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Brain–machine interfaces (BMIs) are promising technologies for rehabilitation of upper
limb functions in patients with severe paralysis. We previously developed a BMI prosthetic
arm for a monkey implanted with electrocorticography (ECoG) electrodes, and trained
it in a reaching task. The stability of the BMI prevented incorrect movements due to
misclassification of ECoG patterns. As a trade-off for the stability, however, the latency
(the time gap between the monkey’s actual motion and the prosthetic arm movement)
was about 200 ms. Therefore, in this study, we aimed to improve the response time of
the BMI prosthetic arm. We focused on the generation of a trigger event by decoding
muscle activity in order to predict integrated electromyograms (iEMGs) from the ECoGs.
We verified the achievability of our method by conducting a performance test of the
proposed method with actual achieved iEMGs instead of predicted iEMGs. Our results
confirmed that the proposed method with predicted iEMGs eliminated the time delay. In
addition, we found that motor intention is better reflected by muscle activity estimated
from brain activity rather than actual muscle activity. Therefore, we propose that using
predicted iEMGs to guide prosthetic arm movement results in minimal delay and excellent
performance.
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INTRODUCTION
Brain-machine interfaces (BMIs), which are a type of man-
machine interface that provides a direct connection between the
brain and external devices, can be divided into 2 types: input-type
and output-type. An input-type BMI is used for the recovery of
central nervous system function with an external device (Yokoi
et al., 2012), while an output-type BMI is used for the intuitive
control of an external device instead of the limbs. For patients
with severe paralysis, such as those with amyotrophic lateral scle-
rosis, output-type BMIs offer a promising technology for the
rehabilitation of upper limb function (Lebedev and Nicolelis,
2009).

In an output-type BMI, brain activities are measured from the
sensory motor area in the cerebral cortex; these signals can be
detected invasively or noninvasively. Invasive approaches usually
include the use of a multichannel needle-shaped sensor that is
inserted into the cerebral cortex. Noninvasive approaches include
the use of electroencephalography, functional near-infrared spec-
troscopy, or functional magnetic resonance imaging. Noninvasive
approaches are ideal because they have no clinical risk; however,
their spatial resolution and signal-to-noise ratio are not suit-
able for practical control. As a result, many studies continue to
focus on invasive approaches. The initial studies on BMI focused

on invasive signal detection of brain activity, and they achieved
highly successful control of a prosthetic hand (Velliste et al.,
2008) with good spatial resolution and signal-to-noise ratios.
However, degeneration and necrosis limit the long-term use of
these invasive signal detection methods (Szarowski et al., 2003;
Biran et al., 2005). To overcome this problem, an electrocor-
ticography (ECoG) electrode was developed. This is an invasive
signal detection method involving the use of a surface electrode
on the cerebral cortex under the dura matter. Importantly, it has
long-term stability with low clinical risk. Moreover, it shows pre-
cise spatial resolution with a good signal-to-noise ratio. ECoGs
have been used to develop output-type BMI systems for two-
dimensional cursor control and motion prediction of the upper
arm (Schalk et al., 2007; Pistohl et al., 2008; Uejima et al., 2009;
Yanagisawa et al., 2009; Chao et al., 2010; Yanagisawa et al., 2011).

We also developed a prosthetic arm that is controlled by a
BMI with ECoGs (Sato et al., 2012). The subject was a mon-
key (Macaca fuscata) implanted with ECoG electrodes and then
trained in a reaching task. The reaching task was performed
periodically. Therefore, decoding could be achieved by phase esti-
mation of the periodic movements. A decoder was constructed by
machine learning to map between the ECoGs and motion states,
which corresponded to the phases of periodic movement. We then
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tested whether the response delay of the prosthetic arm was con-
trolled by the proposed method. We found that the latency (the
time that elapsed between the monkey’s actual motion and the
prosthetic arm movement) was about 200 ms. Considering the
primary delay that the prosthetic arm has as a robotic arm, it is
desirable that the trigger event generated precedes the monkey’s
actual motion by about 200 ms.

