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1,  FHEEROBENFHRROTRME
FNRPRFFR BN JE

1. 1 ELHIC

OB, B - S ORI ER VIR LIS RSO RRICER LEEaMi LV, HEDHT
RIZE-T, ZOLIREFBRECRBIEL U TEHORBE - EBER, b L XN LDEHD
HEEERE LTEMIND L2 RoTE T, 6o, EEYMOMEFEEMEMMEE1T 212k, BVIRLA
EEZTDBEMIC LT, SRORA - EEEE, IO X D ICHAXMAEE SN 55611
EEHERBR OB T AT L 125, BRI &1L, ZOTT/VCERN DA ORHEE
FREE Y ANRERRIRNTO Z & ThoC, TRIZL o T U THEEMOREMED D\ RSO
AVEEEMICTHELES Z &0/ p 0D~ A10),

i, 1950 8D E, FTMFRESEHOZEEE HFENMEN LFHE - T 22D D0FiE, Whwdb
T /1% (fracture mechanics) 2ARBICRIZEL, W MEBBOMT OX72 T, K - RERESLZED
T, TRTCOSREZEOHBTICERANTRETH D Z LB INZ, LrLib, BETH, EH
DFRER LU & FERRRL EENI, 2 OMEICEET 5 Z LIIRET, HENEORFENRR<D
Do TNBDN, EHPMEEROEELZITTRERRT D L 2 IR THLRERE~NITTDETO
D, \Whw3 “subcritical crack growth” Vo BEROALTHD, EOFRR, ZOFERTOWEMR
EAEEHORE « BEISEN T, MBS, 7L X IEERE CRH LERWEEDOKMEATFIEL
Th, ROSRIFE TIZEHNBREEBIGET A2 LIBVE I, SREBFEIDI LB L,
Wb BIBEFRRET (damage tolerant design) BAENSER L, REHFICEREL B X SERET NV
DO ERBERIER L TE TS,

FIT, D DOFRBRROT 20 CIEFEEETHELITO 2L 2 BIEL, Bx OTHEER%
BRICANT SHEBRRR OB FRET 21T 5 £ 95, HERRIEESY (probabilistic fracture
mechanics) D—HERFERL T,

AHFETIL, 13X TS & RERDIREES %B’J%rwéﬁiﬁ L, RVNTHERRRATIIE /I & D
FHIERMETHEFIE ORI E R ONOE S  HERRREOMETT VHICHN D /37 A — Z DTFRIFEIC
DUVTEET D,

1. 2 EHSHEWEAE

FHBEIEE LTHEFEROERLE WO TREB L T, ZoRky EFEBRELHE IR 1.2.1
WORTEBY ThD, FIEBIIEANIORELZT T, SEMMENEICA VAL TOIERT, =
DE D72 RYIC L B EFUIERBILACT R KT OEEDICHE -7 L SEREZELET DI LMD 5,
B EMII~ERENEZETREB LUBIRISHUEKE LEERBEOZ L ThY, i T ERR
BRI EE 2 FAICED, 0%, FTRERREMEZE TRBICES,

F1EBCIIERENR T ORENHRL, AHTERRIEENERRNRETHOFEEL LTHEINERIZS
LEHHTH ST, ZOEPETIIRAFHIMEEBROREI LD, 28, BN REREETM, 5
IR CRIWIEIRMROFEISET b, Thaiae LTEEMERL TN, T8I HREH
DERBITZEAEFENERLBX TLINWIEEZERELTEL,

T, W1220X 91T, ERE TS0 D—1E5 R 2% 5FALOH 2 METREZ 25 &, fHBH
LOEETIINIIEFRBEL, ISHOOFIIIEKIIRT L2125, L ZAT, FEHALOBTET D&
KIEINE, FBHALOHEBRRE S RBBEREL 2V, BERERRKOBRCHRET S, SHETIRE, &R
WRFeAEALEE X b, #oT, b Léﬁﬁiﬁféé MERASEAFTRERR O, EREIRIHE TR L,

EZUEIRIX ~E@%§5k&6

EEE, IR LAUE, B TORIIERS,

K
I 8 2.
i o fi;(0) + BIRE (1.2.1)
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X1.2.1 ZSHEREEE X1.2.2 #5HFLD B D AR OIS TS

IR5EE LD, Tabhb, ISHES ur4ﬂf%ﬁﬁéwfkéoggumeu%%wﬁﬁﬁﬁ_%wf

XRIRICE R E L O RFTMBEER TH D, KIIERECOISIBLOEREICI-TEELIEHTH-
T, ISIHEREREL (stress intensity factor) &FEIILD, ERTN&Z L%, R (1.2.1) OELFE1ETKLEL
NDBERILr, 0 OHD, BRIFROHTHRE S, 2o "—FL B ChHoT, XEIORIEITEE LR E
WHZETHD, bbb, T, —REOFMEREL L, KOKR/NT K- TR0 S 23 R
RS DV N END 2L BT D, ZOFFITBMPBERE 2o THRETHY, ISR EERD
HDEMTARIZ L o TR > T DDA TH D,

ERUZE DT, SHOBMEMTIC L - TEESEETr V2 OBEM B F IS ISR LN, FORE
& UTUNHERBRERN R SN, L L, HERIIESFEIREE THEIRBR T 20T, IR ZD X 57
BEMEL b OZ LTS, K123I17T L5010, SEERCITEBERSTND, ZOBHEEORE S RE
Pl E, oy ZRRIGIE LT ,

R=& <—I—{—> (1.2.2)

Oy

BELN, kL rTRERECHE CAFHRICL - TERERD, b L, RBPEEE ITHETHy/RETIL, R
LY EBMRITRERREREZ DL B X Db, o T, INIERRE K % AV DB 8E T 1 03B 272D
1, BRI ENERE 2L, RPaBIUEM OREB-HETHESTHO/NINWE ETHD, Z0EX
i, K OERS & EEMROM/MEBIZRIT 5, 5, 04, OFTATRNE—, BEOTXTONFH
BHRERRTHLEEZLDHOTHS,

WIZ, IETHERBREDSE S TDIG o & &5k a @b%#&éﬁ»ﬁéﬁck RENEBZ LD, E&Hﬁ BB
BIIR LN TWAR, #1201, ERERPICE X 20 DXENEEL, ZZNCEE R HENCERE T T
7RI MERT A (K1.22Th— 0 & L2MR) 1211, MIIASITkEY

K =o0+\/Ta (1.2.3)

BEOND, —MROBRPMPOEHTIY, ZIUCEHR DB CHAMEEF(a) LD ERD,

KR EXISBNEEL OFICH LT, BRERMTELEL T F(o) ©EFHNRABEREIN TN B,
T, BEEOKRE I8, EEEBIOEMORENEZL LTHo/h ST, 250 HENER

VIRTHERRI K DA TEE D, 16T, SWPERLEVNIED, BEITIL, SFEREEIIEE L

-
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(-‘éﬂz oraj (kg/mm)
X1.2.3 ERIEImOBIE [¥1.2.4 Paris-Erdogan Bl A1

TKOEIEGFETBILTTHD, LWV ONEIENT AT T Thb, Tihbb, #VRLFEDSS

I KIX1 A I N> THIERT 200, EBEEKOEBIBAKEEXLT, 1 YA 7NV Yk) DEF

HERRE da/dn e H—TEHNCAK OB L LT "
da

- = J(AK) (1.2.4)

ERE D LT HOPMEEN R L D EELERTT MM B2V,

LML, Sl CICBEEREARL DL RBMNIONTIL, BENFENHEL TR, BEDLZA
FERIZE LM, & ZAR, ERIZENE, AKDERS S FTIRMEAK WU EThHEda/dn & AK
DBIEI N2 Y JRWFEFIZ D7 o> T3y 7 7 ECERCTHELES Z e BNmbnb L 2 ilhhol, 72
bbb, .

a m
MR L, FRAEICH 72 A TParis-Erdogan BI(112) LRI TWS, K1.241320—F&RLEZLEDT
HoTEIIEERKRE L, FEREMEESFHRT A—Z LB b0OTHER, ThbE L ED TRHHT
R (L2 BHML L TWAZENEETE L 9, Paris BIE, HUHm =4 LTERBRELER, 20
%Z < DFERICE > TmIIMBHC Lo TR TMEZTRY, —KIZITX2 ~ 6 DFOEREZEX DND LI
ot

b L, ISTHERBREDSEF COIRIBEOERE a DB E LTEZ DTS, R (1.2.5) i a lZRf4
DG HEENE 72V, ZEDPHR a0 DIRR a (CBET D TOFEMIBZEH LB LILD,

1. 3 TWEERMBERNS

ZIVET, BHEFERBEORER LT ORBUET OV TIRANTE R, 2, H< £ TEYRGR
BZEANDLHEFTRTAEDTHoT, BE, EEERIIEL OTHEEERIME S, B - ¥ O/
AT DI=DIZIY, TN O DOTRHEERERZ BUNIEBICANIMEOBRENRAI R TH D, Thdx, ZZ
TiY, FHEEERD BT, &9 L THHRSERNZEY O OLELTRRAI X ZHERIETB L OTRHR
RFEOMREBE L, Wb S THEROMEMEIFET M ONTEET S,

1. 3. 1 ZREROTHEEM
TR R DI, Y ERER DR BRI T, HEMEE % (linear fracture mechanics) 12
Efe B 2 EERTHRE LT, Whw 3 Paris-Erdogan M 2R L < Avvbns, LasL, BLTFiCik
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M1.3.1 7T/VI = 5AE4E2024-T3 O R ZHIRERER i D & Hl R ERER

RB YT, REBREMEIEFIC L HE Lz— IS HIRIE T OfEs S FHERERIZINTY, BEMRIT
D372 Y OFEFHIREE R H 5 Z LB bILTWD, FlziE, K1.3.1iXVikle bIZE VTNV I=0LEE
2024-T3 D & ZHRABA 1B L CER SR S HERERERCTH Y, MEIHFRIOIELWES
DEDHDHIEIRINTND, 10T, D72 &b IDHAITHE, SFEREHICEE L /27 A—=FT
BHBHH(1.2.5) O CIIMEEME & RATITTEE DY, ANBRTHAITHIT R X HHEERICFm TR
TEZENNARTRETH D, £z, HESHETIMRLRREETHL2ONE®THY, ET/VIHND
FRE T A—ZEBHEEIZMV G EDT TR, o T, HEOBMRBRBIIMERNUTDHY, SHHM
HAHERBRIICECTERTAICETHMVIRLE, Thbb, SEERFMLOMTD, TIT, M-
HEY OSBRI RRETOEROLDITIL, ERHEHSMB L UEREFM MR OMANLAL 125,

INBOEREIIGA DI, MEHFEEEE U TEEM ORENZFEERIICGTHET 2 FMB LU
ZUHERIRIE A FESRERACRRAT T A RN RE L, TIAFERRIRENF L N5 b 0T, EEEEE
THOEER—HBFLIR>TNS,
EROEBOREEERDONRIIE 2 bNBRRIIE U TR b D L1258, FbOW, MEDR
PRI RS 2 & RERIEKFLOTBNE CNZEH ICA R SN SR EORRAIEBNER 3 5 ARG/
WRIBORHANEICE LTI, HITEDR2 e OFHRIRES), J72bbiesAiEsam BRI s> 72 500
HETHY, FlarOETIV s FERMERIN TN 019,014

1. 3. 2 FEEMZIZERETIL



U, ZOROMERICBIT3EESIMNL TR 9, R (1.2.5) ZHHITERTELT,

dX AKN\™
ERTILITT D, ZZIXM)ITESRE S THon A 7 VBOBRTEHE, AKIXERCn YA
7 NS DISIHEREREDOTEENE, KoldTh &R URITOEL, eldBRT/ 37 A—4 Thbd, HEDOLY,
ISTIHERERENR (1.2.3) TRENDHDE L,

AK

S = IV (1.3.2)

RABERRIT A DERET D, 7L, Zutdin¥ A 7/VE OFESIER T SN NREIA RIS
BETH D, FFHERENORRAMIIN(1.3.1) D e 2FE L C, LEDBETE>TEELED, T
b ClEn YA I NED, XTI BIT HERIEHOBLEEREKTHLDLEEZ D, - T, bl
OYVIREEM sy g

%gzaazgqu (1.3.3)
WERELZ, TNEME LW 8N, Cp, Z, DHERNIRHES 52T, HaRRE X (n) ORERRHE, BIZTO
DRERDBLND 2L TH D, .

