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Design of Jacobi EVD Processor Based on CORDIC for
DOA Estimation with MUSIC Algorithm

Minseok KIM!, Student Member, Koichi ICHIGE', and Hiroyuki ARAI', Regular Members

SUMMARY Computing the Eigen Value Decomposition
(EVD) of a symmetric matrix is a frequently encountered prob-
lem in adaptive (or smart or software) antenna signal process-
ing, for example, super resolution DOA (Direction Of Arrival)
estimation algorithms such as MUSIC (MUltiple SIgnal Classifi-
cation) and ESPRIT (Estimation of Signal Parameters via Ro-
tational Invariance Technique). In this paper the hardware ar-
chitecture of the fast EVD processor of symmetric correlation
matrices for the application of an adaptive antenna technology
such as DOA estimation is proposed and the basic idea is also
presented. Cyclic Jacobi method is well known for the simplest
algorithm and easily implemented but its convergence time is
slower than other factorization algorithm like QR-method. But
if considering the fast parallel computation of the EVD with a
hardware architecture like ASIC (Application Specific Integrated
Circuit) or FPGA (Field Programmable Gate Array), the Ja-
cobi method can be a appropriate solution, since it offers a quite
higher degree of parallelism and easier implementation than other
factorization algorithms. This paper computes the EVD using a
Jacobi-type method, where the vector rotations and the angles
of the rotations are obtained by CORDIC (COordinate Rotation
DIgital Computer). The hardware architecture suitable for ASIC
or FPGA with fixed-point arithmetic is presented. Because it
consists of only shift and add operations, this hardware friendly
feature provides easy and efficient implementation. In this paper,
the computational load, the estimate of circuit scale and expected
performance are discussed and the validation of fixed-point arith-
metic for the practical application to MUSIC DOA estimation is
examined. .
key words: adaptive antenna, FPGA implementation, DOA
estimation, MUSIC, EVD

1. Introduction

In many adaptive (or smart or software) antenna tech-
nologies, when receiving communication signals at an
adaptive antenna array, usually it is desired or neces-
sary to estimate DOAs (Directions of Arrival) of inci-
dent signals and the DOAs are used in a beamformer
in order to separate and receive the desired signal spa-
tially. .
Generally, in the communication environment
multi-path fading caused by a reflection by any physical
structures is a serious problem. When passing through
multi-path, the signals are delayed and out of phase
from the signals through direct-path that causes the sig-
nal strength to be changed extremely at a receiver end,
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tThe authors are with the Division of Electrical & Com-
puter Engineering Department, Yokohama National Univer-
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and hence receiving quality is also reduced. The re-
quirements of wider band and higher transmission rate
in the next generation communication make it more
critical, and when the mobile terminal moves at high
speed, the transmission rate may be confined by this
problem. If the multi-path fading can be solved, the
trade off between mobility and transmission rate must
be dramatically improved.

An adaptive antenna technology can provide a so-
lution of multi-path fading. The adaptive antenna can
suppress the adverse effect of multi-path delayed coher-
ent signals and interferences by steering beams toward
intended directions and nulls toward the other unde-
sired directions so that it can achieve high communi-
cation quality. This operation can make the receiving
signal strength almost flat and stable over a threshold
level. Therefore it is necessary that an adaptive an-
tenna should find the DOAs of signals and form beams
and steer nulls within a fading period. Considering mo-
bility of several hundreds of km/h, the fading period
becomes very short time. It is very difficult to compute
them by general serial architecture DSP processors, and
hence the high-speed parallel computing processor with
a specified function must be needed.

In this paper, the implementation issue in MU-
SIC (MUltiple Slgnal Classification), a super resolu-
tion DOA estimation method, and the examination of
hardware design based on FPGAs are presented. MU-
SIC method is one of the subspace-based methods [1].
Generally the subspace-based methods are based on the
Eigen Value Decomposition (EVD) of the covariance or
correlation matrix. In the EVD based system, real-time
processing is very difficult to be realized because of its
complex logic and heavy computational load. This pa-
per proposes the hardware logic design of a fast EVD
processor which is suitable for realtime processing and
can be implemented for adaptive antenna technologies
practically. It uses Cyclic Jacobi method. Cyclic Jacobi
method is well known for the simplest algorithm and
easily implemented but its convergence time is slower
than other factorization algorithms like QR~-method [2].
But if considering the fast parallel computation of the
EVD with a dedicated circuit like ASIC or FPGA, the
Cyclic Jacobi method can be a good choice, since it of-
fers a very higher degree of parallelism and easier imple-
mentation than QR-method [3]. This paper uses hard-
ware friendly CORDIC (COordinate Rotation Dlgital
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Computer) algorithm for vector rotators and arctan-
gent computers, which are the basic processors of this
design.

This paper is organised as follows. Section 2
presents the principle and computation flow of DOA
estimation in MUSIC Method briefly. Section 3 in-
troduces Cyclic Jacobi EVD algorithm and Sect. 4 de-
scribes the basic ideas of CORDIC algorithm and the
circuit implementation. For simple architecture and
practical realizability, the paper uses fixed-point or
fixed bit-length arithmetic instead of floating-point op-
erations. With fixed-point arithmetic it is desired to
overcome processing speed limitation and power con-
sumption. In Sect.5 the number of Jacobi sweeps is
determined, that is, the computational load is confined
constantly, and the errors caused by the fixed-point op-
erations are discussed. Section 6 proposes the hard-
ware architecture and circuit design. Section 7 yields
its computational load and expected performance dis-

~cussion.

2. DOA Estimation by MUSIC Method

The computation flow of DOA estimation by MUSIC
method is illustrated in Fig.1. First, the correlation
matrix Rgq(t) is computed by E[X (t) - X (t)] where
X (t) is the data vector received at array antenna, E[]
is the expectation operator, and the superscript H de-
notes Hermitian transposition. Actually, the finite av-
erage of the correlation matrix is used to approximate
a stochastic process. Then the spatial smoothing pro-
cess suppresses the correlation between incident signals,
which enables the estimation when the signals are cor-
related with one another. The correlation matrix is de-
composed into signal and noise sub-space eigenvectors
by EVD, and the DOAs can be found by computing the
angular spectrum with inner product of noise sub-space
and array mode vectors [1].

It seems to be not difficult to implement the com-
putation of correlation matrix, spatial smoothing filter
and spectrum synthesis with dedicated circuit using any
fast algorithm, thanks to the simplicity of their logics.

Obtain the Correlation Mawix R,
Ll

Spatial Smoothing

L

Obtain Eigenvectors corresponding
to Noise Eigenvalues

L

Generate MUSIC Spectrum With
the Eigenvectors

Fig.1 Computational flow of MUSIC method.
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But especially EVD computation is not so simple but
rather complex. Generally it is thought that the EVD
process has 30-50% of the whole computational load of
DOA Estimation. In fact, there are many algorithms
for EVD problems but they are just numerical solu-
tions for serial processing on general-purpose comput-
ers. Therefore it is necessary to modify and reconstruct
the serial algorithm to be suitable for parallelism of
dedicated circuit in order to meet the performance re-
quirement for the prcatical use of an adaptive antenna
in the next generation communication system.

3. Cyclic Jacobi Method

This section describes the basic principle of Cyclic Ja-
cobi, one of the EVD computation methods. It can
be implemented with the simple iterative process of
plane rotations. Cyclic Jacobi method computes sym-
metric eigenvalue problems by applying a sequence of
orthonormal rotations to the left and right sides of the
target N x N matrix R as

ET R E=D, (1)

( E=J,-Jy-Jz -, )
J=Wip W3- Wnoin

where W, is an orthonormal plane rotation over an
angle @ in the (p,q) plane whose elements are wy, =
cos, wpg = sinb, wy, = —sinb, wyg = cosd (p > q),
and defined as Eq.(2). J is the multiple rotation of
Wpe's in the cyclic-by-row manner of (p,¢) which is
called a Jacobi sweep, and the superscript 1" and sub-

script /N denote transposition and array length respec-
tively.

cos@ .-+ sin@
Wi = : 1 : 2)
—sinf --- cos@

1

Theoretically, by the infinite transform of matrix R,
it is certain that E and D converge into the matrix
whose column vectors are composed of eigenvectors and
the matrix whose diagonal elements are eigenvalues, re-
spectively. A symmetric matrix R is transformed to R’
by plane rotation as
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By the above transform, only p-th and ¢-th rows and
columns of R’ are changed as Eq.(3). The optimal
rotation angle in a (p, ¢) plane is determined by Eq. (4).
It is the basic strategy of Cyclic Jacobi method that the
iterative process of the plane rotation converges (p,q)
and (g,p) elements of a target matrix into zero.

Tpg = Top =0 ' 4)
In above manner matrix R converges into a diagonal
eigenvalue matrix. This is called Cyclic Jacobi method.

In Cyclic Jacobi method, the off-diagonal quantity
5™ is defined by

N
1 2 h
§® = |5 IR s = 3o riy2), (5)
i=1
where || - | denotes the Frobenius norm. Therefore, if

S converges into zero, the target matrix R becomes
eigenvalue diagonal matrix as
lim S® —0& lim BR™ — diag[y,---,An]. (6)
h—o0 h—o00

On the other hand, the execution of a similarity trans-
form yields

s+ = [s] - [y - 6] 0

From Eq. (7), obviously the maximal reduction of S

is obtained if régﬂ) = 0. The condition for an optimal

angle, maximal reduction of S(, is achieved as

1 2 1
Oopt = = tan™* [—————T—m——} = —tan"'T, (8)
2 Tpp ™ Tqq 2
where 7 = 7,—2—7};}— [2],13].
P qq

4. CORDIC Algorithm for Vector Rotation
and Computing Arctangent

The CORDIC algorithm is operated in one of two
modes [4]. One is the rotation mode and the other is
the vectoring mode. In this paper, the rotation mode
is used for vector rotations and the vectoring mode for
computing the optimal rotation angle by arctangent of
7, as mentioned in Sect. 3. For the rotation mode, the

IEICE TRANS. COMMUN., VOL.E85-B, NO.12 DECEMBER 2002

CORDIC equations are
2=y di- 27"

Tipl = ‘
Y1 = Yi+xi-di-27" , 9
Zit1 = Z; — dz . tan”l (2—1)

d; = —1 if 2z, <0, 41 otherwise

where d; = %1 (direction of rotation) and z is called
angle accumulator. It provides the following results
after finite number of iterations as much as the bit-
length.

Zn, = Ap (2o cos 2o — yo sin zg)

yn = Ap (Yo cos 2o + g sin zp)
2n =0 ’

An = Tlicg V1+27%

where 4, is a computational gain. On the other hand,
the CORDIC equations for vectoring mode are

(10)

Tip1 = zi—yi-di- 27"
Yier = yitmi-di-277 ; (11)
Zit1 =z — d1 -tan~?! (2‘7)

d; =41 if y; <0, —1 otherwise

which also provides the following result after a finite
number of iterations.

T = Ap/22 + 23
Y =0

12
Zn = 2o +tan'1(y0/xo) ( )

After the last step, the scaling operation must be per-
formed elsewhere in the system. From Egs. (10), (12)
the scaling factor I, is obtained by

K ; Scaling Factor. (13)

1 ﬁ 1
n An i 1 +2-2
The rotation and vectoring mode of CORDIC algo-
rithm are restricted to rotation angles between —m/2
and 7/2 due to the use of 2° for the tangent in the first
iteration.

4.1 Architecture

The CORDIC algorithm performs only shift and add
operations and hence it is easy to implement and suit-
able for dedicated circuit. In the implementation of
CORDIC algorithm, there can be various architectures
depending on which is more serious comnsideration, cir-
cuit resource or performance. There are a few kinds of
architecture for implementing a CORDIC algorithm,
for example, bit-serial or bit-parallel, and unrolled or
rolled (iterative), and so on [5]. This paper uses the
bit-parallel unrolled CORDIC architecture for high per-
formance. It is a cascade structure of the consecu-
tive CORDIC stages as shown in Fig. 2, where arctan-
gent values are precomputed and stored at any memory
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Xo Yo 20
const
»0) (»O
ADD ADD ADD
sign Zo

»l) »l

ADD ADD @
A

Fig.2 Unrolled CORDIC architectures (rotation mode).

block. The unrolled design consists of only combinato-
rial logic components and the results can be computed
fast with pipelined process.

4.2 Arctangent

If the angle accumulator z is initialized with zero (20 =
0), the arctangent, § = tan~!(y/z), is directly com-
puted using the vectoring mode. The result is taken
from the angle accumulator as Eq. (14) [5].

zn = 2 + tan™ (yo/20) (19)

4.3 Scaling by Twice Rotation Architecture

In CORDIC process, a scaling must be required be-
cause the bit length of the processor must be finite.
As Eq.(13) the scaling and normalizing using pre-
computed scaling value couldn’t perform only with shift
and add operations. It may be not easy to be imple-
mented with a dedicated circuit.

Twice executing rotation by 2z9/2 can solve this
problem [3]. Let an elementary rotation by angle zg be
composed of twice executing a rotation by zy/2. Hence
Eq. (9) is rewritten as

zipn = (1=27%)z;—y;-d;- 271
yier = (1=2"H)y+az;-di 2777 . (15)
Zipl T Zp dl . ta;l'l-‘l (2_2)

d; = —1 if 2; < 0,41 otherwise

It requires 4-shift and 5-add operations per an itera-
tion stage as shown in Fig. 3. The results after a finite
number of iterations is as
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@ @
e

Xk+1 Yia Zk+l

Fig.3 k-th stage of twice executing rotation (rotation mode).

Tp = Al (zo cos zg — yo sin zp)
Un = AGD (yo cos zg + g sin zp)
2zp =0 )

AL = {4n) = T, (1 +27%)

(16)

In Eq.(16), the computational gain ASD becomes
square root free. In addition, twice rotation gives the
scaling factor of division operation free as well as square
root free as Eq. (17). It is because for a given precision
b of the shift and add operations, all factors (1 — 27%)

with i > b do not contribute to K. So the scal-
ing factor can be approximated by simplified form as

Eq. (17) [3].

; kid 1 140 1 — -2
(“) = 2 — e T — P
K = (K} 11 rer s i o

n/4

% 1:[ (1 - 2—<4"—2>) (17)

Equation (17) can be also computed only with shift and
add operations. Figure 3 shows the k-th stage of the
twice rotation. In this paper twice executing rotation
unrolled architecture is used for efficient circuit imple-
mentation.

Q

5. Examination of CORDIC-Jacobi EVD Pro-
cessor with Fixed Point Operations

This section describes the practical implementation of
Jacobi EVD processor based on CORDIC with a fixed-
point arithmetic operation. The required number of
Jacobi sweeps, the appropriate precision for the desired
accuracy and applicability to MUSIC DOA estimator
are examined. The first thing to determine is how many
times of Jacobi sweeps can achieve the desired conver-
gence.

Figure 4 illustrates the reduction of off-diagonal
norm to the iteration number of Jacobi sweeps with a
6 x 6 random real symmetric matrix of 12-bit precision.
In case of 4-element linear array antenna, the dimension
of the correlation matrix is 6 x 6 after spatial smoothing
with 3 subelements. The off-diagonal reduction is de-
fined as Eq. (5) in Sect. 3 and the lower value means that
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v

Errors between vectors.

Fig.5

it is closer to the diagonal matrix. The 32-bit floating-
point operation on general computers by C language
converges to the machine zero within a given precision
after several number of Jacobi sweeps, but Fig. 4 shows
that fixed-point operations do not converge but only
keep on vibrating after around 4 Jacobi sweeps regard-
less of the precision from 12 to 36 bits. This is caused by
the limited-precision of the fixed-point operation. At
the cost of computation accuracy, the fixed-point op-
eration achieves simpler circuit impelementation, high
performance and low power consumption. Without us-
ing additional convergence decision circuit, fixing the
number of sweeps by 4 cannot only be a proper choice,
but more computations must be needless for efficiency
in hardware resource. Since the finite number of oper-
ation determined in advance provides the same compu-
tation time in any cases, the realtime processing can be
realized.