Since muscle activity precedes changes in motion, and motor
intentions can be detected more quickly, one potential way of
improving the response of the BMI prosthetic arm could lie in
decoding muscle activity. In other words, as the musculoskeletal
system is the best “device” for achieving the brain’s motor inten-
tions, using the musculoskeletal system may be advantageous in
optimizing BMIs. In fact, myoelectric prosthetic hands are already
commercially available (Naidu et al., 2008), while BMI prosthetic
hands are not in practical use. Unfortunately, the body image that
is presented by a BMI prosthetic arm to the brain differs consid-
erably from that presented by a natural arm because the former
cannot reflect motor intentions as faithfully as the musculoskele-
tal system. An electromyogram (EMG) prosthetic arm estimates
motor intentions from the activities of a patient’s residual mus-
cles, and it typically accomplishes more sophisticated motions
than a BMI prosthetic arm. However, the results of our latest
study (Yokoi et al., in press), in which we compared the muscle
and brain activities of monkeys, suggested that EMG prosthetic
arms might not always be superior to BMI robotic arms in the
estimation of the brain’s motor intentions. Specifically, during
periodic movements, predicted muscle activity from brain activ-
ity maintains the periodicity rather than actual muscle activity.
Moreover, it is difficult to estimate motor intention directly from
brain activities as mentioned above. Therefore, estimating motor
intentions with predicted muscle activity from brain activity is
likely a better method than directly estimating brain activity or
actual muscle activity. Therefore, we devised a method of control-
ling a BMI prosthetic arm based on the above ideas, and sought
to experimentally confirm the validity of this method.

MATERIALS AND METHODS
ABSTRACT LEVEL OF MOTOR INTENTION
Motor intentions are divided into different types depending on
their abstract level. As an example, consider a reaching motion,
such as that in self-feeding in monkeys. This motion consists
of the following movement sequences: reaching forearm to an
object, grasping the object, and returning forearm while grasping
the object.

At first, various types of physical measures, such as the EMGs
of each muscle, the grip force, angular velocities of the joints,
three-dimensional wrist positions, and hand postures can be
determined. These are motor intentions of the lower abstract
level. Next, based on the interpretations of these physical val-
ues, the movement phase (e.g., waiting, reaching, grasping, or
resting) can be considered as the motor intention of the higher
abstract level. Of course, the monkey’s intention in perform-
ing the reaching movement is one of the motor intentions of
a higher abstract level. In this study, we considered the motor
intentions of this abstract level as task-oriented motor inten-
tions. According to the theory of localization of brain functions,

information from different abstract levels is processed in different
parts of the cerebral cortex. Following this, the planning, control,
and execution of voluntary motions are processed in the motor
cortex. Moreover, a preceding study confirmed the correlation
between the modulation of neurons in the primary motor cor-
tex and muscle activity (Morrow and Miller, 2002). In this paper,
the abstract level of motion intention is discussed based on the
brain and muscle activity that was measured in a monkey’s motor
cortex.

EXPERIMENTAL SUBJECT
A monkey (M. fuscata) implanted with EMG and ECoG elec-
trodes was used as the experimental subject. EMG and ECoG sig-
nals were recorded simultaneously with a Neural Data Acquisition
System MAP system (Plexon Inc., Dallas, TX, USA). EMG signals
were recorded as auxiliary analog inputs on an OmniPlex system.
Signals were low-pass filtered (250-Hz cutoff), and the signals
were recorded with a 500-Hz sampling rate. The target muscles
that are related to the locomotion of the upper limb and hand
and were used to measure EMGs are listed in Table 1.

Figure 1 shows the placements of the ECoG electrodes. The
target area was around the left motor cortex, including the frontal

Table 1 | Target muscles for measuring electromyograms.

Target muscle Mainly moving joint

PM (Pectoralis Major) Shoulder

DP (Deltoid Posterior)

TLoH (Triceps Long Head) Elbow

TLaH (Triceps Lateral Head)

BLH (Biceps Long Head)

B (Brachioradialis)

ECR (Extensor Carpi Radialis) Hand

EDC (Extensor Digitorum Communis) Index, little finger

FDP (Flexor Digitorum Profundus) Finger

FCU (Flexor Carpi Ulnaris) Hand

APL (Abductor Pollicis Longus) Thumb/Hand

AP (Adductor Pollicis) Thumb

FIGURE 1 | Placement of the electrocorticogram (ECoG) electrodes

around the motor cortex. FEF, frontal eye field; PMA, premotor area; M1,
primary motor cortex; S1, primary somatosensory cortex.
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eye field, the premotor area, the primary motor cortex, and the
primary somatosensory cortex.

