]).
The values of the harmonic sums at infinity, which are related to the Euler-Zagier sums [[77,[78]], are already
investigated in detail and these values up to the weight 9 are tabulated in the SummEer package [61}162]. An
untrivial aspect of the continuation of the harmonic sums by Eq. (C.16)) is how the harmonic sums whose
leading index equals to one, which are logarithmically divergent as n — oo, are treated?.

To avoid the logarithmic divergences along with the sums with leading 1’s, we need some regularization
for these sums. The most simple one is to take the sum up to a rather large integer N, e.g.,

N-n

Sl(n)=1\l’i_r)rolo[S1(N)—;nJlrj . (C.17)
However, in our purpose, we propose that it is more convenient to use the following regularization:
Si(n) = li_l)%[S[+g(oo) - ]Z.:l: m], (C.18)
where € is an infinitesimal positive number. Note that
Stire(e0) =41 + ) = é +vE + O(e), (C.19)

and the 1/€ pole corresponds to a logarithmic divergence in Eq. (C.17)), S 1(N) ~ In(N) + yg. Hereafter, we
use the later one for the regularization. For higher harmonic sums, we will replace 1 — 1 + € all at once.

20ne of the possible solutions for this issue is to avoid Eq. for the continuation of the harmonic sums whose left-most
index equals to one. For example, S ,(n) can be rewritten as in Eq. (CI0). S,;(n) and S3;(n) in the right-hand side can be
defined by Eq. if §1(n) is defined, and S, ;(n) can be defined by using S, ;(n) = 1/2[S%(n) + §,(n)]. Then, the analytic
continuations of the single harmonic sums are given by Eqs. (CIID, and therefore S ;»(n) can be defined by Eq. (CI0) over the
complex plane. Actually, in Ref. [79], the asymptotic series expansions of the harmonic sums are obtained (their definition for the
harmonic sums are slightly different from ours and they only consider positive indices), without introducing any regularization, by
using these relations for the sums with leading 1’s and by using, in terms of our expressions,

S+ ) B[ 0\ 0
§ nmry E 22 1
NN S !( 6k) 1 k>1,
O (CD/In"(n+ ) O B, [ 9\ (k)
AL A P E (L) Bt 1
(n+ jF r:l( )r! ( ok) nkr-1’ k=1,

J=1

as well as Egs. (C23).
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For example,
S11,-21(n) = 1Im S 14¢ 14e-2,146(1)
e—0

(o)

lim! S (c0) Z ! S (c0) Z ! S (c0)
= 1+e,1+€,-2,1 00) — . 1. 1+e€,-2,1 00) — T -2,1
b +e,1+€ +e 2 (n+ jp)i+e +e +e ~ (n+ j1 + jo)i+e +e

[Se]

[

. (=17 1
__ﬂ_./1+12§ OO_E
DT, (n+jl+jz+j3)2[5‘“( ) ~ <n+jl+jz+js+j4>1+fm

J3=1

(o)

(C.20)

The translation relation Eq. (C.3) is valid for the harmonic sums defined over the complex plane by
Eq. (C.I6) (with the regularization by introducing e, if needed). In actual application, for the sums which
have negative indices, (—1)" should be replaced (+1) or (—1), depending on which one needs to start analytic
continuation from even or odd values. In general, one can formally write

S =SSP + 1"V + (DS Py + DSV + - (C.21)

and then analytic continuations of this function in the complex domain from even or odd values are given
by

s ) =SSP+ SV + SPm) + SV + -, (C.22a)
dd _c (e8] ) 3)
$%%m) = SOy = s V) + D) = sDmy + -+ . (C.22b)

The translation relation Eq. (C.3), which is valid for the harmonic sum Eq. (C.2])), is translated for the sums
defined by Egs. (C.22) as follows:

sgn(k)