The next thing to examine is the precision of fixed-
point operation. To validate fixed-point operation, the
accuracy within allowable error range must be guaran-
teed. Equation (18) yields the error ratio where v’s are
the vectors whose elements consist of eigenvalues com-
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Fig.6 Error ratio of fixed-point operations to 32-bit floating
poing operation (6 x 6 random symetric matrix).
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Fig.7 MUSIC spectrum in case of 4 elements and 2 incident

waves (DOAs are —5° and 20°); (a) 32-bit floating-point opera-
tion with general computer and (b) 16-bit fixed-point operation
by CORDIC-Jacobi EVD processor.

puted in respective subscripted ways and | - || denotes
vector norm where the error between vectors is defined
as Fig. 5.

lvst0at = vsizeall (18)

Error =
”'"f Loat |

Figure 6 shows the error ratio of fixed-point opera-
tions with various bit-lengthes on the CORDIC-Jacobi
EVD processor with respect to the 32-bit floating-point
operation on general computers. Figure 6 uses an 6 x 6
random real symmetric matrix of 12-bit precision as an
input matrix. Of course, the longer is the given preci-
sion in the fixed-point arithmetic, the more accuracy we
can achieve. When it is implemented with 16-bit preci-
sion, it has several % of error for the floating-point op-
eration, but in reality, around 16-bit precision is desired
for practical uses. In this paper, the processor’s com-
putational load and the bit-length are 4 Jacobi sweeps
and 16-bit fixed-point operation respectively. Instead
of floating point arithmetic, the computation accuracy
may be doubtful, but as shown in Fig. 7 the simulation
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results are quite satisfactory. In Fig. 7, DOA estima- -

tion is performed by spectral MUSIC method assuming
that any 2 electromagnetic waves arrive at 4-element
array antenna. The EVD computations are performed
with 32-bit floating-point operation on a general com-
puter by C language and 16-bit fixed-point operation
on proposed design, Jacobi EVD computer based on
CORDIC. Except for EVD computation, all the other
processes of MUSIC method such as correlation matrix,
spartial smoothing and MUSIC specturm were com-
puted on general computer with floating point opera-
tion. Figures 7(a) and (b) show the results respectively.

6. Hardware Design of EVD Processor for
DOA Estimation

In previous sections it was mentioned that about 4
Jacobi sweeps are sufficient for convergence and the
fixed-point operation of 16-bit precision gave a good
enough spectral estimation result. Based on these facts,
this section proposes available hardware architecture of
EVD processor and designs considering the implemen-
tation on FPGAs.

Figure 8 shows the computational flow of Cyclic
Jacobi EVD. As described before, Jacobi type EVD is
very simple, just a sequence of vector rotations until
achieving convergence. From Eq. (8) the optimal ro-
tation angle is determined and then the processor per-
forms the similar transform of correlation matrix R and
unitary matrix E(initial value is identity matrix I) of
eigenvectors. After 4 Jacobi sweeps the computation
complete, the resulting matrix R converges the diago-
nal matrix of eigenvalues and E becomes the unitary
matrix of eigenvectors.

~ The EVD processor consists of CORDIC matrix
rotators and CORDIC arctangent. With the optimum
angle obtained by Eq.(8), the rotation W,, is de-
termined as Eq.(2). The transform W,, in Eq.(3)
changes only p-th and ¢-th rows and columns of the
matrix R. Therefore the transform can be simplified
as

('r‘é,) = Wl (rp> _ (cosﬁ —sinG)
LA P\ 7y sinf cos6
« -<7np1"'rpp“'rpq"'/rpN>’ (19)
Tql t Tgp t Tag v TN
where 7, and wp, denote the k-th row vector of the
matrix R and the (p,q) plane rotation that is a sub-
matrix of W, in Eq. (2), respectively. Thanks to the
symmetry of the matrix R, the right side transform
in Eq. (3) yields the same result, so it is not necessary
any more if the second rotations of only two vectors
[7pp Tap) T and [rpg 7gq]7 are performed one more time.
The diagram of EVD processor is illustrated in Fig. 9,
where the ESB (Embedded System Block) is a memory
block of an FPGA and stores the correlation matrix and
eigenvector matrix. In the CORDIC matrix rotator,
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Fig.8 Computation flow of cyclic Jacobi EVD processor.
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Fig.9 Block diagram of EVD processor.

6.5 CORDIC
Arctangent

3

CORDIC Rotation

(p, k) (k)
(AL CRI)]

Fig.10 Architecture of EVD processor core.

using dedicated circuit’s parallelism multiple CORDIC
vector rotators are performed simultaneously. It takes
N(N ~ 1)/2 matrix rotations per one sweep to com-
pute R and E respectively. Figure 10 111ustrates the
architecture of the EVD processor core.

7. Computational Load and Expected Perfor-
mance

Basic arithmetic operation of EVD processor consists
of only shifts and adds. In twice executing rotation
CORDIC stages, the computational load yields

(43—{—%3) Shifts and (53—%%3) Adds, (20)

where B is the bit length and 1/48 is approximately
taken for scaling operation from Fig.3 and Eq. (17).
The number of vector rotations required computing
both eigenvalues and eigenvectors is 4N (N —1)(N +2).
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1t is because E performs 4 J’s, J consists of N(N—1)/2
W's and W requires (N + 2) vector rotations from
Eq. (1), where N is the double number of the length of
array antenna (if the length of antenna array is N, N x
N correlation matrix of complex numbers is converted
into the extended form of 2N x 2N matrix of only real
numbers [2]). By addition of arctangent, therefore total
computational load of CORDIC-Jacobi EVD processor
is {4N (N — 1)(N +2) + 1} x (1 B Shifts + 2 B Adds).

On the other hand, configuring this computational
load with the parallel architecture, rough estimate of
circuit scale is about (N + 1) x 15K equivalent gates
(one 16 bit-CORDIC processor could be synthesized by
about 15K equivalent gates). For example, if N = 8 (4-
element array antenna, no spatial smoothing with any
subelements) the total circuit scale is about 75K equiv-
alent gates. We get the estimate result by synthesizing
the circuit described by VHDL(Very high speed inte-
grated circuit Hardware Description Language) with
LeonardoSpectrum, Examplar Logic, where the target
device is ALTERA’s FPGA, APEX20KC.

If this computation load is configured by the par-
allel circuit architecture as Fig. 9 and it takes one clock
cycle for shift or add operation (it is the worst case), the
first EVD result requires [4 X N(N —1)x 241} x (B+1)
clock cycles. For example, if N = 6, B = 16 (in
case of 4-element array antenna and spatial smooth-
ing with 3 subelements) and operated at the speed of
100 MHz, this system can compute EVD computations
about 13,200 times/sec (75.8 us/EVD). But this is just
an example. Actually, the pipeline processing by plac-
ing register properly can achieve higher performance.

Considering high-speed mobility under the higher
frequency area of the next generation communication,
it is very difficult to realize the required performance
for fading free system with general purposed processor.
If DOA estimation of incident waves and beamforming
toward their directions are complete within that period,
fading free system can be realized. This proposed EVD
processor is a combinatorial logic circuit, and hence the
improvement of the performance by pipeline scheduled
processing can be expected. At present, it is said that
the advance of circuit technology can offer high speed
operation of general combinatorial logic circuit. The
EVD is the most dominant process in the whole pro-
cessing load from DOA finding to beamforming. This
fast parallel computation processor can provide efficient
use.

8. Conclusion

In this paper the circuit design of fast EVD compu-
tation processor for MUSIC DOA estimator was pro-
posed. It uses CORDIC based Jacobi method and it is
suitable for hardware implementation for realtime pro-
cessing. Taking the practical uses in wireless communi-
cation into consideration, it is desired that arithmetic
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processor should perform fixed-point operation with ap-

" propriate precision below 16-bit. Adopting fixed-point

arithmetic causes some error but makes the implemen-
tation easy and hence the high performance and low
power consumption can be achieved. In addition, the
functionality for the application of spectral MUSIC
method was validated.
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A Fast Algebraic Approach to the Eigenproblems of
Correlation Matrices in DOA Estimation

Koichi ICHIGE!, Member, Masashi SHINAGAWA!, Student Member,

SUMMARY  This paper studies on a fast approach for the
eigenproblems of correlation matrices used in direction-of-arrival
(DOA) estimation algorithms, especially for the case that the
number of arriving waves is a few. The eigenvalues and the cor-
responding eigenvectors can be obtained in a very short time
by the algebraic solvent of up to quartic polynomials. We also
confirm that the present approach does not make the accuracy
worse when it is implemented by finite word-length processors
like digital signal processor (DSP) or field programmable gate
array (FPGA).

key words: adaptive array antenna, DOA estimation, eigen-
problems, MUSIC method

1. Introduction

Adaptive array antenna plays an important role in
Direction-Of-Arrival (DOA) estimation and in discrim-
inating a target wave from interferences by digital-
beamforming. Many DOA estimation algorithms have
been already proposed [1]-[3] and nowadays MUSIC [1]
and ESPRIT [2] would be two representative superres-
olution algorithms (dealing with correlation matrices)
that can estimate DOAs very accurately. The prob-
lem of those superresolution algorithms may be the
computational complexity, especially the most time-
consuming process in DOA estimation is computing
eigenvalues/eigenvectors of correlation matrices. Gen-
erally the eigenproblems are solved by the combination
of QR and Householder decompositions [4]. This ap-
proach has been highly-developed in the sense of both
mathematics and computer-programming, however the
application of such decompositions usually takes time
even for small matrices.

Recalling that the derivation of eigenvalues is
equivalent to solve the characteristic polynomial of the
correlation matrix, the algebraic solvent can be applied
if the order of the polynomial is four or less. This corre-
sponds to the situation of adaptive array antenna with
- four or less antenna elements (also valid when using
the space averaging technique for every four or less ele-
ments). The case of four elements is worth considering
as a low-cost system and already used in practical mo-
bile system: there have been studies on four elements

Manuscript received August 1, 2002.

Manuscript revised September 1, 2002.

"The authors are with the Department of Electrical
and Computer Engineering, Yokohama National University,
Yokohamarshi, 240-8501 Japan.

and Hiroyuki ARAI!, Member

array which assume to be used for mobile terminals [5]
and for the base stations of Personal Handyphone Sys-
tem (PHS) [6],[7]. Reducing computational cost would -
enhance the performance of such system.

This paper first revisits the algebraic algorithm to
have eigenvalues/eigenvectors of correlation matrices,
supposed to be used in fast DOA estimation for a few
arriving waves. And then we evaluate the algebraic
approach in comparison with the general QR method.
The present algorithm employs the well-known alge-
braic solvent of quartic characteristic polynomials to
derive eigenvalues of correlation matrices instead of the
numerical QR decomposition [8]. One may say that
the algebraic approach makes the accuracy worse when
it is implemented by a digital device due to the fixed-
point quantization and the cancellation of significant
digits. However, we guarantee that the quantization
error in the algebraic approach does not affect to the
estimated DOA when it is implemented by finite word-
length processors like digital signal processor (DSP) or
field programmable gate array (FPGA).

2. Preliminaries

This section summarizes the computational procedure
of MUSIC method for example to see how the eigen-
values/eigenvectors are used in DOA estimation. Fig-
ure 1 illustrates the configuration of a (linear) general
adaptive array antenna system with four elements. In
Fig.1, 8; and z; denote the DOA of i-th wave and the
complex amplitude of the received signal by the j-th
element, respectively. The computation procedure of
MUSIC method can be roughly summarized as the fol-
lowing three steps [1].

[STEP 1] The correlation matrix Ry, of the input
vector X is obtained by

Ry =k [X(thH(t)] = ASAH 1 o7,

where A and S are so-called the direction and the signal
correlation matrices, respectively. Note that the input
vector X is formed by using the complex amplitude
x5, and the direction vector A is determined from the
physical relationship between elements [1].

[STEP 2] Derive the eigenvalues A; and the corre-
sponding eigenvectors y, of the correlation matrix R,,.
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Fig.1 Configuration of an adaptive array antenna system with

four elements

[STEP 3] Using the direction matrix A and the eigen-
vectors y;, calculate the MUSIC spectrum P(6).

In MUSIC method, the time-consuming process is
usually STEP 2 and STEP 3. Some fast algorithms
have been already proposed for STEP 3, the representa-
tive one would be Root-MUSIC method [3] which is an
algebraic algorithm without using the direction search
technique. Similarly, in the next section, we aim at
developing an algebraic approach for STEP 2 to make
this process faster.

3. Algebraic Approach to Eigenproblems

A fast algebraic algorithm is investigated for the DOA
estimation by array antenna with four elements. The
eigenvalues A; of the matrix R;; can be obtained by
solving the characteristic equation

det(Ryy — M) = 0, (1)

where I and 0 indicate the identity and the zero ma-
trices, respectively. If the size of the matrix R, is
n x n, the characteristic polynomial becomes n-th or-
der of A, and the equation (1) has n solutions. Here
we adopt the well-known mathematical technique that
the polynomials of up to quartic can be solved by an
algebraic procedure [4]. For DOA estimation, we es-
tablish an algebraic approach to derive eigenvalues of
correlation matrices in case of four antenna elements,
also when using a space averaging technique for every
four elements.

3.1 Deriving Eigenvalues

The characteristic equation (1) can be reduced into the
following quartic equation of A:
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M4 azd® 4+ apA? + agh +ag = 0.

Since the matrix R, is a non-negative Hermitian ma-
trix, it has at most four real eigenvalues [4]. Using the
algebraic solvent for quartic equations, the eigenvalues
of the matrix Ry, can be derived as

A= ix/hy £ 2hy — 943, )

where
D q
hi = —t—=%, hy=———,
1 2 2 8\/-t-
3a2 ai  asas
p'—_8—+a27 q__g‘_ 2 +a17

t::\‘*/&+\3/~~§- 3)

In (3), the parameters o and 8 are also the functions
of a3, ag,a; and ag [9]. Originally the parameters o
and B are also calculated by the algebraic procedure
[9], but such procedures are not required if ¢ is numeri-
cally computed. In the programming language C (also
in the languages derived from C), the cubic-root is cal-
culated numerically by Newton-Rapson method [4]. On
the other hand, the solution of ¢ in (3) is actually the
solvent of the third-order polynomial. Therefore, it is
more computationally efficient to derive ¢t numerically,
not solving (3) exactly.

3.2 Deriving Higenvectors

Now we derive the eigenvectors y; = [y;1, iz, Vis Yia)
corresponding to the eigenvalues A; in (2). Define the
matrix D as

D= {d“] == Ra’:r —_ )\71' c C4x4’

then the eigenvector y, of the matrix D corresponding
to the i-th eigenvalue can be obtained by solving the
following matrix equation:

Equation (4) is generally solved by Gauss elimination
method [4], however it is redundant since the matrix
D is singular in this case. Instead, we employ a faster
algorithm using an inverse matrix of the sub-matrix of
D.

Since D is a singular matrix, the row-vectors
di,dy,ds and ds of the matrix D are linearly de-
pendent. On the other hand, those four vectors in-
clude three linearly independent vectors. Suppose that
¥i4 = 1 and the vectors dy, da, d3 are linearly indepen-
dent. Now (4) is rewritten into the following equation:

dig
D33y, = — | dos |, (5)
1

where
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dip dig dig
D33 = | dig dpn doz |,
dig dp3 da3
- T
Y; = (i1, Yiz, Visl
Since the inverse of 3x3 matrices are easily derived us-
ing cofactors, (5) can be rewritten as

dig
9, =—D33 | daa
day
[ g [
= T qetD ab) 22 Y32 Q24
8 d/13 —dlzs dés das

where dgj denotes the cofactor of d;;. Therefore, the
eigenvector y; can be obtained as :

yi = [0 17 = [vir, viz, vis, 17

Note that the above method cannot derive eigenvectors
if the vectors dy, dy, d3 are linearly dependent. In this
case, the vectors dj, dg and d4 become linearly indepen-
dent instead. Denoting y;3=1, the eigenvectors can be
derived similarly to the above inverse matrix approach.

4. Evaluation of the Algebraic Approach in
DOA Estimation

In this section, the algebraic algorithm is evaluated in
comparison with the general numerical algorithms by
computer simulation.

4.1 Evaluation of the Inverse Matrix Approach

First, the inverse matrix method for deriving eigen-
vectors is evaluated in comparison with general Gauss
elimination method. Table 1 shows the computation
time of those two methods. We sat from Table 1 that
the inverse matrix approach can reduce the compu-
tational cost that required in the Gauss elimination
method, which means the inverse matrix approach can
be more effective. Note that we tested thousands of

example matrices, and the result in the Table 1 is the

average of those trials.

Table 1 Computation time required in the inverse matrix ap-
proach and that in the Gauss method [4]

Gauss method | Inverse matrix
computation time 22.4p sec 17.2psec
(ratio) (1.000) (0.768)
required memories 560K1B 556K B

( CPU: Intel Celeron 433MHz, Memory:256 MB )

4.2 BEvaluation of the Quartic Polynomial Approach

Next, the quartic polynomial approach is evaluated in
comparison with the general QR decomposition. Ta-
ble 2 shows the computation time of the two methods,
quartic polynomial and QR decomposition. From Table
2, the polynomial approach reduces the computational
cost to only 1.74% of that required in the QR decompo-
sition. This says the polynomial approach can greatly
shorten the computation time for eigenproblems. Note
that we tested thousands of example input vectors, and
the result in the Table 2 is the average of those trials.
The comparison of computational time might be
ambiguous but gives an evaluation from a certain sense.
More objective comparison would be desired however it
deeply depends on the characteristics of implemented
devices. it should be studied provided that the algo-
rithms are implemented on a real device. ‘

Table 2 Computation time required in the algebraic approach
and that in the QR decomposition [4]

QR decomposition Algebraic

computation time 1.54msec 24.2 sec
(ratio) (1.000) (0.0174)
required memories 560KB 572KB

( CPU: Intel Celeron 433MHz, Memory:256 MB )

5. Discussion

Suppose that the present algorithm is implemented
on a finite word-length (digital) device. We confirm
in this section that the quantization noise caused by
DSP/FPGA implementation does not make the DOA
estimation accuracy worse. Specifications of the simu-
lation in Sections 5 are summarized in Table 3.