A PROSTHETIC ARM WITH AN INTERFERENCE-BASED WIRE-DRIVEN
MECHANISM
An interference-based wire-driven mechanism was applied to the
prosthetic arm to create a balance between the high grip force
and high degree of motion retaining lightness. This mechanism
involves use of wires to transmit driving force from the actuators.
It considers the weight saving of the prosthetic hands attached
to the patient’s stump since it enables separation of the power
sources and prosthetic hands. Figure 2 shows the interference-
based wire-driven mechanism of the maniphalanx joints that
are designed for the thumb and fingers of the prosthetic hand.
When the palm-side wire is pulled and the back-side wire is
allowed to relax, the hand performs flexion. With the opposite
wire operation, it performs extension.

The joint mechanism, which has 2◦ of freedom in mutu-
ally orthogonal directions, is required for the wrist and upper
arm joints. We thus invented an interference-based parallel-wire-
driven mechanism that is hereafter referred to as a parallel wire
mechanism. Figure 3 is a schematic diagram of the structure. It
has two rotation mechanisms for x-axis and z-axis rotations. The
cylindrical wire-guide leads the wires such that they are parallel
to each other. Then, a rotating torque is generated around the x-
axis by the synchronous traction of wires, and a rotating torque
is generated around the z-axis by the asynchronous traction of
wires in the same manner. To connect the wire symmetrically to

FIGURE 2 | Interference-based wire-driven mechanism of maniphalanx

joints.

FIGURE 3 | Schematic diagram of the interference-based

parallel-wire-driven mechanism.

the pulleys of the two motors, the interference power of the two
motors is assigned for each degree of freedom.

These two types of interference-based wire-driven mecha-
nisms were applied to develop a prosthetic hand and arm as
shown in Figure 4. The shoulder joint of this arm has 2◦ of free-
dom in motion, flexion/extension and adduction/abduction, and
the elbow joint has 2◦ of freedom, flexion/extension and internal
rotation/external rotation.

It is important to consider the latency caused by power
transmission through the wire when controlling prosthetic arms
with a wire-driven mechanism. Because the wire is not rigid,
power transmission latency is inevitable. As mentioned above,
the latency of the prosthetic arm adopted in this study was about
200 ms. Here, the control operation delay was eliminated due to
the brain activities preceding the appearance of motion.

MODELING OF THE REACHING TASK
We designed a lever operation task as a reaching task based on
the self-feeding motion of monkeys. Figure 5 shows an outline of
the task, and Table 2 describes the monkey’s different movement
states during the task. The monkey was kept under restraint in a
chair. First, a push button (home button) was set up under the
monkey’s right hand, and a lever was placed in front of the mon-
key. A tube was introduced into the mouth of the monkey, and
liquid reward was given through a pump. The pump was trig-
gered when the monkey pulled the lever after the home button
was pushed. The monkey was adequately trained in performing
this task.

FIGURE 4 | The prosthetic arm with an interference-based wire-driven

mechanism.

FIGURE 5 | A model of the reaching task.
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PREPROCESSING OF THE EMG SIGNALS
The measured EMG signals were transformed into integrated
EMGs (iEMGs) as follows:

Mm(t) = 1

TW

TW − 1∑
τ = 0

|Sm(t − τ )|, (1)

where Sm(t) is the signal measured by the m-th EMG elec-
trode at time step t, Mm(t) is the iEMG of the m-th channel
of the EMG, and TW is the term of consideration. Because
iEMGs strongly correlate with the exerted muscular force and are
robust to white noise, they serve as appropriate indices of muscle
activity.

PREPROCESSING OF ECoG SIGNALS
Some frequency bands are effective for determining the locomo-
tive state of a subject (Sato et al., 2012). Table 3 shows the range
of each frequency band.