ST ) = S n + 1) - G OESH SMmn + 1), (C.23a)
Sy = S+ 1) - e :lelsgen(n +1). (C.23b)
Or it is more convenient to use
SO ) = S (n+2) - 1 sgn(k) | SN+ 2) + sgn(ky) 1 SO 4 2),

[+ 2k " (o D | (n+ Dkl (n + 2kl ™

(C.24a)

odd odd —
Stk = Sk 2 =\ CE ¥ Gy | S e (n+ DIl (1 + 2)lkel ~ 7

ki.kao i ki.ko i

(C.24b)

C.3 Asymptotic Series Expansion

Using the Euler-Maclaurin summation formula, one can easily obtain the following series expansions, which
are valid in the sense of the asymptotic expansion for n — oo:

N B, (k)1
Z (n+ j) Z | k=1’ k>1, (C.25a)
Z S 2.2 1>B—U,3’r oo k=1, (C.25b)

(n+ jk
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where
I'(x+n)
= —7, C.26
=05 (C.26)
is the Pochhammer symbol and B, are the Bernoulli numbers defined by
X S B, .
e Z(; " (C.27)

ie,By=1,B1=-1/2,B, =1/6,B3 =0, B4 = —1/30, Bs = 0, Bg = 1/42, - - - . With the aid of Egs. (C.23),
as a corollary, we can get the following asymptotic expansions of the single harmonic sums:

O Br (K1
Sk(n) ~ S i(c0) = ; < e k> 1, (C.282)
2N ey Br ()
S _k(n) ~ S _k(o0) = (=1) ;(2 Dy k2L (C.28b)

The regularization Eq. (C.I8)) allows us to simply obtain the expansion of S(n) in a similar way. Noting
that the 1/€ poles appear in S 4¢(c0) and (1 + €)_;:

1 1
Sive(0) =1 +€) = p +ve + O0(e), (I1+e)-1= = (C.29)
then we get@]

(+e-1 B U+er

S1(n) ~ §14e(00) — T _Z_;WT
o g = (C.30)

=In(n) + yg — —r—r, e — 0.
rn

r=1

The asymptotic expansions of the higher harmonic sums defined by Eq. (C.16) are obtained by repeated
use of Egs. (C23). For the harmonic sums whose indices contain 1’s, one can regularize the logarithmic
divergences by replacing 1 — 1+ € all at once. After use of Egs. (C.23), we expand the obtained expression
with respect to €. Then the 1/€ poles appear only in S 1,¢(c0) and (1 + me)_;. As an example, consider the
expansion of S 14¢11e-2,1+¢(n):

Sitel+e-21+e(n)

[Se]

=S 1+€,1+€,—2,1+€(Oo) - Z

J1=1

1
WS 1+e,-2,1+€(00)

(o8]

1 1
+ S_
2 (n+ j)'+e 2 Gt g1 + ayires ()

Ji=1 Jj2=1

[ee)

(o8]

; (-1} (1)~ (=1)" N
) (n+ jp)i+e 2 (n+ ji + jo)l*e 2 CETET YA

J1=1 J2=1 J3=1

[ee) [ee)

[ee)

L1y i (=D 3 (=D” 3 (-1 3 !
e (n+ jOMe & (n+ ji+ j)'* &4 (n+ ji+ jo + j3)2 = (n+ ji+ jo+ j3 + ja)'*e

J2=1 J3=1 Ja=1

[ee) [ee)

B0Of course one can obtain this result by applying the Euler-Maclaurin summation formula to the second term in Eq. (C.17) and
by making use of S {(N) ~ In(N) + yg.
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(L+e)r i B, (1+6)

ne 7! nite
r=1

(1+26)-1 <~ By (1+26),_1 By, (1 + 711 +26),,-1
1 n2€ + Z 7 nr+25 Z E)rl 1 Z n' +ry+2e€

r=1 ri=1 = 0

~ S1telte—2,1+€(00) —

+ {(1 +€)_

X 8 -2, 1+¢(00)