INEBYVED FTOBBRIIRD2 R THD, FE—ILCp, Zo 3B e b o LHEFBRETH- T, Cpk
Crony LV BDV20 REL RO TR LD THILE 2B LWV HThHDB, TDO®, fHREX(n)iXv/a
TIERRTII R 2D, TIT, BB EERICT B0 i a 7PN EE 2B, F0E, BEm
W2 U EDEE BB 720, FIROED R LUEOZIZ X PERKIZELTLEI EWVWIRTHD, DX
R HERRANCEZL LY LU, mhEbRO L D 2REICHS 5, K1.3.2 X ZSERRROEN
BTHY, n=n* (—8) OEMHRTH-2EY ADBERn A INVEDERROBELSZ, ©=12.0
BT >80 ODOBEEDR, XERrohbr JlETRETHCETD SHEREOMOBEELRT, L2
BB, n* YA I NMEZIIENRONNEOVEETH > TH T TICEEHEMERXIGEL TWA T 7L
BUSPHEIEL, TOF TSR LTH, TOMEUELE, 3 (1.3.3) I, REBTEREICHE
FHILIRD, BETIEL EEOnERIEELEE X, R(133) eV 7 LT 5 DTk
2L, BBV UTINVEMRH L TOBRBRILTHDOTH D,

Z DEE#EIRRT L, RN EXGHERTT IV O DO 42 DFEMERS TV A 13.014 -
DUZRR S, AR TIIHEBAFA LENET NV TH D, Whpd “FEm (death point) ZE[E Liz~</L
2 ZERLETIV ZOWTORRYVIRS 2L LT5, ZOET VRS FEXETND—D>TH- T,
1984 4, #83F - BIINEALLLOTHY, Tsurui-Ishikawa E7/VEREH I TV,

ZCIHEEIIAERS L, BRSO OUNAITENS L L 4AR, FROREE RRTDODTATT
WCOWTHEICN CB<, T, RIBZEMIZEA L TN 2 S HREBRKOREAEA L, ZORIE
LIe W o ZIZONTHE, ERROERROMOMHEILEIY HoTRY, ZORZICEZLRTEL T
BRNY TR L TOHERESA ORI Z TR T B & ThD, £ 237UL, ¥R 20 NOERLH
LI E WD B DR n BT 5 S HEARER TOBEE w(z, n|zo) H—MKIZ

/ w(z, nlzo)dz < 1
0

ERRoTLEY, LT LLEEORBIEAHEHRELRRD, LiL, ZOLXb@#Y2TRIZE-
T, LREOEEEZET 0D, v a7iEl e T LESGDNAD.0)  iadoh, SRR, EEIHTE
IR AR AT AHERIBRETH LN, BHEONOIICEKRD H 5 OB TRV R
BIIBAHHOBLTHY, TOZLIZEBTHOTHD, TOMRER, w(z, n|re) DELETRT BRI FH
B, Wbhwd “—b LBk T Fokker-Planck FRERMNESNBZ L 2725,

L, ZORESHFEREH ZencEul, K(L3.3) OMBRRDHREBMEEZMV 155 2 L2y, £
BB R\ A OEREASMBDN D, FHMIAKT D2, ZB, X(1.3.3) 0HEEIRbbAA, EAE
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(1.3.2 =ZLEEBREOENEK

HERZ L OFIIZx UTRERBIZE 2 BT 10,019 o2 [ IARBERR, FHBIEEEED X © Jefess
B DR BN B IR CA-TL B, M1.3.31%, EHESHAOBIO—HITHD, EFITEVER
ERNENEERBLT, SREBEIIEICREFNEZLDE 2D, FOERIL(0,00) TRL LTH 11X
BB, 1EZFOEBE DFENY, ZOBINREENTE SIS DHERIZE LY,

R E 2 BB Z & OBERIBIERICRE W, B, MEREEY O RAMEEMRETFEDRZ) I
Ronsm, B2 ER L CGHHE SNEZERT — & T2 Th, BRICLE- T, —KROXFLERE
HROT—2 1L TE X, [BEMFETE AL TR H B8,

1. 4 FEHSRERBREL/NTA-2FH

ERD XSz, HETHICET DS EHOERBEL Y & RBEICIZ < OREEBRRRAHAIE
RRFFAE B D~A6,(116) | BT, #EEOEIEMEREHOEEMEAT 28I ER T 5 202, £h
bE BRI AN HEERRAO RO OT 70 —FRRARTH D, 0D, EZFERBREOWENET
IKIZEE T B2 OBFZEMTON, BEETIEL DETNUPERINTWAR, FCHATENI DR
77z Tsurui-Ishikawa &7 /WD~ 3 B4n0D Paris-Erdogan (D5 & ZHERAIICESNT</va 73T
PRECDLERTAZLICLVEHEINZLOTHY, ATSIRIE, XZLERER, T8RO
RRE ZFEDO L ORHAMECARHEEM L TN TRY AND ZENTE, LrbEONMEESE LT
B LI TV A DICEARICIBAVIGHFREMEEZ B LD L 72> Tn 3,

AETH, HEERIRENFRBOTRREOHEN 2—FH L LT, ZOETTNAORIZEEINLTNS
HKEHRT A —Z DRBEREHEFIERII OV TIH LD, JUl Lo CERERBEDOHRSANRESN, E
BILENEEFHMOMCERECHHIICATD Z LR TE 5,

1. 4. 1 EHESRERBEODEEETIL (Tsurui-Ishikawa Model)
—RIC, REMRBEBORT XFHERIL, o 2EHE, n 2R L, AK % ZSUEROIGIIER
BREOEENRL 35 L, FAmMD Paris-Erdogan B(-12)
da

o =CK)" (1.4.1)
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0,2

200000 cycles

0,0

05 : L 200  x (mm]

1.3.3 ERESMORILDO—F]

Eo TRk &and, 220, mGEREIEIm > 2) IIMBER TH D, 7 F DRRMEAFICH LTH(1) -
PRILTHbDL L, EEERBENOZEMMHRFAMEZZE L TN (1.4.1) Z2ERTETIUL,

i{ . . 2(A+1)

~ = ¢CnZn 9(X) (1.4.2)
BEB, 2L, X = X(n) = a/ao 1L n YA I VEOELRES ap TRl ERTEEEE, l1EKT
LS T X BRERIES, Z, Fin YA 2)VEOERTT v ¥ DATIEAIRE, o(X) 13 SEERF RO

HIENEIRTH D Z & ICERRETAMEETH Y, ENINTHEE m LR
m=2(\+1) (1.4.3)

Lo TREHR ST BDNBETH D, DI, Culdn PA 7 NMEOETHERIBIROTNFAMEER L, E[C,) =1
ThBo Cry Zn HAFANEEN 5 RETERE RHEERETHY, X — B (=b/ag; b = HKiE) OFF dX/dn 23
R D LWV ERBHEREASFENRE LTR(14.2) ZBROVBOI LERD D, ZORZEELI, Tsurui
& Ishikawa [3FER & VI EREZEA Lz a 7IERFEEZAWT, MOTT IV TIHEE ST
FROWEE RFICTAR L, Tsurui-Ishikawa T7/VE2EH LTS, FEMIRSTK [(L1)~(L6), (1.14))1I2F
3,

T, LI T—EBLIRERBEREFATAIHEEE L LD, ZOHEIIIATIGIIRIE Z, 1 I EE
Zok 72V, FHHEOZDMIEEX)ZEZBE Lol il R (14.2) kY

% = £C,Z20HD x A+ (1.4.4)

2155, N(1.4.4) OWEHGEE X(0) =20 DT '@@ﬁ@i@% X(n) OWEERSAAREEIL,
W(z,n|zo) = P[X(n)<z]|X(0)=10]

., I S S (1.4.5)
- A/2G(n; 7o)
THZ b, TOBEERBEIL
. 25 — o = e ZEOHD
| _ 1.4.6
'I.U(x n I mO) .’L"\+1\/§CT(71—;TEE_)-¢|: by QG(?’L, 370) ( )
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THEZbND, 22T, O() IMEEERSAREE, o) IXEOBERETHY, Gn xo) IIFHEERTF L
IS L 0T, HERETF TR TESRESNH9,

o2 _ _ 241
G(n;zo0) = Z—2§/{—)—_I——c—15{mo @A+ (2o A = AeZZOTIN (n; o)) } (1.4.7a)
xg* b
: = Min. [n, ———— 1.4.7
N(na ZCO) Min |:’I’L, A€Z§(>\+1)] ( )

EREZRNT, oc, b BTN TERBIRONRAMEEZRT C, OFEHERZE, ZRAMEBEEMIES TS
EHTHD, T, MHERE 20 WEEEETD) DHORAER o ICBET L ETOERESEM N OfER
HABEIIRATEL b B9,

(1.4.8)

o _ o= 2(A+1)
H(nle;xc)EP[NSn} :(f Zo Z, )\6ZO n
A/2G (n; o)

T2, () IMBHEER BB ORBEETH 5.
1. 4. 2 BAKICEBNRTA—4TE

(1) EETARENSGA—BLZDHE
—RRIC—EISHRIERBRRE R IR & THUL, ZoldBEThH Y, HETRERMTA—ZIL, & A o,
o, 0EDEDTHD, b LLIIEER 2o BEATHIVL, &, )\, 6,050 40k 72D, ZD 5 be NIER
HERAZE Db DIZENSEDITWEA/ ST X -2 ThHY, MEORRANEICEE L 2HEH/ 37 A -2 Th
Do, 0% LI E RITT D, —MRITEED L 2 IeliEti/ 3T A — F Z EREICRTET 5 e DI IR HHOERR
EWBE DR, AR TIIINE LB DBOFERFHIERT — 2 9 bHEE T2 FIEIC OV TERT 5,

(2) BAREITKBNTA—FHE
TR X GHERIZMTE L 72730 A — Z BB ARIC L - THEET 2 72O iEE TR BB E BT 5 LER
b N (1.4.6) DEHE 2 AROAIECE Y, HBHEREREREK

! !
w(@',n' | z,n) = W (n’ >n) (1.4.9a)
Oz
W', n' |z,n) =P X(n) <2’ | X(n)=2] (0’ >n) (1.4.9b)
HRAD &L S ICEBIT/D Z LN TE D,
1 Jz= =22 = AeZZXD (! — )

w(@',n | z,n) = (1.4.10)

o M1, G — n; $)¢ AM/2G(n —n; z)

—HRITRG RIS B ERERT — 2 1L, m B kBB OERERET A I NVE, 2,5 F OROBEIEE

BRELT, (ng,m), (k= 1,2, K) LVOBTHEXBNTN D, SOF =25 bAERML | 2RO

0% F(x1,n1; 22, mg; - - s 7K, k¢ | )
813181‘2 e 8xK

F(21,m1; %, m2; - -3 Tk, nk) = P[X (1) < 21, X(n2) S @2, -+, X(nk) S 2 | X(0) = 20]  (1.4.11b)

WX VBT 5, ZOXRERBREL, XZLERBREROAT L~/ 2 70D 51O Bayes DAREFIA
FTHZEWZEY, RO LE I ICEKT N Tx B,

=

(14.11a)

K

L= ] wlek, e | wx-1,78-1) (1.4.12)
k=1



EEL, no=0235, R(LL10)FRATEIEICEY, REBHORNL LTRAEEL,

l::fi 1 ) o —2p = 222D (g —my ) (1413)
k=1 't V2G (g, — ng_1; Tx-1) A/2G(ng, — mp—1; T3-1)

ZOFRADBREAETRY, FHEERFICRK(14.72) DFRERAT B L, RRORMEERERE L 2355
o,

L =logl
K
=—(A+1) Zlogazk
k=1
— & {log(&0%) +log(2X + 1) + log 4n}
K
-——;— Zlog{m,:izl’\ﬂ) - (a:,:‘l - )\sZg()'H)
k=1

B 20 +1
X207,

—_ — 2 —
% sz:1 {{xki‘l — A AsZg(A+1)(nk _ nk-—-l)} /{zk£21A+1)

241
—(935)‘ “AeZ2OIN (g — ng_y; Tk-1)) * }} (1.4.14)

2241
XN (g, — ng_1; Tp—-1)) }

Pe- T, BAEBIZEB/T A —FHEHEITROLEFERNERABFOERTAHEE LTEXBNS,
oL_oL_oL_oL . or
de ~ O\ 0& Ooc Bz
BAEC L D8 A -2 HEETIE, —MRICRANT A —ZOENREL 2B L, BLHFEREBHEICHE
< DIZESTHEERRIERL, BREIIIET R D L) REENECH, £, FIETRELRT 2%
BARE L TN BERITIIHEERNBOENE L 725 & EHESHEENRTRIEL 125, (EoT, b1 ERE
FIA LU CTHENRELB O T IRETHIMNERD D,

(1.4.15)"

1. 4. 4 EFAMBAISOEEFREONE

(1) YEBHIAS A — 2 OHE

ARERNC BB BT S 522V DI ST A — 86,05 ThoT, WER/ST A —Fe, N
DFE L BDREEEEZZDORERANTH D, DD ETEREE &SRR (do/dN-AK)
WZBIT BT — ZR—BIGTIRIBRBER D S-N#REF AT 2 e NE L BND,

A. do/dN-AKBHRZFIAT 5156

XEHEREET —FIED%, do/dN-AK OBEREZNES 77 Ficouy ML, BA2REICLVE
RENFET S Z L Ve, \BIRET 5,

B. S-NHigZFAT 258

ZOBAIT, BEEMNROAT 4 T AEN R S-Nifi L OB 7 1y M3 L5 03l =&
(14.8) L 52 - BEHEGDMND, N I, '

_ 1
NzZ5®H = = (5> - z;*) (1.4.16)

i ERNbd, TOBAOMEERS L,

~ 1
log Zp = — Ty A - 4.
og Zo log N + 0D {log(z5™ —z;*) —log A —loge} (1.4.17)

_1
20+ 1)
EWV) RSB E Y ETCOERBHEAE SIS,

IRAEER o, DBBEMOT TRET RE /T A—F TP EZHEREI ¢, Paris-Erdogan BID~ X5
AN BLOYHIEEE z0 P3DOTHD, \eDPIHD 1 0% BRAOKFETROTEZUT, ERERL L
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1072

AR 3
as 3,67312 3
i co 1.Tr8888-11 i
g v
by a
g
5 %
1073
. o
= y.
oy 3
3
4
,/
104 /

50 100 200
AK (kgf/mm3/?)