Previous studies have shown that high-gamma power strongly
correlates to locomotive events in the same way as electroen-
cephalography or local field potentials (LFPs). However, the range
of the high-gamma band used differed in previous studies. For
example, 60–200 Hz was used in a study assessing macaque LFPs
and their potential implications in ECoG (Ray et al., 2008).
On the other hand, another study used the frequency band of
80–150 Hz (Yanagisawa et al., 2011). To cover these different def-
initions, we separated the high-gamma band (80–250 Hz) into 2
ranges: γL (80–150 Hz) and γH (150–250 Hz). However, in our
experimental setting (Western Japan), hum noise superimposed
on the frequency band of 60 Hz. Therefore, the frequency band
was trimmed at around 60 Hz. Additionally, the upper limit was
decided according to the Nyquist frequency of our data acquisi-
tion system. The power of each band was determined by calculat-
ing the power spectrum with a short-time Fourier transform. The
window size L equaled 128.

Table 2 | Description of the monkey’s states.

Symbol State Description

ω1 Waiting The monkey is pushing the home button

ω2 Reaching The monkey is reaching its hand to the lever

ω3 Grasping The monkey is grasping the lever and pulling it

ω4 Resting The monkey is resting its arm and returning its
hand on the home button

Table 3 | Range of each frequency band.

Band Range [Hz]

Alpha α 7–11

Beta β 20–30

High-gamma 1 γL 80–150

High-gamma 2 γH 150–250

ESTIMATION OF EMGs FROM ECoGs BY A PARTIAL LEAST SQUARES
REGRESSION
We estimated the EMGs from ECoG signals by a partial least
squares (PLS) regression (Wold, 1975). Because of the relation-
ship between the spatial resolution of the ECoG electrodes and
the distances between the adjacent electrodes, the signals obtained
from the electrodes were collinear. In the regression analysis, the
collinearity made it difficult to determine the values of the regres-
sion coefficients and reduced the prediction accuracy. However,
the PLS regression served to remove the collinearity and improved
the precision of the regression analysis.

In this study, a PLS regression was performed with the fol-
lowing procedure. First, the feature vectors of the ECoGs were
constructed as follows:

xi(t) =

⎛
⎜⎜⎝

α(i, t)
β(i, t)
γL(i, t)
γH(i, t)

⎞
⎟⎟⎠ , (2)

x(t) =

⎛
⎜⎜⎜⎜⎝

x1(t)
x2(t)

...

xN (t)

⎞
⎟⎟⎟⎟⎠ , (3)

where xi(t) (i = 1, 2, . . . , N) is the subvector of the feature vector
x(t). Moreover, α(i, t), β(i, t), γL(i, t), and γH(i, t) are frequency
band’s power defined in Table 3 of channel i at time t. Namely,
each element of xi(t) indicates the power of the correspond-
ing frequency band. These elements are considered explanatory
variables in the PLS regression. The regression model is as follows:

y(t) = β0 +
r∑

k = 1

βkx′
k(t) + E(t), (4)

x′(t) = Ax(t), (5)

where y(t) is the iEMG of the target muscle at time step t, x′
k(t) is

the k-th element of the latent variable vector x′(t) corresponding
to x(t), βk (k = 0, . . . , r) is the k-th regression coefficient, and
E(t) is the error term. By using the PLS regression, the coeffi-
cient matrix A to maximize the covariance of y and x′ is decided,
and the vector x′(t) is calculated as Equation (5). Namely, the
latent variables which express the relationship between y and xi

are achieved as the vector x′.

PATTERN CLASSIFICATION WITH A LINEAR DISCRIMINANT ANALYSIS
The linear discriminant analysis (LDA), developed by Fisher
(1936), was applied to classify the ECoGs into the four motions
defined in Table 2. The scatter matrix Sc (c = 1, 2, 3, 4) was
defined as follows:

Sc =
∑

x ∈ Xc

(x − x̄c)(x − x̄c)T, (6)

where Xc is a dataset of x(t) in the class ωc, x̄c is the average vector
of data set Xc, and Nc is the size of Xc. The within-class scatter
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matrix Wij is defined by Equation (7) with the 2 classes of ωi and
ωj, and the between-class covariance matrix Bij is defined with
Equation (8).

Wij = Si + Sj =
∑

n = i,j

∑
x ∈ Xc

(x − x̄n)(x − x̄n)T, (7)

Bij =
Nn∑

n = i,j

(x̄n − x̄)(x̄n − x̄)T, (8)

Then, the evaluation function J(wij), which indicates the separa-
tion performance, is defined by Equation (9).