Table 8 Specifications of the simulation

antenna form
element interval

4-elements linear array
half wavelength each
incident wave 2 waves (from 0 / —30 degree)
power of waves one for each
SNR 20dB (10dB and 5dB in Fig.7)
Number of snapshots 300 times

5.1 Effect of the Quantization Noise in A/D Converter

First, the effect of the quantization noise in A/D con-
verter is studied. The A/D converter and its quanti-
zation noise are imperative in digital implementation.
Here we assume that several waves with power one are
coming to the array antenna from certain directions.
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In this case, the distribution of the input voltage be-
came as illustrated in Fig.2. From Fig.2, we see that
the input voltage usually vibrates within —2 to 2 volts,
and we can adjust the level of the A/D converter not
to make overflow. In fact, it did not matter if we round
the values more than 2 to 2.

Figure 3 illustrates the effect of quantization noise
in A/D converter to the estimated DOAs. As seen in
Fig.3, eight quantization bit length in A/D converter
is enough for the accurate DOA estimation. Although
the noise level in Fig.3 becomes slightly larger, it does
not affect to the accuracy of estimated DOAs.

T T T T i N T T 1
0006+ e
2 0004 .
2
g
<
0
e
A 0002 N
o+ .
1 1 1 1 1 2 ] 2 H
4 2 0 2 4
Input Voltage [V]
Fig.2 Distribution of Input voltage

no quantization
---------- 12bit

—-—-= 10bit
-20F ~— -~ 8bit 1

Spectrum magnitude [dB]

2 1 1 I} 2 1 L 1 . Il L
90 60 -30 0 30 60 90
Angle [deg]
Fig.3 Effects of quantization errors in A/D converter to the
estimated DOAs

5.2 Effect of the Quantization Noise in DSP

Next, we study the effect of the quantization noise in
DSP. In the algebraic approach, we should confirm the
range of parameters in the middle of digital process-
ing so that not to make overflow and the cancellation
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of significant digits. Figure 4 depicts the example dis-
tribution of intermediate parameters. Fig.4 says the
parameters vibrates within about 10-times of the range
of the input voltage. Generally the operations in the
fixed-point DSP are performed with 16-bits (single pre-
cision) or 32-bits (double precision). Considering the
range of parameters in Fig.4, 16-bits operation would
be enough for the accurate DOA estimation.

Figure 5 shows the effect of the quantization noise
in DSP for algebraic approach. The quantization bit
length in A/D converter is set to be eight. Comparing
with the same effect for QR method illustrated in Fig.6,
we confirm that the noise-level of MUSIC spectrum is
almost same, and both of the methods can preserve the
accuracy of the estimated DOAs.

Moreover, in the case of low-SNRs as seen in Fig.7
for algebraic approach, the noise-level of MUSIC spec-
trum becomes higher but it finally doesn’t affect to the
accuracy of estimated DOAs. This guarantees that the
algebraic approach can preserve high accuracy in the
case of low-SNR like open-air,

<
—
T
ko T

Probability

,

0 l."&l.l.:ll\.)d"l.l".u
-8 6 4 -2 0 2 4 6 8 10

Values of parameters

Fig.4 Distribution of example intermediate parameters

6. Concluding Remarks

This paper studied on the fast approach to eigenprob-
lems in DOA estimation algorithms for the case that
the number of array elements is four or less. Regard-
ing the eigenproblem as solving the quartic algebraic
polynomial, the eigenvalues and eigenvectors could be
obtained in a very short time. Moreover, we confirmed
that the algebraic approach does not make the accuracy
worse when it was implemented by finite word-length
processors. This kind of approach would also be effec-
tive in ESPRIT [2] which requires two or three eigende-
compositions. Besides, we should expand the algebraic
procedure to correspond to matrices with higher orders,
as one of future studies.
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SUMMARY DOA (Direction Of Arrival) estimation is a use-
ful technique in various positioning applications including the
DOA-based adaptive array antenna for wireless cellular basesta-
tion. This paper presents the practical implementation of FPGA
(Field Programmable Gate Array) based fast DOA estimator
for wireless cellular basestation. This system incorporates spec-
tral unitary MUSIC (MUltiple SIgnal Classification) algorithm,
which is one of the representative super resolution DOA estima-
tion techniques. This paper proposes the way of digital signal
processor design suitable for an FPGA and its real hardware im-
plementation. In this system the fast computation performance
can be achieved by the inherent parallelism of FPGAs, which
can process multiple tasks at the same time. The eigenvalue de-
composition (EVD) and MUSIC angular spectra generation are
solved by Cyclic Jacobi processor based on CORDIC (COordi-
nate Rotation DIgital Computer) and the spatial DFT (Discrete
Fourier Transform), respectively. The perfomance will be ana-
lyzed by the hardware level simulations and experiments in a
radio anechoic chamber. All digital signal processing procedures
are computed by the only fixed-point operation with finite word-
length for fast processing and low power consumption.

key words: Adaptive Antenna, Smart Antenna, FPGA Imple-
mentation, DOA Estimation, MUSIC, EVD

1. Introduction

Adaptive array antennas are expected to be a promising
technology in the wireless communication systems at
present and in the future. The radio system controlling
the radiation pattern of antenna by software adaptively
will allow us to overcome a lack of reconfigurability and
flexibility in a fixed beam antenna system [1].

DOA (Direction Of Arrival) information of incom-
ing signals is frequently useful in various positioning ap-
plications such as an emergency system, a radio surveil-
lance system, a radar system, a millitary system and so
forth. Moreover, from the theoretical point of view,
many excellent adaptive array antenna techniques for
wireless cellular communications also need DOAs of
desired signal and interferers in advance [2]. As a
matter of fact, we have another choice of the MMSE
(Minimizing Mean Square Error) based combining tech-
niques like LMS (Least Mean Square) and RLS (Re-
cursive Least Square). They employ a temporal refer-
ence signal instead of explicit DOA informations, while
the DOA-based systems exploit the estimated DOAs
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in beamforming to separate the desired signal from in-
terferers spatially. Such DOA-based systems, however,
have many advantages over the conventional temporal
reference based solutions. First of them is that they are
more applicable to the downlink (forward link) beam-
forming thanks to the knowledge of the explicit direc-
tional information, thus the basestations can steer max-
imum transmitting power toward the desired user di-
rection. And it is also aready known that DOA-based
beamforming has superior SINR (Signal to Interference
and Noise Ratio) performance to that of other combin-
ing techniques for small angular spread [3]. That may
be reasonable in macro cellular suburban environment
having far field scatterers. However, the drawback is
that it requires time-consuming task of DOA estima-
tion. But the lack of the cost effective digital process-
ing devices to resolve the high computational burden
has been a distress in the applications to the practical
systems commercially. With the general Von Neumann
architecture processors, it may be difficult to meet the
requirements of the high speed computation and the
compact architecture with low power consumption at
the same time in the future communication systems .
[4].

Although the fast DOA estimator is indispensable
for the ideal beamforming with the explicit directional
information, we have many difficulties of the actual im-
plementation. In fact, there have been some practical
works with dedicated circuits [5]. However the quanti-
tative evaluation of the fixed-point operation of FPGAs
including the hardware implementation details have
rarely been described. The recent study implements the
DOA-based smart antenna for European GSM system
[6]. It made use of the unitary ESPRIT (Estimation
of Signal Parameters Rotational Invariance Technique)
and MVM (Minimum Variance Method) as DOA esti-
mators. However, it used general purposed processor
(DEC Alpha 500MHz), which might not be optimized
for the dedicated tasks and consume large amount of
electrical power.

In this paper, the FPGA based digital signal pro-
cessor design of the DOA estimator and its hardware
implementation will be presented. The inherent par-
allelism, reconfigurability and optimisability of FPGAs
give us more benefits than general purpose processors.
The specific circuit implementation of a DOA estimator
has not been published yet, thus the design concept and



practical implementation in this work will be a valu-
able example. This system will be useful for high speed
DOA-based beamforming in wireless cellular systems.
It incorporates unitary MUSIC (MUltiple SIgnal Clas-
sification) algorithm, which is a super resolution DOA
estimation technique. MUSIC-like algorithm has many
advantages in the real hardware implementation due to
its simplicity compared with other well-known subspace
based techniques like ESPRIT. However, there still re-
mains the computational complication of the complex
number arithmetic, which is a great distress to the fast
computation and compact system scale. With a uni-
tary transform, the eigendecomposition of the correla-
tion matrix can be solved with real number only [7][8].
The unitary MUSIC processor (call UMP, hereafter)
performs all digital signal processing procedures by the
only fixed-point operation with finite word-length. The
eigenvalue decomposition (EVD) and MUSIC angular
spectra generation are solved by Cyclic Jacobi proces-
sor based on CORDIC (COordinate Rotation Dlgital
Computer) [9] and the spatial DFT (Discrete Fourier
Transform), respectively.

This paper is organized as follows. In Sect.2, the
data model and basic principle of unitary MUSIC DOA
estimator will be described. Section 3 will present the
digital signal processing concepts and key features. In
this section, the fast EVD- processor incorporated in
UMP will be introduced briefly. In UMP, the DOAs
are treated as some number of discrete wavefronts. The
computation concept of the discrete angular spectra via
spatial DFT will be also described. Sections 4 and 5
will present the real hardware implementation details
and the performance analysis, respectively. In Sect.6,
whole system operation will be demonstrated by exper-
iments in a radio anechoic chamber. Finally, Sect.7 will
conclude this paper.

2. Preliminaries
2.1 Data Model

We assume the basic model of the narrowband signal
s;(t) for ¢-th source, where ¢ = 1,2---, L. The signals
received at K antenna array spaced by half wavelength
can be modeled by

x(t) = Vs(t) + n(t), (1)

where the array output «(t) is a snapshot vector,
and s(t) and n(t) are the signal and complex Addi-
tive White Gaussian Noise (AWGN) vectors, at time
t, respectively. The columns of the channel matrix
V = [v1,v3, - ,vr] consist of the spatial channel vec-
tors for L sources. The spatial channel vector v; for
i-th source can be given by the array response vector
a; under the assumption that the plane waves arrive at
an ideal omni-directional antenna array from the point
sources as
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v = a(Gz)
. . . T .
— [1’ e—jwsmei, o ’e—g*rr(K—l)smG,;] , (2)

where 0; is the DOA for the i-th source and superscript
T denotes transpose operator.

2.2 Unitary MUSIC DOA Estimation

MUSIC algorithm is a kind of DOA estimation tech-
nique based on eigenvalue decomposition, which is also
called subspace-based method [10]. It has many advan-
tages of the implementation simplicity as well as the ca-
pability of estimating DOA in much higher resolution
over any other conventional methods. The correlation
matrix of (t) is given by

R.e = Elz(®)z" ()] = VRV + 021, ®3)

where E[] and superscript ¥ denote expectation and
Hermitian transpose operators, respectively. And
R, = E[s(t)sf(t)] is the signal covariance matrix and
o? is the noise variance. Since the correlation matrix
R, is a positive definite Hermitian matrix, it can be
decomposed to signal and noise subspaces by eigenvalue
decomposition. The noise subspace eigenvectors of cor-
responding eigenvalues of o2 are orthogonal to the sig-
nal subspace, and eventually orthogonal to the array
resoponse vectors. From this fact, the MUSIC spec-
trum is typically given by ‘

a(0)a
Py (9) = af () g3E(f?)a(9)7 ?

where E,, is the matrix whose columns consist of noise
subspace eigenvectors. In the result spectrum of Eq.(4),
the peaks appear at the DOAs of incident signals.

Generally the correlation matrix in Eq.(3) is
complex-valued. It is clear that the EVD with complex-
valued correlation matrix should be high computational
burden. Reducing the computational complexity via
unitary transform allows real-valued eigenvalue decom-
position with the transformed real number correlation
matrix [7]. Since the EVD procedure has a large por-
tion of whole computational load of MUSIC-like sub-
space based algorithms, real-valued eigenvalue decom-
position is attractive. If the steering vector of Eq.(2) is
rearranged in the conjugate centro-symmetric manner,
the correlation matrix R, becomes centro-Hermitian.
The real-valued correlation matrix R, can be obtained
with an appropriate unitary transform Q as

3. Digital Signal Processor Design Concepts

The computation flow of the unitary MUSIC DOA es-
timation is involved in 4 steps largely [7][9]; (1) Estima-
tion of correlation matrix including unitary transform
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and spatial smoothing, (2) EVD (Eigen Value Decom-
position) of the correlation matrix, (3) Computation of
MUSIC spectrum and (4) 1-dimensional peak search.
In this section, the digital signal processor design con-
cepts for the dominant procedures in the unitary MU-
SIC DOA estimation algorithm will be described.

3.1 Correlation Matirix with Unitary Transform

In this time, UMP was designed to discriminate some-
what correlated signals from the mixed signals by us-
ing the spatial smoothing technique. By the unitary
transform, the EVD which takes the largest computa-
tional cost of the whole procedures can be solved in
real number arithmetic. In addition, with the selec-
tion of real part only in Eq.(5) provides FB (Forward-
Backward) averaging, thus backward spatial smooth-
ing can be achieved simultaneously [7]. The first step
in the unitary MUSIC algorithm is to transform the
input data vector @ to y with a unitary matrix Q as

where z; and y; (i = 1,-- -, M) are the divided M sub-
vectors of the snapshot vector and the corresponding
transformed sub-vectors, for spatial smoothing respec-
tively, as

@ = [Tiy oy Tir KM
Y = [Yi, ,yi+K—M]T:

By the unitary transform, the real-valued correlation
matrix Ry, is computed as Eqs.(3) and (5). In reality,
however, it is approximated by the uniform averaging
with some number of snapshots sampled at the time
nT, where T is a sampling period, as

n M
By =5 3 S Re(Ryatm), (1)
W 1

where

Ryy,i(m) = y,(m)yH (m)

and N is the number of snapshots. This type of averag-
ing can be implemented by a sliding boxcar FIR, (Finite
Impulse Response) filter with unit gain. From the view
points of hardware implementation, however, this filter
needs such a long shift register that memory resources
turn out to be exhaustive. Thus the first order IIR (In-
finite Impulse Response) exponential averaging filter as
shown in Fig.1 is a reasonable choice. It requires single
register only. In this figure, the correlation matix can
be written by

Ryy(n) = BRyy(n—1)+
. M
(1=8)> Re{y,(m)y¥ (n)}, (8)

i=1

Z«l
H(REG)

_@._,

Diagram of Exponential Averaging Filter

(=3

3
Y
“V

Fig.1

where 8 (< 1) are a real number forgetting factor. This
type of filter can respond to the non-stationary environ-
ment quickly if the smoothing factor § is determined
appropriately.

3.2 Eigenvalue Decomposition via CORDIC based Ja-
cobi Processor

In the next step, the correlation matrix is eigen-
decomposed by the EVD processor. In our former work,
the EVD processor design for MUSIC-like subspace
based techniques has been studied [9]. It used CORDIC
based Cyclic Jacobi method suitable for logic circuit
implementation with FPGA. Cyclic Jacobi method is
well known for the simplest algorithm, but usually its
convergence time is slower than other factorization al-
gorithms like QR-method. But if making use of the
high parallelism with a dedicated circuit like FPGA
or ASIC (Application Specific Integrated Circuit), it
would rather be a good choice. In this system, the EVD
processor computes real symmetric eigenvalue problems
by applying orthonormal rotations sequentially to the
target matrix. This system employed the hardware
friendly CORDIC algorithm for vector rotators and
arctangent computers, which were the basic processing
units in this design. As far as the fixed-point operation
was applied, there exist the truncation errors caused by
the fixed word-length. However, we could confirm that
if the computation word-length was longer than 16-bit,
it had reasonable performance through the fixed-point
computer simulation. In UMP, the number of iterations
and the computation word-length of the EVD processor
are 4 Jacobi sweeps and 16-bit long, respectively.

