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A Contribution to the Slender Body Theory in Ship Hydrodynamics
by Hajime Maruo (Lecture)
Yokohama National Universiy

‘156 Tokiwadai Hodogaya-ku Yokohama Japan

Abstract:

The application of the slender body theory to ship hydrodynamics
was proposed more than twenty years ago. In spite of the rem-
arkable success of the slender body theory in aerodynamics, it
‘has been revealed that the for&ulation in ship hydrodynamics
proposed so far yields only disappointing results by numerieal
computation. Though some improvement has been observed in
the problem of oscillating ships in waves, progress in the
problem of steady forward motion is rather poor.

In this paper, a new formulation of the slender body theory

for a ship with constant forward speed is developed. ‘It is
based on a suitable asymptotic expansion of the Kelvin source
along its track. It derives a boundary value problem which has
az quite different form from that of the formulation proposed
before. Sample computations of the ship wave pattern and
wave resistance show good agreement with‘measured results.

It is concluded that the present theory is feasible as a
prediction method of ship waves and wave resistance of arbitrary

hull forms.
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A Hethod of Computation for Steady Ship-Waves with Non-linear Free Surface Conditions

Hajime Maruo
Yokohama Natinal University, Yokohama

Seikoo Ogiwara
Ishikawajima-Harima Heavy Industries, Yokohama

1. Introduction

The theory of ship waves is a suhstantially non-
linear problem. The method which has been com monly
used in order to salve this problem is the perturbation
analysis with the assumption of small beam/length
ratio of the ship. The Michell thin ship theory is the
first approximation of the perturbation and a great
number of examples of wave resistance computation
has been puhlished so far. Tsutsumi et al.{1) compared
the wave resistance determined by the wave pattern
analysis of mathematically defined ship model of
variable breadth with corresponding computations by
Michell's formula, and concluded that Michell's
formula could predict the wave resistance within the
torelahle accuracy in case of beam/length ratio not
greater than one fifteenth,

Since practical hull forms exceed this limitatdon,
Michell's formula is not useful for the - purpose of
predicuon  of wave  resistance, The higher
approximation of the thin ship perturbation has been
attempted by several researchers(2)(3)(4), but the
results are not so promising, because of the highly
singular behavior of the Kelvin source which prevents
the feasibility of the higher approximation. )

Another possibility of the perturbation analysis is
the low Froude number approach, This method
assumes the series expansion of the salution with
respect to the Froude number. The starting point is
the flow at zero Froude number which is identical with
the flow around a double model in an unbounded fluid.
The free surface condition for the disturbance
potential is then linearized and the solution is
simplified to a great extent. This idea was Frstly
suggested by Ogilvie{5) for the motion in two-
dimensions, and applications to the three-dimensional
case have been discussed by Baba et al.(§) and Maruo
et alf7). Dawson(8) proposed a purely numerical
method to salve the boundary value problem with the
free surface conditdon similar to the above
approximation by the aid of the distribution of
Rankine sources over the still water plane together
with the hull surface. A cdmputer program for this
method applicahle to arbitrary hull forms was
developod by Ogiwara(9) who calculated the wave
profile, pressure distribution on the hull surface and
the wave resistance and examined the feasibility of
this method in the practical Field.

Apart from the technique of linearized free
surface conditions, the possibility of the direct
salution of the boundary value problem in its original
non-linear form depends only on numerical methods.
A typical method of this kind is the finite difference
technique, by which the solution is obtained by the
step by step integration of the unsteady Euler or
Navier-Stokes equation with respect to time. Several
results of computation by the Ffinite difference
technique applied to hull forms have been published by
Chan et al.{10) and Aoki et al(ll). Serious
disadvantages of this method are that an enormous
computer time is required before the steady state is
finally attained and that a proper treatment of the
condition at the open boundary with which the domain
of computation is encompassed is hardly possible. On
account of these defects, it is quite unlikely for the
accuracy of computation by this method to be able to
attain the level of practical feasibility.

The method proposed here is a kind of the boundary
element method with the Rankine source as the kernel
function. The steady non-linear free surface flow
around a hull placed in a uniform stream is determined
by iteration so as to fulfil the non-linear free surface
condition and the hull surface condition, starting from
the salution of double model linearization such as
Dawson's problem. An advantage of this method is
that the computer program for the double model
linearization ,which is now at hand, is fully uvtilized.
Other points of merit is that an analytical expression
can be given to the solution at the final stage by
means of the source distribution over the boundary and
that the condidon at infinite depth is fulfiled
automatically. It has been found on carrying out the
com putation, that the stability in com putation process
is a serious problem, and several techniques to
suppress tHe instability are indispenable, In order to
examine problems associated to numerical technique,

' computations are executed for the two-dimensional

motion of a submerged cylinder(12). Then numerical
examples of three dimensional calculation are shown
with respect to the wave pattern, pressure distribution
and wave resistance of mathematically defined hull
forms(13). .



2. Basic formulation

Take cartesian coordinates with axesof x and y in
the undisturbed free surface, and z axis in the
vertically upward direction. Consider a ship hull fixed
in a uniform flow of velocity U in the directdon of x
axis and assume an irrotational motion of an inviscid
and incompressible fluld around the hull. The flow
field is then defined by a velocity potential ¢ which
satisfied the Laplace equation in the domain occupied
by the fluid.

PretPyytPe=0 1)

where subscripts mean partial derivatives. Designaté
the free surface elevation by the equation

z2={(z,y) (2)

and the boundary conditions on the free surface are as
fallows.

kinem atical condition BaCotpyCy—che=0 o)

(z=¢)

dynaAmicalcondition %(¢::+¢yz+¢:x_uz)+g(=o (4).

(=0

where g is the acceleration of gravity. There is a
condition at infinity such as® =Ux at x*+y*+zi=co,
We have to consider generally the radiation condition
that there is no wave motion at infinite upstream, bhut
results of computations have shown that this condition
is fulfiled by adoption a suitahle computation
algorithm. The free surface conditions, (3) and (4),
have to be satisfied on the elevated free surface
z=€ (%,y), but trial computation has shown that the
adoption of values at the real free surface at each
step of iteration causes an unavoidable tendency of
divergence, Therefore we employ an approximation
that each value at z={ is expanded in Taylor series
around z=0 and higher order tefms are omitted.
Resulting equations are

qsz(z+¢y(y~¢t‘¢::(

:¢:(l+¢vcy“‘¢x+(¢x:+¢yﬂc=‘—0 (2=0) (5)

(@b DU

+ {‘ﬁxqs:r+¢y¢:y"¢:(¢;z+q§yv)]‘:
+9¢=0 (z=0) (6)

These equations are satisfied on the plane z=0.