]S 1+e,-2,1+€(00)

Brx (2 +r+nrn+ 26)” 1

”1 r Brz N r
- (- 1)"Z<2”— @ 12(22—1>a(2+r1+e)r2_1z_(2* hon

pltritr+r+2e

X S1+e(°°)
+ (—1)“{(1 +e ) (2" - 1)—(2 + o 2(2’2 - 1)—(2 + 71+ 26),-1
ri=1 rn=1
B, 2411+ 1+ 3€),-1
X Z(2r3 l)_ n1+r1+r2+r3+3e
+ Z —(1 + )1 2(2’2 B e i(zm I TELE1 SRS S
n- et }’2! 2 ol 1”3! 3
B, Q+ri+r+r3+3€)-1
X Z(2r4 1)_ plAritrtrs+ra+3e } (C31)

Here the singularities of the values of the harmonic sums at infinity can be extracted in terms of S |, .(c0):

S 1+5,1+5,—2,1+5(°°) = 1+E(OO)S -2, 1+e(00) + 8 14¢(0)S -2, 2426(00) + 8 146(00)S _3- €, 1+e(00)

1 1
=285 14e(00)S 2 11¢,14€(00) + ES _23+3¢(00) + ES —4-2¢1+e(00) + 8 _3_¢242¢(00)

3 3 1
- 55—2,1+e,2+2e(0°) - 55—2,2+2e,1+e(00) =28 3 cl+e14€(00) + 552+2e,—2,1+e(00)

+ 38 2 14¢,146,1+€(00),

(C.32a)
S 1+e-2.1+6() = §116(00)S —2.14¢(00) + 5 _2242¢(00) + S _3-¢ 14¢(00) = 285 3 14¢,1+€(0). (C.32b)
They are expanded such sl
1
Si+e(00) = —HYES O(e), S -2,14¢(00) = S_3,1(0) + O(e). (C.33)
The Pochhammer symbols (a + me),_| (a > 2) can be simply expanded by using
d
_(x)n = (On[Y(x +n) = Y(2)], (C.34)
Yy Px+n) - ka) = (=DpIS pr1(x +n=1) = S pra(x = D], (C.35)
#Formally they should be expanded up to higher order such as
1 2 3
S 11e(00) = P +YE—€y1 t Z—!)’z— %73 +ee,
_ dS 72,I+e(oo) JZS -2, l+e(oo) 62 d3S72,l+e(oo) 53
S 2 14e(00) = 8§ 51(e0) + T de e=06 —ae e=02_! + i e=0§ toee

However, these higher order terms are finally canceled with the cancellation of the 1/€” poles, and never appear in the final
expression after taking the limit € — 0.
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Putting it all together and taking the limit € — 0, one can obtain
St1,1,-2,1(n)
1 , 1 1
~ 5572,1(0°)L (n) + [S-3,1(0) + S _22(00) =25 5 1 1(c0)]|L(n) + 5574,1(00) + 8 32(00) + 5572,3(00)

3 3 1
- 28 _31,1(00) — —572,1,2(00) - —572,2,1(00) + —52,72,1(00) +3S5_21,1,1(c0)

1 L
ES 21(00)ﬂ +

1 1 1
—=8 21(00) + =8 _31(c0) + S 22(00) =S 211(00)]

2 2
1 L 1 1 1 1
~ 135 -21(0)— 7 (n) SS 2.1(00) = 758 3.1(00) = 755 22(00) + =5 21,1 (0 )]——gS —2,1(00 )—
1 "L 1 1 1
| 1305 21(%) + (8) ] ’EZ) [ﬁS -2,1(00) + 7558 -3,1(00) + 558 22(00) = =58 2 11(00 )]
9L 1)
-y [485 a0y + P ]n—5+

where

L(n) = In(n) + vg. (C.36)

C.4 Numerical Evaluation of the Harmonic Sums over the Complex Plane

Now, we consider how to evaluate the harmonic sums numerically in the complex domain. The simplest
method is evaluate the infinite sum in Eq. (C.16) recursively (the single harmonic sums are translated into
polygammas), e.g., [72] (See also [80]). In most cases, however, as easily expected the numerical conver-
gence is very slow.