3.3 MUSIC Spectrum Computation via Spatial DFT

After the EVD step, the MUSIC spectrum of Eq.(4)
is computed. In order to reduce the system complex-
ity, only denominator in Eq.(4) is taken into account.
This reciprocal spectrum can be generated from the
sum of spatial DFT spectra of (K — L) noise eigenvec-
tors returned to complex values by the inverse unitary
transform as

K
PAJU,‘r'ec’ip’r'ocal - Z iDFT{Q ' E’L}[2 ) (9)
i=L+1

where E; is the i-th eigenvector belonging to the noise
subspace.
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In specral MUSIC algorithm, in order to find out %0 T o 7
the DOAs of the incoming signals, the angular spec- © w0 O==sin l\"‘ ‘D/:"l 4
trum should be computed. In fact; there exist another %“ ,/Jf{ -1
alternative solutions in MUSIC algorithms. It is based < Y L
on solving roots of the MUSIC polynomial, called root- 2 T - -
. o .inear Region o
MUSIC [8]. However the root finding problem of the g s
complex number coefficient polynomial is less suitable E M,M
for the dedicated circuit computer with the fixed-point g i _e2”
operation like FPGAs. For fast digital signal proces- S -4 e =2
sor implementation on FPGAs, a simple iterative algo- W 16 !
rithm must be the best solution. In order to compute S 9=;}' M(/ - P12)
the angular MUSIC spectrum, the spatial DFT tech- - '

nique may be an attractive solution due to the well-
known performance guarantee as well as the simplicity
with FFT algorithm. This subsection will describe how
to apply DFT to the computation of the MUSIC angu-
lar spectrum.

The simple continuous spatial signal model for 1-
dimensional distance is typically given by

(10)

where u(t) includes all complex-valued time-varying
components, and d and fep, are the distance from the
first reference antenna element and spatial frequency,
respectively. In case of array antenna signal process-
ing, we can consider the snapshot vector elements as
the sampled data at the distance of m- Dgpacing in each
element of antenna sensors. Actually, however, the dis-
tance between each antenna is a discrete value as

2q = u(t) - exp(—727 - fopa - d),

d - m: Dspacing7

where m and Dgpaeing are the index of discrete dis-
tance and the antenna spacing (or spatial period), re-
spectively. But the spatial frequency depending on the

(11) .

50 109 150 250

Arranged DFT Index

Fig.3 Nop-uniform Discrete Wavefront (DOA) corresponding
to DFT index (P = 256)

incident DOA still remains continuous value. In order
to apply digital signal processing, the continuous spa-
tial frequency should be digitized by P discrete spatial
frequencies as

2
—_— 12
P. Dspa.cing ( )
where k is the index of the discrete spatial frequency.
From this fact, by applying spatial P-point DFT, the

discrete spatial frequency domain components can be
obtained by '

27+ fopa — k,

"

-1
zglm] - e
0

Xalk] = % IEm (13)

When Dipgeing = A2, eventually the discrete wave-
front # can be computed from the following relation-
ships of Eqs.(14)-(15).
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From above facts, in the MUSIC algorithm, it can
be seen that the spatial DFT of the noise subspace
eigenvectors in Eq.(9) gives the distribution of the spa-
tial frequency. However the spatial spectrum obtained
by DFT of only a few spatial data as many as antenna
array length has coarse resolution not to estimate ccu-
rately. In reality, the antenna array length is limitted
for several reasons on hardware implementation. Thus
the high resolution estimation will not be available from
the coarse spectrum. In that regards, the interpola-
tion of the spectrum should be taken into consideration.
According to digital signal processing theory, the DFT
spectrum can be generated fine and smoothly by adding
a few number of zeroes to the spatial data of the noise
eigenvector elements. The spectrum generated by the
spatial DFT is completely equivalent to the denomina-
tor of Eq.(4) which means scanning main-beam toward
whole directions.

Figure 2 shows an example of the relationship be-
tween the DFT index k, rearranged index [ and corre-
sponding discrete wavefront @ in the reciprocal MUSIC
spectrum (denominator of Eq.(5)) generated by spatial
DFT (DFT bin P = 256). That is, Fig.2(b) is re-
arranged version of Fig.2(a) (actual order stored in a

memery) by the relation as

z:{ k+P/2 (k< P/2)

k—P/2 (k> P/2) (16)

From Egs.(15) and (16), the concrete discrete wave-
fronts (DOAs) in Fig.2(c) are obtained as

f =sin~! (1_:_13_/2) . (17)

P/2
As shown in Fig.2(c), the discrete wavefronts gen-
erated by the spatial DFT spectrum is not uniformly
spaced. Thus the estimation resolution becomes lower
when the signals arrive from close to endfire direction,
since the angular spacing gets wider. That, however,
may be of no concern in the practical sectorized bases-
tation configuration. From Eq.(17), € is an inverse si-
nusoidal function of I. Figure 3 shows the effect of
non-uniform discrete wavefront. In the region between
—30 to 30 degrees, the estimation resolution can be ap-
proximated by linear function whose gradient is given
by the derivative of Eq.(17) at [ = P/2 (broadside) as

dé 1
— = ——|rad]. 18
di 1=P/2 P/2{ } ( )

In this linear region, the estimation resolution (angular

spacing) can be regarded as almost uniform. Futher-
more, the estimation resolution becomes higher with
larger P of DFT bin length, because that is inversely
proportional to P. When P is 256, the estimation res-
olution is about 0.4476 degrees from Eq.(18).
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Table 1  Core Performances of Dominant Procedures
Required - LEs(Logic | fmax tmin
Clocks(M,ix) | Elements) | (MHz) (p8)

Ry, N 8301 27.4 0.04 xN
EVD 1836 4045 110 16.69
FFT & 1356 2303 114 11.89

LM Det.

3.4 Local Minima Detection

Instead of finding peaks in the MUSIC spectrum writ-
ten in Eq.(4), local minima (LM) detection of the re-
ciprocal MUSIC spectrum generated by DFT in Eq.(9)
can be applied for the implementation simplicity. The
LM detection can be implemented by memory scanning
circuit consisting of 2-word shift register, comparator
and logic gates of XOR and AND as shown in LM de-
tection section of Fig.4. The comparator compares 2
words loaded in the shift register to output the 1-bit
decision result ¢(n), which means the sign of derivative
between at the indices (n — 1) and n. And then, the
AND(%) output of ¢(n) and XOR(®) output d(n) noti-
fies the the memory writting controller of the transition
of ¢(n) (0 — 1) as

o ={ ] St
d(n> = C('Il. - 1) ® C(’!L) (19)
e(n) = c(n) @ d(n). :

This procedure can be implemented by simple logic cir-
cuit with high speed operation.

4. Practical Hardware Implementation

Not only the theoretical study, we also tried to im-
plement it on single FPGA (STRATIX EP1S25, Al-
tera) which has about 0.6 million equivalent gates, 200
Kbytes internal memory blocks and optimised digital
signal processing (DSP) blocks [11]. The whole block
diagram of the digital signal processing procedures de-
scribed in previous section is shown in Fig.4. It is in-
volved in 4 major procedure sections including Cor-
relation Matrix Section, EVD Section, FFT Section
and LM Detection Section. The word-length of ev-
ery section is also shown in this figure. In this time,
it is assumed that the exact number of waves were
predetermined and known already from any other pre-
processing. We described the procedures with VHDL
(Very high speed integrated circuits Hardware Descrip-
tion Language). The VHDL sources were synthesized
and place-and-routed by Leonardospectrum (Mentor
Graphics) and Quartus IT (Altera), respectively.
Table 1 illustrates the roughly estimated perfor-
mance of the dominant processing core, where LEs
(Logic Elements) means the number of occupied logic
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Fig.6 Appearance of UMP Digital Processing Unit

blocks in FPGAs and f,,.. is the maximum clock
frequency at which normal operation can be guaran-
teed, respectively. The minimum computation time
tmin is calculated by Muk/fmar and N is the num-
ber of snapshots. We assumed that less than 2 coher-
ent/incoherent waves arrive at only 4-element uniform
linear array (ULA) antenna in order to reduce system
complexity. For spectrum generation, 256-point radix-
4 complex FFT was employed [12], and the FFT with
256 spatial data composed of 3 elements of the noise
eigenvector (1 dimension of array is used for spatial
smoothing) and (256 — 3) zeroes interpolates the spec-
trum fine and smoothly. All computations were per-
formed by fixed-point arithmetic with 12-bit input data
from ADCs. Asshown in Table 1, EVD took the longest
computational time if the FFT was performed only one
time (in case of two incident waves). The pipeline
scheduling can allow us to divide the whole process-
ing into some sub-blocks. That is, if considering 3 sub-
blocks as illustrated in Table 1, this system can perform
single realization of DOA estimation within about 17
us. In this result, the inherent parallelism and optimis-
ability of FPGAs provided the fast computation perfor-
mance. Additionally, the recent FPGA manufacturing
technology allowed the electric power consumption to
be dramatically low by about 2 watts below. Figures 5
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Fig.7 Standard Deviation of Estimated DOA when single
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and 6 show the whole evaluation system configuration
and its appearance, respectively. The system architec-
ture is a super-heterodyne IF sampling receiver with
quasi-coherent detection. RF (Radio Frequency) sig-
nals received at antenna array are down-converted to IF
(Intermediate Frequency) band in analog DC (Down-
conversion) receiver, where the RF and IF frequencies
are 5 GHz and 40 MHz, respectively. And then the IF
signals are digitized by ADCs (Analog to Digital Con-
verters) at the rates of 32 MSPS. The undersampled IF
signals are digitally down-converted (DDC) again to
complex baseband and then downsampled by L-times,
where L is an appropriate integer number. IF passband
processing including DDC in FPGAs has been studied
n [13]. As shown in Fig.5, single FPGA on AD board
performs the digital signal processing of UMP. The user
terminal PC communicates with the CPU SH4 via Eth-
ernet, and CPU controls the UMP via direct 32-bit data
bus connection.

5. Performance Assessment

In this section, the estimation performance of UMP will
be discussed by the hardware level simulations with of-
fline PC with Matlab (Mathworks). The hardware level
simulation means that the fixed-point operation behav-
ior of UMP in VHDL was described exactly in Matlab
m-file. It was assumed that the antennas and analog
components prior to UMP had ideal characteristics or
they were well calibrated. That is to say, this anal-
ysis considered only the digital signal processing part
and neglected system-specific effects of analog parts.
It may be efficient to assess the system without work-
ing the whole system components in various scenar-
ios. The input level adjustment circuit like AGC (Au-
tomatic Gain Control) was considered in order to make
use of full scale range of ADCs (12 bits), otherwise the
performance of UMP will be degraded because of the
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Fig.8 DOA Dependency of Estimation Performance

low dynamic range of the fixed-point operation with bit
truncation. In this section, all simulations included 200
burst frame data and single burst consisted of 136 snap-
shots (symbols). The source waves were a m/4 QPSK
modulated signals.

5.1 AWGN Channel

In AWGN channel, the standard deviation of the es-
timated DOA when the single wave impinging from
broadside is a good overall performance assessment as
an estimation variation to SNR (Signal to Noise Ra-
tio). The same approach has been used in [6]. Fig-
ure 7 shows the simulation results computed by the
4-element UMP with 16-bit fixed-point operation with
spatial smoothing (SS) and the offline PC with 64-bit
floating-point (double precision) operation, where the
diamonded, right-triangled and left-triangled line de-
note the incident DOAs of 0, 30 and 50 degrees, re-
spectively. In addition, the results of 4- and 8-element
UMP without SS at 0 degree are also illustrated by the
sqaured and circular lines, respecively. In this results, it
is clear that the estimation accuracy is below 2 degree if
the input SNR is greater than 5 dB in the linear region
between -30 and +30 degrees. And it can be also seen
that the UMP has a pretty good performance for the
offline PC, although the estimation variation is larger
to some degree because of its finite word-length (16-bit)
fixed-point operation. As a matter of fact, the floating-
point operation has the SNR gain of about 10dB more
than the fixed-point operation, but it is an unavoidable
trade-off between them. In Fig.7, it can be seen that the
estimation variation becomes larger as the DOA angle
gets far off from the broadside. That is caused by only
non-uniform discrete wavefronts generated by the spa-
tial DFT if considering ideal omni-directional antenna
pattern. Non-uniform discrete wavefront effect is illus-
trated well in Fig.8, which shows the DOA dependency
of the mean DOA deviation 9, where
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Fig.9 Separability Performance of two incident waves
Y= E{!eEstinmted - 9DOA|}~ (20)

When there existed two incident waves, the separabil-
ity performance which represented how spatially close
signals can be discriminated from each other was as-
sessed. The criteria of the successful estimation was

¥ = arg méux{'thkp N R ean<p}s (21)

where ¢, 6 and p are a given SNR, incident DOA
and condition value, respectively. r¥ and R¥ denote
the separable angle and the range of 6 satisfying sub-
scripted condition to each estimation at a given SNR ¢,
respectively. Herein, the condition of (mean < p) elimi-
nates far-off estimation with small estimation variation.
Figure 9 shows the separability performance of UMP

where solid line and dotted line denote incoherent and

coherent, respectively. Two waves had the same powers
and temporally correlated with each other. The spatial
smoothing (SS) capability of UMP reduces the corre-
lation to some degree. In Fig.9, the separable perfor-
mance of UMP increases as the EVD word-length gets
longer. And it can be also seen that the separability
" performance with highly correlated (coherent) signals
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was degraded. That is because the spatial smoothing
with two sub-matrices in fixed-point operation could
not provide sufficient reduction of the correlation be-
tween each signal. But it will be imploved if with
larger number of sub-matrices in longer array antenna
and longer word-length. On the other hand, the 16-
bit fixed-point UMP can separate two incoherent waves
close by about 10 degrees when the SNR more than 10
dB under the condition of p = 3°, but the separabil-
ity performance can be imploved with more antenna
elements as shown in Fig.9.

5.2 Rayleigh Fading Channel

Above analyses may be quite meaningful to evaluate
the behavior of the fixed-point UMP at a given SNR.
Actually, however, the realistic channel was not mod-
eled appropriately in above analyses. In wireless cel-
lular communication, a fading phenomenon occurs by
multipath propagation. However, in such a fading en-
vironment, the SNR becomes a random variable with
any distribution. In addition, the great number of co-
herent signals caused by far field local scatters arrived
from spread DOA angle to reduce the fading correlation
between antenna elements. From this fact, the plane
wave model from a point source may not be valid any
more, thus the estimation performace will be degraded
in multi-path fading environment [14]. In that regard,
it is important that we investigate the behaviour of
UMP assumming multi-path fading environment. In
multipath propagation, by neglecting the time delays
between sub-pathes, the channel vector for i-th source
in Eq.(2) can be rewritten approximately by

N;
v = Zﬂija(oi +65), (22)

=1

where fij, éj and IV; are the complex amplitude with
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Rayleigh distributed magnitude of j-th scattered sub-
path, DOA variation and number of the sub-pathes,
respectively. In Fig.10, the relationship between the
angle spread and the estimated mean DOA deviation
as Eq.(20) is shown, where IV; = 30 sub-pathes are uni-
formly distributed at the center of single wave source
0, = 30° and average SNR was 10 dB, respectively. In
this figure, the diamond line is theoretically approxi-
mated result [14]. The UMP result had a good agree-
ment to the theoretical approximation. Thus it can be
seen that the functionality of UMP in a realistic multi-
path channel model is still valid.

6. Experimental Example

In this section, the whole system operation of UMP
will be demonstrated experimentally in radio anechoic
chamber. We used 4 omni-directional sleeve antennas
which were half wavelength spaced in ULA. In this ex-
periment, the fine calibration procedure was not con-
sidered, but the coarse adjustment of amplitude and
phase was just conducted manually before measure-
ment. In this example, it was assumed that there ex-
isted 2 incident waves. The data snapshot vector of two
incident waves was generated by linear combination of
each data snapshot vector of sigle incident wave. Ta-
ble 2 illustrates the experimental parameters. The RF
carrier frequency was 5 GHz. The transmitted waves
were CW (Continuous Wave) at different frequencies
(the difference was about 1.3 MHz). Figure 11 shows
an experimental result. The DOAs of each wave were
set by 0 and 40 degrees, respectively. Two waves were
transmitted at the same power and the average SNR
at each antenna element was around 19 dB. In Fig.11,
the indices of the DFT spectrum corresponding to the
LM points below any appropriate threshold level (5, 000
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Table 2 Experimental Parameters
Antennas 4-element sleeve antenna in ULA

Antenna spacing : A2

RF Frequency 5 GHz

IF Frequency 40 MHz
Modulation CW

Sampling Frequency 32 MHz

ADC resolution 12 bits

herein) were 127 and 208. With these indices, the con-
crete discrete wavefronts could be converted to -0.4476
and 38.6822 degrees from the relationship of Eq.(17),
respectively. It was reasonable that the estimation er-
ror was caused by lack of the fine calibraition for the
antennas and analog components, but the system oper-
ation could be confirmed to some extent. The calibra~
tion of whole system should be cleared for practical use,
and the digital calibration processor will be our future
works.