J(wij) =
wT

ij Bijwij

wT
ij Wijwij

. (9)

The LDA yields the transform coefficient vector wij by maximiz-
ing the evaluation function J(wij). The discrimination function is
defined as gij(x(t)) in order to discriminate class ωi from ωj by
using the transform coefficient wij as follows:

{
x(t) ∈ ωi ⇒ gij(x(t)) > 0

x(t) ∈ ωj ⇒ gij(x(t)) < 0
, (10)

gij(x(t)) = wT
ij x(t) + wij. (11)

For multiclass classification, ĉ(t) the class at time step t is deter-
mined with Equation (12).

ĉ(t) = argmax
i = 1...4

gij∑
j �= i

(x(t)) (12)

MOVEMENT DECISION WITH THE ACCUMULATED DISCRIMINATION
RESULTS
The movement of the prosthetic arm was determined with the
results of the ECoG pattern discrimination. The discrimination
results usually include misdiscrimination. Therefore, if the dis-
crimination results directly reflect the control of a prosthetic
arm, it can overdrive the arm. To avoid this problem, we per-
formed movement decisions with the accumulated discrimina-
tion results. A schematic diagram of the algorithm is shown in
Figure 6.

In Figure 6, Freq. is the abbreviation of frequency, and Acc.
Results is the abbreviation of Accumulated Results, which is
defined as the accumulated total of frequency of discrimination
results. Focusing attention on the first row, the actual subject’s
states changed deterministically. In short, the frequency each state
is always 100%. However, the discrimination results were prob-
abilistic when considering misdiscrimination, and these often
occurred around the point of state transition because the reaching
task is a continuous motion. Finally, the accumulated discrimina-
tion results increased monotonically, and the upward trend began
at the start of the subject’s state transition.

With a proper threshold, the point of state transition, indi-
cated by arrows, was estimated. The thresholds were determined

FIGURE 6 | Schematic diagram of the movement decision algorithm.

The solid line represents the actual values, and the dashed line represents
the predicted values.

by considering the difference in the start time and the speed of the
prosthetic arm. In addition, the waiting state was treated another
way. When the state of the prosthetic was determined to be wait-
ing, the accumulated discrimination results of the other states
expected that waiting would be reset. In addition, the accumu-
lated discrimination results of waiting reset the state when it was
determined not to be waiting. The transition of the prosthetic
arm should be proper. Otherwise, it was assumed that the sub-
ject was performing irregular motions, such as grasping the bar
of the cage, and so on. In such a case, the prosthetic arm stopped
until the state changed to waiting.

TRIGGER EVENT GENERATION ACCORDING TO THE ESTIMATED EMGs
With the algorithm mentioned in the preceding section, stable
control of the prosthetic arm was achieved with a latency of about
200 ms. The completion time was delayed even though the start
time for movement of the prosthetic arm was almost the same as
that for the monkey’s actual movement. The performance of the
monkey’s own arm was superior to the prosthetic arm. In fact, the
changes in the EMGs appeared before the changes in the motion,
and, thus, preceding control became possible to determine the
motion according to the estimated EMGs. Usually, it was diffi-
cult to reconstruct motion from EMGs. However, it was simple
to generate a trigger from the EMGs under the presupposition
that the state of the subject was waiting. The threshold process-
ing of the EMGs of a certain muscle generated the trigger, and it
was specified according to anatomical knowledge. As change of
muscle activities should precede appearance of movement, it is
possible to calculate a threshold that generates a trigger preced-
ing appearance of movement. In this study, we used a threshold
that canceled the prosthetic arm stable control latency mentioned
above (200 ms).

ETHICAL APPROVAL
All experimental procedures were performed in accordance with
the Guidelines for Proper Conduct of Animal Experiments of the
Science Council of Japan and approved by the Committee for
Animal Experiment at the National Institutes of Natural Sciences
(Approved No.: 11A157). The data presented for all experimental
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sessions were obtained from a female Japanese monkey (M. fus-
cata; body weight = 5.4 kg).

RESULTS
To confirm the usefulness of our proposed methods, we per-
formed a number of experiments. First, the results of the EMG
prediction with a PLS regression were determined to compare the
predicted values to the actual values. Next, in order to compare
the regular EMG pattern with the irregular one, we confirmed
the stability of the predicted EMGs from the ECoGs. Finally, the
results of the motion decision by using trigger event generation
according to the predicted EMGs are shown.