K141 SS-418 D do/dN-AK Bif%

THELNTWD S-NBRE CORIFERDEE LOIANLEY D2 OJIRETEDHZ LITR5, B, T2
TIEE( LD DI, FEAXEER o0 HHEEETHD & LTHRYH-oTWAER, RV & RIS
WEVIEBDEERTEELDLONRBRTH D, T, TITHE L= xo 0T A SRR DY
LS T DLDTHD EEZXHRNETHA I, '

LA LIRS BAS B2 0 SS41 8 BEY 5 do/dN-AK BIROT— 2 MDA &,

A=0.787; &=1778 x 10711 x 71 ~ 1.37 x 10~1°

CHEIND, B ZOWEMICEEL, FU L FEMEHIx 2 §-N7— & (118 & BT/ 2 FEIC
FoTABL Q20287 —4 « IN—TIZHUTREL, VA TNVERK LIy M L2bOnRE1.4.2
BLUK 143 Thb, ZOHRITIEINB L Rao DEHEIIN = 2.90, 5 = 0.0117 mm & 725,

(2) $EHHRS A -2 DOHTE
BRI A — 2N e ZBVNIOFETHET D &, RABICLDMEEONGRL R DRIV T A—F1LC,
D5 0 & Cp, OZERNIFEREFEREC ST A ER & D2 0TH D, INHIEICEOE THRNS DT,
FEBRITIL GoZ D 1 DEHET IR, 0T, H(L4.14) 2> bEAFERL,

oL K 1 2241 C
—— = —— + =0 1.4.18
BEwod) ~ T E0% T A (Geol) (1-4.18)

_ _ 2
C 525:1{{%—/\1 -z - )\eZg(’\H)(nk — nkul)}
—(2x — 241
a3 — (232 = 2620 MIN (g — mp—; 1)) }}

THEZLN, ZNEM ZEIEY, &ot ORAHEEM (God)* & LT, KROXIRERER/D,

(1.4.19)

2\
(bo02)* = (—-2—%1229 (1.4.20)

ZnE DT, K(1.4.19), K (1.4.20) ITEH SEERBRED 1 DOFERE Rip&Nn5 LHO S FLHERMBRO
BT — & BRAT BT, IEEAEFER (1.4.15) ZEIEAICHEL 205 FEZ RIS, SLHEEE
EEERHET S 2 LN TE, RPEIERNEANDIEFIERR T A - ZHEEETHDL L ELBND,

SIE, AECIIMEERRAIIEE SR B L LT~ 2R RIS ORI H S 7 & SR
R OREETE TV (Tsurui-Ishikawa E7/V) ZGA LT, TORICEENBREV ST A —FX OERRIAHEE
FIEZRA LML, BEEH OEEMET- R F h OWEENMEE OMA~OIS AT DWW TRIE L,
WEEHEEMESE LSS, BT RE G A-FIIWEY/ T A -2 ThDN e, HBRIZL > TN
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&R o, BRUMEOTHAMEIZRD BHEH/T A~ 56,02 Th D, BiEILde/dN-AKBROT —
2% LB HIRIBE S RBRERD S-Nif e AV THE L, BEIIFEICEGZOBTRNADT, =
NEBREEC L > THRETIUL, S REFERE RERT T 5 2 L 2 SIRREHIT — & b EICHE
BT BHILRTE, TOR-REELICKRFMTHREEMERTNISAT S Z L8 TED,

1. 5 HHhYIC

ARFRIZIOTH, # - S ORBOEER Th 2EFHEIEHE L T, KRHEEOREEREOHENT
WIVES EEERREETH Y, JOXTERIDIERE L CEEEN%E AW ET UERETH S
e ERLE, EBIC, TRBEBEMERICEL T, HEERAENZCE SRFEFERTT VAR
TRTHY, LVDIT"HELER L v a 7 EET )V (Tsurui-Ishikawa’s model) ” ASEREGRUARHLS
BT, MEABRIICKDONTEY, B OFALENLOTHEZ L ERTE LB, ZOETIL
WCBNBRT A~ ZOFRFEEZHA LN Uiz, FARERITE BIZFE4 OERMEET~OSHENTRETH Y,
THRIHED TERTH 5,

2 £ X &

(L1) 8+ B, A ¥, TEERRAMEICS T 2K SRERSMOMOBERNELE], AAERTES
FMOUER, 5144615 AfR (1985), p.31.

(1.2) B ¥, B3 B, ERESORHAMEL ZE Uk S S SAERRBROERTT IV, AR
DFRICE, 505454 5 AR (1984), p.1309.

(1.3) #8F BH, A 1 NEHESEERIHEITMEEEDCEKTIZONT), BAERERRIE, 51%
46182 A#7 (1985), p.31.

(1.4) Tsurui, A. and Ishikawa, H., ” Application of the Fokker-Planck Equation to a Stochastic Fatigue
Crack Growth Model”, Structural Safety, Vol.4(1986), p.15, Elsevier.

(1.5) B8 B, Al ¥ WEHRRE, Ed B, TRRORZHE LU ES SFERRBREOHETT V],
##k, 35%:(1986), p.578.

(1.6) EPERH, B3 B, Bl ¥ TEFESHREBBRICBI A2 THEEROHEFENR , MHE, 35%
(1986), p.1385.

(1.7) Tahaka, H. and Tsurui, A., "Reliability Degradation of Structural Components in the Process of
Fatigue Crack Propagation under Stationary Random Loading”, Eng. Frac. Mech., Vol.27(1987),
p.501.

(1.8) Ishikawa, H., Turui, A. and Kimura, H., ”Stochastic Fatigue Crack Growth Model and Its Wide
Applicability in Reliability-Based Design”, CIMR, Vol.2(1987), p.45, Elsevier.

(L9) B8 B, HTRY, PEMMEEEFEROHERRIMANT, B, 3745 (1988), p.996.

(1.10) Tsurui, A., Tanaka, H. and Tanaka, T., "Probabilistic Analysis of Fatigue Crack Propagation in
Finite Size Specimens”, Prob. Eng. Mech., Vol.4(1989), p.120.

(1.11) Tada, H., "A Note on the Finite Width Corrections to the Stress Intensity Factor”, Eng. Frac.
Mech., Vol.3(1971), p.345.

(1.12) Paris, P. C. and Erdogan, F., ”A Critical Analysis of Crack Propagation Laws”, Trans. ASME,
Ser. D, Vol.85(1963), p.528.

(L13) BN ¥, B8 B, FESRAURREE MBS MR - #EM O SRR, KAGAWA TECHNO,
No0.90-1(1990), pp.3-32.
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(1.14) Ishikawa, H., Tsurui, A., Tanaka, H. and Ishikawa, Hide. ”Reliability Assessment of Machines and
Structures Based upon Probabilistic Fracture Mechanics”, Probabilistic Engineering Mechanics,
Vol.8, No.1, (1993), pp.43-56, Elsevier Science Publishers Ltd., Essex, England.

(1.15) BRAEEY OEREIEMERGT FEOBRREL (o 1) H#E5E, (1990), p.237, REEFRERA
[ « BAMEES,

(1.16) Ishikawa, H., Tsurui, A. and Ishikawa, Hide., Some Aspects of Structural Reliability Assurance for
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(1.17) BAMEIZSR, SBMENES & SEBIENT — X4, Vol.1, (1983), p.3, AAMEIES.
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2. #EE=4) ViCEY 5 ERMKE
2. 1 mHEEE=—s Y U ICHT AR
RAACHE RS E M) DO REEMT P RE TG A 2 dE25 LT B 0%, B REGE e g
FU U TEENIES RADITRABIBENEDIES T, TOHMEBIIEH A AZXLD
BHES &, NP HERITICEE T 2a OFRIEBERICL2EEB2 605, ZDLD
WRHTIZH > T—BOREW LR L LD ETH5E, RTFaEPHEEREE=SY ) v
f@8@%*@%@%@%%&?5@ﬁﬁ%&%éénéo

ZHIZIER 2. 1LITRT 2D OAENEZL b E, —DidEYhOEERRZ R
T3 A% (BERNE) T HAPRESREE=_SV VT NVREZSFY VT, Y
Y=l X BHEE) D’d b, b —2MEEMOREFBREEZEIICTNT 5L (BRTFH
) T, HHOEANE, MEBOMMIELE, W0 SYIH UcuNaRBR F OB A FaridER,
B L UEEH & D BIRICHREI AT 2 BMRBR A RS ENH 5,

ZDHL, FRAFHRERIZIEASOEEDTITONTED, EAHHESLEITICUTIT
bhT&I, Fi, Bll, REMTFMOMBEEL > T0ERA S —PEETS S MTid
MHAEZ, UNABRR O LEPRARICL e V7RSI THh 3,

CHhiIZH LT, NVREZS Y U7 0BBRBRR O I, WEIET AT OER
ZH b, NIVZAEZSY Y U IIMEBRPDSEERIONT 7 AN =2 HHIALUITED, 4
PESLER L 0 A1 34 B 0 PEME S ) C— BRI E N b TV AR IS T £ 750,

UL, NVZEZS Y VTIIBREER - T, Y T— MICERFERTE 5 51
MADH B, £io, BRI EERM OHFGTFUT TR, 7 SR T
FEHABRETO OB D" EEBZX DL, EBIEY CHME R 2HTEREPIRAREYE
ﬁéz:fﬁ?%’ﬁﬁﬁ BEBRMEONA RN D 5, £z, WEFRIMEEDNITRIIH THA

EALBED~OBEAED I LT 5,

urm%z@b SR 6 EFEILEE T 4 VA, BEBRE IS I ZAF v 70T 71473,
T RINT 74 /3F KU RFEHHE
Fox o b OB v
SEREL, AR USERFAR
FEavRy v Frya vREBR
B LT, SRR = B

Ufco &72, PRRTHEERENR | gmtoms
BETFHOBED S, hREZUTE | REMMES

: %?&:E:&U‘/@

TR LA IR A AT ;
WHERBH R E LI, 2 LT, ua)

AL BB <R LT3 BRI LS
BT, BESBR A DA R _{%‘%@% HOIE }
BRI Lice T 50RO

—(BHERBE OB 1)

FERIILIT D 2 DOCHRIZHE L
Td, B2. 1 #gEE =4V 7T X B EFIREGORBM E T A
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2. 2 WMEOERE=SY VSIETEER
HEEE=2 ) VDRI, " BREBAE LORETM O HHRIE 0Bl
bH b, NVREZY Y V7 POBERBRA OMANFIRTEIC D, EXF-DIICLBIEN
EZF YR, OA NRBVERE LT3 2 EOABOMEEE/EE) N 5~ 2 TEHUIT
BHRIE EIIBEICHI D,

EIAT, MEBEEEZILE, ERIBEZROET=7 ) VI bEELEEZI T 5,
zhid, U TOXHBRBFERH A0S TH S,

DEATHOREEZE=5 L, MOEEPHERDBIEXE,

DB X AMAETE DK,

DRFLAMOFER L OXTE OB MM EZEEL, REFEHICH M,

Dicbd, RUNEEOREMERERT & U, SIS & ME SO MY,

SESTHOMAZETE OBEREELERDO V D RE#HR E L TOFIH,

MAERES, BXBLCBEAFAICKRZNOT, K2, 205912, BTHOREAMEES
ERAFREMNETEXRLOIONEEZEZI TS, MEITIIFME, LV—U% FLEARL
SLEERO, KRRl —h—%2EZ4 L, ZOMEBKRD SEREA WML
HTHONMITEHLONEZEZI TN S,

K2. 2 MEEEOE=5)T
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FEEEDE EMEDN SRR E TS TEHERL20H D, HIZIE, FIEPLV—YE
ERST Y XLERNI 3RITIE Y X7 & (BIRHERA, &Mt AT BIFHE > X 7 4,
EMFERTE, TT15, p. 628, 1993) bHAFIN TS, T, EHEMOMWKTHEENEST SH
IO Db H 5, BEHTEEASHNED L, RO EDHENDH - THRYIM
1/ T & 2 B EEHkIE b F DEOBURICH 5. EYOXIEFHNCIE, DES -V,
O— Kb, EB)FS v AICKBEEDEHN, DA —baYx—%, U—¥RHITES
R AEON, DI L —VRIc X ZERNE (SANER, KHE) , DRER

FRIC & AHEREE GEBEED , D~—A, S A — FOFHEETANE, 6)hnE
BERHC X A WEME AR T B HE, HEFEIOND, JhoDORERELICE=S Y
VI FHEORRE, EMEREEULERAMEDILEN S,

ik, =Y V7 ERPDH D E & L& EDOEFERTEPRERROFREZ, RAON
A XRFETHEATEIONEE LN EEZZ 615,

A XDERR

E=2 U V7 HEBRIE & & DEHECREERD FHUMA
+

E=F U 7EH

Vi
E=2 U VI ERAER RO RHEPEREHEERD T HIE

REHFICE T ERBE PIREHERIE, BEOBAHAOBKRIEH LTS EER
LNb, EZF Y VTIEHRERAIEBIS, ThERAM XOFHEITEMEHRE LTEZ, 11
ICEBZ I ERERCHEEOREEDT v 74 METH ZENTE S, ZhiCEkD, FHD
BRI ZREICHIB LT T ENTE S, TOHEE,

DEBICFHE LT A RESLENERATE, BEEOFBNZEIETHEIZNS 5,

DT O, MOBEEPERORITEET 5,

DEZZ Y VIERAETERORE P RFEHFEOSEITHIAT 5,

REDAY vy MPEENSE, bBEAHA, TZF ) VI THLNIEEPREEOERIT, M
RO FEH B I & EREIEICFIATE 2D TH 5,
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3. HTrANNkUYIZLBEEHA
3. 1 FHBEXT A \byHick AT NER