The method of solukon is based on the
decomposition of the velocity potential into the double
model flow potential ¢» and the deviation from it such
as

P=chot+ e @

The, double model potential is regarded as a known
function, Substituting (7) in (5) and (6), one obtains
after some reductdon

GPozlztPizlortPoyCytPryCoy
— ¢+ Dy(z, ¥)=0 (z=0) ®

(=-§1;(U‘—qSo,’—(ba,’—Z¢ox¢|:—‘2¢oy¢'xv)

+Dy(z,y) =0 ®

where

Ce=‘§1§“<ul“¢o:!"¢°y’) (1.0)

Dy(z, y)=¢l:(cz"‘<uz)+¢|y((:y'—(o,)
C A (Pozzt PoyyFPrzzt by € (1

Dy, == (ist+ buyt bied)

— Lot brdbrest (bostBi)Pusy

— 1o (PorztPoyy tPrzzt Py (12)
Dy(z,¥) and D,(z,y) indicate the non-linear effect. TIf
we omit the non-linear terms, ie. D,(z,y)=0,

Dy(z,y)=0 we have the boundary condition for the
double model linearized solution. :

L (oxCbaztt doyD st oy (ot oy Di)

+ (Poz(PozPrzt PoyBry)=
T oy (PosPrat PoyPredy)
L (buaChort+ oD st bur (Bost+ dor )

+9$1=0 (z=0) 13

If we take the length s along the streamline on the
plane z=0 of the douhle model flow, the above
equation can be transformed into

¢’oa'¢"nx+2¢ox¢ou¢u+ gPie=—Pos*Poss (2=0) (14)

This equation is identdcal with the double model
linearized free surface condition which was employed

by Dawson.
The boundary condition on the hull surface is the

usual form

a
o T T s

where n is taken along the outward normal of the hull
surface. Since the double model flow satisfies the hull

surface conditon, i.e. gg, /an =0 , the boundary
condition £or $, becomes
oy =hrznztPiyny+Pren =0 (16)

an

where ng, ny, n. are direction cosines of the normal.



We express the douhle model potential by a
distribution of sources over the double hull surface
such as

bo(x, y'3)=UI"j:[‘s@Uo('%‘+-r.ln—>ds an

where

o=V E=2 ) =y G2
Fom/ (=2 H(y—y )T+ 2D

The velocity potential ¢, on the other hand, is
expressed by sources distributed on the hull surface 5,
and still water plane outside the hull S, as follows,

bicenn= = [f oLt
ff o,—-—ds {18)

where

= Ty =y

Now the boundary value problem is stated in such a
manner that the source distribution densities oy, Jog
are to be determined so as to make the velocity
potentials ¢, and ¢, satisfy the boundary conditions
{8),(9) and (16).

3. The numerical method of salution

The method of solution is an lterative procedure
that the Ffree surface conditions (8) and ({9) are
satisfied by assuming the non-linear terms D,(z,y)and
D,(z,y) are given by the solution of preceding step of
iteration. In the first place, the douhle model source
distribution g, in (17) is determined in such a way that
the hull boundary condition.

O _
“an 0 a9

is satisfied. Then the first approximation is obtained
by determining the socurce densities Jee and ¢, in (18)
so as to satisfy the double model linearized free
surface condition (l4) together with the hull boundary
condition (16}, Next the functions D (z,y), and D,(z,¥)
are calculated making use of the first approximation
for ¢,. The first approximation for the free surface
elevation is determined by substitution of #; in (9) by
the first approximation obtained above. The second
approximation for the source densitles 4o, and ¢, in
{18) is determined so as to satisfy the hull boundary
condition (16) and the free surface condition (8) in
which  D,(z,y) s  determined by the  EHrst
approximation. .| A .similar process is repeated in
further approxim ation.

The computation program, which has been
developed for the solution of douhle model
linearization, is effectively utilized in this iterative
salytion. It is found by a sample calculation, that
inherent instability results divergence in repeated

computation. In oder to eliminate this instability, a
relaxation factor «,<1.is mutiplied to the non-linear
terms Dy(z,y)and Dy(z,y) .

The numerical work is carried out with
discretization of the boundary surfaces. We make the
hull surface S, consist'of M, panels and take a finite
area S, on the plane z=0, which is divided into i,
elements, as the domain of computation, If the
density of source is constant in one panel, velocity of
the disturbance potential ¢, are given by

Prz= Ado(J)CXa(U)‘hj_: a(DCXUT)

S’
)'.—Y
Dy = ;S_‘, Jﬂo(J)CYo(sJH}Ed,(;)CY (45 (20}
3
=2

Biz ou(CZali) + i3 ?‘ RROLEAC

where (CXoC¥e CZ) and (CXy, CYy, CZ) are velocities
due bto unit sources distributing on each panel and are
given by

cxacfi)=ffm<xs—113(7:i‘,7+ )

crain=[ff, @ (Fhrtzis)s
czii=[, ( ,‘;,z) )
X(U)-—fj;” fm

CYii) =ff5”_;:;_){’_ds

) CZ‘("’;)szs., nz:)’ @

{21)

Integrals are performed in each panel on the hull
surface or on the still water plane.

Because of the application of the relaxation factor
a,, the free surface condition takes the form like

Pozl et PrzlostPoyCyt+Prolop—Prs

+ay-Di(z, y)=0 (22)
¢=‘2Lg"(UL—qS°,'—¢,V’—-Z¢uqS,,

(23

—2¢oyPry) +eay-Da(x, ) 4
Substituting (11) in (22), one obtains

Przdet Py Ayt C(Przztdyy)—d.=8 (24)

where
Ar=Cozte(Cz—Coz) (25)
Ar=<0_v+°‘1(51”'(9v) (26)



Br—*qsozcz'"‘;ﬁwcy“a(‘((¢nzz+¢a;y) 27)

The free surface elevation is calculated hy (23),(12) as
fallows,

U’—¢uz’“¢ny1“2¢ox¢lz“
=t 2oy Pry— i (Prat byt i) 28
2 g+ax(¢z¢zx:+(bv(f’u;r“'fﬁu(fﬁ:z’f“‘ﬁvi” 28

The boundary conditions on the free surface and on the
hull surface are written in discretized forms like

3 e AsCi) + P (DAl F2aa =80  29)
P =

(i=1,2,+, 8, on §;)

Ma M
3 e DN+ B aDVGD =0 (0

(i=1,2,+, 8y on So)
where

A= CXmlNALD+CY nlii) Ay (D

31
F el (CXXp+CY Y 0) (B3
B = — hor(D (i — hay (DC4 (D
—o (1) l‘i’nxz(i) +‘f’oyy(i)] @2
CXLp=(CXmz=20—CXn(z=x1=dx)}]dx
CYV = CYm(y=y)—CYn(y=yi—4nildy (33)

Nn(i)=CXn(ii) - ra(D+CYnG)-ny (D)
+CZp (i) n:() (34)

. . ds
Ny(i)=2x+ n_'(l)ffs“':,;?