Another approach to obtain the appropriate representations of the harmonic sums for the complex argu-
ment is to express them in terms of the Mellin transforms of several basic functions as well as polygamma
functions [73]]. The integrand of the Mellin transform is numerically expanded by using the minimax ap-
proximation method and then the Mellin transform is given in a semi-analytical way (See also Appendix
of Ref. [74]]). In Ref. [73-c], they found the appropriate representations for the individual basic functions,
the building blocks of the three-loop anomalous dimensions, which corresponds to weight 5. Their numer-
ical representations are fast and precise enough, and thus they are satisfiable in our application at this time.
However, if one wants to obtain the representations up to more higher weight functions, then the newer
basic functions appear, and one have to consider each newer basic functions (for example, the massless
three-loop Wilson coefficients [81]] are expressed in n-space in terms of the harmonic sums up to weight
6). Moreover, the reconstruction of the harmonic sums from the Mellin transforms of the basic functions is
rather complicated.

This is why other methods for the numerical evaluation of the harmonic sums over the complex n-
plane are welcome. Here we make use of the asymptotic series expansions of the harmonic sums at large n
together with the translation relations of them, which are discussed in the previous section, for the numerical
evaluation. In fact, for evaluating polygamma functions, which are related with single harmonic sums by
Egs. (C.I11)), the asymptotic expansions and translation relations of them are often used (e.g., [74]). The
asymptotic expansion of S _» j (n) was also used for the evaluation of it in the old days (e.g., [76]). Therefore
it seems quite natural to evaluate the higher harmonic sums with the asymptotic series expansions and the
translation relations of them.

The asymptotic series rapidly converge for large n, in contrast badly diverge for small n. Additionally,
in the complex domain, noting that the remainder error term of the expansions Eqs. (C.23)) has a form such
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Figure C.1: Continued S'1,1-2,1(n) and S _» 5 1,1(n) from their even/odd values.

as

|R| < (const) X f dx , (C.37)
0

(n+ x)4

we have to keep n off the negative real axis as well as zero in order to obtain the numerical values of the
sum preciously as expected. Then, by using the translation relations Egs. (C.24) recursively, one can make
the connection between the values of the harmonic sums for small (or treacherous) n and that for sufficiently
large (and safe) n. Therefore our algorithm for the evaluating the harmonic sums over the complex n-plane
is simple:

e If Re(n) > ng or |Im(n)| > n;, we use the asymptotic series expansions for the evaluation of the
harmonic sums, where ng and n; are some sufficiently large real number (we take simply n; = ny, i.e.,
keep n off the negative real axis equally to zero for safety when we use the asymptotic expansion for
the evaluation). Choosing ng as some fixed (sufficiently large) integer, we can determine up to what
order the expansion is needed for obtaining required accuracy.

o Ifnisnotin the above region, we use the translation relation for shifting n recursively until Re(n) > ng.

As examples, the result for S —2,1(n) and S _» _ 1,1(n) from even/odd values (i.e., S ‘ive“ n), S ‘1"11‘1_2 (),

1,-2.1
S, (m)and S ‘j‘éd , 1.1(n)) are presented in Fig.

The evaluation of the harmonic sums with this algorithm is of course rather slow for small n (especially
for higher harmonic sums) but very fast for large n. However, what is more important is that this simple
method can be applied to more higher harmonic sums in its entirety. The simplicity of the method allows
us for the possibility of automatism of the construction of the program code to numerically evaluate the
harmonic sums up to any weight over the complex plane. We plan to release a set of FORTRAN subroutines to
compute any harmonic sums with a complex argument n (at least) up to weight 6 by using this algorithm [82].
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