3. 1. 1 FTHBHEsYOOEKE

ﬁ@?&%ﬂ%bt@z#@%& kA THEMN, R EFTARELNSDHAE
IN=T I S—HERESTHIKLUHFENS A A IEIBE LTS, ALK
%%@$%Téﬁ\M%ﬂ%@%ﬁﬁumDf%@%%%%ﬁﬁ%ﬁ?éo:@%%
AHRHT A EICL ST, BE BN - EREFLBYEEORENJREEL S,

s TN Y VTR

g /- W ONEY R O Ay A 7 SN 3‘(:7 7 ANICAS X, i’é‘:‘ﬁ?y‘ff/\?'v?“-y 1/\&:&7}
T EIND, T 7 ANNAT SN ESUEED Z0IEHEXIES DT,
WL . BFEHREREN L ODODFEHEND %, ﬁl&éﬂty‘é@——jﬂi@@%ﬂﬁﬁ\ fth 5
WEBBHEK - TENENDT 7y ANERBONT 7 AN ATS2THIEEIN. T
Wd b, BRENAT 7 A NDNEERBRAMT HE, TOREIGEU T EILEEDOZEE O
HAHEDT. ChABRHTHOEEDRHENT X 5,

AN - i B ) KT P AN

HT51 """" BTS2
LASER F—— //// Bt
A

Fig3.1 2w/ e VHH

3. 1. 2 X7 7A/NITHEUKEELAMHEENDREF

FHRONT 743 o Hid, BUHEICE LTI L AMHEEILAETBLERED
EEELUTHRHET S, MENENETHLBEPRPENDEAETEH. THLoDHRITL
HAHEEALZ D Z ETRBICEZ TN 2ZENTES, B/ HEDORDAHEG I
ol 75 17 D fai B # (propagation Constz;lt)%'lﬁ, UV EHOEXEIETS & 5.1)
ThHb, BICEZROREEEK, IT7DEITEREN, 77 A /NHF AR TS5 L2850
IS UTO RN PR EEZ D E, Bik

B= kncos 6 (3.2)
LD, LUHT 7 A NDE—E— FOGE, FEFTEIVNSLDTE dIFFIT/N
Y 3.2

B=kn (3.3)
EEYTES, Zhe CLDRITKRALT. -
¢ =knl (3.4)

AT 7 ANICENEL, T EHORINAL a7 DOEHFTEIN An, (DA
¢ rRFEALIET B L

A0 _Al | An
o 1 (3.5)

L5, (3A5)3:’C0)EE}F$”’£4EA n/ni¥
' n %(an) AT+ 511

oT (3.6)
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&IN5,
CCORBEIHE H I AOEEEMILEFETH S, FJIINT 7 A NICAE
U7l KB BT REMERL. THERBWBRIR &5 o SR RIC X BRI R
ZibSnlx, Ry b ZFRHEPiEHNT,
e .

, dn =-3 (P1181+P|287+P128) 3.7)
EEED, 12U €48 ezcztj‘w?%/\w?@jﬂé]m\ e dMAMETHS, £C
T\ X7 s OE AR &2z, AT xRy ET5 &

ey(=e) =4 (3.8)
81 = 82 = ~Vez : (3. 9)
&Lvﬂﬁﬁﬁw%bﬂm(37fmi
80 =-7{p - ViPpale, (3.10)
715, (3.6)x. (3.8)xK. 3 10):&%(3 SIKARA LEHIG 5 &
Ad . 1{on
q) { <pl2 pu plv)}] (aT) AT (3.11)
PEoN 5,
CZTEREZILATZ0E L, o |
C=1- o (plz (pu +pl")} (3.12)
EE< &N
Ad
- Ce, (3.13)
G HXEZB LKA L. €, 1D THEL &,
_Ad 1 A1
& =1l 'C = 2mal C 20 (3-14)

eEl. AREZEHDONRORE,
ST, THRERENRD & =ML EE, TRbbMMEN2T 223U
EEXDEE. Gl1ORICBWVWTAAE2T ET A EICL DB SN,
ez=%]~-% (3.15)

L1385,

3. 1. 3 HBMHmLEZTOLHE

Fig 3.2{2134 BIF7 - 7288 D5 IR O B DO RE M ENI L T 7 1 & U ST
BEF—VD2WMOMIIIHEFERLTHS, ABFORMIZT v/« Ve VIRIT U
OB 7 v A NE R DD, TOHEAUDL & 5 FRIUAMEICH Y fHiF s hicEHS
— VI, BOoNIMEBEO KA THHDBEDTH5,
KRIFFTUDICEK@DICRT LT 7 AN mAEET— Tk s
DT, FENTOIIRT LI T y ANEETF - VHOBMESER TESE LD
THiTo 1o BEETHBITIE. KD IEMRFMAETSIDIZHET 74 NODYV ¥ v bOD
843 (primary coating)ZF LT/ 5 v NEALEH LOREIZ LA (RAK(C)) » Zhik
KT ANICENELCILEXII vy bEZTy FOBITEINDNRI - TULE S &
HKBAOENATETEDOLOHNWIENH L ETFHEINEINLTH S,
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Strain Gage

\

' ‘////’ HIZOTAS - VR TEL
44 () ®

{
L —
)

Stress Applying Part

126 1

|

Fiber-Optic Senser
Sensor Part &

4_____1_3__1_____» OQuter Coating
©

Fig32 %7 7 5 VYOI OBT

FERNT AN TR, BEAT s ANERIB 7 7 A NDODEIDEALE
TR D BITREALANI LD THT 2 DORDAAHENEDL - T, Fo6 N 50IE
BEHANENT S, SOOEFMERETIE, BB SRV OoNBAH 7
FANDEVHEOZIFBEENELNEEZZ TS DT, ﬂ/#%# SAZIIT, £
DN K » THH A2 7 720 E(L T NIEH SN 5 e E 7 i3— B W5 78 g %
BOBTZEINHS, E->THRUFHMOUVTANEZZ SRFIT S E, EEEHNICIE
EHEICSUCB S HBENEN, TOEDELHEELDGE.12), 315tk v
Y EBEX R UTable . NIRUIEZENNT A —FE2HRA L TKRDIHE (—BWS OEICH
95B) LWL THBRAICEULELEHTAZENTES, B 12)H LD COHE
.

C=0.781 (3.16)

LY. ThEGCLHMIRALEHT S &, THEBEORA—AIIIHEYET 5E
DRE S FE Y HORSIZANT,

£, =1.14/1 x10°6 (3.17)

E15, Et\%%ﬁwﬁﬁ\ﬁ774ﬂt/%®t/#§%nmﬁ2~TLT%<O
Table 3.1 Fiber Parameter List

Fiber Parameter Symbol Value
Refractive Index n 1.46
Poisson's Ratio v 0.164
Pockels' Constants P, P,;=0.121
P,=0.270
Wavelength A 13 pm
Table3.2 B VA IEIONT AN YDV E
Material Steel
Specime Cross Section Area 97.9mm?2
pectmen (width X thickness) (29.93 X 3.27)mm?
Young's modulus 21000 kgf/mm?
Fiber Sensor's Gage Length 26.5 mm
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'%33&%%@&%%ﬁbto%%@%Kﬁﬁ%%@w&%t;—wy*bfﬁ
w\m®%ﬁéﬁﬁm<h£5KM%btoMﬁAm%$¢®m%ET%50

R - gy vt
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DFB L — 3 . . . B
5 2 i 8L §. L DN

Fig 3.3 %7 v A3 vl K A8l -ik 0 R
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e tijijle 0

OE &3
mEAnE YN F4NT— A= — TrosBE

IT VAT 74388 BRBRENRT 7 A NAT 5

® BMEEHRS peC

AD &
For. IR

AZ| B OHIZH 5 GRS DWW THRA T 5,

BENXT 7 ANOKRETIE. EWLUTEX OB NZDEFEBLTULE I DN
—EHDONIIIHETIRE LU THT 7 ANOHFER-> ThE, TFEICK > TH S5
BRI KB ZRIT T, T TAHRIOEERDGE (v Y 2 VT RIFEED
TIEEEH LWL T 7 A /SO AHLEEE U TR R E A R oVt 7 A
N P, AT VR T ANEHRTD) BEREL TS,

EMBEELR AW EER, OT7REELRENENIZET,. 20 HT 7 A
INTRASFULILEADEL T IR LT UE S (Fig3.5), a7 VT 74 /3%
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An Application of Bayesian Decision Theory

to the Design and Inspection of Marine Structures
(A new class of loss functions)

by Alexandre Kawano* Hiroshi Itagaki**

Tetsuo Ishizuka**

Summary

Life of structures which are subject to fatigue failures involves high degree of uncertainty and risk.
In order to design such systems it is necessary to take into account several stochastic elements. As the
structure ages, the relationship among initial cost, inspections, maintenance and reliability level
becomes important, and it has to be studied in order to achieve a good design from the cost-
effectiveness point of view. This paper analyses this relationship and proposes a method to take the
best decision among a set of alternatives regarding structural dimensions using a new class of Bayesian

loss functions that are based on the concepts of under and over design.

1. Introduction

Fatigue is perhaps the most important failure mode in
offshore structures. In some instances, it accounts for
more than 809 of all observed service failuresl).
Moreover, in the case of offshore installations, where
the degree of redundancy is low, fatigue failures often
mean catastrophic failure. Despite all efforts to reduce
this kind of failure, it is still a challenge to solve. In the
literature one can find several papers that deal with the
design of large structures subject to random loading and
fatigue with cost preoccupations as in e. g.2)3)4)5)6)7)
8)9)10) or with focus in someting else as in 11)12)13)
14)15)16). This paper is concerned with finding the
optimal cost design of marine structures under the
condition that epistemic uncertainty exits. By epis-
temic uncertainty 6) it is understood the uncertainty in
parameters that can be removed by collecting more
information through research, inspection results or by
performing experiments. In particular, in the case of
large ocean structures this kind of uncertainty is large,
since precise statistical conclusions are quite difficult to
obtain given that the sizes involved make full scale tests
prohibitive and that the number of same type of struc-
tures are not large enough to allow statistical infer-
ence 12). In this case Bayesian analysis is invaluable as
it permits that the designer incorporates his own experi-
ence with similar structures in the decision process,

*Graduate student, Yokohama National University
**Faculty of Engineering, Yokohama National Uni-
versity

Received 8th July 1994
Read at the Autumn meeting 10, 1th Nov. 1994

making possible less conservative designs than other-
wise. Up to date, cost optimal designs are obtained by
minimizing an overall cost formula, taken as if it were
monetary loss, that includes material usage costs,
maintenance costs and failure costs for both the cases
when epistemic uncertainty is present or not. While in
the view of the authors of this paper it correctly finds
the optimal design for the nonepistemic case, in some
circumstances this method fails when epistemic varia-
bility is present. In this paper this is shown and a
method using a new class of loss functions is proposed.
Specifically, these loss functions are studied in conjunc-
tion with the design of structures made up several
components subject to strength degradation due to
fatigue, but also subject to inspection and maintenance
along the life time. Although design is a very complex
task involving several decision variables not in all cases
tangible, here it will mean simply to choose among
possible alternatives, the inspection times and a struc-
tural dimension parameter so that a loss measure is
minimized.

In the first sections reliability evaluation is focussed.
Later, cost and loss functions are presented. At the end,
a numerical example is performed.

2. Loading and structural dimensions

In this work, it is supposed that all the geometrical
forms are delined, i. e., optimization of forms are not
performed, and the structural dimension to be optim-
ized, A, stands for a general quantity such that #/h=X
where /7 stands for force or moment acting on a partic-
ular structural element, and X for stress. Therefore, A
has a broad meaning and in its definition stress concen-
tration factors and other coetlicients are naturally in-
cluded. In this study, it is supposed that the stochastic
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characteristics of the F process do not change with A.
It is true for the case when the total dynamic mass,
damping and stiffness are not sensitive to small altera-
tions in A, or for the cases when £ is related to the
dimensions of relatively small critical elements.
Another hypothesis made in this work is that F is
ergotic.

Given the above hypothesis, it means that the spectral
composition of F and X are identical except for a
factor, and the expected value and variances of both
processes are related by :

ELX)=X(n=LLFL | (1)
VIx]=lom =" (2)

3. Fatigue life and element reliability

In this work, fatigue life is considered to have three
distinct phases: crack initiation, propagation and final
failure. Given this hypothesis, it is necessary to model
the element reliability accordingly, that is, to set up
different models for the probability of not failure of a
given element before and after crack initiation.

3.1 Crack initiation

Classically, fatigue life is predicted with the help of S
-N curves, that relate a certain constant stress ampli-
tude level to the corresponding number of cycles re-
presenting the fatigue life which can mean the number
of cycles to failure or the number of cycles to crack
initiation. The specimens used to obtain these S-N
curves can be small standard specimens, scale models or
even full scale structures. Moreover, the testing stress
can simulated with several degrees of “realism”. Of
course, the more complex the testing, the more uncer-
tainties can be removed, but given the prohibitive costs
of testing full scale structures in the marine and
offshore industry, in general they are not performed.
Here it is supposed that only constant amplitude tests
for crack initiation in the structural detail of which 4 is
to be decided is available. To relate constant amplitude
data to the “real” stress loading X, it is supposed that
the Palmgrem-Miner rule applies. Conditions for the
validity of this assumption is investigated in e. g.17). A
crack is said to initiate when it reaches a macro size a@o
from which phenomenological fracture mechanics is
applicable, 1i.e., stress intensity factor amplitude
becomes meaningful for describing the crack propaga-
tion phase. In general, for common structures, ao is of
the order of the size of detectable cracks by the naked
eye, or more precisely, the order of centimeters,

Mathematically, the crack starting time (or number
of cycles) is supposed to be governed by the Wohler
formula:

N{da) =@ (3)
where N is the number of cycles till crack initiation, do
is the constant amplitude of a stress process o, and @
and p are (roughly) material characteristics. As it is
well known, fatigue test data show great scatter. [t

could be modeled by making p and @ random variables,
but instead, what is usually done 18) is to fix the value
of p and model all randomness contained in these data
in § only.