Sabscript m=0 means the contribution of sources on
the hull surface and m=1 means that on the still water
plane. The equation (29) and (30) give a system of
simultaneous equations which determine the source
densities o, and 4dg,

4. A sinplified method

The method of computation stated in the preceding
section requires long computer time because. the
boundary conditions on the hull surface and those on
the free surface should be satisfied simultaneously.
This fact is a serious disadvantage in view of the
practical application. A simplified method is proposed
here under this circumstance. Assume the hull surface
source g% and free surface elevation ¢ at k-th
step to be given. Then the free surface source g, **"
at (k+1)-th step is determined by the equation

M
E}lax(D"‘*”A(iJ')+2ﬂ0|(")"‘”’=C(f)"’ 35)

(i=1,2,-, M, on 5;)

where

c<0<*>=a<:~>~)"g‘l Soa(HP A (36)

The source distributdion thus obtalned induces the
normal velocity on the hull surface given by

&;(
vn(i)=§I {0 (DF D=, (BN (D) (37

In order to compensate the above velocity, source of
density

1
£=2 «Ev,,({) . 38)

are added to the hull surface sources. Then the source
distribution on the hull surface is of the density
dao(y+¢ , The computation beging with the Efrst
approximation which is obtained from the double-
model-linearized salution with free surface conditdon
{14). The first approximation for ¢ is obtained from

¢ (=, y)="21—g‘(u”"3sox"‘¢ey"’2‘ibn¢u (39
”2¢ny¢1y>

The second approximation for the free surface source
density o, is determined by salving the simultaneous
equations (35) and the hull surface source density is
obtained from (37) and (38). The similar process is
repeated in the further approximation untill a
stationary value is obtained. It has been found during
trial computations, that adjustment of Interval
between each step is needed during iteration in order
to keep stability, Therefore another relaxation factor
@y <., by which ¢in the {k+1)-th step is modified such
as

E(D =g (DM ey [C DU I— () (40)

The flow diagram of the numerical work is shown in
Fig.l. The partial derivatives, which are necessary for
the determination of coefficient in (35), are calculated
by the fallowing fashion.

Consider a function £{x%,y) in x~y plane and define a
plane given by the equation

az+bytef=1 (41)
on which three point (xy, y1, /1, 1=1,2,3) are located.
Then the partial derivatives of £(x,y) are approximated

by

Se=—— fy=—— (42)



A trial computation for the two-dimenslonal
problem of a submerged elliptic cylinder shows that
results obtained by the simplified method are
sufficiently accurate when compared with the results
by the more complicated method in the preceding

section,
Hull geometry

[ Hull surface panal geners!lon]

{ Cal. of double modal flow ]

I Free surlace panel generallcn]

N=N-+1 N=1

Free surface condition
H=1:D.Mlnear Eq.(14)
N22: nonlinear Eq.(22)

i

Solution of Rankine sources EQ.(35)|

I

lHuH surface condition Eq.(ﬂ?)l
Cal, of wave & pressure
N=1: D.Mlnear Eqs.{39)
Eqgs.(28)

N=>2: nonlinear

S

l Cal of wave resistance Eqs<(48)(50)1

Yes

Fig.1 Flow diagram of numerical computation

5. The wave profile of a submerged elliptic cylinder

In oder to examline the valldity of the computation
method mentioned above, the method of section 3 is
applied to the two-dimensional problem of the wave
profile which accompany a submerged cylinder of
elliptic section. The numerlcal example Is concerning
the shape with the ratlo between two axes a/b=4.

Fig.2 shows the results of com putation at each step
of iteration for the case of Fn=UA/2Zqa=0.5, £/a=1.7 (f
is the depth of immersion of the center) when the
relaxation factor «;, «, are not applied. Instability of
computation is observed which iake the result diverge
at the 7th step. After some study, it Is found that
stable results are obtained by application of the
relaxation factor @;=0.75, «:=0.25 as shown in Fig.3.
The convergence of the computation is examined by
the quantity
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Fig.i Convergence of wave profile
(f/a=1.7, Fn=0.50)
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Fig.8 Comparison of wave profile (above) and
source distribution on the ellipse(beliow)
(Fn=0.50, f/a=1.7, «,=0.75,a1=0.25, 6th step)

This is a version of Wigley model, with fuller entrance.
The panel division on the hull surface and on the still
water plane is shown in Fig.9. The number of panels
on the hull surface on one side is 27x10 and that on the
still water plane is 44x9.

The effect of the relaxation factors is studied in
the first place by computations with variable @, and
a,. Fig.10 gives the wave profiles with changing e,
applied. The effect of varlation in @: is shown in
Fig.1ll. According to these results, stahle iteration
may be obtained by the adoption of «;=0.50. and
@;=0.10, but instability still takes place at
Fn=U/A4/gL=0.267 in this case. It is understood that the
instability due to non-linearity appears in a limited
zone near both ends of the hull, and the application of
a; is needed only in the above zone. Therefore we
apply the relaxation factor in two circular regions of
radius A2 with centers at F.P. and A.P. of the hull as
shown in Fig.12. Here 1 is the wave lengthl=2rU?g
The distribution of @, is given by ’

o= { ?5+2r(a5—-ag)/x O=r<if2) (46)
[ r>A[2)