7. Conclusion

In this paper, the FPGA design of the fast DOA es-
timator using the unitary MUSIC algorithm was pro-
posed and its real hardware implementation was also
introduced. The unique features of this system are the
fast computation and compact architecture of the EVD
and MUSIC angular spectrum generation with Cyclic
Jacobi processor based on CORDIC and spatial DFT,
respectively. All procedures of digital signal processing
were computed by only fixed-point operation with finite
word-length for high speed and low power consump-
tion. As far as the optimization depends on the design
technique, the hardware friendly parallel algorithm and
processing concept will be still valid and outperform
the serial computer like general purpose CPU. Finally,
we are expecting that this system provides a useful ex-
ample of the real hardware implementation of a high
speed DOA estimator for the wireless communication
applications with dedicated circuits.
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ABSTRUCT

In this paper, we study the properties and drawbacks of representative DOA (direction of arrival) estimation algorithms
such as MUSIC, Root-MUSIC [1][2], and Unitary-ESPRIT by investigating the influence of quantization errors in
digital operations for various cases. We also verify which algorithm is the most suitable for the implementation by finite
word-length digital processors. First we examine the characteristics of DOA algorithms through some computer
simulation [4]. Then we study the internal quantization error of DOA algorithms, and derive the bit length required for
the accurate DOA estimation.

INTRODUCTION

Recently eigendecomposition based algorithms such as MUSIC, Root-MUSIC, and Unitary-ESPRIT have been used in
DOA estimation. Many authors examine the characteristics on each algorithm. But few quantitative investigations for
digital implementation are done. At the same time, FPGA has attracted the attention as low power and high speed device
which is based on parallel processing and fixed-point operation.

In this paper, we study the properties and drawbacks of representative DOA estimation algorithms by investigating the
influence of quantization errors in digital operations for various cases. We also verify which algorithm is the most
suitable for the implementation by finite word-length digital processors. First we examine the characteristics of DOA
algorithms through some computer simulation. Here we change DOA angle, the number of snapshots, SNR, array
elements, and the correlation of incident waves. Then we study the internal quantization error of DOA algorithms, and
derive the bit length required for the accurate DOA estimation. We change a bit length of the internal operation of each
algorithm in fixed-point operation, and examine the relation between estimation accuracy and bit length.

SPECIFICATIONS OF SIMULATION
Simulation on Characteristics of DOA Algorithms

In this simulation, as it is given in Fig.1, we used uniform linear array antenna. The algorithm used in the simulation is
as follows: Spectral (original) MUSIC, Root-MUSIC, Unitary Spectral MUSIC, Unitary Root-MUSIC, ESPRIT, and
Unitary ESPRIT. Here we change arrival angles, the number of snapshots, SNR, array elements, and the correlation of
incident waves. We used the FB (forward-backward) space averaging technique [3] as a cormrelation suppressing method.

We defined DOA angle as &),,, and estimation angle as g, . The estimation error used for this evaluation is:

,9130A —Opgr 1 [deg] €))
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Fig.1. K-elements uniform linear array antenna



Simulation on The Internal Quantization Error of DOA Algorithms

We studied on the required bit length for the internal operations of each DOA algorithm. We examined the relation
between estimation accuracy and bit length, when we changed a bit length of the decimal part and the integer part
respectively in a fixed-point operation from 4bits to 32bits. But we calculated MUSIC spectrum in a floating-point

operation, because the value of MUSIC spectrum was very large. Moreover, we used the values of \/_ and sin@,

cos@, tan6f which were transformed from the calculation results in PC into the ﬁxed-poinf values.
RESULTS OF SIMULATION
Simulation on Characteristics of DOA Algorithms

First, we investigated the accuracy of DOA estimation when we changed arrival angles, the number of snapshots, and
SNR to see how the above algorithms work. Fig.2 shows the characteristic when changing arrival angle. We verified
that the estimation accuracy deteriorates in nearly =+ 90 degrees. Fig.3 shows the characteristic when changing the
number of snapshots. Fig.4 shows the characteristic when changing SNR. We verified that the estimation accuracy
could be improved by increasing the number of snapshots or SNR. These simulation conditions are given in Table 2.
The obtained characteristics by the algorithms using MUSIC spectrum are different from those by the algorithms
estimating DOA numerically. In other words, the estimation accuracy of the algorithms using MUSIC spectrum depends
on how precise we measure the steering vectors. We used the steering vectors whose minimum interval of value was 0.5
degrees that can be considered sufficiently precise.

Fig.5 shows the characteristic when changing SNR in the case where uncorrelated 3 waves come. Compared with Fig.4,
we verified that the estimation accuracy deteriorates by increasing the number of incident waves. Fig.6 shows the
characteristic when changing SNR in the case where full-correlated 3 waves come. Compared with Fig.5, we verified
that the estimation accuracy deteriorate when incident waves were correlated.

Table 1. Meanings of Abbreviation

Abbr. Meanings
S Spectral MUSIC
Us Unitary Spectral MUSIC
R Root-MUSIC
UR Unitary Root-MUSIC
E ESPRIT
UE Unitary ESPRIT

Table 2. Settings of Parameters in Simulation

Fig.2. Fig.3. Fig.4. Fig.5. Fig.6. Fig.7. Fig.8. Fig.9.
Array Elements 4 4 4 4 6 Change | Change 10
Sub-Array Elements 4 4 Change
Incident waves 1 1 1 3 3 2 2 2
-35.2(1.0) | -35.2(1.0) | 15.2 15.2 15.2
Arrival Angle [deg] | Change | -35.2 -36.2 | 10.2(1.0) | 10.2(1.0) (1.0) (1.0) (1.0)
(Power) (1.0) (1.0) (1.0) | 25.2(1.0) | 25.2(1.0) | Change | Change | Change
Snapshots 300 Change 300 300 300 300 300 300.
SNR [dB] 7 7 Change | Change Change 7 7 7
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Next, for the cases that two incident waves were uncorrelated and full-correlated waves, we investigated the relation
between the number of array elements and the range of angles which could be achieved enough accuracy (the range of
angles which can be estimated with the error less than 1 degree). Fig.7 shows the characteristics in the case where
uncorrelated 2 waves come. As shown in the previous simulation result, we confirmed the difference of the
characteristics between what use MUSIC spectrum for DOA estimation, and what estimate DOA numerically. Note that
the estimation accuracy can be improved in any algorithm by increasing the number of elements.

Especially in the case where full-correlated 2 waves come, we simulated two cases. One is that changing the number of
array elements (the number of sub-array elements are fixed to 4 elements), and the other is that changing the number of
sub-array elements (the number of array elements are fixed to 10 elements). Simulation results are given in Fig.8 and
Fig.9 respectively. Consequently, we observed the followings: When increasing the number of array elements, the
algorithms not employing unitary transform (non-unitary algorithms) cannot improve the DOA estimation accuracy at
all, they just keep the accuracy at the same level, but the algorithms employing unitary transform (unitary algorithms)
can improve the estimation accuracy. On the other hand, when increasing the number of sub-array elements, the
non-unitary algorithms can improve the DOA estimation accuracy, while the unitary algorithms cannot improve the
estimation accuracy. From this fact, we can remark that the estimation accuracy for the non-unitary algorithms and that

for the unitary ones are dependent on the number of sub-array elements and the number of sub-arrays, respectively, in
the case that full-correlated waves come.
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Simulation on The Internal Quantization Error of DOA Algorithms

We derive the bit length required for the accurate DOA estimation for implementation in fixed-point operation.
Simulation condition is as follows: full-correlated 3 waves come because the estimation accuracy when 3 waves come is
lower than that when 1 wave comes, and the estimation accuracy when correlated waves come is lower than that when
uncorrelated waves come. Arrival angles are —5.2 degrees, 15.2 degrees and 35.2 degrees (intervals of 20 degrees).
SNR is 7 dB because we consider actual environment. The number of snapshot is 300 because we consider that 300
snapshots are proper for the estimation accuracy and the amount of calculation.

Fig.10 shows the characteristic when changing a bit length of the decimal part in a fixed-point operation at 6 elements
array and 4 elements sub-array (a bit length of integer part is fixed to 64 bits). We confirmed, as compared to
non-unitary algorithms, unitary algorithms could estimate with the error less than 1 degree with 16 bits. So only about
unitary algorithms, we simulated the characteristics when changing a bit length of the integer part in a fixed-point
operation in the case where a bit length of decimal part was fixed to 16 bits. The result is given in Fig.11. We confirmed
that we needed 12 bits to estimate with the error less than 1 degree.

Fig.12 and Fig.13 show the characteristics when changing a bit length of the decimal part and the integer part
respectively, at 10 elements array and 6 elements sub-array (in Fig. 13, a bit length of decimal part is fixed to 12 bits). In
Fig.13, we confirmed, by increasing the number of array elements, the required bit length of Root MUSIC and Unitary
Root-MUSIC were very large because the calculation amount of Root-MUSIC polynomial depended on the number of
array element: 2(K—1).

As far as the result of our simulation, in the case where full-correlated 3 waves come at 6 elements array and 4 elements
sub-array, at least 28 bits (16bits + 12bits) is necessary for the DOA estimation with sufficient accuracy.
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CONCLUSION

In this work, we investigated the characteristics of various DOA estimation algorithms. Throughout the simulations, we
confirmed and summarized that unitary algorithms were superior to the others, and unitary algorithms were more
effective for finite bit-length operation but as the number of array elements increased, the required bit length of Unitary
Root-MUSIC increased. Consequently, we conclude that Unitary ESPRIT is the best algorithm in 6 algorithms we
examine for digital implementation. In the case where full-correlated 3 waves come at 6 elements array and 4 elements
sub-array, at least 28 bits (16bits + 12bits) is necessary for the DOA estimation with sufficient accuracy.
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ABSTRACT

This paper discusses the eigenproblems of correlation matrices in direction-of-arrival (DOA) estimation algo-
rithms, especially for the case that the number of arriving waves is a few. The eigenvalues and eigenvectors
can be obtained in a very short time (only 1.74% of the time by the conventional method) by regarding the
eigenproblem as solving a fourth-order algebraic polynomial. It is also confirmed that the proposed algebraic
approach does not make the accuracy worse when it is implemented by finite word-length processors like digital
signal processor (DSP) or field programmable gate array (FPGA).

INTRODUCTION

Mobile commmunication systems are intensively developing toward the next generation technology. To distinguish
the target wave with the interference waves, DOA estimation is very significant for digital beam forming (DBF)
array antenna system. Many DOA estimation algorithms have been already proposed [1]-[3], nowadays MUSIC
[1] and ESPRIT [2] are two representative algorithms that can estimate DOAs accurately. The problem of the
DOA estimation algorithms with correlation matrices (like MUSIC and ESPRIT) may be the computational
complexity. One of the time-consuming processes in DOA estimation is computing eigenvalues/eigenvectors of
correlation matrices.

Recalling that the derivation of eigenvalues is equivalent to solve the characteristic polynomial of the correlation
matrix, the algebraic solvent can be applied if the order of the polynomial is four or less. This corresponds
to the situation of DBF array antenna with four or less antenna elements (also valid when using a space
averaging technique for every four or less elements). This paper presents a fast algebraic algorithm to derive
eigenvalues/eigenvectors of correlation matrices, supposed to be used in the real-time DOA estimation for a small
number of arriving waves [4]. The proposed algorithm employs the algebraic solvent of fourth-order characteristic
polynomial to derive eigenvalues of correlation matrices instead of the numerical QR decomposition algorithm.
The algebraic approach tends to make the accuracy worse when it is implemented by a digital device due to
the quantization, however, the proposed approach guarantees that the quantization error does not affect to the
estimated DOA when it is implemented by finite word-length processors like DSP or FPGA.

PRELIMINARIES

Figure 1 illustrates the configuration of an (linear) array antenna system. The computation procedure of MUSIC
method can be roughly summarized as the following three steps, for instance to see how the eigenvalues and
eigenvectors are used in DOA estimation.

[STEP 1] The correlation matrix Rg of the inpﬁt vector X is obtained by
R =E [X(0)X¥(1)] = ASA¥ + 0%,

where X, A and S are so-called the signal, the direction and the signal correlation matrices,
respectively.

STEP 2| Derive the eigenvalues A; and the corresponding eigenvectors y, of the correlation matrix R.
Y;

[STEP 3] Using the direction matrix A and the eigenvectors y,, calculate the MUSIC spectrum P(6).
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Figure 1: Configuration of array antenna system (with four elements)

In MUSIC method, the time-consuming process is usually either STEP 2 or STEP 3, and some fast algorithms
have been already proposed for STEP 3. Representative one would be Root-MUSIC method [3] which is an
algebraic algorithm without the direction search. Similarly, in the next section, we aim at developing an algebraic
approach for STEP 2 to make this process faster. :

PROPOSED APPROACH

In this section, a fast algebraic algorithm is investigated for the DOA estimation by array antenna with four
elements. The eigenvalues A; of the matrix R, can be derived by solving the characteristic polynomial

det(Ryq — M) = 0. 1)

If the size of the matrix Ry, is n X n, the characteristic polynomial becomes n-th order polynomial of A, and it
has n solutions. Here, we adopt the well-known mathematical technique that the polynomials of up to fourth-
order can be solved by an algebraic procedure. For the DOA estimation problems, we can establish an algebraic
approach to derive eigenvalues of correlation matrices in case of four antenna elements, also when using a space
averaging technique for every four elements. Now we investigate the algebraic approach.

Deriving Eigenvalues

In case of four antenna elements, (1) can be reduced into the following fourth-order polynomial equation of A:
M4+ aX¥+% A +d=0. (2)

Since the matrix R, is a non-negative Hermitian matrix with a full rank 4 [5], it has four real eigenvalues

different to each other. By simply solving th equation (2), it’s simple and well-known, the eigenvalues of the
matrix Ry, can be derived as

N o= Vit /hy £2h —Z-
where hy, hy and t are the functions of a,b,c and d.

Deriving Eigenvectors

Define the matrix D by '
D = [dij] = Rgy — MI € CY4,



then the eigenvector y; = [¥i1, Vi2, Yis, ¥ia] T of the matrix D corresponding to the i-th eigenvalue can be obtained
by solving the following matrix equation:

(Rma: - AiI)yi =Dy; =0. (3)

Equation (3) is generally solved by Gauss elimination method, however it is redundant since the matrix D is
singular in this case. Hence, we employ a faster algorithm using an inverse matrix of the sub-matrix of D.
Since D is a singular matrix, the row-vectors d, ds, ds and d4 of the matrix D are linearly dependent. On the
other hand, those four vectors include three linearly independent vectors. Suppose that y;4 = 1 and the vectors
d1,dg, d3 are linearly independent. Based on this relation, the eigenvectors y; can be calculated. (Indeed it’s
faster than Gaussian method, however space does not prove to show the results.)

SIMULATION

The proposed fourth-order polynomial approach is evaluated in comparison with the general QR decomposition.
Table 1 shows the computation times of the two methods, polynomial and QR decomposition. From Table 1,
the polynomial approach requires only 1.74% of the computation time that required in the QR decomposition.
From this fact, the proposed polynomial approach is very effective to shorten the computation time to solve
eigenproblems. Indeed the computation time of this process can almost be ignored. Also note that we tested
thousands of example input vectors, and the result in the Table 1 is the average of those trials.

Table 1: Comparison of the required computation time

QR decomp. Proposed
computation time 1.54msec 24.2psec (CPU: Intel Celeron 433MHz,
(ratio) (1.000) (0.0174) Memory:256 MB)
required memories 560KB 572KB
DISCUSSION

Assuming to implement the proposed algorithm by finite word-length (digital) devices, we confirm that the
quantization noise caused by DSP/FPGA implementation does not make the DOA estimation accuracy worse.

Effect of the Quantization Noise in A/D Converter

First, the effect of the quantization noise in A/D converter is studied. The A/D converter and its quantization
noise are imperative in digital implementation. Here we assume that some signals with power one are coming
to the array antenna. In this case, the distribution of the input voltage becomes as illustrated in Fig. 2(a).
From Fig. 2(a), we see that the input voltage usually vibrates within —2 to 2 volts, and we can adjust the level

~of the A/D converter not to make overflow. Actually, it does not matter if the numbers more than 2 is rounded
to 2. Figure 3(a) shows the effect of quantization noise in A/D converter to the estimated DOAs. As seen in
Fig.3(a), eight quantization bit length in A/D converter is enough for the accurate DOA estimation. Although
the noise level in Fig.3(a) becomes slightly larger, it does not affect to the accuracy of DOA estimation.