According to the P-M rule, crack starts when the
total damage 4 reaches the critical value dern=1.
However, this rule in itself presents uncertainties,
mainly related to sequence and size effects. To take it
into account, de will be treated as a random variable
that follows a 2 parameter Weibull distribution with
mean one. 4 is calculated as follows:

=3 40=3 oty

=58 (4o =5 wldXmy (1)

where 7; is the number of cycles corresponding to the
constant stress amplitude do;,=4X;. Now, if the num-
ber of cycles is very high, which in fact is the case, the
coefficient of variation (c.o.v.} of the summation fac-
tor is very small 19), and it is possible to use its mean
value :

E[; n,-[AXj(h)]"}
=T x E[N.(0)]2/2)?[a:(W)}°T (1 +“§“> (5)

where in the formulas above, T is the time in years,
0:(%) is the standard deviation of the stress process X,
and E[N.(0)] is the number of zero crossings from
below for unit time. To obtain the above result, it was
supposed that X is a narrow band Gaussian process.
While the assumption of narrow-bandness gives conser-
vative designs e. g.20), the assumption that the loading
is Gaussian does not 21). However, these hypothesis do
not invalidate the conclusions at the end of the paper
concerning cost and loss functions.

Crack is said to initiate when 4 reachesspace a criti-
cal value Zrw. Substituting(5) into (4) and solving
A(h)=den for T =T, the critical time can be written
as:

Qe
(6)
EIN.0)2/ TV Lonr(1+4)
The probability density function for the critical time

T.(k) can be easily found as the pdf of a product of two
RVs (@ and de) 22) :

Tc(}l)z

Il = [F I faen |75 |d )
and the density function
Frtit)= [ frlalh)de (7b)

where
S =EW./TPamrr(i+4)  (8)

Note that in the above model, there is no fatigue
limit. It was observed experimentally that the engineer-
ing fatigue limit that may exist for some materials
vanishes or decreases abruptly under random load-
ing 21).
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3.2 Crack propagation

The crack propagation phase of the fatigue life is
very important when considering inspections and main-
tenance. After initiation, the crack is assumed to
propagate according to the Paris law :

da S AKA"

s (,< ~~~~~ > (9)
where a is the crack size, n is the number of cycles, 4K
is the stress intensity factor range, and C, m and K, are
material properties.

In probabilistic reliability analysis the above formula
is randomized in order to reflect the fairly high scatter
present in crack propagation data see e. g.23)24)25). In
this work, it is supposed that m is deterministic, and C
is a lognormal random variable in line with the model
proposed by Yang23)26)27). Although from the
phenomenological point of view this model works, it
does not mean that it is also correct from the physical
point of view. Indeed, if one thinks the structural
system as a “black box” that is opened only at the
inspection times, then, any one of the variables, C, m, or
even Ky could be used to randomize the crack propaga-
tion law to model the variability in the data. Of the
three choices, randomization of C ig by far the simplest.
As it was pointed out in the introduction, in the offshore
and marine industry it lacks experimenal records. In
this paper it is supposed that C has mean value g,
uncertain in the Bayes sence. This uncertainty will be
tackled later in conjunction with cost considerations.
Note that any significant difference that would emerge
if m or Ko were randomized instead of C vanishes with
the application of the Bayesian method since, in the end,
the probability distribution of the crack size a (what is
really important) is updated in the light of data.

The stress intensity factor 4K is given by :

AK(h)=4X(h) Y(a)V/ra (10
where Y(a) is a non-dimensional geometry factor,
which depends both on the structural element and the
shape and length of the crack. To simplify analysis,
Y(a), in this work is supposed to be constant and equal
to one, which corresponds to the infinite plate solution.
It in no way invalidates the final conclusions.

Supposing that the stress process 4X is narrow-band
Gaussian and integrating (9) to obtain the crack
length a as a function of time ¢ :

alt—tc, h, c)=[aoL—2ﬂ+(z‘— te)Cy(h)

2—m/( /o \" = .
A <K0> } it m=2 (11a)

a(t—te, h, c)=aoexp [Cy(lz)( ﬁ)%t——t:)}

Ko
if m=2 (11b)
where fc stands for crack initiation time and :

r(h)=E{M(o)]@ﬁma,(h>]'"r(1+ﬁ) (12)

2
In the above formula, ao is the initial crack size (see
section 3.1).

3.3 Conditional element reliability

A given element, which starts servicing at time /, may
fail before or after crack initiation. In this section, the
reliability of an element conditional to the knowledge
of failure before or after crack initiation will be studied.
The stress process is supposed to be a narrow-band one
with characteristic frequency wo= E[N.(0)] cycles a
year. A given element fails if the stress level crosses the
element strength, an event of which probability can be
given by some approximate solutions of the first pas-
sage problem.

The element strength degradation law is in general
geometry dependent, and difficult to obtain, specially if
the structure is redundant. In such cases, the degrada-
tion law must be obtained by analysis and testing. In
this work, it will be assumed simply that, the maximum
stress the element can withstand is the one that corre-
sponds to the critical stress intensity factor K. for an
infinite plate. In other words, it is a very simple crite-
rion for failure, that does not involve any other failure
mode except general yielding of the cross section, if the
critical stress required to brake the element by crack
instability is greater than the yield point of the material
& in consideration. This simple model also does not
provide “crack stoppers”. Mathematically, the strength
degradation law is given by :

K.

E(alt, h, C))Zm if a(t, h, ¢)2 acn
(13)
where
_ K.\
acrll*< 50‘/—7-[77) (14)

Failure of the structure occurs when the residual
strength £(a(t, k, ¢)) is exceeded by the applied stress
process X (¢). The failure rate associated with this first
passage problem can be approximated by 14)28)29) :

Frir, & h, ¢)=E[N.(0)]

X exp [—— (£lalz, /21»05()})1)“)(_(11))2}

(15)

Behind the approximation used, there is the assump-
tion that in the range where cracks can exist undetect-
ed, the element strength &(a(t, i, ¢)) is sufficiently high
compared to the range of X(¢) in a typical inspection
interval, so that the crossing times can be considered
independent even if X({) is narrow band.  Designs
obtained with this failure rate become rather conserva-
tive 28).

Using eq. (13), the element reliability after a crack
started can be given by :

Vii—tle, 11)=exp[— [T B

(Elalr, b, )= TR
B e

Xexp [
(16)
The reliability of an element before crack starts U(+)
is given by a simplification of the above formula
(element strength is constant in time) :
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U(r—hM)=exp{—£IALUDKt—tO

&

v 2
xexp [ {8z U] (7

3.4 Unconditional element reliability

As it was put before, an element can fail before or
after crack initiation. At section 3.3 the conditional
reliability given this knowledge was calculated. Now,
the interest relies on the unconditional one. Inspections
are performed at times To, Th, -*+, 5, -*+, T» as indicated
in Figure 1. As is shown in the figure, 7; denotes the
last inspection up to time ¢*. It is assumed that during
an inspection any failed element is found with probabil-
ity one.

The set of non failed elements, that started service at
time T, at inspection 7 consists of those elements that
do not have cracks and survives, and those elements
that have (undetected) cracks and survives. It is impor-
tant to remember that the elements of this set were
inspected at T4, Tu+2, -++, T-1 and neither cracks were
detected nor they were found to have failed. That is,
although the objective of this section is to find an
expression for the reliability at 7; of an element which
started service at 7 unconditional to crack initiation
time, this reliability is conditional on the fact that the
element did not fail nor cracks were detected at previ-
ous inspections. Before mathematically writing it, two
events are defined :

A={Element does not fail from time
T; till time ¢*> T}

B={No cracks were detected from time
T till the last inspection at T}

The probabilities of events A and B are dependent on
a given value of crack propagation coefficient C=c.

The reliability at time ¢* of the elements that started
service at T, and were inspected for the last time at 7;
can be written as:

RtHI Ty, Ty, b, ue) =LA 0B

P|B
[PLAN Blcl/e(clue)de
= (8)

[EUBIC) el clude

where fc(clue) is the probability density function of the
random variable C conditional on the knowledge of its
mean. Furthermore,

- PlANBlc]l=U(t*— TIW[L = Fr.(t* = T\|h))

+£"U(z—7‘,lh) v

e, /z)kﬂl[f[( To—1)

Already performed inspections  planned.inspections

N

L i I } } |
T, T, T, - T { T 0 Ty
t

* (present time)

Fig. 1 Schematic view of inspection times
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X(1=D(a(Te—t, b, c)))]frc(t
= T h)dt (19)

In the above formula H(-) is the Heaviside function
and D(a) stands for the probability of detection of a
crack of size a:

D(a)=1.0—exp[—d(a—amn)] (20)

The parameters d, a positive quantity and amn, the
minimum detectable crack size are considered constant
for a given inspection procedure.

The fraction of elements that neither fail till ¢* nor
have detected cracks belongs basically to two mutually
exclusive categories: a) elements that no cracks
develop (or, putting into other words, cracks start after
t*) and do not fail. This fraction of elements are
represented by the first term of the LHS of eq. (19). b)
elements that do not fail and possess cracks that started
before t* but were not detected. Note that it includes
cracks that start between the last inspection at 7; and
t*. This second category of elements is represented by
the second term of the LHS of eq. (19).

The fraction of elements that belongs to set B is
obtained in an analogous manner.

P[BIC]= U(T;— Tl'h)[l"Fn(’D“ Tz'h)]

+/:JU(t— TR V(T

~tlh, ¢) I1 [H(Te= D= D(a( T
—t, b, D) fr(t— T h)dt (21)
4. Inspection results

It is of interest the number of elements found cracked
or failed at the inspection at 7;. In this study, elements
found cracked or failed are repaired or substituted and
after this operation, they are supposed to be good as
new. [t is acknowledged that repair qualities influences
the overall cost/reliability relation as is pointed out by
Sorensen 7), but it is not modeled here. In this study,
the elements found cracked are classified into a number
of classes depending on their sizes. The probability
density function of the size of the cracks at time 7}, of
those elements that started service at 7, can be easily
calculated. First it is useful to remember that in the last
inspection, all elements were checked, that is, the popu-
lation of crack sizes consists of those not detected till
T;. Defining the following events:

C={Crack of size between a and
«+da detected at inspection at T}’
D={No cracks detected NOR failure from
time 7% till inspection at 7%-.}
Then,
PICIDI=pla| Ty, Ty h, p1e)

[rrenplelfeelude
fP[D‘C]fc‘(C]/lc)dc

The probability of the occurrence of the event CND
can be obtained considering that the fraction of ele-
ments that belongs to CND is composed of elements

(22)
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that possess cracks of size a (or more precisely,
between a and «+ad) and do not fad before crack
initiation, nor after, and the growing crack is not
detected until 7,. Note that given the crack growth
parameters, and the fact that at 7, the crack size was
a, it is possible to backpropagate the crack to find
initiation time f.(a).
PlCODIc]=Ultla)— TIh) V(T = tla)lh, ¢)

x H{l — H(To= 1)) D(a( T,

—ta), h, c)}D(a)fsla) (23)

The fraction of elements that start 'service at 7% and
do not fail nor have cracks detected till time 7 comes
from two mutually exclusive groups: a) Those that do
not fail and cracks do not start till the last inspection at
T;, and b) Cracks really start at any time before 7 but
they are not detected. Therefore:

P[Dlc]=U(T;— Tl = Fr T;— Tulh)]

T; J~1
+L U(t= T V(Ts=tk, o) 1 [1

~H(Tu—=)D(a( Tu—t, h, )] fr(t
= Ti|h)at (24)
In this work, cracks are classified according to their
sizes. Class 7 comprehends detected cracks or sizes
between CL; and CL;.i. The probability that an ele-
ment which started service at 7% that is classified as
class 7 is given by :
P[Find a crack classified as level

. CLina
AT Tbowd= [ Hlal T, T, by pdda (25)

Another type of elements can be repaired at 7;. They
are those that failed. The probability of finding them
among those that started service at T is exactly equal
to the probability of a element that started service at 7.
fails between Tj-1 and T, given that it was up and
found without cracks in earlier inspections, since failed
members are detected with probability one. Therefore,
using eq. (18), it is simply calculated as:

P[Finding a failed member | T}, T, &, sc]
=1*Re(7:] 7jj—l. 7‘1, h, /lc) (26)

The number of repaired elements in a inspection is
calculated according to the following scheme :

a) Define a vector of sets R containing elements
that where repaired for the last time, and consequently
started service, at time 7,. Let the number of elements
in this set be M..

b) At time Tb, set Mo equal to the total number of
critical elements in the structure, and and all other sets
to empty ones.