We employ a,;=1.0, «z=0.25 «,=0.1 in further
computations, Fig.13 shows the results of
computation at each step of iteration process. Change
of value is significant at both ends of the hull, The
results  of~+computation are compared with
measurements in the towing tank. Fig.14 shows the
comparison of wave profile alongside the model (Model
A), and Fig.15 shows the computed and measured
pressure distribution at the level z/d=-0,52. Much
better agreement with measured results is obtained by
the present method than by the Michell thin ship

theory.
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The secorid example Is a much fuller model (Model
B} with elliptdc bow waterline and elliptic frame lines. 7. The wave resistance
The panel division for the numerical work is shown in
Fig.16, and the mathematical expression for the hull The fluid pressure is given by Bernoulli's theorem
surface is given in Tahle 1. such as
Fig.17 shows the comparison of the computed wave
profile with the measurement and Fig.l8 shows the
pressure distribution at the level z/d=-0.3, Good p«po-:—l—p{U‘—tﬁa:’—(ﬁu;'—"(f’u"‘z%x‘f’u
agreement is observed in the fore-body, but there are 2
some discrepancies in the aft-body. The difference C = 2¢hey Gry—2PasPus
between the computation and the measurement in the — ey (D2t Pyt Pre D] “n

aft-body may be attributed to the viscesity effect.
Fig.19 gives a schematical illustration of wave
patterns of both models,
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Table 1

Mathematical representation of half breadth y for Model B

Elliptic form Parallel part Parabolic form
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L ; ship length B ship breadth d; draft
The wave resistance is defined by the pressure integral
over the hull surface. If the pressure is calculated at o
each point and is assumed uniform in each panel ds(i) | x 107 Cw = Tuo
the wave resistance is given by 5r
My 4t Fn = 0.289
Ry= E [p() = po) ne (1) As(i) (48) £ =0.267 Fn = 0.250

-,

Though the fluid velocities are defined in the space
below the still water plane z=0, the pressure integral
must be taken over the real wetted hull surface under
the elevated free surface. Therefore the pressure
acting on the hull surface between real free surface
and the still water plane should be taken into account.
In the present comutation, we assume a lnear
variation of pressure such as
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where p, is the pressure calculated at the still water
surface. One can put pw=pg¢(x). Then the correction
term to be added to equation (48) is

i
IR =—-pgf—4('(l)‘"z‘dx , {50)

Fig.20 shows the result of computation of R, of
Model A at each step of iteration. It is ohserved that
the iteration converges at above foucth step. Curves
for the wave resistance coefficient as a function of
Proude number computed by different methods are
compared in Fig.21l. In this figure, D.M.Linear means
the douhle model linear solution which is the first
approximation of the iteration procedure. The
importance of the nor-linear effect and that of the
wave correction term 4R, are clearly observed.

Fig.22 compares the computed and measured wave
resistance of Model B. In these fiqures, the results by
the, present method have attained a remarkable
improvement in agreement with measurement,

8. Concluding remarks

The present work has proposed a method of
theoretical computation for the wave pattern and
wave resistance by which the non-linearity in the free
surface condition is taken into account. The wave
profile, pressure distribution on the hull surface and
wave resistance of models with simple hull forms are

computed and’ the results 6 are compared with
measurement in the towing tank. The conclusion is as
follows.

(1} The results of computation by the present method

. show fairly good agreement with measurements,

so that this method has a feasibility as a practical
method of computation for arbitrary hull forms,

(2) The adoption of the relaxation factor &; and 1
enahles the iteration process to be stable. «, has
a function of supressing non-linear instability at
excessively high wave crest by which the wave
breaking is liable to take place.

{3} The computed wave profile, pressure distribution
and wave resistance show a plausihle agreement
with measurement in both fine and full models in
general, but some discrepancy is observed in the
wave profile and pressure distribution at the stern
of full model where the boundary layer separation
is likely to take place

{4) The non-linear effect is significant near the bow
and stern ends of the hull where the wave crest is
much steeper than that predicted by the double-
model-linearized approximation.

{(5) The wave resistance computed by the present
method is considerably higher than that predicted
by the double-model-linearized approsximation.
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Some Discussions on
the Free Surface Flow Around the Bow

H. MARUO AND M. IKEHATA

Yokohama National University, Japan

ABSTRACT:

In order to elucidate the free surface
phenomena around the ship bow, experiments of
simple wedge-shaped models are conducted in the
towing tank. 1t is found that the surface
tension has a remarkable effect on the free
surface pattern around the model. 1t is
shown that the surface activator compound is
very effective in order to remove the effect of
the surface tension. Free surface configu-
rations free from the surface’ tension observed
by photographs after application of the surface
activator are examined in detail. In order
to apply the theoretical analysis to the wave
pattern under the effect of the surface ten-
sion, the ray theory is effectively employed,
and a differential equation which determines
the curve of the capillary wave front around
the wedge is obtained. The ray theory is
applied also to the wave pattern at the bow
when the surface tension is eliminated, and it
is concluded that the wave configuration chan-
ges its characteristics, when the entrance
angle exceeds 60 degrees. This fact is
clearly proved by the experimental observation.
Next the effect of surface tension to the resi-
stance of ship models is examined by means of
the application of the surface activator to the
resistance test. A considerable difference
in the resistance is observed when the surface
tension is removed. Therefore the scale
effect due to the surface tension should be
taken into account in the lower speed range.

1. INTRODUCTION

The free surface flow around the ship bow
has drawn attention in naval architects in
recent years! Among free surface phenomena,
the breaking of waves at the bow is of special
importance because of its relevance to the
resistance of full-hull-forms. - There have been
several attempts to elucidate the mechanism of
wave-breaking at the bow so far, which propose
various kinds of hypothesis. However most of
thesg hypotheses are not likely to be accepta-
ble by the rational basis of hydrodynamics of
Newtonian fluid, and some critical comments on

the various hypotheses so far proposed have
appeared in another literature?’ In conse-
quence, one can regard that the mechanism of
the bow-wave-breaking is not yet unvailed. In
order to understand the true situation of the
physical phenomena, the detailed observation
and accurate measurement of the phenomena are
indispensable. Photo 1 gives a typical picture
of the wave pattern around the bow of a large
tanker(VLCC) in full scale. One can observe
several wave crests in front of the stem and
the breaking waves take place at these wave
crests. However this sort of wave pattern is
hardly reproduced in model scale in the towing
tank. A typical configuration of free surface
around the bow of ship model is shown in Photo
2. Although the hull form of the ship in Photo
1 and that of the model are not identical, the
difference between these pictures seems to be a
common feature in such a comparison. A preli-
minary observation in the towing tank has indi-
cated the possibility of existence of a scale
effect due to the surface tension in the confi-
guration of the free surface. The free surface
disturbane under the effect of surface tension
was f1rst described by Scott Russel3) and
Kelvin,” and mathematical investigation was
given by Rayleigh.3’ Typical wave patterns
associated with a point disturbance were shown
in Lamb's text®’ It is possible to take ac-
count of the surface tensﬁon in the thin ship
theory as Webster did.”” According to these
theories, the effect of surface tension may be
neglected if the speed of advance is sufficien-
tly greater than the critical velocity of
gravity-capiliarity waves i.e. 0.23m/sec, be-
cause the ratio between the lengths of the
gravity wave and the capillary ripples is very
great. In order to examine how the surface
tension influences the configuration of free
surface, a series of experiments with wedge-
shaped models have been conducted in the towing
tank.® 1t has been found that the application
of surface activator compound on the water
surface reduces the surface tension to a great
extent. The comparison between the free sur-
face pattern when the surface activator com-
pound is applied to the water surface in front
of the model and that without such process, for
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which the surface tension is intact, indicates
that the conclusion of above theories is diffe-
rent from the truth. The difference in free
surface pattern in front of the model is signi-
ficant even if the speed of advance exceeds the
critical speed considerably. Specifically, a
considerable difference is observed in the wave
breaking between two cases.