COMPARISON BETWEEN THE ACTUAL VALUES AND THE PREDICTED
VALUES OF EMGs
In this experiment, we acquired a data sequence that included
100 regular trials. When the state transition of the monkey
occurred in the sequence shown in Figure 6 !

, the series of movements was counted as one trial.
The coefficient matrix A was determined with data that included
90 trials, and the prediction accuracy was evaluated with sequen-
tial data that included 10 trials except for the data that were used
to determine the coefficient matrix A. The 100 regular trials were
divided into 10 groups of 10 trials each.

An example of a prediction over 2 s is shown in Figure 7. The
solid line represents the actual values, and the dashed line rep-
resents the predicted values. In most cases, the trends and peak
values were well matched. Although a peak time shift was seen in
some cases, such as for the Flexor Carpi Ulnaris (FCU), rise times
mostly matched.

For the quantitative evaluation, correlation factors and root-
mean-square errors for each muscle are shown in Table 4.
Correlation factors were calculated between actual values and
predicted values. Student’s t-test was performed under the null
hypothesis that the correlation factor equals 0. Following this,
it was confirmed that all correlation factors were significant at
the 95% confidence level. Nine factors exceeded the correlation

value and were considered highly correlated (0.7). In the case of
the Triceps Lateral Head (TLaH), Biceps Long Head (BLH), and
Extensor Carpi Radialis (ECR), the correlation values were not
very high. However, they resulted in little difference compared
to the root-mean-square error. We calculated them by applying
leave-one-out cross-validation in one group selected from the 10
groups.

EXAMPLES OF IRREGULAR EMG PATTERNS
As mentioned above, the iEMG prediction by PLS regression
seemed to work well. However, some irregular patterns were
found during the sequence that had period stability. The iEMG
of the pectoralis major provides an illustrative example. Figure 8
shows the typical regular iEMG pattern and the irregular iEMG
pattern during the 10 trials of continuous reaching motion. In 9 of
the 10 trials, a regular pattern of the actual iEMGs was observed.
However, in 1 trial, an irregular pattern was observed, as shown in
Figure 8. Nevertheless, the reaching task was performed correctly
in both of these cases. Specifically, it had period stability from a
task-oriented point of view. Similarly, the brain activity also had
stability. The waveforms of the predicted values were more similar

Table 4 | Comparative tables of correlation factors and

root-mean-square errors for each muscle.

Correlation factors Root-mean-square errors

PM DP TLoH PM DP TLoH

0.88 0.83 0.82 0.12 0.17 0.20

TLaH BLH B TLaH BLH B

0.59 0.55 0.85 0.21 0.21 0.16

ECR EDC FDP ECR EDC FDP

0.64 0.79 0.89 0.18 0.21 0.13

FCU APL AP FCU APL AP

0.75 0.83 0.71 0.20 0.19 0.18

Table 1 contains the legend for all abbreviations.

FIGURE 7 | Examples of the actual and predicted values for each muscle. Table 1 contains the leg-end for all abbreviations. The dashed line represents the
actual values, and the solid line represents the predicted values.
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FIGURE 8 | Comparison of the actual and predicted integrated electromyography (iEMG) values of the pectoralis major with typical patterns. (A) A
regular pattern of the actual iEMGs and the predicted values. (B) An irregular pattern of the actual iEMGs and the predicted values.

FIGURE 9 | Difference between the actual start time of the

subject and the determined start time of the prosthetic arm.

(A) The result of the movement decision method that used

accumulated discrimination results. (B) The result of the trigger
generation with the predicted iEMG. (C) The results obtained with
the actual iEMGs.

to the regular actual iEMG patterns than to the irregular ones.
Although the activity of the motor cortex was regular, the activity
of the muscles that differed from the typical pattern was pro-
duced because of kinematic redundancy, as known as the degrees
of freedom problem formulated by Bernstein (1967, 1996).