Table 1 Definition of repair sets

Set RO Rl [ Ri' N R)-_]

Time To T, T; Tj—l
Number of

elements Mg | My |- M| - My

c) To determine the quantities of each set K; imme-
diately after inspection 75, follow the algorithm:
FOR i equal to zero TO 7 equal to (= 1) DO
BEGIN
Calculate the Number of repaired members as:
BEGIN
Number Of Repaired Members

P[Finding a failed member
| Ti, Ty, h, 1]+ 22 P[Find a crack

classified as level | T, T3, h, pc

=M;

END
M; updates to (M,-Number Of Repaired Members)
M; updates to (M,;+ Number Of Repaired Members)
END
At the end of the algorithm all sets R: shall contain
the mean number of elements that started at 7% and
were not repaired till the last inspection at 7.

5. Structural reliability

Failure of any member is a very undesirable event,
but it does not necessarily mean catastrophic failure of
all the system. This is particulary true in the case of
fail safe, or redundant structures. Sequence of fatigue
failures that lead to system failures is studied for exam-
ple in 30)31). In this work, to simplify the problem, it
is assumed that, for the purposes of computing the
reliability, the structure is a series system. In the event
of element failure, there are at least two modeling
options: a) Consider it catastrophic, with high subse-
quent costs and that after the incident the structure is
completely lost, i. e. no repair possible. b) Consider the
incident unpleasant not catastrophic, with moderate
costs, and repair possible. To model these two possibil-
ities, it is introduced a flag §(8=1 for the first model
and 6=0 for the second). & will be used in section 6 in
cost formulas.

Mathematically, the reliability of the whole system
Rs at time t*> 7; can be written as:

Rt*lh, s)=TL(RAH| Ty T b )™ (20)

6. Cost modelling

Decision strategies based on expected cost, or on
expected values of any measure of utility are reason-
able if one thinks on the long term. If decision .costs of
several undertaken projects are independent, then if one
consistently chooses alternatives that renders the mini-
mum cost, by the central limit theorem, in the long
term, he will with almost certainty minimize his money
expenditure 32). In this work, it is supposed that the
expected value principle applies, but is necessary to
recognize the limitations of using the expected value as
a basis for comparison on unique or unusual projects
when the long term effects are less meaningful.

The expected overall cost CO is a function of the
number of inspections performed N, the times when
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they are performed T={T), -, 7w} and of the struc-
tural dimensions, here symbolized by 4. Denoting the
design set {4, T3, -+, Tv}=DESIGN :

CO(DESIGN, u)

=C. Init (4)+C. Inspec (h, T, pe)
+C. Maint (h, T, ue)+C. Fail (4, T, pc) (28)

where

C. Init (4)=C. Inito+C. Init, x 2 +C. Init X #* (29)
is the initial cost. The linear and quadratic terms try to
model the change in cost with 4.

C.Inspec (b, {T}, ﬂc)zg{'m_c'j:j—?‘?[l -4

x(1= 0 RA Tl 1)) ]}

(30)
is the cost corresponding to inspections. 7 is the annual
interest rate, here included because usual rates, of the
order of 30% a year, significantly influences the results.
C: is the cost of the inspection operation in itself, plus
docking costs, and ship operation stoppage costs. Note
the reliability factor in the parenthesis. If ¢, defined in
section 5, is one, then the inspection costs at time 7; will
be included in the summation if and only if the structure
is still up.
C. Maint (&, { T}, #c}

alllevels
w(("E" catt(T, )
- gx{ 1+7)™

X[1—8X(1~E1Rs( T, pc))}} (31)
is the cost corresponding to maintenance. Note that
different repair levels correspond to different costs.
Level k corresponds to cost Hazs.

C. Fail (b, {T}, pe)

N i=1

=1 n=1

% Cf(l-Rs< Ti!hu .uC)> }

(I+n)™
+[1_6X(1—’ﬁ[le( Tnlh, #c))]
C (1_Rs( TMAx[/l, #c))
X £ (1+r)Trmx (32)

corresponds to failure costs. C, is the cost of failure
event. It takes account of environmental costs, loss of
lives costs, insurance effects, etc.

7. Design variables and Inspection times optim-
ization

In this work, the strategy used to find the “best”
design variable / and the “best” inspection times is to
minimize the overall cost CO(.) eq. (28) subject to the
following constraints:

0< << < Tw< Taax
T] S Tl max
Toon<(Tin—T) Vi=12,- N

N
1!\)0\'us"m|1S 1\)o( ’[‘M/\,\‘lll, #c) X 1'131 Iea( ,1‘1 ll. /lc) (33)

lengl\)s( Tilll. ,”L.‘) Vi=1, 2: ”',N
[emln < [\)s( ’[‘MAX“‘» llL')

/lmm <h< /lmax

The above constraints refer to the minimal reliability
level Rmn for any inspection interval span, for the
minimal reliability level Roveran for the life time span, to
the maximum time for the first inspection 7\ max, to the
minimal spacing between inspection times Tumm, and
finally, to the limits on the structural dimension %, Amn
and /imax. The algorithm chosen to minimize CO(.) is
the Powell’'s Conjugate Gradient 39).

8. Bayesian Decision and Loss Functions

Bayesian decision making theory is explained in e. g.
32)33)34)35). Here a brief review is given. Suppose
that for the decision maker, are available a set of
possible actions he can take A, a set of possible states
of nature ;, and a set of functions L(A;, 6;) represent-
ing the loss incurred when action A, is taken and the
true state of nature is §;. Also suppose that it is possible
to assign degrees of belief, as probabilities p(6,), to the
values of 8. Then the Bayesian Strategy is to choose
the action A; that corresponds to the minimum expect-
ed loss, defined as:

L—(Ag)‘::a‘?“L(A,, 9,) X [)( 0;) (34)

Clearly, the above formulation can be easily extended

to the case when any of the variables A; or §; are

continuous. The problem is to find suitable loss func-

tions L(A,, ;). In literature concerning optimal design

and optimal experiment planning e.g. refs.34)36)37)

38), the common loss function used is of the form:
L(h, H)=CO.({W})+CO, x P({W}A)+CO(+)

(35)
where { W} is vector of continuous variables that repre-
sent structural design parameters such as scantling or
inspection times, and A (also continuous) represents an
statistical parameter whose value is unknown, such as
the mean of the crack propagation coefficient C.
CO:({ W}) is the cost associated with { W}, in general the
initial cost; CO,x P({W})|A) is the expected cost of
failure computed as the cost of failure times its proba-
bility ; and CO( +) is a cost term that is not-a function
of the parameter 4. CO(+) in general includes things
such as the cost of performing experiments to collect
information about A or costs activated by a particular
decision. In the first case, the effort put in experiments
is also a decision variable and the problem assumes the
characteristic of a Pre-Posterior analysis. The
“actions” set is made up of all possible {1V}, and the
state of nature set is made up of possible values of A
Using eq. (35) the designer should choose the set { W}
that minimizes the expected loss over all possible states
of nature.

This class of loss functions, in a sense, works because
in principle if the decision maker is ignorant about the
true state of nature, he will in general, use very conser-
vative relatively flat (mass) probability density fun-
cions for the state of nature A. In this way, unless also
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conservative, and therefore expensive { W} is not used,
the probability of failure, and the associated cost will be
high. On the other hand, beyond a point, use of more
conservative { W} promotes very little decrease in the
failure costs because the probability measure is bound-
ed, and at the same time material costs increases. This
means that use of ultra conservative {1} corresponds
to loss due to overdesign. As for the pre-posterior
analysis, provided that conservative prior density func-

tions are employed, use of this class of loss functions
also works because as more experiments are performed,
more information is gathered, resulting in less conserva-
tive posteriors. As a natural consequence, for a given
reliability level, cheaper designs can be attained.

As common sense says, loss should be inversely pro-
portional to the amount of information gathered. That
is, the more it is known about a problem, the less the
probability of taking the wrong decision is. However,
loss functions of the type presented by eq. (35) do not
present this pattern. To appreciate this, suppose, not a
conservative prior, but instead, a flat but optimistic one
proposed by a bold and, possibly young, decision maker.
If eq. (35) is used, the best decision { W} will correspond
to a relatively cheap cost, or loss. However, if he is
allowed to perform some experiments the probability
density function for A is updated, becoming sharper and
less optimistic. However, the best design corresponding
to this new degree of belief distribution renders cost, or
loss, more expensive than before. In conclusion, a
pre-posterior analysis that uses eq. (35) as loss function
would imply that the best number of experiments to be
performed in order to get more information is zero.
The problem with eq. (35) is that, although it can be
used as a loss function when the prior distribution for
the degree of belief concerning A is very conservative, it
is not strictly speaking, a loss function. It is a mere cost
function. Clearly use of eq. (35) is not satisfactory since
whether a prior is conservative or not when not much is
known about a parameter, is very subjective, and use of
“absolute” conservative priors would render ultra con-
servative designs, or if it is to be avoided, very expen-
sive experimental costs. This conclusion is especially
true since it is well known that the prior distribution in
Bayesian analysis greatly influences the final results. It
must be stressed, however, that if the analysis is not
Bayesian, eq. (35) can be used without consternation, as
is done in, for example, 2)3)6). This paper presents a
new class of loss functions. Let the new loss function
for the design and inspection planning planning problem
be :

i fte design > e wrue (OVer design) :
L(#c desing, ,Uctrue):CO(DESIGN, #cdeslgn)
~CO(OPTIMAL, ferue)
if He desing = e true (Under deSign) .
L(/lc design, #c\rue):CO(DESIGN, ﬂwu—uc)
"CO(DESIGN, Me dcslgn)
(36)

where DESIGN is the set {k, T\, -+, 7w} corresponding
to the best design obtained by minimizing eq. (28) given
that jte= fteaesin; OPTIMAL is the set {h, Ty, -+, Tw)
that corresponds to the best design obtained when p.=
lerrue ; NOW, fleuue 18 the unknown true value of the
mean of the crack propagation coeflicient C and ftc gesian
is the value really used to design the structural system.
Note that ftcaesin 1S a quantity to be chosen by the
decision maker, that is it is symbolized by the“actions”
set, while gcwue is uncertain and corresponds to the
“state of nature” set. fledesgn 1S Obtained through the
strategy of minimizing :

E(#w dcs!gn) = fL(ﬂc design, I)fc \ruc(l')dl' (37)

As can be readily be noted, a sharp degree of belief
represented by the probability density function fetrue(*)
will always correspond to a smaller loss compared to
that of a flat one. Therefore, in the young designer case
previously mentioned, the loss will certainly decrease.
The loss in this way defined can be compared directly to
experimental costs. In a pre-posterior analysis, if the
decreased part in the loss due to experiments is greater
than the cost of the experiment itself, then it should be
performed. Moreover, as it will be seen the next sec-
tion, this loss function class is better behaved than the
traditional one.

9. Numerical results

In order to show the superiority of the new class of
loss functions over the classical one a numerical exam-
ple is shown. To simplify analysis and show only the
relevant aspects of the problem, the inspection times are
fixed (here, rather arbitrarily: 71=4.5, T»=80, T3=
11.0, 74=13.5), i.e., they are not considered optimiza-
tion variables, and only % is to be optimized. Besides, to

Table 2 Numerical value used in the example
(SI units, otherwise stated)

# NUMBER OF INSPECTIONS # CRACK PROPAGATION
min_number_inspec 4 initial_crack_size 1.0e-2
max_number_inspec 4 mean_crack_propag_coef_c (see text)
cov_crack_propag_coef_c 0.1
# GENERAL crack_propag_kO 32.6e6
number_of_critical_elements  10.0 crack_propag_expo_m 3.0
max_time (years) 15.0 .
# CRACK INITIATION: Miner's rule
cycles_per_year 1.0e6 weibull_alfa }
# FIXED TIMES weibull_beta 1.2
number_of_fix_times 4 # DESIGN VARIABLE :
fix_times 4.5 80 110 135 min_h 1.0
max_h 10.0
# MINIMUM RELIABILITY LEVELS h_guess 3.0
min_relib_life_time
in_relib_partial 0.9 # WOHLER'S LAW
SR JeAb_partis fatigue_k  0.9e12
# STRENGTH AND STRESS fatigue_p 3.0

ult_strength 371.0¢6 # COST PARAMETERS (relative osts)

crit_stress_intensity_factor 100.0e6 initial_cost0 100.0
mean_stress 100.0¢6 initial_cost1 10.0
stress_variance 7.25e14 initial_cost2 1.0
inspection_cost 10.0
# DETECTION PARAMETERS repair_cost | 1.0
detect_d 46.2 repair_cost 2 1.0
min_detectable_crack 1.0e-2 repair_cost 3 2.0
crack_level_size 1 0.} repair_cost 4 3.0
crack_level_size 2 0.2 repair_cost 5 5.0
crack_level_size 3 0.5 repair_cost 6 10.0
crack_level_size 4 1.0 catastrophic_failure_cost  300.0
crack_level_size S 2.0 interest 0.30
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Table 3 Degrees of belief

Certainty Degree of belief

Strong | 0,05 0.10 070 010 005 000 000
Weak 177 17 177 177 177 177 17

Table 4 Optimal designs for each value of x.