It is taken for granted in today's prac-
tice of ship model test in the towing tank,
that Froude's hypothesis is valid, that means
the resistance originated from free surface
phenomena is a function of Froude number and
the change in Reynolds number or Weber number
can give only a negligible effect. If the free
surface flow around the ship model is subject
to the influence of the surface tension to a
considerable extent, however, the influence to
the model resistance may not be neglected.
Since the Weber number for the ship in full
scale is extremely great and her resistance is
free from the effect of surface tension, the
scale effect due to the surface tension seems
to be present in the model scale. If this is
true, the existing practice of .the model-ship
correlation method, which is based on the as-
sumption that the resistance coefficient is a
function of Reynolds number and Froude number,
may need to revise. One of the purpose of the
present investigation is to examine how the
filow pattern around the model is influenced by
the surface tension.

Since the application of the surface acti-
vator compound to the free surface almost eli-
minate the surface tension near the model, the
free surface pattern free from the surface
tension can be observed. Then one can examine
the free surface phenomena free from surface
tension, which can be correlated with phenomena
in full scale. This process will enable a
sound discussion of the mechanism of wave-
breaking.

2. OBSERVATION OF THE FREE SURFACE AROUND
" WEDGE-SHAPED MODELS

It has been found by the preliminary expe-
riment, that the surface activator is very
effective to remove the surface tension. For
the purpose of comparison of the flow pattern
under the effect of surface tension with that
free from the surface tension, a solution of
surface activator compound is spread on the
free surface by a sprayer in front of the
model which is towed through the towing tank.

Photo 2 Bow Wave Profile of 5 metre Model ofv
a Bulk Carrier

Concentration of the compound in the solution
is small in order to avoid the pollution of
tank water, nevertheless the effect is proved
enough to reduce the surface tension to a great
extent. Models employed in the experiment are
wedges with 230mm breadth and 950mm draft.
Entrance angles (1/2 apex angles) of the wedges
are 30°, 45°, 60°, 70° and 80°. The models are
fixed to the carriage of the towing tank and
towed with speed from 0.8m/sec to 1.35m/sec.
The free surface is observed by taking pictures
from model side and from ahead. In order to
reinforce contrast of the picture, a screen
board with white and black stripes is placed
behind the model. Typical samples of the pic-
ture are given in Photo 3-a through Photo 17-b.
Stripes on the water surface in the picture are
the image of the back screen. Pictures on the
left are the case for which the surface activa-
tor is not applied while those on the right are
the case for which the surface tension is re-
moved by the application of the surface activa-
tor. One can observe a remarkable change of
the free surface configuration after the proce-
ss of eliminating surface tension. Photos 3-a,
4-a, 5-a show the case of entrance angle 30°
when the surface tension is intact. At lower
speed such as 0.8m/sec, there is a curved line
of step-wave front circumscribing the wedge bow
and capillary ripples appear outside the wave
front line. Inside this line, there is the
silent zone where no wave exists. This type of
wave pattern is a characteristic feature of the
free surface around the bow at low speed when
the surface tension is present. When the speed
increases, the wave-breaking takes place at the
wave front line above-mentioned (Photo 2-a),
and at higher speed, the breaking wave is fully
developed until the wedge bow is encircled by a
chaotic turbulent zone (Photo 3-a). The free
surface after the surface tension is removed by
the application of surface activator is shown
in Photos 3-b, 4-b, 5-b. The capillary wave
front together with ripples disappear and one
can observe Kelvin-type diverging wave system
starting from the apex of the wedge (Photo 3~
b). At slightly higher speed such as 1.0m/sec,
a small wave crest appears in front of the bow
(Photo 4-b) and as the speed increases, wave-
breaking takes place at the position of this
wave crest {Photo 5-b). When the speed in-
creases further more, the wave-breaking stret-
ches out on wider area, and the difference
between the case under the effect of surface
tension and that free from the surface tension
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disappears. At greater angle of entrance such
as 45°, the inception of wave-breaking takes
place at higher speed irrespective of the exis-
tence of surface tension (Photos 7-a,8-b). The
wave crest in front of the bow, which appears
when the surface tension is eliminated, is more
prominent than that of entrance angle 30°(Photo
7-b). The inception of wave-breaking occurs at
further higher speed in greater entrance angle
such as 60°. The configuration of the free
surface under gravity can be examined clearly
by the application of the surface activator.

As shown in Photo 9-b, a second crest which is
more gently-sloping than the first crest just
in front of the model appears forward with the
entrance angle 60°, and inception of the wave-
breaking takes place at these two wave crests
(Photo 11-b). The case of entrance angle 70°
shows similtar phenomena. When the entrance
angle increases to 80°, a third wave crest
appears further forward (Photo 15-b). The
wave~breaking starts at these crestsat higher
speed.

In any case the wave-breaking takes the
type of spilling breaker if the surface tension
is not present. Other types such as the plun-
ging or surging type breaking waves have not
been observed. There has been an opinion such
that the wave-breaking is a phenomenon which is
analogous to the hydraulic jump or the free
surface shock wave® in the shallow water flow,
but the present observation indicates that such
an analogy may not be warranted. The breaking
wave in its initial stage as observed in the
pictures looks to be similar to the breaking of
ocean waves at critical steepness. The insta-
bility at the pointed wave crest may become a
trigger of the wave-breaking..