Effect of the Quantization Noise in DSP

Next, we study the effect of the quantization noise in DSP. In the proposed algebraic approach, we should
confirm the range of parameters in the middle of digital processing, not to make overflow. Figure 2(b) shows
the example distribution of intermediate parameters. From Fig.2(b), the parameters vibrates within about
10-times of the range of the input voltage. Generally the operations in the fixed-point DSP are performed with
16-bits (single precision) or 32-bits (double precision). Considering the range of parameters, 16-bits operation
would be enough for the accurate DOA estimation. Figure 3(b) shows the effect of the quantization noise in
DSP. The quantization bit length in A/D converter is set to be eight. From Fig.3(b), the fixed-point DSP
operation does not make the accuracy of the DOA estimation worse.
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CONCLUDING REMARKS

This paper focused on the eigenproblems for that the number of the arriving wave was a few, say, the order
of the correlation matrix was four or less. Regarding the eigenproblem as solving the fourth-order algebraic
polynomial, the eigenvalues and eigenvectors could be obtained in a very short time (only 1.74% of that by
the conventional method). Moreover, we confirmed that the proposed algebraic approach does not make the
accuracy worse when it was implemented by finite word-length processors.
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Abstract - Computing the Eigen Value Decomposition
(EVD) of a symmetric matrix is a frequently encountered
problem in adaptive (or smart or software) antenna signal pro-
cessing, for example, super resolution DOA (Direction Of Ar-
rival) estimation algorithms such as MUSIC (MUltiple Slgnal
Classification) and ESPRIT(Estimation of Signal Parameters
via Rotational Invariance Technique). In this paper the hard-
ware architecture of the fast EVD processor of a symmetric
correlation matrix for the application of an adaptive antenna
technology such as DOA estimation is proposed and the basic
idea is also presented.

Keywords - Adaptive Antenna, Smart Antenna, FPGA Im-
plementation, DOA Estimation, MUSIC, EVD

1. INTRODUCTION

An adaptive antenna technology can provide a solution of
multi-path fading. The adaptive antenna can suppress the
adverse effect of multi-path delayed coherent signals and
interferences by steering beams toward intended directions
and nulls toward the other undesired directions so that it
can achieve high communication quality. This operation can
make the receiving signal strength almost flat and stable over
a threshold level. Therefore it is necessary that an adaptive
antenna should find the DOAs of signals and form beams and
steer nulls within a fading period. Considering mobility of
several hundreds of km/h, the fading period becomes very
short time. It is very difficult to compute them by general
serial architecture DSP processors, and hence the high-speed
parallel computing processor with a specified function must
be needed.

In this paper, the implementation issue in MUSIC (MUIti-
ple Slgnal Classification), a super resolution DOA estimation
method, and the examination of hardware design based on FP-
GAs are presented. MUSIC method is one of the subspace-
based methods [1]. Generally the subspace-based methods
are based on the Eigen Value Decomposition (EVD) of the
covariance or correlation matrix. In the EVD based system,
real-time processing is very difficult to be realized because of
its complex logic and heavy computational load. This paper
proposes the hardware logic design of a fast EVD processor
which is suitable for realtime processing and can be imple-
mented for adaptive antenna technologies practically. It uses
Cyclic Jacobi method. Cyclic Jacobi method is well known

0-7803-7589-0/02/$17.00 ©2002 IEEE

for the simplest algorithm and easily implemented but its con-
vergence time is slower than other factorization algorithms
like QR-method [2]. But if considering the fast parallel com-
putation of the EVD with a dedicated circuit like ASIC or
FPGA, the Cyclic Jacobi method can be a good choice, since
it offers a very higher degree of parallelism and easier im-
plementation than QR-method [3]. This paper uses hardware
friendly CORDIC (COordinate Rotation Dlgital Computer)
algorithm for vector rotators and arctangent computers, which
are the basic processors of this design.

This paper is organised as follows. Sect.ll presents the
principle and computation flow of DOA estimation in MU-
SIC Method briefly. Sect.lll introduces Cyclic Jacobi EVD
algorithm and Sect.IV describes the basic ideas of CORDIC
algorithm and the circuit implementation. For simple archi-
tecture and practical realizability, the paper uses fixed-point
or fixed bit-length arithmetic instead of floating-point op-
erations. With fixed-point arithmetic it is desired to over-
come processing speed limitation and power consumption.
In Sect.V the number of Jacobi sweeps is determined, that
is, the computational load is confined constantly, and the
errors caused by the fixed-point operations are discussed.
Sect. VI proposes the hardware architecture and circuit design.
Sect. V11 yields its computational load discussion.

1. DOA ESTIMATION BY MUSIC METHOD

The computation flow of DOA estimation by MUSIC
method is as follows. First, the correlation matrix R (%)
is computed by E[X (¢) - X H ()] where X (%) is the data vec-
tor received at array antenna, E[-] is the expectation operator,
and the superscript H denotes Hermitian transposition. Ac-
tually, the finite average of the correlation matrix is used to
approximate a stochastic process. Then the spatial smooth-
ing process suppresses the correlation between incident sig-
nals, which enables the estimation when the signals are corre-
lated with one another. The correlation matrix is decomposed
into signal and noise sub-space eigenvectors by EVD, and the
DOAs can be found by computing the angular spectrum with
inner product of noise sub-space and array mode vectors [1].

It seems to be not difficult to implement the computation of
correlation matrix, spatial smoothing filter and spectrum syn-
thesis with dedicated circuit using any fast algorithm, thanks

PIMRC 2002



to the simplicity of their logics. But especially EVD com-
putation is not so simple but rather complex. Generally it is
thought that the EVD process has 30 ~ 50% of the whole
computational load of DOA Estimation. In fact, there are
many algorithms for EVD problems but they are just numer-
ical solutions for serial processing on general-purpose com-
puters. Therefore it is necessary to modify and reconstruct
the serial algorithm to be suitable for parallelism of dedicated
circuit in order to meet the performance requirement for the
preatical use of an adaptive antenna in the next generation
communication system.

111. CyCLIC JACOBI METHOD

This section describes the basic principle of Cyclic Jacobi,
one of the EVD computation methods. It can be implemented
with the simple iterative process of plane rotations. Cyclic
Jacobi method computes symmetric eigenvalue problems by
applying a sequence of orthonormal rotations to the left and
right sides of the target N x NN matrix R as

ET.R-E=D, (1)
v E=Jy-Jg-Jaeee,
J=Wi Wiz - Wy_n
where W, is an orthonormal plane rotation over an angle 6
in the (p, ¢) plane whose elements are wy, = cost, wp, =
sinf, wgp = —siné, wyy = cosf (p > ¢), and defined as
Eq.(2). J is the multiple rotation of W p,’s in the cyclic-by-
row manner of (p, ¢) which is called a Jacobi sweep, and the

superscript T and subscript N denote transposition and array
length respectively.

1

cos@ --- siné
W = : 1 : 2)
—sin€ --- cosf

1

Theoretically, by the infinite transform of matrix R, it is cer-
tain that ' and D converge into the matrix whose column
vectors are composed of eigenvectors and the matrix whose
diagonal elements are eigenvalues, respectively. A symmetric
matrix R is transformed to R’ by plane rotation as

R = W, -R-Wpy 3

By the above transform, only p-th and g-th rows and columns
of R’ are changed as Eq.(3). The optimal rotation angle in a
(p, q) plane is determined by Eq.(4). It is the basic strategy
of Cyclic Jacobi method that the iterative process of the plane

rotation converges (p, ¢) and (¢, p) elements of a target matrix
into zero.

oo = Ton =0 @

In above manner matrix R converges into a diagonal eigen-
value matrix. This is called Cyclic Jacobi method.

In Cyclic Jacobi method, the off-diagonal quantity S is
defined by

N
1 2 5
s® = |5 IR =200, ©
i=1

where || - || » denotes the Frobenius norm. Therefore, if S
converges into zero, the target matrix R becomes eigenvalue
diagonal matrix as

lim S® — 0« lim R™ — diag[\y,---,An].  (6)
h~—00 h—o0

On the other hand, the execution of a similarity transform
yields

[se0] = [s®]" - [oy - o oy] . @

From Eq.(7), obviously the maximal reduction of S$(* is ob-
tained if 7*2(,75“) = 0. The condition for an optimal angle,

maximal reduction of S(", is achieved as

1 2r,
Oopt = = tan™? [—pq-—~
2 T

1
= —tan"lT, (8)
v~ Tqq 2

21y,
where 7 = M [21[3].

1V. CORDIC ALGORITHM FOR VECTOR ROTATION AND
COMPUTING ARCTANGENT

The CORDIC algorithm is operated in one of two modes
[4]. One is the rotation mode and the other is the vectoring
mode. In this paper, the rotation mode is used for vector ro-
tations and the vectoring mode for computing the optimal ro-
tation angle by arctangent of 7, as mentioned in Sect.llI. For
the rotation mode, the CORDIC equations are

Tig1 = Ti—yi-di-27"
Yier = Yitwi-di-270 ®
Ziy1 = 2i—d;- tan~! (2—1)

di = —11if z; <0, +1 otherwise

where d; = =1 (direction of rotation) and z is called an-
gle accumulator. It provides the following results after finite
number of iterations as much as the bit-length.

T, = Ap(xgcoszy— ygsinzg)

Yn = An(Yocoszo + zosin zo) (10)
zn, = 0 ’

An = Tl vV1+272%

where A, is a computational gain.
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After the last step, the scaling operation must be performed
elsewhere in the system. From Eq.(10) the scaling factor X,
is obtained by

1 ¢ 1
K,=—= l l —————: S'caling Factor. an
g V1+27%

The CORDIC algorithm performs only shift and add oper-
ations and hence it is easy to implement and suitable for ded-
icated circuit. In the implementation of CORDIC algorithm,
there can be various architectures depending on which is more
serious consideration, circuit resource or performance. There
are a few kinds of architecture for implementing a CORDIC
algorithm, for example, bit-serial or bit-parallel, and unrolled
or rolled(iterative), and so on [5]. This paper uses the bit-
parallel unrolled CORDIC architecture for high performance.
It is a cascade structure of the consecutive CORDIC stages,
where arctangent values are precomputed and stored at any
memory block. The unrolled design consists of only com-
binatorial logic components and the results can be computed
fast with pipelined process.

If the angle accumulator z is initialized with zero (20 =
0), the arctangent, & = tan~!(y/z), is directly computed
using the vectoring mode. The result is taken from the angle
accumulator as Eq.(12) [5].

2n = 20 + tan™ " (yo/x0) (12)

In CORDIC process, a scaling must be required because
the bit length of the processor must be finite. As Eq.(11)
the scaling and normalizing using pre-computed scaling value
couldn’t perform only with shift and add operations. 1t may
be not easy to be implemented with a dedicated circuit.

Twice executing rotation by z;/2 can solve this problem
[3]. Let an elementary rotation by angle z; be composed of
twice executing a rotation by zo/2. Hence Eq.(9) is rewritten
as

Tipr = (1— 2_2?).’13,,; — i dj - g—itl
Yig1 = (1 - 2‘21)1/«,; + ;- Adi Lo (13)
Ziv1 = 2z;—d;-tan~? (2")

di = -1 1f 2z, <0,+1 otherwise
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Fig. 2. Reduction of Off-diagonal Norm(6 x 6 Random
Symetric Matrix)

1t requires 4-shift and 5-add operations per an iteration stage
as shown in Fig.1. The results after a finite number of itera-
tions is as

Tn = AP (3gc08 29 — yosin z)

Yn = Aglm) (Yo cos zg + g sin 2p) (14)
Zn = 0
AG) = {4 =TT +27%)

In Eq.(14), the computational gain A,(f " becomes square root
free. In addition, twice rotation gives the scaling factor of di-
vision operation free as well as square root free as Eq.(15). It
is because for a given precision b of the shift and add opera-
tions, all factors (1 — 27™) with n > b do not contribute to

(%) So the scaling factor can be approximated by simpli-
fied form as Eq.(15) [3].

n 1 14r1—27%
i) 2 _ N
K}Lﬂ) - {Kn} = 7];!) 1+ 9—2i = 3 g 1_o—4i
1 n/4
~ $11 (1 - 2—<4i-2>) (15)
i=1

Eq.(15) can be also computed only with shift and add opera-
tions. Fig.1 shows the k-th stage of the twice rotation. In this
paper twice executing rotation unrolled architecture is used
for efficient circuit implementation.

V. EXAMINATION OF CORDIC-JACOBI EVD
PROCESSOR WITH FIXED POINT OPERATIONS

This section describes the practical implementation of Ja-
cobi EVD processor based on CORDIC with a fixed-point
arithmetic operation. The required number of Jacobi sweeps,
the appropriate precision for the desired accuracy and appli-
cability to MUSIC DOA estimator are examined. The first



thing to determine is how many times of Jacobi sweeps can
achieve the desired convergence.

Fig.2 illustrates the reduction of off-diagonal norm to the
iteration number of Jacobi sweeps with a 6 x 6 random real
symmetric matrix of 12-bit precision. In case of 4-element
linear array antenna, the dimension of the correlation matrix
is 6 x 6 after spatial smoothing with 3 subelements. The
off-diagonal reduction is defined as Eq.(5) in Sect.ll and
the lower value means that it is closer to the diagonal ma-
trix. The 32-bit floating-point operation on general comput-
ers by C language converges to the machine zero within a
given precision after several number of Jacobi sweeps, but
Fig.2 shows that fixed-point operations do not converge but
only keep on vibrating after around 4 Jacobi sweeps regard-
less of the precision from 12 to 36 bits. This is caused by
the limited-precision of the fixed-point operation. At the cost
of computation accuracy, the fixed-point operation achieves
simpler circuit impelementation, high performance and low
power consumption. Without using additional convergence
decision circuit, fixing the number of sweeps by 4 cannot only
be a proper choice, but more computations must be needless
for efficiency in hardware resource. Since the finite number of
operation determined in advance provides the same computa-
tion time in any cases, the realtime processing can be realized.

The next thing to examine is the precision of fixed-point op-
eration. To validate fixed-point operation, the accuracy within
allowable error range must be guaranteed. Eq.(16) yields the
error ratio where v’s are the vectors whose elements consist
of eigenvalues computed in respective subscripted ways and

|l - || denotes vector norm where the error between vectors is
defined as

”vfloat - 'Ufz'a:ed”

Error =
va Loat |

(16)

Fig.3 shows the error ratio of fixed-point operations with
various bit-lengthes on the CORDIC-Jacobi EVD processor
with respect to the 32-bit floating-point operation on general
computers. Fig.3 uses an 6 x 6 random real symmetric matrix
of 12-bit precision as an input matrix. Of course, the longer
is the given precision in the fixed-point arithmetic, the more
accuracy we can achieve. When it is implemented with 16-
bit precision, it has several % of error for the floating-point
operation, but in reality, around 16-bit precision is desired
for practical uses. In this paper, the processor’s computa-
tional load and the bit-length are 4 Jacobi sweeps and 16-
bit fixed-point operation respectively.  Instead of floating
point arithmetic, the computation accuracy may be doubtful,
but as shown in Fig.4 the simulation results are quite satis-
factory. In Fig.4, DOA estimation is performed by spectral
MUSIC method assuming that any 2 electromagnetic waves
arrive at 4-element array antenna. The EVD computations are
performed with 32-bit floating-point operation on a general
computer by C language and 16-bit fixed-point operation on
proposed design, Jacobi EVD computer based on CORDIC.
Except for EVD computation, all the other processes of MU-
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eration with general computer and (b) 16-bit fixed-point op-
eration by CORDIC-Jacobi EVD processor

SIC method such as correlation matrix, spartial smoothing
and MUSIC specturm were computed on general computer

with floating point operation. Fig.4 (a) and (b) show the re-
sults respectively.

VI. HARDWARE DESIGN OF EVD PROCESSOR FOR DOA

ESTIMATION

Jacobi type EVD is very simple, just a sequence of vec-
tor rotations until achieving convergence. From Eq.(8) the
optimal rotation angle is determined and then the processor
performs the similar transform of correlation matrix R and
unitary matrix FE(initial value is identity matrix I) of eigen-
vectors. After 4 Jacobi sweeps the computation complete, the
resulting matrix R converges the diagonal matrix of eigenval-
ues and E becomes the unitary matrix of eigenvectors.

