Appendix III

3,6-Di-2-pyridylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione

 ortho-DPPP: Phase I
Abstract

The title compound, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$, is an organic red pigment utilized for H_{2} gas sensors. The asymmetric unit contains two half-molecules, each molecule being centrosymmetric. The two independent centrosymmetric diketopyrrolopyrrole moieties are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form a ribbon structure along [100]. The molecules are stacked in a 'hunter's fence' fashion (viz. when viewed from the side, molecules, slipped by about 70° within molecular stacks, cross each other in a fence-like structure) along the b axis.

Comment

Diketodiphenylpyrrolopyrroles are industrially important red pigments (Herbst \& Hunger, 1993). The title compound, (I) (o-DPPP), is a dipyridyl derivative whose N atom of the pyridyl ring is located at the ortho site. There are also meta and para derivatives. Among these, only p-DPPP was found to exhibit a high proton affinity due to the N atom of the pyridyl ring (Mizuguchi, 1993). Because of this, p-DPPP has recently attracted attention as a high-performance H_{2} gas sensor (Takahashi \& Mizuguchi, 2005). In phase I of p-DPPP, there are $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bifurcated hydrogen bonds between the NH group of one molecule and the O atom of the neighboring one and the two N atoms of the pyridyl rings remain free (i.e. unbonded) to accept protons necessary for H_{2} gas sensors (Mizuguchi et al., 2005). There is also phase II of p-DPPP which is rather insensitive to protons because one N atom of the two pyridyl rings is blocked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Mizuguchi et al., 2002). The purpose of the present investigation was to analyze the crystal structure of o-DPPP

(I)
in order to account for its poor sensitivity to protons.
There are two independent half-molecules A and B in the asymmetric unit (Fig. 1). Molecules A and B are centrosymmetric but not entirely planar. The angles between each pyridyl ring and the heterocyclic ring systems are 10.9 (2) ${ }^{\circ}$ in molecule A and $1.8(2)^{\circ}$ in molecule B. As shown in Fig. 2, there are $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds (Table 2). There are chains of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds between the NH group of one molecule and the N of the pyridyl ring of the neighboring one along the a axis. However there are two kinds of chains; one is composed of only molecule A and one of only molecule B. This are designated A and B in Fig. 2. Fig. 3 is the projection on to the $b c$ plane, showing how molecules A and B are differently stacked along the b axis.

B

A

Figure 1
A view of the molecular structure of (I), showing 50% displacement ellipsoids for non- H atoms. The unlabeled atoms in molecules A and B are related by the symmetry codes $(1-x, 2-y, 1-z)$ and $(1-x, 1-y, 1-$ z), respectively.

Experimental

o-DPPP was synthesized according to the method reported previously by Rochat et al. (1986) and purified three times by sublimation using a two-zone furnace (Mizuguchi, 1981). Single crystals of o-DPPP were grown from the vapor phase in a closed system based on a two-zone furnace. After 48 h , a number of single crystals were obtained in the form of platelets.

Figure 2
Molecular arrangement of (I), showing $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{N}$ intermolecular hydrogen bonds as dotted lines.

Figure 3
Projection of the structure of (I) on to the $b c$ plane.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=290.28$
Monoclinic, $P 2 / a$
$a=16.097$ (2) \AA
$b=3.7144$ (5) \AA
$c=21.725(2) \AA$
$\beta=110.758(7)^{\circ}$
$V=1214.6(3) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID Imaging
Plate diffractometer
ω scans
Absorption correction: multi-scan
(Higashi, 1995)
$T_{\text {min }}=0.292, T_{\text {max }}=0.835$
9996 measured reflections
$D_{x}=1.587 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 9840 reflections
$\theta=2.9-68.4^{\circ}$
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=93.2 \mathrm{~K}$
Platelet, red
$0.60 \times 0.20 \times 0.20 \mathrm{~mm}$