Next the measurement of flow velocity in
the center plane forward to the model is
carried out by means of a small vane wheel of -
diameter 3mm. Fig. 1 shows the result for the
model with entrance angle 30° at 1.1 m/sec in
both cases with and without the process of
eliminating surface tension. Fig. 2 shows the
result for the same model at 1.2 m/sec. No
difference is observed in the velocity distri-
bution between two cases in spite of the diffe-
rence in the free surface shape. In the part
where the wave-breaking is fully developed, a
remarkable velocity gradient is observed near
the free surface ., ig. 2). This phenomenon is
shown more clearly in Fig. 3, which gives the
result for entrance angle 45° at 1.3 m/sec.
However such a remarkable velocity gradient is
not observed if the wave-breaking does not take
place even if the wavy elevation appears on the
free surface in front of the model as shown in
Fig. 4, which gives the result for entrance
angle 80° at 1.2 m/sec. Therefore the shear
layer, which has been observed by several re-
searchers along the free surface, seems to be
associated with the presence of wave-breaking.
The cpinion3°) that the free surface shear flow
is a consequence of the effect of viscosity on
the curved free surface without breaking, is
doubtful unless the great curvature of the free
surface such as the capillary wave front is
present. The formation of necklace vortex may
not be analogous to the horse shoe vortex at
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the base of a body attached to a plane wall,'"’
for which the shear flow in the boundary layer
plays an important rdle.

3. SOME MATHEMATICAL ANALYSIS

Let us consider the fluid motion around a
body fixed in a free surface of a uniform flow
of an inviscid incompressible fluid. Take
cartesian coordinates x, y, in the undisturbed
free surface and the axis of z vertically up-
wards. The uniform flow is assumed in the
direction of positive x. Now we define veloci-
ties U,, Vo, Wo, which are flow velocities when
the free surface does not deform as if it were
a rigid plane, or they are regarded as veloci-
ties around a double body in an unbounded
fluid. Because of the free surface elevation,
actual flow velocities deviate from u,, v, and
w,, and we introduce the velocity potential ¢
assuming the irrotational motion in such a way
that the velocities are expressed by

Uz +P, vy, +&,w=w +P (1)

where subscripts mean partial derivatives. The
velocity potential satisfies the Laplace
equation

Puct Py + Pra= 0 (2)

If we assume the speed of advance is low so
that the Froude number is sufficiently small,
the free surface elevation is very small and
the flow deviates only slightly from the double
body flow. Therefore the disturbance veloci-
ties, grad ¢ are much smaller than the base
flow velocities of the double body flow. Fur-
ther we assume that u,, Vo and w, are slowly
varying while the disturbance velocities vary
more rapidly on account of their wavy nature.
Introducing the expression (1) in the boundary
condition at the free surface under gravity and
surface tension, and taking only terms of the
lowest order with the consideration of above
assumptions, we obtain the linearized free
surface condition for ¢ such as

WP + v,y + VI P, -
+ 9P+ xP =F(x,y) (3)

where g is the acceleration of gravity and x is
.+ the kinematical capillarity defined byx=T/p, T
being the surface tension per unit length.
This equation is regarded to be satisfied on
the plane z=0. The function¥{x,y) on the
right hand side is the forcing function and
determined by the base flow velocities u, and
Vo. Now let us apply the ray theory to the
present case. Since the ray theory deals with
the propagation of free waves, we employ the
homogeneous equation by putting ¥(x,y)=0 as the
free surface condition. Assume the infinite
depth of water and define the wave potential of
the form

4) - AE;F(X'Y‘Z) (4)

Let us consider the case of short waves and

assume
grad F(x,y,z) = 0( &)

where € is a small quantity of the first order.
Then the Laplace equation results the relation
in the lowest order such as

[F*(x»y‘o)]z + [FY('X3)’)O)]2
+ [Falx,y,001% = 0 (5)

Because ¢ gives the free wave without the expo-
nential decay, Fx (x,y,0) and F,y(x,y,0) are real
functions, while F,(x,y,0) is pure imaginary.
Therefore one can define the phase function

S{x,y) = F(x,y,0) (6)

Since the fluid motion decays downwards,
iFz (x,y,0)>0. Then one can define the Jocal
wave number

iFz (x,y,0) =Vs2 + 52 = k (7)

Substituting (3) in the homogeneous free
surface condition

ul P + 22Uy, ‘1’,‘, + v, byy
+ 9P+ KPran= 0 (8)
and taking terms of the lowest order, we obtain
(U,Se + 05707 =VSE + S5 [ g +x(s? + 52)] (9)

This equation defines the dispersion relation
of waves under gravity and capillarity, and
becomes the basis of the ray theory. Now we
define the wave number vector

grad S{x,y) =k (10)

and write q for the velocity u,, v, on z=0.
Then the dispersion relation becomes

(@-%)2 = |kltg +x1k (1)
If the velocity q makes an angle W with respect
to positive x and the wave number vector makes
an angle X (Fig.5), the following equation is
valid.

kqcos?(¥-%) = g ek’ (12)

Fig.5 Schematic diagram of the Wave Number
Vector



where q=]g|. The angle X defines the direction
of the ray of elementary waves. Solving the
above equation with respect to k, one obtains

Kk = (]/Zx)fqzcosz(\/’-'l)
+ /q'cos*(V-%x) - 4gn] (13)
Y
In the case of qcos(v~1)>(4gx)‘ , there are two

wave systems, which have different relations of
dispersion. The region where q cos{¥-X)<(4gx)”*
is the silent zone within which no wave exists.
The forward border of the silent zone is the
curve of capillary wave front as shown in the
pictures of the preceding section. The curve

is an-iso-phasal line S(x,y)=const. along which
the following relation is valid,

q cos(w-x) = (490" (14)
and the normal to the curve makes an angle
with respect to x axis. If we write the
equation of the wave front in the form

ro=fle) (15)

making use of cylindrical coordinates x=rcoss,
y=rsing, the following relation is derived from
(14).

“cos{¥ -8} - sin{¥-8)f'(8)/r
= ((4g)™* /)Y T + (r(e)/r)? (16)
or

£1(8) _ Yeos(y-8)sin(y¥-0) -Vl ]
HB) Trsin*(¥-6) - 1 (17)

where’r=Q/(4gx)A> 1. The solution of this
equation determines the curve of the wave
front. In order to apply the above eguations
to the wedge-shaped model, we employ the two
dimensional flow illustrated in Fig. 6 as a
flow model. A wedge is placed in a uniform
stream and is accompanied by the dead flow
bounded by two free streamlines along which the
pressure is constant. A complete solution for
this flow pattern,'?) obtained by the two-
dimensional free streamline theory, is expanded
around the stagnation point. Then the conju-