The EVD processor consists of CORDIC matrix rotators
and CORDIC arctangent. With the optimum angle obtained
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by Eq.(8), the rotation W, is determined as Eq.(2). The
transform W, in Eq.(3) changes only p-th and g¢-th rows
and columns of the matrix K. Therefore the transform can

be simplified as
T T cosf) —siné
P = T . P =
( Y ) Yrq < Ty sinf  cosf an
. 7‘p1 .. 7‘pp “ .. 7'pq ... 7'pN

',‘ql . n . ','qp ... ’,‘qq .. 7'qN ?
where 7 and wp, denote the k-th row vector of the matrix
R and the (p, ¢) plane rotation that is a submatrix of W, in
Eq.(2), respectively. Thanks to the symmetry of the matrix
R, the right side transform in Eq.(3) yields the same result,
s0 it is not necessary any more if the second rotations of only
two vectors [1p, 7gp|T and [rpq 14q]T are performed one more
time. In the CORDIC matrix rotator, using dedicated circuit’s
parallelism multiple CORDIC vector rotators are performed
simultaneously. It takes NV (N — 1) /2 matrix rotations per one

sweep to compute R and FE respectively. Fig.5 illustrates the
architecture of the EVD processor core.

VII. COMPUTATIONAL LOAD

Basic arithmetic operation of EVD processor consists of
only shifts and adds. In twice executing rotation CORDIC
stages, the computational load yields

1
(4B + ZB> Shifts and (53 + iB) Adds,  (18)

where B is the bit length and 1/4B is approximately taken
for scaling operation from Fig.1 and Eq.(15). The number
of vector rotations required computing both eigenvalues and
eigenvectors is 4N (N — 1)(N + 2). It is because E per-
forms 4 J’s, J consists of N(N —1)/2 W’s and W requires
(N + 2) vector rotations from Eq.(1), where N is the double
number of the length of array antenna (if the length of antenna
array is IV, N x N correlation matrix of complex numbers is

converted into the extended form of 2N x 2N matrix of only
real numbers [2]). By addition of arctangent, therefore to-
tal computational load of CORDIC-Jacobi EVD processor is
{AN(N = 1)(N +2) + 1} x (¥ B Shifts + 2L B Adds).
Counsidering high-speed mobility under the higher fre-
quency area of the next generation communication, it is very
difficult to realize the required performance for fading free
system with general purposed processor. If DOA estimation
of incident waves and beamforming toward their directions
are complete within that period, fading free system can be
realized. This proposed EVD processor is a combinatorial
logic circuit, and hence the improvement of the performance
by pipeline scheduled processing can be expected. At present,
it is said that the advance of circuit technology can offer high
speed operation of general combinatorial logic circuit. The
EVD is the most dominant process in the whole processing
load from DOA finding to beamforming. This fast parallel
computation processor can provide efficient use.

VIII. CONCLUSION

- In this paper the circuit design of fast EVD computation
processor for MUSIC DOA estimator was proposed. It uses
CORDIC based Jacobi method and it is suitable for hardware
implementation for realtime processing. Taking the practi-
cal uses in wireless communication into consideration, it is
desired that arithmetic processor should perform fixed-point
operation with appropriate precision below 16-bit. Adopting
fixed-point arithmetic causes some error but makes the im-
plementation easy and hence the high performance and low
power consumption can be achieved. In addition, the func-
tionality for the application of spectral MUSIC method was
validated.
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ABSTRACT

In this paper, we try to implement RLS (Recursive Least Square)
algorithm on FPGA with fixed-point operation to be used in 4-
elements MMSE (Minimum Mean Square Error) adaptive array
antenna. RLS algorithm is known to the fast convergence property
and broadly used in the optimization process of MMSE adaptive
array. An inherent problem of RLS algorithm is the large computa-
tional cost. Hence it was difficult to implement on fixed-point DSP
(Digital Signal Processor) or FPGA (Field Programmable Gate Ar-
ray). However, the computation must be simplified for the case
with small number of array elements. Through some simulations
with 4-elements array antenna, we confirm that RLS algorithm can
be accurately implemented on fixed-point digital processors.

1. INTRODUCTION

MMSE adaptive array antenna optimizes the array weight param-
eters in order to discriminate a desired wave from interferences by
digital beamforming, and is now broadly used in mobile communi-
cation. In MMSE adaptive array, RLS algorithm is often used for
optimization procedure due to its fast convergence property [11,[2].
But its computational cost is still large for digital implementation
[3]. Since RLS algorithm contains many vector and matrix oper-
ations in optimization procedure, FPGA would be suitable to im-
plement RLS algorithm.

‘We have already implemented some adaptive algorithms on
FPGA [4]-[6]. In this paper, we aim at implementing RLS algo-
rithm used in MMSE adaptive array on FPGA, and study the case
of 4-elements array antenna . Throughout some simulations, we
confirm that RLS algorithm for 4-elements adaptive array can be
accurately implemented on fixed-point digital processors.

2. SYSTEM CONFIGURATION

Consider 4-elements MMSE adaptive array as shown in Fig. 1.
Incident waves are received at array elements, then downconverted
to baseband signals, digitized by A/D converters, and finally sent
to FPGA. RLS algorithm implemented on FPGA determines the
optimum weight. The baseband signals are synchronized with the
reference signal which is known beforehand and memorized [7].

3. FIXED-POINT OPERATION OF RLS ALGORITHM

In this section, we see that RLS algorithm for 4-elements adaptive
array can be implemented on fixed-point digital processors. Speci-
fications of fixed-point simulation is shown in Table 1. We assume

LE‘ecexvm‘ —

| recever ,___{ s
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Figure 1: Circuit diagram

Table 1: Speciﬁcatiohs of simulation

Array form A/2 uniform linear array
Number of elements 4
Incident waves 2 correlated waves
30[deg] (desired)
DOAs —10[deg] (interference)
SNR 5[dB]
forgetting factor q=0.8

the situation that 2 correlated incident waves arrive at 4-elements
array antenna.

3.1. Case of sinusoidal incident waves

Here we study the case of sinusoidal incident waves. RLS algo-
rithm is generally implemented by the double precision floating-
point operation [1]. Figure 2 depicts the convergence property of
mainbeam (the beam for the direction of desired wave) and null-
beam (for that of interference wave) calculated by RLS algorithm
with the double precision floating-point operation. We confirm
that both of the main- and null-beams converge very quickly.

In order to use fixed-point operation on FPGA, all the input
signals are normalized to integer values. In case RLS algorithm is
executed with fixed-point operation, the convergence property of
main- and null-beams deeply relates on the bit length.

Figure 3 illustrates the convergence property of the mainbeam
for the cases with 4, 8, 12 and 16bits fixed-point representation
including one sign bit. Similarly, Figure 4 shows the convergence
property of the nullbeam for the same cases. From Figs.3 and 4, we
see that the case of 4 or 8 bit cannot achieve enough accuracy and
make the convergence property worse. In cases of 12 and 16 bits,
The convergence property is fast enough and close to the floating-
point case in Fig.2. From the above discussion, we hereafter use
12-bit A/D converters to input 12-bit integer signals to FPGA.
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Table 2: Minimum bit length for multipliers and dividers

[ original bit length | reduced (1) | reduced (2) |

18 x 12 18 x 12 16 x 12
16 x 12 16 x 12 16 x 12
12 x 31 12 x 24 12 x 16
50 X 50 38 x 38 16 x 16
50 x 31 38 x 24 16 x 16
18 X 31 18 x 25 16 x 16
18 x 34 18 X 29 16 x 16
102/101 86/77 38/25

1. For multipliers and dividers, the higher bits (superior dig-

the number of iteration

Figure 3: Behaivor of desired wave, fixed-point operation

3.2. Case of modulated incident waves

Next, we test the case of modulated incident waves because 7/4-
shift QPSK modulated waves are often used in real communica-
tion system. Preserving the condition in Table 1 but with n/4-
shift QPSK modulated incident waves, we again evaluate RLS al-
gorithm with fixed-point operation. The convergence property is
drawn in Fig.5. Figure 5 shows that the interference wave can be
well suppressed similarly to the case of sinusoidal incident waves.

3.3. Required bit length for multipliers and dividers

If we implement long-bit multiplication or division on FPGA, they
require huge number of gates. Therefore, the bit-length of signals
must be as short as possible.

The left column of Table 2 represents the originally required
bit length for multipliers and dividers. The input signal from A/D
converter is with 12-bit only, but some signals become huge and
require very long bit in the middle of RLS algorithm. The follow-
ing operations are adopted in order to reduce the required gates in
multipliers and dividers.

its) become always redundant, in other words, never used.
After removing those redundant bits, the required bits for
multipliers and dividers are reduced to the center column of
Table 2. '

2. When we do the multiplication of 32 x 32bits, for example,
the lower bits (inferior digits) don’t affect to the higher bits
of the multiplication result. Therefore, we can remove the
lower bits in advance and execute 16 X 16bits multiplication
instead. After that the removed bit length is added to the
result of multiplication. With these simplification process,
the required bits can be further reduced to the right column
of Table 2.

Figure 6 shows the convergence property of main- and null- beams
in the case the above procedure is adopted in multiplications and
divisions. We see from Fig.6 that the above reduced-bit operation

- does not affect to the convergence property.

4. CONCLUSION

‘We discussed the problems of the fixed-point digital signal pro-
cessing of RLS algorithm. We confirmed that RLS algorithm for 4-
elements adaptive array could be accurately implemented on FPGA
with fixed-point operation. Moreover, we consider implementing
RLS and synchronous scheme on FPGA of 600,000 gates devel-
oped in [6] (as seen in Fig.7).
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Abstract—This paper proposes the practical implementation of
DOA estimation system using FPGA (Field Programmable Gate
Array) that is a key technique in the realization of the DOA-based
adaptive array antenna for cellular wireless basestation. It incor-
porates spectral unitary MUSIC (MUltiple SIgnal Classification)
algorithm, which is one of the representative super resolution
DOA estimation techniques [1]. This paper describes the way
of DSP design and real hardware implementation of the unitary
MUSIC algorithm. This system achieves the high performance in
the eigenvalue decomposition (EVD) and MUSIC angular spectra
computation with Cyclic Jacobi processor based on CORDIC
(COordinate Rotation DIgital Computer) [2] and spatial DFT
(Discrete Fourier Transform), respectively. All DSP functions are
computed by only fixed-point operation with finite bit-length
to meet the requirements of fast processing and low power
consumption due to the simplified and optimized architecture.

[. INTRODUCTION

Exploiting adaptive array antenna technologies, the wireless
system capacity will be dramatically increased and the harmful
effects by multipath fading can be combated as well. From
the theoretical point of view, many useful algorithms of the
adaptive array antenna techniques need DOAs (Directions Of
Arrival) of desired and interferer signals in advance. Of course,
the practical researches often have used Wiener-solution based
algorithms like LMS and RLS employing a temporal reference
signal instead of the DOA informations, while the DOA-based

systems exploit the exact DOAs in a beamformer to separate.

the desired signal from interferers spatially. However the
DOA-based systems have many advantages over the conven-
tional temporal reference based solutions. For exaple, they are
more applicable to the downlink solution thanks to the exact
directional information. And the performance of DOA-based
beamforming is superior to that of other types of algorithms
for small angular spread, while it has time-consuming task
of DOA estimation [3]. In order to implement such a DOA-
based system, the most time-consuming DOA estimation step
shoud be processed as fast as possible. But such processing
has been very difficult to realize in the practical systems from
the lack of cost effective digital processing devices to solve
the hard computational burden. We believe that general Von
Neumann architecture processors can never usually meet the
requirements of the fast and compact architecture and low
power consumption at the same time.

Thus, in this paper, the FPGA based DSP (Digital Signal
Processing) design and hardware implementation of the fast

DOA estimator will be presented. It can be applied to cel-
lular wireless basestation for DOA-based beamforming and
a realtime DOA monitoring system usefully, if it is tuned
up appropriately correspoding to the appied environment. It
incorporates unitary MUSIC (MUltiple SIgnal Classification)
algorithm, which is one of the representative super.resolution
DOA estimation techniques. MUSIC based algorithm has
many advantages in the real hardware implementation due
to its simplicity compared with other well-known subspace
based techniques like ESPRIT. However, there still remains the
computational complication of the complex number arithmetic,
which is a great distress to the fast and compact architecture.
With a unitary transform, the eigendecomposition of the cor-
relation (or covariance) matrix in the MUSIC algorithm can
be solved with real number only [1] [6]. The unitary MUSIC
processor (UMP) performs all DSP functions with only fixed-
point operation with finite bit-length in order to meet the
requirement of fast processing and low power consumption by
simplified and optimized architecture. This system performs
the fast computation of EVD and MUSIC angular spectra
with Cyclic Jacobi processor based on CORDIC (COordinate
Rotation DIgital Computer) [2] and spatial DFT (Discrete
Fourier Transform), respectively.

II. UNITARY MUSIC DOA ESTIMATOR

MUSIC algorithm is a kind of DOA (Direction Of Ar-
rival) estimation technique based on eigenvalue decomposi-
tion, which is also called subspace-based method [S]. It is
well known for the implementation simplicity as well as the
capability of estimating DOA in much higher resolution than
any other conventional algorithms.

We assume the basic model of a narrowband signal s(n).
The signals received at K antenna array spaced by half
wavelength can be written by linear combination of L incident
signals from far-field and white Gaussian noise as

X(n)=A-8(n)+ N(n), ¢h)

where S(n) is a signal matrix and X (n) is a K x 1 vector
of array output at any sampling time n, which is called a
snapshot. The columns of A = [a(6:),a(02), -+ ,a(dL)] are
the steering vectors. The correlation matrix of X (n) is given
by '

R, = E[X(n) X" (n)] = AR, A" + 4%, ()
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but, in reality, the correlation matrix is approximated by
uniform averaging by some number of snapshots as

1 snapshots
Roz(n) ™ e Y. XmX"(m), 3)
’ ) : n=1

where E|[-] and superscript H denote expectation and hermitian
operator, respectively. And Rgs = E[S(n)S§*(n)] is signal
covariance matrix and o2 is noise variance.

Since Ry is a positive definite hermitian matrix, the corre-
lation matrix of X (n) can be decomposed to signal and noise
subspaces. The noise subspace eigenvectors of corresponding
eigenvalue of o2 lies in the nullspace of A, that is to say,
they are orthogonal to the signal subspace, and eventually
orthogonal to the steering vectors of incident signals. Using
thig principle, the MUSIC spectrum is computed using noise
subspace eigenvectors as

a®(0)a(0)
(0)EnENa(9)’

where E y is the matrix whose column vectors are noise sub-
space eigenvectors. In the result spectrum of Eq.(4), the peaks
appear at the corresponding angles to the DOAs of incident
signals, since they are reciprocal of the nulls. Exploiting null
steering toward DOAs makes the super-resolution estimation
available.

Generally the correlation matrix in Egs.(2)-(3) is complex-
valued. It is certain that the EVD with complex-valued corre-
lation matrix should be high computational burden. Reducing
the computational complexity via unitary transform allows
real-valued eigenvalue decomposition of the transformed real
number correlation matrix [1]. Since the EVD process has
a large portion of the whole computational load of MUSIC
based algorithms, the real-valued eigenvalue decomposition
can provide the fast and compact computation. If the steering
vectors are arranged conjugate centro-symmetric as

“

Pyy =
ol

. —1 . i —1) . T
a(f)) = [eywﬁ(z—llsm&l o ’e—-gﬂ‘(xz L sin 9,]

; (5)
the correlation matrix R, becomes centro-Hermitian. The
real-valued correlation matrix R, can be obtained via any
unitary transform @ as

Ras = Re{Q" R1xQ}, ©®)
The unitary transform @ can be chosen as
Q = 1 /I g1
Ve \ Il —jII )’
1 I 0 JI
Q = = 0 v2 —jo %)
V2 Il 0 —4II

according to the even and odd number of arrays respectively,
where the vector 0 = [0,0,---,0]7, and I and IT are the
identity matrix and column flipped identity matrix in the left-
right direction, respectively. In Eq.(6), the selection of the real
part only provides FB (Forward-Backward) averaging [1].

III. DSP DESIGN CONCEPTS FOR DOMINANT
PROCEDURES

The unitary MUSIC computational flow is involved in 4
steps largely; Estimation of correlation matrix including uni-
tary transform and spatial smoothing if needed, EVD (Eigen
Value Decomposition) of the correlation matrix, Computation
of MUSIC spectrum and l-dimensional peak search (local
maximum detection). In this section, the DSP concepts for
the dominant procedures in the unitary MUSIC algorithm will
be described.