K 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Opimall 135 143 149 155 159 166 168

Cost | 1214 1225 1234 1242 1249 1255 1262

Costs (eq.28) for each “action” k against
each state of nature pc

Table 5

h =< 0.8 1.0 1.2 1.4 1.6 1.8 2.0

135 1215 123.8 1291 1348 143, 149.6 1526
1.43 122.1 1225 1243 128 1328 1385 1446
1.49 122.7 1228 1235 1254 1284 1317 1363
1.55 1234 1235 1236 1243 1257 1283 1303
1.59 1238 1239 124, 1243 1251 1267 1284
1.66 1247 1248 1248 1249 1252 1256 1265
1.68 125. 125. 125. 125.1 1253 1257 1264

Table 6 Losses (eq.36) for each “action” fecdes

against each state nature fetrue

C gecel 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.8 0. 2.3 1.6 13.3 215 28.1 311
1.0 L 0. 1.8 5.5 10.3 16. 22.1
1.2 2. 1. 0. 1.9 4.9 82 12.8
1.4 2.8 1.8 0.8 0. 1.4 4. 6.
1.6 3.6 2.6 1.6 0.8 0. 1.6 33
1.8 4.1 3.1 2.1 1.3 0.5 0. 0.9
2.0 4.9 3.9 2.9 2.1 1.3 0.8 0.

highlight the differences in the results when using eq.
(35) and eq. (36), the state of nature and action sets are
made the same, and only discrete values will be used.

In Table 2 it is shown the numerical values used. In
the examples, three probability density functions
(Table 3) representing the degree of belief about the
true value of gc=pcuwwe as used in order to show the
sensitivities of eq. (35) and (36), as loss functions, in
relation to prior distributions.

By minimizing eq. (28), optimal / and the correspond-
ing cost for each value of u is obtained and listed in
Table 4. In order to better compare the behavior of the
concurrent loss functions, it is supposed that the actions
set contain only these seven obtained values for h.

Table 5 shown in line i, column J, the cost calculated
when a particular “action” h; and a particular p is
substituted into eq. (28). Note that although the ele-
ments in the diagonal are obtained by minimization, it
does not necessarily mean that it is the least in a given
column. The reason for this is that while the optimiza-

tion process is subject to strict constraints such as

minimum reliability level, simple cost evaluation of eq.
(28) is not.

Results using eq. (36) are plotted in Table 6 of which
element (7, /) is obtained by simple transformations of
Table 5. The rules are: a) If /=, then the loss is zero.

Table 7a Expected loses eq. 35

[N 0.8 1.0 1.2 1.4 1.6 1.8 2.0
h 135 143 149 155 139 1.66 1.68

Weak certainty | 1363 1304 127.3 12 6 1252 1254
Strong certainty| 129.4 124.8 123.8 71 124.1 1250

Minimum values are shown encircled

Table 7b Expected losses eq. 36

M, 08 10 12 14 16 18 20
h 135 143 149 155 159 1.66 1.68
Weak certainty | 14.84 8.10 0 240 193 2.27
Strong certainty|  7.95 237 (063 095 173 213 2.93

Minimum values are shown encircled

b) If /<, then subtract element (i, ) (Table 5) from
element (7, 7) (Table 5). ¢) If i>/ then subtract ele-
ment (7,7) (Table 5) from element (#,7) (Table 5).
Note that all elements are nonnegative and that these
extra calculations do not take substantial time. ]

Now, the classic expected loss can be calculated using
Table 5, and the expécted loss of eq. (36) using Table 6.
The results are plotted in Tables 7a and 7b. Compare
the best decisions when using the “weak certainty” case.
In this case almost nothing is known about z. except
that it can assume one of the values in the set “actions”.
Losses calculated by the new class of loss functions eq.
(36) gives, luckily, more conservative designs than if
they were calculated by eq. (35). Moreover, if “strong
certainty” degree of belief is used, calculations using eq.

(36) again gives better decision than that obtained
through eq. (35). The belief that ©,=1.20X1077 is so
strong that there should be no margin to other “action”
choice. Note that eq. (35) gives an unnecessary conser-
vative design. The inevitable conclusion is that, at least
for this simple example, the new class of loss functions
eq. (36) is superior than the one commonly found in the
literature.

10. Conclusions

A new class of loss function suitable for application
in structures subject to inspections and maintenance
was presented. [t does not require that the designer
specifies a conservative prior. A numerical example
was performed and it indicates that the new class of
loss functions is better behaved that the one found in the
literature. Also, the extra amount of calculations do
not seem to take so much computational time.
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Selection of the First Inspection Time Based on
Maximization of Amount of Information

by Alexandre Kawano®,

Tetsuo Ishizuka™*,

Hiroshi Itagaki**,

Summary

The results of the first inspection contain information which laboratory experiments can hardly
furnish, such as crack initiation time parameters. Moreover, it is pure in a sense that it is not infected
by noise coming from previous, imperfect, inspections. In other words, it is a rich source of information
that can be analyzed by Bayesian methods. The first inspection time also heavily influences the overall
structural reliability, and therefore the overall costs as was noticed from previous works. By
minimizing a loss function based on mean Shannon information, a suitable criterion for selecting the

first inspection time is proposed.

1. Introduction

For large structures under random loadings such as
aircraft, ships, offshore installations and bridges,
fatigue is often the governing limit state. Under repeti-
tive loading, cracks initiate and grow in size reducing
the strength of structures. If these cracks are detected
during inspections, the defected part is repaired or sub-
stituted, improving the overall system reliability. Since
damage accumulates randomly and the inspection oper-
ation is imperfect, uncertainties inevitably increases
and reliability decreases with time.

There are several papers dealing with the optimal
selection of inspection intervals in the literature. For
example, Yang & Trapp" studied the effect of periodic
inspections using classic probabilistic methods, Itagaki
& Yamamoto® realizing that the inspection results
themselves furnish data that can be used to update the
knowledge about uncertain parameters, applied
Bayesian analysis into the problem in order to select
inspection intervals, Fujimoto® proposed the Sequential
Cost Minimization Method to minimize overall service
costs. In general, however, the methods for selecting
the inspection times that use Bayesian analysis do not
worry about the events associated with the first inspec-
tion and are set based on only initial estimates of the
parameters, which are very poor. Moreover, as is
observed almost without exception, the first time

* Graduate Student, Yokohama National Univer-

sity
Faculty of Engineering, Yokohama National
University

L
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inspection obtained by common methods found in the
literature is set relatively late in the structural life, see
e.g.1)2)4)5)6)7)8)9)10).

From the point of view of information content, the
first inspection is very rich since it does not contain
noise coming from previous inspections, and provides
data which loboratory tests can hardly furnish such as
crack initiation times under service loading or crack
propagation data of very large specimens. This infor-
mation could be used to update the knowledge about
uncertain parameters of a single unit, improving reli-
ability and costs estimates for the remaining life, or
even updating uncertain parameters for future designs.
In order words, the results of the first inspection can be
viewed as a result of a full scale test, and in this sense,
the more information is gathered the better, even if the
optimal cost for a single unit is sacrificed.

There are a number of ways of how amount of infor-
mation can be defined. For an overview see refs 11) and
12). The concept of information was mathematically
formulated for the first time in 1925 by Sir R. A. Fisher
in his work on the theory of estimation'®. In this paper,
the amount of information collected during an inspec-
tion is measured by the Shannon information measure,
created by Claude Shannon in 1947 in the field of the
theory of communication'?.

The authors of this work try to set a special criteria
to select the first inspection interval based on minimiza-
tion of a loss function based on the amount of Shannon
[nformation. The formulas about fatigue life and reli-
ability follow closely the ones in 15) included in the
same number of this journal. They are repeated here
for convenience.

2. Fatigue life and element reliability

[t is supposed that fatigue life can be divided into
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three distinct phases. Crack initiation, propagation and
final failure. Given this hypothesis, element reliability
will be modelled accordingly, that is, different reliabil-
ity models for the probability of not failure before and
after crack initiation shall be set up.

A crack is said to initiate when a micro crack grows
to a size ao from which continuum fracture mechanics is
applicable, i.e., stress intensity factor range becomes
meaningful for describing the crack propagation phase.
The size ao is in general of the size of the order of tens
of millimeters, or in a more mundane way of expressing,
the size of detectable cracks by the.-naked eye. If the
time for crack initiation experimentally obtained is cast
into the S-N format, and if the Miner’s rule applies, it
can be shown that 15) the time for a crack to start in
the structure is given by :

tc QAcru ( 1 )

ENON Tyt (14-D)

where e is the critical accumulated damage used in
the Miner’s rule, in general ranging between 0.3 and 2.0,
0% is the variance of the random stress process X
considered to be Gaussian and narrow-band, E[N.(X)]
is the number of crossings from below of the process X
through its temporal mean, and finally p and @ are
parameters of the S-N curve, typically written as
(Number of cycles) X (stress amplitude)’= Q.

Now, all uncertainty about the S-N parameters,
about Miner's rule, stress process, and about the
approach in itself is modelled considering Zern @ random
variable. Here it is supposed to follow a Weibull
distribution with shape parameter ¢ and scale parame-
ter 8. By standard variable transformation, the proba-
bility density function for the crack initiation time
becomes :

Fultd®)=1-exp | ~(757)'] (2)
where J is given by :

BN/ Ty otr(1+4)
3 (3)

After initiation, a crack of size a is assumed to propa-
gate according to Paris law :

L clax x y(ay(Ea)" (4)
where m, C as well as K, are material properties, 4X
is the far field stress range and Y(«) is a function
dependent of the element and crack geometry. Now, if
the crack sizes found during an inspection are thought
to correspond to realizations of a set of random vari-
ables, then, eq.(4) can be integrated with respect to
time following the usual rules of calculus. At this point,
it is made the conservative assumption that Y(«)= Yo is
constant and equal to the stress concentration factor
SCF at the hot spot.

alt —te)=uayexp [Cy(

Environmental and )
geometric conditions

()]

In the above equation, y(+)isa function dependent of the
stress process characteristics such as representative
frequency and amplitude, and on the geometric forms of
the crack. It is given by :
y=E[NA(X)(2/2)X Yoox)'I(2) (6)
There are uncertainties in almost all parameters of

eq.(5), besides uncertainties concerning Paris law it-

self and in the assumptions made. All uncertainties are
cast into the crack propagation coefficient C, consid-
ered to be a random variable. Consequently, crack
lengths given by eq.(5) become conditional on C. Here
it is assumed that it follows a lognormal probability
distribution of which median mc is, in Bayesian sense,

~ unknown.

2
fe(Clme)=— L exp [ - UEmT] (7
In the above equation, sc is the standard deviation of In
(o).

This paper is concerned with finding the first inspec-
tion time 7\ so that using the data then collected infor-
mation about m¢ and 8 is maximized.

After a crack initiates in an element, its ultimate
strength starts to decrease. Here it is made the hypothe-
sis that an element can fail only by two mechanisms:
a) general yielding because the loading stress became
greater than the yield stress. b) instable fracture. No
modelling of crack stoppers are provided. Mathemati-
cally, the ultimate strength £(a) can be written as:

K. K.}

é(a)_ varc?Z if az(dyleld\/ﬁ;z ) (8 a)
. . K: 2

£(2)= Oy if “<(Way.em m) (8b)

Where in the above formulas, K. is the critical stress
intensity factor and oyew is the yield stress for the
material employed.

Essentially, a element fails if the loading stress proc-
ess exceeds its ultimate strength, that is, it can be
modeled as a first passage problem. Making the hypoth-
esis that the element ultimate strength and the stress
process are well apart in the interval where cracks can
exist undetected, crossing times can be thought as in-
dependent even if the loading process is narrow-band.

Denoting the element reliability before and after
crack initiation by U(-) and V() respectively, it is
possible to write!® : i

U= t)=exp [! EINAO]( = 1)

-exp [-——(-QL‘”*—;—L”*X )H

20%
B [
V(t—t]C)=exp l ~[; LEIN.(D)]

cexp [— (5(al tg(;’)g =) ](/Z’J (Yb)

where in (9a) ¢ is the element service initiation time.
Note that eq.(9 h) is conditional to a value of C, since
as it was already discussed, the crack size at time 7 is

(9a)
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conditional to it.
A crack is considered to be detected before element
failure with probability given by :

D(a)=1.0—exp [—d(a— amn)] (10)
where amn is the minimum detectable crack set equal to
the crack initiation size ao, and ¢ is a positive parame-
ter.

3. Structural reliability at the first inspection

In the last section, U(-) and V() are element reliabil-
ity conditional to the crack initiation time. The ele-
ment reliability not conditional to this knowledge is
given by :

Re( Tllﬂ, 7)7c)= U( 7\1)[1'“];‘!:( Tliﬂ)]

+ [ [ v V(= 1O 118 e Clme) i

(11)
Basically, to obtain Re(-) it is summed up the probabil-
ities corresponding to the events: a) Crack does not
start in the element and it does not fail till 73. b) Crack
does start but the element does not fail. Now, if the
structure is made up by M critical elements, then the
structural reliability at the first inspection, time 73, can
be written as
RS( TXIB, ma)z(Re( TI‘B, ma))M (12)
if failure of any element is to be meant system failure.
Parameters A and m¢ are unknown, and this uncer-
tainty is modelled in the Bayesian way, that is, degrees
of belief one possess are treated as probabilities.
Mathematically, the belief that A lies between 8’ and £’
+dp, and mc between mtc and mc+ dme is given by fme,
ome, B)dBdmc, where fmc s(mec, B) is a probability
density function. The structural reliability correspond-
ing to the (un)certainty on the parameters one has at a
particular moment is given by :

RAT)= [ [ RATB, me)fnc.s(me, B)dBdme

(13)
Therefore reliability in the Bayesian framework is not
a property of the system, but it also reflects the present
state of knowledge one has about the relevant parame-
ters of the problem. Then, it is readity realized that the
structural reliability changes as more information is
gathered.