519.6 Flow Model around a Wedge

gate complex velocity up,-ive near the apex of
the wedge is expressed by

;e)d/.ur-«)

u, - iv, = -V(are (18)

where « is the angle 6f entrance, and a is a
coefficient determined by the dimension and the
angle of the wedge, given by the equation

a=(f/2)(0 - «¢/m) , (19)

where ¢ is the length of each side of the wedge
and f is a function of . 1In the case of.the
flow model of Fig. 6, the function f is given

by
f=1/4 +a/4m+ (1/2) /7 [¥Y( - ay2m)
-¥(1/2- «/2M] (20)
where ¥(c) is the digamma function defined by
[{e)/T(e). Then the parameter T in eq.(17) is
expressed by
T = g/ (4gi)* = V(ar)q/”_a)(é?gx)’w', (21)

The curve of capillary wave front passes the

point x={. on the x axis where¥=1. Therefore
we have the relation
/ -
L/t s £ mom T (22)
where T, = V/(tftgm)‘/4 (23)

Fig. 7 shows computed results of £/Z. versus T,
for several angles of entrance. The curve of
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Fig.7 Location of the Capillary Wave Front

capillary wave front is obtained by numerical
integration of eq.(17). Fig. 8 shows the re-
sult of computation for the cases of the angle
of entrance 30°, 45°, and 60°. One may find in
these figures that there exists a similarity
relation that the curve of wave front for geo-
metrically similar models is determined by the
parameter T,. Because of the relation

T, = (VD (/2T (24)

— 50 —
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Fig.8 Curves of .the Capillary Wave Front

Froude's law is valid under the condition that
2Yg7x is kept constant.

1f the surface tension is eliminated, the
dispersion relation of wave becomes much
simpler such as

. QF—T (25)

when » vanishes in eq.{13), the wave number of
capillary ripples tends to infinity, while the
wave number of gravity waves has the relation

(upSx + v°S,

= g/[q cos(w-x)]* (26f

The ray theory in this condition was applied to
ship waves first by Keller!®) '*) and extended
investigations have been carried out by Yim'$)
and Tulin.'®? According to this theory, the
wave pattern is obtained from the solution of
the differential equation (25). If we trans-
form (25) in the cylindrical coordinates, we
obtain

= gVS? + S (27)

where u,, u, are velocity components in r and @
direction respectively, and S,, Se are gra-
dients of S in r and & direction respectively.
Let us consider the elementary wave along the
wedge boundary 6 =%-¢. Then we can put S,=0,
u,=0, so that the phase function becomes

(u,.S, + u.S.

-
= g [(1/q2)dr (28)
0
The flow velocity is given by {18) such as
q = V(ar)¥(" (29)

1fx<60°, we have the solution
S = (g/yF)aT BATIITII/T (g

A similar relation is valid along the center
1ine 8 =0. There exist straight rays passing
through the apex of the wedge, and caustics
describe the wave pattern which is 1ike the
Kelvin-wave system as illustrated in Fig. 9.
The cusp line of the diverging wave makes an

Fig.9 Wave Pattern around the Model o< 60°
(schematic)

angle ¥ with the wedge surface, which is g1ven
by

Y = (] ‘d/ﬂ)rx

where TYx 15 the Kelvin angle (19°28').
1fecz60°, the integral (28) diverges and there
is no solution for the phase function around. .
the wedge bow, so that the Kelvin-wave system. .
does not exist, and the disturbance given at .~
the free surface in front of the model does not;
propagate towards downstream in the form of .
radiating waves. The bow is encompassed by a
turbulent zone as illustrated in Fig, 10 in
this case. These phenomena can be observed -

Fig.10 Wave Pattern around the Model (2 60°
{schematic)

clearly in the experiment by removing the
surface tension as shown in Photo 18 foro< 60°
and Photos 19, 20fora260°. The phenomena at
the bow of entrance angle not less than 60° may

. implicate the non-existence of the continuous

flow at the bluff bow and relevance to the
generation of the necklace vortex around the
bow of full hull forms.




Photo 18 Bow Wave free from Surface Tension
« = 457 V = 1,1m/sec

Photo 19 Bow Wave free from Surface Tension
o= 60% V= 1.1m/sec

Photo 20 Bow Wave free from Surface Tension
o= 705 V= 1.lm/sec

4.  RESISTANCE OF SHIP MODELS

‘ It has been shown that the free surface
configuration around the model is influenced
considerably by the surface tension even at
moderate speed. Then the effect of surface
tension is suspected in the value of the resis-
tance of ship models at the tank test. In

~order to examine whether the resistance of
models is influenced by the surface tension,
ship models are towed in the towing tank
through water, to which the surface activator
compound is applied by spreading on the free
surface in front of the models. The resistance
measured under this condition is compared with
the resistance in unprocessed water in which
the effect of surface tension is present. Two
models are employed in the experiment. One of
them is a 3 metre model of full-hull-form with
a cylindrical stem. The other is a 4 metre
model of full-hull-form with a wedge-shaped bow
of entrance angle 40°. Body plans of the
models are shown in Figs. 11, 12. The 3 metre
model is tested in two loading conditions,
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Fig.11 Body Plan of the 3 metre Model
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Fig.12 Body Plan of the 4 metre Model
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Fig.13 Resistance Curve of the 3 metre Model
Full Load Condition

namely full-load and light-load. Fig. 13 shows
the result of 3 metre model in full load
condition. Consistent difference is observed
between the resistance coefficient under the
influence of surface tension and that free from
surface tension throughout the test speed up to
1.2 m/sec. Photos 21, 22 gives the sample of
observation of the free surface, in which we
can recognize the effect of surface tension.
The turbulent zone around the model which has
been explained in the preceding section is
observed in Photo 22, in which the surface
activator is applied. At higher speed, 0.9
m/sec say, the free surface breaks out even
when thé surface tension is not present. The
difference in the resistance between both cases
is possibly due to difference in the area of
the wave breaking zone. Fig. 14 shows the
resistance coefficients of the same model in
light draft. Different from the former case,
the effect of surface tension diminishes with
increasing speed, and the difference between



Bow Wave Profile of the 3 metre Model
under Surface Tension V = 0.8m/sec

Photo 21

Photo 22 Bow Wave Profile of the 3 metre Model
free from Surface Tension V = 0.8m/sec
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Fig.14 Resistance Curve of the 3 metre Model
Light Condition

two curves almost vanish at V=1.0m/sec. The
wave breaking takes place at lower speed in the
case of light draft than in the case of full
load draft. This seems to be one of the rea-
sons of the difference in the effect of surface
tension to the resistance curves between the
full load draft and light draft. As mentioned
in the preceding section, the effect of surface
tension is related to the ratio 2/ given in
eq. (22), where f is a function of the entrance
angle ¢, If the draft is finite, f is related
to the draft too, in such a way that {/f. in-
creases as draft decreases. This tendency can
be understood by the comparison between a ver-
tical. circular cylinder and a sphere with its
center on the free surface. Approximate esti-
mates show that

r,/le 527 for a circular cylinder

53T for a sphere

m/sec

where r, is the radius of the cylinder or the
spheré. Therefore the effect of surface ten-
sion is less in a shallower draft.