2028 independent reflections
1647 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.079$
$\theta_{\text {max }}=68.3^{\circ}$
$h=-19 \rightarrow 19$
$k=-3 \rightarrow 3$
$l=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.091$
$w R\left(F^{2}\right)=0.346$
$S=1.91$
2028 reflections
199 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+\left\{0.149\left[\operatorname{Max}\left(F_{o}{ }^{2}, 0\right)+2 F_{c}{ }^{2}\right] / 3\right\}^{2}\right]$
$(\Delta / \sigma) \max =0.012$
$\Delta \rho_{\text {max }}=0.68$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.47$ e \AA^{-3}

Table 1 Selected geometric parameters ($\left(\right.$ Á, $\left.^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 2$	1.228 (6)	$\mathrm{C} 1-\mathrm{C} 2$	1.464 (7)
$\mathrm{O} 2-\mathrm{C} 10$	1.226 (6)	$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	1.375 (7)
$\mathrm{N} 1-\mathrm{C} 2$	1.412 (6)	C3-C4	1.460 (7)
N1-C3	1.383 (6)	$\mathrm{C} 9-\mathrm{C} 9^{\mathrm{ii}}$	1.422 (8)
N3-C10	1.402 (6)	C9-C10	1.465 (6)
N3-C11	1.373 (6)	$\mathrm{C} 9-\mathrm{C} 11^{\mathrm{ii}}$	1.390 (7)
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	1.420 (8)	C11-C12	1.457 (6)
C2-N1-C3	111.6 (4)	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4$	130.7 (4)
C10-N3-C11	113.0 (4)	$\mathrm{C} 9 \mathrm{ii}-\mathrm{C} 9-\mathrm{C} 10$	108.1 (5)
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2$	107.8 (5)	$\mathrm{C} 9{ }^{\mathrm{ii}}-\mathrm{C} 9-\mathrm{C} 11^{\mathrm{ii}}$	108.2 (5)
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	108.8 (5)	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11^{\mathrm{ii}}$	143.6 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	143.4 (4)	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{N} 3$	124.6 (4)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	124.6 (4)	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	132.2 (4)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$131.7 \text { (4) }$	$\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 9$	103.2 (4)
N1-C2-C1	103.7 (4)	$\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 9^{\mathrm{ii}}$	107.5 (4)
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	108.1 (4)	N3-C11-C12	122.3 (4)
N1-C3-C4	121.1 (4)	$\mathrm{C} 9{ }^{\text {iii }}-\mathrm{C} 11-\mathrm{C} 12$	130.2 (4)

Symmetry codes: (i) $1-x ; 2-y ; 1-z$; (ii) $1-x ; 1-y ;-z$.

Table 2 Hydrogen-bonding geometry (Á, ${ }^{\circ}$).

$\mathrm{D}-\mathrm{H} \cdots A$	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots A$	$\mathrm{D} \cdots A$	$\mathrm{D}-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 2^{\text {iii }}$	0.95	2.19	$3.099(6)$	159
$\mathrm{~N} 3 — \mathrm{H} 2 \cdots \mathrm{~N} 4^{\text {iv }}$	0.95	2.22	$3.120(6)$	159

Symmetry codes: (iii) $1 / 2-x ; y ; 1-z$; (iv) $1 / 2-x ; y ;-z$.

All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95 \AA$) and included in the riding-model approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$. In most crystals, there are tiny cracks along the long crystal axis. presumably accounts for the higher than normal R factor. Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: TEXSAN.

References

Burnett, M. N. \& Johnson, C. K.(1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

Herbst, W. \& Hunger, K. (1993). Industrial Organic Pigments, pp. 467-475. Weinheim: VCH.

Higashi, T.(1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Mizuguchi, J. (1981). Cryst. Res. Technol. 16, 695-700.
Mizuguchi J. (1993). Ber. Bunsenges. Phys. Chem. 97, 684-693.
Mizuguchi, J., Takahashi, H. \& Yamakami, H. (2002). Z. Kristallogr. New Cryst. Struct. 217, 519-520.

Mizuguchi, J., Imoda, T. \& Takahashi, H. (2005). Acta Cryst. E61, o500-o502.
Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009
New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rochat, A. C., Cassar, L. \& Iqbal, A. (1986). US Patent No. 4579949.
Sheldrick, G. M. (1997). SHELXS97. University of Go" ttingen, Germany.
Takahashi, H. \& Mizuguchi, J. (2005). J. Electrochem. Soc. 152, H69-H73 (2005).