4. Inspection results and the amount of informa-
tion gathered

By the knowledge of inspection results, degrees of
belief or probability distributions, of the parameters A
and m. can be updated via Bayes methods. As will be
explained later, the difference of the amount of mathe-
matical uncertainty about a parameter before and after
some data become known is defined as information.

The following events form the sample space for
inspection results concern‘ing onhe element :

a) A crack of size between a and ¢+ da is found in the
element.
b) No cracks are found in it.

) It failed.

Although finding that the element failed before secme
specified time / can give some information, in this
analysis, this event is forced to correspond to informa-
tion content zero:

Info({system failed})=0.0 (14)
In words, it means that in this paper it is assumed that
knowing that the system failed will not change the
opinion one has about uncertain parameters.

This can be justified by several reasons. First, in this
work, the prevailing criterion for the selection of the
first inspection time is the maximization of the amount
of information gathered, assuming that its utility is
proportional to its numerical value. Then, it can be
argued that information has no utility if the structure
collapses. Second, given that the system collapses it is
not possible to realistically relate it to a fatigue cause
in all cases. There may be other unexpected factors
that are not accounted in the model, but on the other
hand, knowledge that the system did not fail excludes
any kind of failure cause, including fatigue.

In order to evaluate the information contained in the
data regarding crack sizes, it is necessary to find the
likelihood associated to the following event :

71 elements out of A are found to
A=1have cracks of sizes ai, ***, an,, and
M — n, are found to be intact (no cracks)

Strictly speaking, the expression “finding a crack of size

a” in fact means “finding a crack of size between e and

a+da”. Mathematically, the likelihood of the event A

occurring at the first inspection, time 73, is given by :
Like (A, To, T8, mc)=(P(To, Th|B, mc))™

'l.lnjl nlai, To, THlB, me) (15)

In the above formula, 7y is the time when the elements
started service and 7 is the time when the event takes
place.

The probability of finding a crack of size between a
and a+da at time 7 in a element that started service
at time Tu, pla, Ti, T3B, mc)da, is given by the summa-
tion of all probabilities corresponding to all realizations
of the random pair (fc, C) that correspond to a crack of
size a at 7 in those elements that does not fail and no
cracks are found in the inspections carried out before
T

pa, T TNB, meyda= [ Ult=TYV(T;=1IC)

cl
J-

1 1= H(Ta= )D(Te= HO)D(@) it = T B)

=1+
'fc(C‘ﬂlc)dCdf (16)

where ¢, =10-4/2) (7aT/j10)’ t=T,~nlala) (;ga‘]), l%)=—;’—éz— and
H(+) is the Heaviside function.

The probability of finding no cracks at time 7} in
those elements that started service at 77 and not failed
is obtained by counting the fraction of elements in
which cracks do not start, or in which cracks started
but are not detected.
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PAT, T|B, me)=(1—F.(T;— T U(T;~ T))
+ [7 [T U= Ty - O H(T- 1)

- T [1=D(a(Tu—1|C))]

R=1+1
“fee(t = T B) fe(Clme)dCat (17)
The degree of belief one possess about the parameters
mc and f# changes as more data become available to
him. The way it changes can be modeled by Bayesian
updating as is explained in e.g. 16). Essentially, in
words it becomes :
(o) maimoots(Fior) - ao
Mathematically, it is written in the following form:
flrosteron(p oy Y= Like (4, Th|8, mc)f*™ (B, m.)

Numerator dm.df

(19)
The denominator in the above formula is necessary in
order to guarantee that the posterior density function
Sf@Eoteron( B m,) is in fact a probabilistic one, that is, its
integral over the entire domain is equal to the unity.
In this paper, the prior distribution is assumed to be:

prior — ].
A )(B' ch)—- (BI*BZ)(mcl"md) (20)

The only information content in the above prior is
that the true pair (8, m.) can assume any point in the
square bounded by B, £, mea and me with equal
chances. For this analysis, where the interest relies just
in when the first inspection is to be performed in order
to maximize the information absorption, it is enough.

Now, in order to mathematically measure the amount
of information gathered in the first inspection, the
Shannon information will be used. It is defined as the
difference between the entropy a random variable had
before the outcome of some experiment is known and
the entropy it has afterwards. Entropy is a measure of
the uncertainty about the outcomes of a R. V., and in
the case of a discrete random variable, the entropy is
the mean number of bits necessary to differentiate all its
possible outcomes. In the case of a continuous random
variable Z, it is defined as:

Entropy ()=~ [ /() In (/(2))dz (21)

where the base of the logarithm is immaterial. The
amount of information the knowledge of experimental
results {Exp} contain is given by :

Info ({Exp}) = *'[;wf(z) In (f(2))dz
“(‘j:;mf(Zi{Exx)}) In (f(zl{Exp}))dz) (22)

The information gained when the event A becomes
known after the first inspection is performed at time 7}
is evaluated as:

Info (A’ ’]‘1):-_A[n’rxcz./li‘hf(nus(ermr)(ﬁ’ "‘le)

'ln (f(pusterlor)(ﬁ' ’nc))_f(prlor)(b)' mc)
An (SR, me))dBdme (23)
The above formula gives the information that the

results of the first inspection contain. However, the first
inspection time is the optimization variable, that is, the
outcomes of the inspection are not known yet. There-
fore, when optimizing the information obtainable, sev-
eral criteria are possible. This paper will optimize the
mean information, averaging the last equation through
all possible inspection result outcomes, supposing that
the true values of the unknown parameters are 8= Sirue
and 7= Mcrue.

Info Z ﬁi:ni’:}OP[nl out of M}Btrue, mctrue]
7 i A, T fer an e

’(al, az, **, anl,ﬁtrue, mctrue)dal"'dam (24)

where P[n; out of M|Biuue, Meirue] is the probability that

1=mn, elements out of M are found defective, and fa,,
as,~ an(*) i the probability density distribution of the
crack sizes given that cracks exist in #: elements. The
numerical evaluation of the above formula is very time
consuming, even when considering structures with a
small number of critical elements. Since the interest
relies in when the first inspection should be performed
to obtain maximum information, and not in the exact
value of this information, the above formula will be
consistently simplified by employing the means of ‘N,
and of the crack size A at the time of first inspection
T

Info (71) =Info (B, T}) (25)
where the event B is given by :

Bz{E[Nllﬁ, mc] elements are found cracked }
with crack sizes all equal to a=E[A|B, mc]

5. Probability density function for the crack
sizes detected in the first inspection

As noted in the previous section, it is necessary to
know the probability density function of the detected
crack sizes at the first inspection and the mean number
of elements found defective.

The probability that a crack of size between a and a
+da is found in a non-failed element, is obtained from
eq.(16) setting 7v=0 and T;= Ti. Therefore, the proba-
bility that a cracked element is found is simply given
by :

element found oo
P|cracked at Tx'ﬁ, ch=[ pla, To, TM|B, mc)da
but not failed ® ,
(26)

[t is readily seen that in eq.(24), the probability that
Ni=n, elements out of M are found cracked follows a
binomial distribution. Its mean is:

element found
EIN|E, me]=M x [’{cracked at Tllb’, I)Zc:l 27)
but not failed
The mean crack length of the detected cracks is:

fmaxpl(a, To, T8, me)da
ELAIB, mc]=-2%

[)

(28)

cracked at 7}

{element found
but not cracked

‘b’, mc}
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Eq.(27) and (28) then are substituted in eq.(25) to

obtain Info (7). .

6. Loss function used to locate the optimum first
inspection time

It is possible to relate the entropy about an uncertain
parameter and the probability of taking a wrong deci-
sion concerning its true value, as is shown in 17). Since
the more information is collected entropy lessens, it is
clear that some utility can be atached to it. In this
work, it is supposed that the utility associated to some
amount of information is proportional to its numerical
value, except when the structure fails as a whole. In
this last case, the utility is supposed to be zero. In
mathematical terms:

Util (Th]B8, me)=1Info (T1) X Rs( T3] 8, mc)
+0X (1 “‘Rs( Tllﬁ, mc))
=Info (T) X R(Th|B, mc) (29)
Rather than using the total probability theorem to
integrate out 8 and m. from eq.(29), and then to direct-
ly optimize the resulting utility function with respect to
Ty, in this paper, a general measure of loss is to be
minimized.

The loss function is defined as fraction of utility that
is lost, due to non-optimality in the choice for the first
time inspection.

Concretely, if the true value of the parameters 8 and
mc were known, the utility given by eq.(29) could be
fully optimized. Suppose the optimum point corre-
sponds to time 71* and the maximum utility is equal to:

Util (Tl*lﬂtrue, mtrue)zngé%([Util (Tl]ﬁxrue, mzrue)]

(30)
Also, for a given pair (Baesign, Mecesizn) assumed at the
design stage, it is possible to find another time Ti** for
which the utility is optimized :
Util (ﬂ**lﬁdeslgn, mdeslgn)
'—“U?:llél%([Utll (Tlleeslgn, mdesign)] (31)

The difference

L({ﬂlrue, MCtrue}, {ﬂdeslsn, mdeslgn})

=Util (Tl*|Bzrue, mctrue)'_Uti] ( Tl**lﬁtrue, mclrue)

(32)

is defined as the loss function. Now, since the true
values of 8 and mc are unknown, the loss function will
be averaged using their prior joint probability density
distribution. The result becomes a function of the
design parameters only :

mez2 (B2
L(Bdesign, mdeslgn)zf _[
m 3]

cy

'L({B, mc}, {Bdeslgn. Wldeslgn})

fERD(B, me)dBdme (33)
Minimizing the above function in the variables Buesign
and M aesign, it is possible to select the best design point
(Baesign™, Meacsign™). This set is then used to fix the first
inspection time 7) by using eq.(31).

7. Numerical results

An application of the proposed method is shown. In

Table 1 it is shown the numerical values that are consid-
ered constant in the example. The true values of the
parameters considered uncertain, 8 and ., as well as
their ranges are shown in Table 2.

As it was already discussed, the degree of belief
associated with them is uniformly distributed. Using
the true values, the amount of information gathered in
the first inspection is calculated by eq.(25) and plotted
in figure 1. Note that if the inspection occurs too early,
the information level is low because, as it is expected,
no cracks are found and therefore no new fact is un-
covered. Also, past a point, the amount of information
starts to decrease. This is because the number of
combinations of £ and m. that can lead to the results of
an inspection becomes too numerous, and as a conse-
quence, the likelihood function eq.(15) becomes blunt.

The loss function eq.(33) is plotted in Figure 2. From
it, the design point (Bdeslgn, mcdes\gn)=(0.7, 1.5X10_7) is
obtained. Substituting it back into eq.(31), the best

Table1l Constant values used in the example. Units:
SI, otherwise stated

# GENERAL # CRACK PROPAGATION

number_of_critical_elemenms  10.0 initial_crack_size 1.0e-2

max_time (years) 15.0 mean_crack_propag_coef_c (see text)

cycles_per_year 1.0e6 cov_crack_propag_coef_c 0.1
crack_propag_k0 32.6e6

# STRENGTH AND STRESS crack_propag_expo_m 3.0

ult_strength 371.0e6

crit_stress_intensity_factor  100.0¢6 # CRACK INITIATION: Miner's rule

mean_stress 100.0¢6 weibull_alfa 2.0

stress_variance 4.51el4 weibull_beta (see text)

# DETECTION PARAMETERS # WOHLER'S LAW

detect_d 46.2 fatigue_k  0.9e12

min_detectable_crack 1.0e-2 fatigue_ p 3.0

Table2 Uncertain parameters. Units: SI, otherwise

stated
uncertain parameter true value range
B 0.9 0515
m, 0.8x1077 0.7x10" 1.8x10

2.50

8 """""""" :

‘= 2.00 ¢ E

g z

qé 1.50 4
100 Ly 4 1,

6 7 8 9 10 11 12
Time of first Inspection

Fig.1 Information gathered
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1.80E-7

1.70E-7]
1.60E-7]
1.50E-7 &
1.40E-7]

1.30E-77

m,, (median of C)

1.20E-7 .
0.55 0.60 0.85 0.70 0.75 0.80

Scale parameter f3

Fig.2 Expected loss function

T, =50

"True" reliabilﬂ

1.1

0.9 \ """""""""""""""
0.7
0.5
0.3
0.1

Reliability

"Design" reliability eq.(12) |

Bayesian reliability eq.(13) :

0 2 4 6 8 10
Time (years)

Fig.3 Reliability as a function of time

time to carry out the first time is calculated to be T1**
=5.0 years. _

It would be interesting to verify the structural reli-
ability at 7=5.0. Figure 3 shows the structural reliabil-
ity as a function of time obtained by substituting true
values of the unknown parameters into eq.(12), or by
using the specified flat prior (table2) in eq.(13). Note
that the first case corresponds to removal of all uncer-
tainty. Now, if carrying out the first inspection at T =
5.0 is considered good, will depend if the decision maker
finds the obtained reliability level satisfactory or not.
In other words, this work proposes a new criterion to
select the first inspection time based on maximization
of to-be-collected amount of information, but if it is
applicable to one’s particular case or not, it still depends
on engineering judgement. Further, it must be noticed
that the time 7\ could be made smaller if better inspec-
tion procedures were employed.

8. Conclusions

In this paper, a criterion based on maximization of to-
be-collected amount of information was proposed to
select the first inspection time. This criterion can be
useful if the calculated time corresponds to acceptable
reliability levels, or in other words, if it results earlier
than times set by other criteria such as minimum cost or

maximum reliability, which in general render late first
inspection times.
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