COMPARISON AMONG MOVEMENT DECISION METHODS FOR
PROSTHETIC ARMS
We confirmed the performance of the proposed movement deci-
sion method. To detect the start time of the upper arm movement,
the deltoid posterior was selected because it increased mono-
tonically with the upper arm movement. Figure 9 shows the
difference between the actual start time of the subject and the start
times that were determined with each method. In this section, the
movement decision method that used accumulated discrimina-
tion results is treated as the conventional method (Figure 9A).
Moreover, the result of the trigger generation with the pre-
dicted iEMG is shown as the proposed method (Figure 9B). The
results obtained with the actual iEMGs are shown for comparison
(Figure 9C).

For the conventional method, differences in start times were
almost 0. However, for the proposed method, each start time
was earlier than that with the conventional method, that is, the
response of the prosthetic arm was improved by the proposed
method. In addition, the same method was adopted with the

actual value of the iEMG instead of the predicted value. In almost
all trials, the start time was earlier than that in the conventional
method and was the same as the case in which the predicted value
was used. However, a lengthy delay occurred in the 8th trial. To
attempt to explain this phenomenon, the actual and predicted
values of the iEMG in the 8th trial and the others are shown in
Figure 10.

In the regular pattern, both the actual and predicted values had
a diphasic trend, and the heights of the 2 peaks nearly aligned.
However, in the 8th trial, the trends of the actual values and the
predicted values differed from each other. Namely, the predicted
values had trends that were the same as the regular pattern. The
trigger event can be generated with a proper threshold (e.g., 0.25
as shown with dashed lines). However, the height of the first peak
of the trend of the actual values was too low to generate a trigger
event. In this case, a trigger event was generated at the second
peak, resulting in a lengthy delay.

DISCUSSION
To construct a BMI prosthetic arm that performs a reaching task,
it is preferable for the response to use information generated by
muscle activity and not just the movement. Specifically, a trig-
ger event is generated according to the predicted iEMGs from
ECoGs by using a PLS regression. Additionally, motor intention
can be correctly estimated by using the predicted value rather than
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FIGURE 10 | Comparison of the actual and predicted iEMG values of the Deltoid Posterior. (A) The actual and predicted values of the iEMG in the others.
(B) The actual and predicted values of the iEMG in the 8th trial.

the actual values for the control of a prosthetic arm. It is usu-
ally easier to estimate motor intention with muscle activities than
with brain activities. At present, BMI prosthetic hands are not
in practical use, while myoelectric prosthetic hands are already
commercially available. This is because myoelectric prosthetic
hands typically accomplish more sophisticated motions than BMI
prosthetic hands do. However, in our current study, a converse
phenomenon was observed. Our results indicate that during peri-
odic movements, muscle activity predicted from brain activity
is maintained using the periodicity rather than the actual mus-
cle activity. To interpret this counterintuitive phenomenon, we
describe the contribution of the cerebellum to motor function,
which was clarified by Domen et al. (1998), as follows:

(a) When the environment is unstable and training for the loco-
motion is insufficient, feedback control is performed.

(b) When the environment is predictable and training is suffi-
cient, feed forward control by the internal model constructed
in the cerebellum is performed.

The brain modifies these two aforementioned modes correctly
and achieves a task. Feedback control is executed to correct
the error between target position and actual position. Because
feedback delay can be several tens or hundreds of milliseconds,
feedback control is applicable only to slow and primary motions.
On the other hand, feed forward control is executed without
feedback information from the sensory organs; it is performed
according to the internal model constructed in the cerebellum.
The monkey that was used as the experimental subject was well
trained in the lever operation task. In other words, the monkey
performed the motion that was “programmed” in its cerebel-
lum. Then, the task-oriented motor intentions were decoded by
the cerebral cortex. However, EMGs appeared due to information
processing in the central nervous system, which was slower than
in the cerebellum.

In conclusion, we found superior estimation of task-oriented
motor intentions by constructing a BMI prosthetic arm. This
was confirmed by comparing the periodicity of actual muscle
activity with the estimated activity taken from brain ECoGs
during the periodic movements of a monkey. Interestingly, if
actual muscle activity became disordered, the estimated mus-
cle activity maintained periodicity. Moreover, by comparing the
time delay between the prosthetic arm control method based on

actual muscle activity and the method based on estimated mus-
cle activity, we found that the method using estimated muscle
activity maintained greater stability than that using actual muscle
activity.
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