A. Eigenvalue Decomposition via CORDIC based Jacobi Pro-
cessor

In our former work, the circuit design of EVD computation
processor for MUSIC DOA estimator was studied [2]. It used
CORDIC based Jacobi method, and it was suitable for hard-
ware implementation for fast parallel processing. Cyclic Jacobi
processor computes real symmetric eigenvalue problems by
applying a sequence of orthonormal rotations to the left and
right sides of the target matrix (unitary tranformed K x K real
symmetric correlation matrix R,,) as

ET.R,, -E=D, 8)

o E=J1'J2'J3"'$
J=Wip Wi - Wg_ 1k

where W, is an orthonormal plane rotation over an angle  in ‘
the (p, ¢) plane whose elements are wp, = cosf, wp, = sin,
Wgp = —sind, wgg = cosd (p > q). J is the multiple
rotation of W,,’s in the cyclic-by-row manner of (p, ¢) which
is called a Jacobi sweep, and the superscript 7" and subscript K
denote transposition and array length, respectively. This pro-
cessor employed the hardware friendly CORDIC (COordinate
Rotation DIgital Computer) algorithm for vector rotators and
arctangent computers to solve Eq.(8), which were the basic
processing unit. Because the fixed-point operation is applied,
of course there exist the approximation errors. But when it
was implemented with above 16-bit precision, we could get the
reasonable performance. In this EVD processor, the number of
iterations and the computation bit-length are 4 Jacobi sweeps
and 16-bit long, respectively.

B. MUSIC Spectrum Computation via Spatial DFT

In specral MUSIC algorithm, in order to find out DOA
angles of the incident signals, the angular spectrum should
be computed after the EVD step. Of course, there exist
another alternative solutions for direction finding problem in
MUSIC based algorithms. It is the technique based on root
finding of the MUSIC polynomial, which called root-MUSIC
[6]. However complex number coefficient polynomial is very
complicated and not suitable to solve with the dedicated circuit
computer with the fixed-point operation like FPGAs.

For fast DSP implementation on FPGAs, a simple iterative
algorithm should be the best solution. To compute the angular
MUSIC spectrum, spatial DFT (Discrete Fourier Transform)
technique is very attractive due to the well-known performance
guarantee as well as the simplicity. This section will describe
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how to apply DFT to the computation of the MUSIC angular
spectrum.

The simple continuous spatial signal model of ULA (Uni-
form Linear Array) is given typically by

T4 = U(t) . eXp(“'JQTr : fspa -d), )]

where U (#) includes all time varying components and complex
amplitude, and d and f,,, are the distance from the first
reference antenna element and spatial frequency of sinf/\,
respectively. By applying spatial P-point DFT, the discrete
spatial frequency distribution function can be obtained by
1 &= 2
Xd[k] = F Z q;d[m] . e“]Ta"'ch3

m=0

(10)

where k and m. is the indices of the discrete spatial frequency
and discrete distance, respectively. When the antenna spacing
Dgpacing = A/2, eventually the discrete wavefront 6 can be
computed from the relation of Eqgs.(11)-(12).

sin @ _ k

P- Dspacing

fspa,discrete = )
k
6 =sin"t | ——
Sin (P/2)

From above, in the MUSIC algorithm, it is certain that
the spatial DFT of the noise subspace eigenvectors as Eq.
(10) provide the distribution of the spatial frequency. But if
DFTed with only a few spatial samples of antenna array, the
resolution of the spatial spectrum becomes very coarse. Thus
any estimation will not be available from the coarse spectrum.
In that regards, the interpolation of the spectrum should be
taken into consideration. According to digital signal processing
theory, the DFT spectrum can be generated fine and smoothly
by adding a few number of zeroes to the spatial data of the
noise eigenvector elements. The spectrum generated by the
spatial DFT is completely equivalent to that by steering main-
beam toward whole directions as Eq. (4) mentioned in Sect.IT.

Instead of finding peaks in the MUSIC spectrum written in
Eq. (4), local minima (LM) detection of the DFT spectrum as
Eq. (10), which is equivalent to the denominator of Eq. (4),
can be applied for implementation simplicity. Rearranging the
spectrum of Eq. (10) the concrete discrete wavefronts (DOAs)
are obtained from Eq. (12) by

1 (l=P/2
=L. 1
0 = sin ( P2 ),

As shown in Eq. (13), the discrete wavefronts from spatial
DFT spectrum are not uniformly spaced. That, however, may
be of no concern in the practical sectorized basestation config-
uration. From Eq. (13), @ is an inverse sinusoidal function of [.
In the region between —30 to 30 degrees, the function of Eq.
(13) can be approximated by linear function whose gradient
is given by derivative of Eq. (14) at I = P/2 (0 degree) as
do
di

€3y

(12)

(13)

1
= ——rad = 0.4476 deg.

573 (14)

I=P/2
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Fig. 1. Hardware Level Simulation Result of MUSIC Spectrum and the

reciprocal (4 antennas, coherent 2 waves at ~15 and 20 degrees, same powers,
SNR=10dB)

In this linear region, the angular spacing can be regarded
as almost uniform and the estimation resolution is inversely
proportional to DFT length P. When P is 256, the estimation
resolution is about 0.4476 degree.

IV. PRACTICAL DSP DESIGN AND HARDWARE LEVEL
SIMULATION

In this time, DOA estimation under stationary case without
any fading was assumed for the simple implementation, and
the system was designed to classify highly correlated (coher-
ent) signals via spatial smoothing technique for easy experi-
ment with single wave source only. In unitary MUSIC, with
the forward only spatial smoothing of the correlation matrix,
backward spatial smoothing can be achieved simultaneously
as mentioned in Sect.Il. The first step of the unitary MUSIC
procedures is to transform the input data vector X to Y with
a unitary transform Q as written by

Y:=0Q%x,, (15)

where X; and Y'; are the sub-vectors and the corresponding
transformed sub-vectors divided by M for spatial smoothing,
respectively. From above unitary transform, the correlation
matrix Ry, can be obtained by

Ryy(n) = ﬁRyy(n"'l)
M
+ (1= RelYilm)Y ()}, 6)
F=1

where f3 is an appropriate real smoothing factor and M is the
number of sub-matrices, It was implemented by first-order IIR
(Infinite Impulse Response) exponential averaging filter.
Next step, the correlation matrix is eigen-decomposed by the
EVD processor. As described in Sect.Il-A, CORDIC based
Jacobi EVD processor was incorporated in this system. It had
only simple iterative process of vector rotation after obtaining
optimal rotation angle. After the EVD step, the reciprocal
MUSIC spectrum written in Eq.(4) of Sect.Il is computed via
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spatial DFT of the noise eigenvectors returned to complex
values by the unitary inverse transform as

K

PMU,reciprocal = E IDFT{Q : E'L}!2 P
i=L+1

amn

where E; is the i-th eigenvector belonging to the noise
subspace, K and L are the number of antenna elements and
the number of waves, respectively.

Figure | shows a hardware level simulation result. Hardware
level simulations were performed by the direct measuments
with only DSP part of a real hardware to evaluate the validity
of the system efficiently avoiding working the whole system
components. We used the input data made by an offline PC in
advance and obtained the results with real hardware operation.
With these hardware level simulations, we could verify the
function of the digital signal processor. In this simulation, it
was assumed that 2 coherent (or fully correlated) waves were
impinging at 4 ULA antennas from the DOAs of -15 and 20
degrees, respectively. And two waves were same powers and
the input SNR was 10 dB. For the spectrum computation, the
FFT (Fast Fourier Transform) of 256 points including 3-spatial
data of the noise eigenvector’s elements (1 dimension was used
for spatial smoothing) and 253 zeroes, was applied.

In final step, we found out the DOAs by the detection of
the LM (Local Minimum) points in the reciprocal MUSIC
spectrum as shown in Fig.1. It could be easily implemented
with whole memory scanning circuit. In this case, as shown in
Fig.1, the index numbers of the DFT spectrum corresponding
to the LM points below any appropriate threshold level are
95 and 170. With these index values, the concrete discrete
wavefronts could be obtained as -14.94 and 19.16 degrees
respectively from the relation of the spatial DFT index (or

discrete frequency number) and discrete wavefront (DOA
angle) as Eq. (13)

V. FPGA IMPLEMENTATION AND PERFORMANCE

Not only the theoretical design, we also tried to implement it
on 2 FPGAs (EP20K600, Altera) which had about 1.2 million
equivalent gates and 80 Kbytes internal memory block totally.
The whole block diagram of the DSP procedures described in
previous sections is shown in Fig.2. It is involved in 4 major
procedure sections including Correlation Matrix Section, EVD
Section, FFT Section and LM Detection Section. The bit
precision of every section is also shown in this figure. For the
present, it was assumed that the exact number of waves were
predetermined and known already from any other process.

In our evaluation testbed as shown in Figs.3 and 4, the
RF (Radio Frequency) signals are down-converted to IF (In-
termediate Frequency) signals centered at 10 MHz in analog
DC (Downconversion) receiver, and then digitized by ADCs
(Analog to Digital Converters) at the rates of 40 MSPS. The
4 times oversampled IF signals are digitally down-converted
once again to complex baseband and then downsampled by L-
times, where L is an appropriate integer number. The FPGAs
perform the digital signal processing of the unitary MUSIC
algorithm.

Table I illustrates the roughly estimated performance of
the dominant core functions, where LEs (Logic Elements)
means the number of occupied logic blocks in FPGAs and
Sfmae 18 the maximum clock frequency at which normal
operation can be guaranteed. And the minimum computation
time #,,4, i$ calculated by required clks X fyyq2. In this time,
we assumed that less than 2 coherent/incoherent waves arrive
at only 4-element uniform linear array antenna. For spectrum
generation, 256-point radix-4 complex FFT was employed [7],
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and the FFT with 256 spatial data composed of N elements
of the noise eigenvector and (256 — V) zeroes interpolates the
spectrum fine and smoothly. All computations were performed
by fixed-point arithmetic with 12-bit input data from ADCs.

On the other hand, the estimation accuracy of this system
depends on so many factors that the proper assessment has
some difficulties in detail analysis. For example, the effect
of finite bit-length and bit-truncation by scaling in the fixed-
point operation, the estimation errors caused by non-uniform
discrete wavefront, and so forth. Thus, in order to assess
them totally, we would better evaluate the overall accuracy.
As [4], the standard deviation of the estimated DOA when
the single wave impinging at 0 degree from broadside was
one of good overall performance assessment methods of the
estimation accuracy. Fig.5 shows the hardware level simulation
results, where the squared, diamonded and triangled line at
0, 30 and 60 degrees respectively were processed by UMP,
and the circled line was obtained by an offline PC with 64-
bit floating-point operation. This measurement included 1000
trials(bursts) data of 32 snapshots. The source wave was a CW
signal. In this result, it is clear that the estimation accuracy is
below 2 degree if the input SNR is greater than 5 dB in the
linear region between -30 and +30 degrees. And it can be also
seen that the UMP has a good performance for the offline PC
in spite of the compact fixed-point operation.

VI. CONCLUSION

In this paper, the FPGA design of the fast DOA estimator
using the unitary MUSIC algorithm was proposed and its real
hardware implementation was also introduced. The unique
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Fig. 5. Standard Deviation of Estimated DOA when single wave impinging
at 0, 30 and 60 degrees each from broadside

TABLE 1
CORE PERFORMANCES OF DOMINANT PROCEDURES

Required | LEs(Logic | fraz(MHz) | tmin(us)
CLKs Elements)
R 32 8301 574 178
EVD 1836 4045 110 16.69
FFT 1102 2303 114 9.67

features of this system are the fast and compact computation
of the EVD and MUSIC angular spectrum generation with
Cyclic Jacobi processor based on CORDIC and spatial DFT,
respectively. All DSP functions are computed by only fixed-
point operation with finite bit-length in order to meet the re-
quirement of fast processing and low power consumption due
to the simplified and optimized architecture. we are expecting
that this system design provides a useful application of a high
speed DOA estimator for the wireless communication.

REFERENCES

[1] M. Pesavento, A. B. Gershman, and M. Haardt, "On Unitary Root-
MUSIC with a real-valued eigendecomposition: A theoretical and ex-
perimental performance study,” IEEE Trans. Signal Processing, vol. 48,
pp- 1306-1314, May 2000.

[2] M. Kim, K. Ichige, H. Arai, "Design of JACOBI EVD Processor
Based on CORDIC for DOA Estimation with MUSIC Algorithm”,
The 13th IEEE Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC2002), Lisbon, Portugal, Sept. 2002

[3] S. Anderson, et al., "An Adaptive Array for Mobile Communication
Systems,” IEEE Trans. on Vehicular Tech., Vol. 40, No. 1, Feb 1991

[4] A. Kuchar, M. Tangemann and E. Bonek, A Real-Time DOA-Based
Smart Antenna Processor,” IEEE Trans. Vehicular Technology, vol. 51,
No. 6, pp. 1279-1293, Nov 2002.

[5] R.O. Schmidt, "Multiple emitter location and signal parameter estima-
tion,” JEEE Trans. on Antenna and Propag., vol. 34, no. 3, pp. 276-280,
March 1986.

[6] M. D. Zoltowski, G. M. Kautz, and S. D. Silverstein, "Beamspace root-
MUSIC,” IEEE Trans. Signal Processing, vol. 41, pp. 344-364, Jan 1993.

[7] "FFT MegaCore Function User’s Guide”, Altera Corp.,
http://www.altera.conv/literature/ug/fftug.pdf.

0-7803-7955-1/03/$17.00 (C) 2003 IEEE



DOA-based Adaptive Array Antenna Testbed System

Minseok Kim!~  Koichi Ichige?  Hiroyuki Arai*
Division of Electrical & Computer Engineering, Yokohama National University
Tel: +81-45-339-4270, Fax: +81-45-338-1157
E-mail: " mskim@arailab.dnj.ynu.ac jp, * {koichi, arai} @ynu.ac.jp

In recent and future wireless cellular communications, Co-Channel Interference (CCI) is
very critical problem. At basestation, adaptive array antenna technology exploiting spatial
domain filtering with antenna array and digital signal processing can combat the CCI,
thus the system capacity can be increased. Most algorithms for adaptive array antenna
system have been studied. Most algorithms usually need directions of arrival (DOAs) of
desired and interferer signals in advance. The DOA-based adaptive array antenna systems
make use of the estimated DOAs in a beamformer in order to separate the desired signal
from interferers spatially. But, of course, there are other types of algorithms that exploit
temporal reference and not need the DOA information. The performance of DOA-based
beamforming is superior to that of other types of algorithms for small angular spread,
while it has time-consuming tasks due to its large amount of computational burden [1].

In this paper, the real hardware basestation testbed system of DOA-based adaptive array
antenna is presented. This system includes transmitting part for downlink as well as
receiving one for uplink. The efficient beamforming based on the estimated incident
signals’ DOAs separates only the signal of interest from CCls. To estimate DOAs, we
chose unitary MUSIC (MUTltiple SIgnal Classification) algorithm because it can achieve
super-resolution estimation and be implemented relatively simple with fast dedicated
processor such as FPGA (Field Programmable Gate Array). The schematic diagram of the
system architecture and photograph of digital signal processor are illustrated in Figs. 1
and 2, respectively. The geometry of antennas is a uniform linear array consisting of 8
and 4 antennas equally spaced by half wavelength for receiving and transmitting,
respectively. In this testbed system, the carrier frequency is 8.45GHz. In the receiving
part, the filtered and amplified RF signals are downconverted to low-IF of 10MHz. The
resolution and conversion rate of ADCs (Analog to Digital Converters) and DACs
(Digital to Analog Converters) are 12 and 14 bits, respectively, and both 40MHz. In the
receiving part, the low-IF signals captured by 4-times oversampling scheme are
downconverted again to baseband and detected by digital downconverter (DDC) on
FPGAs. Reciprocally, in the transmitting part the digital baseband signals are modulated
and upconverted by digital upconverter (DUC) on FPGAs, and converted analog low-IF
signals by DACs. After a few stages of upconversion to RF, the transmitting signals are
emitted from array antenna. In this system, QPSK and n/4-QPSK modulation is applied
[2]13].

In receiving part, uplink processing is performed with downconverted and calibrated
complex digital low-IF or decimated baseband signal. Some memories store finite length
of symbols, e.g. some timeslots of a frame data. Thus burst-by-burst real-time processing
is available. In burst-wise communication system, if assuming that the channels are
stationary within burst duration, the burst-by-burst processing will be sufficient to the
beamforming. However, considering severe multi-path propagation environment and the
channels become non-stationary, it is desired that adaptive array antenna systems should
complete beamforming including the DOA estimation within a very short time to track
fading. In this system, the dedicated signal processor with FPGAs can be applied in order

0-7803-8197-1/03/$17.00 (c)2003 IEEE



to perform faster time-consuming task such as DOA estimation procedure. General
purposed processor (RISC CPU SH4, Hitachi) is also available for any tasks demanding
high precision floating point calculation. In order to achieve high-speed computation, this
system estimates DOAs with unitary MUSIC processor (UMP) that is performed with
only fixed-point operation with finite bit-length on FPGAs [4]. We are expecting that
various adaptive antenna technologies can be applied and evaluated usefully on this
system.
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