The 4 metre model is tested only at the
full load condition. Curves of resistance
coefficients are shown in Fig. 15. The diffe-
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Fig.15 Resistance Curve of the 4 metre Model

rence between the resistance under the effect
of surface tension and that free from surface
tension decreases as speed increases and vanis-
hes at about 1.15 m/sec, which corresponds to T,
=5.0. Since the entrance angle of this model
is 40°, the corresponding value of /L. is
about 10* according to Fig. 7. Thus the resis-
tance of a ship model is subject to the scale
effect due to surface tension, if the tank test
is carried out under a certain critical speed.
The parameter V/(4g%)”* may be employed as a
criterion for the effect of surface tension.
Since Fig. 7 indicates a strong dependence of
this effect on the entrance angle, the critical
speed is dependent on the entrance angle to a
great extent. In the case of the hull form of
4 metre model, the critical speed corresponds
to the Froude number greater than 0.18. There-
fore the resistance test result is contaminated
by the surface tension throughout the whole
range of operating speed of full-hull-forms
such as oil-tankers and bulk carriers. Even
for large models of 6 metre, the critical speed
is at the Froude numbér 0.15, which is still
within the important speed range in practice.
Another troublesome fact is the difficulty in
determination of the form factor for the vis-
cous resistance. If one intends to determine
the form factor from the test data at the
Froude number 0.10, the error due to the sur-
face tension amounts to more than 20 percent.

5. CONCLUSIONS

Free surface phenomena around the bow are
investigated by the use of wedge shaped models.
1t is found that the free surface configuration
is influenced by the surface tension to a great
extent. Therefore the free surface phenomena
in model scale is not identical with those in
full scale, on account of the scale effect due
to the surface tension. A particular feature
of the existence of surface tension is the
capillary wave front which is observed in front



of the model when the wave-breaking does not
take place. The wave-breaking starts at the
position of this wave front as the speed is

increased.

1t is found that the surface activator
compound is very effective to remove the effect
of surface tension. When the surface tension
is removed by the application of the surface
activator, a remarkable change is observed in
the feature of the free surface. Therefore the
free surface phenomena in full scale, in which
the effect of surface tension is negligible,
can be correlated only with model experiments,
in which the surface tension is eliminated by
the application of the surface activator. The
free surface configuration free from the effect
of surface tension shows a wave crest or crests
in front of the bow. The inception of wave-
breaking takes place at these wave crests,
showing the spilling type breaking waves, and
the hydraulic jump or the free surface shock
wave is irrelevant to the wave-breaking at the
bow in deep water.

The ray theory is useful to the mathemati-
cal analysis of the wave pattern. The curve of
the capillary wave front can be calculated by
this theory. The wave pattern near the bow of
entrance angle less than 60° is like the Kelvin
wave system, while such a wave system does not
exist when the entrance angle is equal or grea-
ter than 60°. In the latter case, the bow is
encircled by a chaotic turbulent zone. This
phenomenon may be relevant to the generation of
the ‘necklace vortex' around the bow.

The resistance of ship models is subject
to the influence of surface tension. The
surface tension results increase in resistance
to a considerable extent if the model is towed
below a certain critical speed. Then the scale
effect due to the surface tension is suspected
in the resistance test data at low speed, espe-
cially in the case of full-hull-forms with
bluff bows. The difference in resistance due
to the surface tension vanishes above the cri-
tical speed where the breaking waves are fully
developed. The critical speed is dependent on
the entrance angle and the draft-beam ratio of
the model.

ACKNOWLEDGMENTS

The authors wish to express their thanks
to Messrs. Z. Takusagawa and I. Okada, staffs
of the Marine Hydrodynamic Laboratory, for
cooperation. Thanks are also to Messrs. H.
‘Sakamoto, H. Tanikawa, T. Kondo and Y. Morozumi
for their participation in the experimental
research.

REFERENCES :

1. 17th 1.7.T7.C. Report of Resistance
Committee, Recommendations, Gdteborg, 1984

2. Maruo. H., On the breaking of waves at the
bow, Symp. on New Developments of Naval
Architecture and Ocean Engineering,
Shanghai (1983.)

3. Scott Russel, On waves, Brit. Ass. Rep.
1844

4. Thomson, W., Hydrokinetic solutions and

g?zervations, Phil. Mag. (4) XVII {1871)

5. Reyleigh, Lord, The form of standing waves
on the surface of running water, Proc.
Lond. Math. Soc. XV (1883) 69

6. Lamb, H., Hydrodynamics, Cambridge Univ.
Press. 6th ed. 470 ‘

7. Webster, W.C., The effect of surface
tension on ship wave resistance, College of
Eng. Univ. California, Rep. NA-66-6 (1966)

8. Maruo, H., On the free surface flow around
a model bow, Journal Soc. Naval Arch.
Japan. 158. (1985) 1-9 .

9. Inui, T., From bulbous bow to free-surface
shock wave-Trends of 20 year's research on
ship waves at the Tokyo University Tank,
Jour. Ship Res. 25-3 (1981) 147-180

10. Mori, K., Necklace vortex and bow wave
around blunt bodies, 15th Symp. Naval
Hydro. Hamburg (1985) 303-317

11. Takekuma, K., Eggers, K., Effect of bow
shape on free-surface shear flow, 15th
Symp. Naval Hydro. Hamburg (1985) 387-405

12. Milne Thomson, Theoretical Hydrodynamics
5th ed. McMilan 347,

13. Keller, J.B., Wave patterns of non-thin or
full bodied ships, 10th Symp. Naval Hydro.,
Cambridge, MA (1974) 543-547

14. Keller, J.B., The ray theory of ship waves
and the class of streamlined ships, Jour.
Fluid Mech. 91-3 (1979) 465-488

15. Yim, B., A ray theory for nonlinear ship
waves and wave resistance, 3rd Internat.
ggngé on Numerical Ship Hydro. Paris (1981)

16. Tulin, M.P., Surface waves from the ray
point of view, The Seventh Georg Weinblum
Memorial Lecture, Hamburg (1985)

This work is partly supported by the Grant-in-Aid
for Scientific Research



