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Abstract  27 
We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan 28 

Experimental Module of the International Space Station. An ultra low-density silica aerogel will be 29 

exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it 30 
will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In 31 
preparation for this study, we simulated particle trapping in an aerogel so that methods could be 32 

developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an 33 
orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot 34 
Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun 35 

(acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were 36 
recorded with a microscope/camera system for further analysis. The size distribution of the captured 37 
particles was smaller than the original distribution, suggesting that the particles had fragmented. We were 38 

able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the 39 
DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the 40 
autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to 41 

determine if microbes exist at the International Space Station altitude. 42 
Keywords: Aerogel, Space experiment, Hypervelocity impact experiment, DNA-specific fluorescence 43 
dye.  44 

45 
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Introduction 46 
The existence of terrestrial life under extreme conditions, including high altitudes, has been 47 

examined geochemically and geobiologically (reviewed by Rothschild and Mancinelli 2001; Madigan 48 

and Orent 1999; Navarro-Gonzáez et al. 2003; Kato et al. 2009; Yang et al. 2009). One notable feature of 49 
high altitudes is that solar ultraviolet (UV) radiation is much greater than it is on the ground because of 50 
the relative differences in the distances from the sun and the shielding effect of the stratospheric ozone 51 

layer, which eliminates UV radiation of <290 nm (Blumthaler et al. 1997; Hallmann and Ley 1998) 52 
Consequently, the more intense high-altitude solar radiation probably does substantially more damage to 53 
an organism’s DNA and its viability (Horneck et al. 2006) than does radiation reaching the earth.  54 

To investigate if microbes exist at high altitudes (up to 77 km above ground level), 55 
microbe-capture experiments have been performed in airplanes, balloons, and rockets (reviewed by Yang 56 
et al. 2009). These experiments have retrieved radiation-resistant fungal and Bacillus spores, and 57 

Deinococci (Soffen 1965; Fulton 1966; Wainwright et al. 2003; Griffin 2004; Yang et al. 2008a; Yang et 58 
al. 2008b; Smith et al. 2009). DeLeon-Rodriguez et al. (2013) suggested that air-borne microbes might be 59 
involved in the (bio)chemistry of the atmosphere and hydrological cycles. Microbes may be transferred to 60 

high altitude by several mechanisms, e.g., powerful volcanic eruptions (Simkin and Siebert 1994; Robock 61 
2002; Antuña et al. 2003; Oman et al. 2005), meteorite-impact recoil debris (Alvarez et al. 1980; Kring 62 
2000), wind storms (Kellog and Griffin 2006), rocket launches (Bucker and Horneck 1968; Nicholson et 63 

al. 2009), and electrostatic forces associated with thunderstorms (Dehel et al. 2008). If microbes exist at 64 
altitudes higher than 77 km above the Earth, e.g., in the thermosphere, which corresponds to a low Earth 65 
orbit (LEO), it will provide evidence for the expansion of the Earth’s biosphere.  66 

We have proposed the Tanpopo mission—an experiment to be performed on the Japanese 67 
Experiment Module (JEM) of the International Space Station (ISS), which orbits 400 km above the 68 
Earth—to investigate possible interplanetary transfer of microbes and organic compounds (Yamagishi et 69 

al. 2008). To do so, the experimental protocol is designed to capture micro-particles that might contain 70 
microbes. We will expose an ultra low-density silica aerogel, which will serve as the particle trap, to the 71 
outside of the ISS for more than 1 year. After retrieving the aerogel, we will determine if particles were 72 

trapped in the aerogel. If so, we will first characterize the entrance holes and tracks made by these 73 
particles. We will then stain a horizontally cut portion of the interior of the aerogel with a DNA-specific 74 
fluorescent dye to detect microbial DNA associated with the particles and their tracks. Any fluorescence 75 

arising from the stained DNA will be visualized under a fluorescence microscope. Particles that might 76 
potentially contain microbes in the other half of the exposed interior will be subjected to polymerase 77 
chain reaction (PCR) amplification of the small subunit ribosomal RNA (rRNA) gene followed by DNA 78 
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sequencing (Tabata et al. 2011). Comparison between the experimentally determined sequences and 79 
known rRNA gene sequences may suggest the origin and properties of the microbial DNA and, 80 
consequently, the captured microbes. 81 

 An ultra low-density silica aerogel is a dried SiO2 gel with an amorphous structure. 82 
Projectiles traveling at hypervelocity (on the order of km/s) are severely damaged when they hit most 83 
materials (reviewed in Burchell et al. 2006); however, this type of material offers the advantage that it 84 

does much less damage to an impacted projectile and, therefore, can be used to capture particles in a 85 
nondestructive manner. It has been used as a cosmic dust collector to capture particles of sub-millimeter 86 
size on LEO vehicles, e.g., the European Retrievable Carrier spacecraft of the European Space Agency 87 

(Yano and McDonnel 1994), the Micro-Particles Capturer and Space Environment Exposure Device of 88 
the National Space Development Agency of Japan (the forerunner of the Japan Aerospace Exploration 89 
Agency) at the ISS (Kitazawa et al. 2000; Neish et al. 2005), and the interplanetary dust-capture 90 

experiment on the Mir space station (Hörz et al. 2000), and the Stardust mission (Brownlee et al. 2006) of 91 
the National Aeronautics and Space Administration. However, a capture experiment of microbes in space 92 
has never been attempted. The extremely large kinetic impact energies of projectiles accelerated to 93 

hypervelocities causes heat-induced physical transformations including decreases in the volumes and 94 
vitrification of the projectiles and target material (Okudaira et al. 2004; Noguchi et al. 2007). Airborne 95 
microbes have been transported on dust particles, e.g., clay minerals, through the atmosphere (Kellogg 96 

and Griffin 2006; Womack et al. 2010; Smith et al. 2013). If terrestrial microbes at the altitude of the ISS 97 
orbit are present, they may be found in dust particle(s) that originated on the Earth. If we assume that 98 
particles found at the LEO have an orbital speed of ~8 km/s, the collision speed between an aerogel used 99 

to trap a particle and the particle would be at most 16 km/s and dependent on the collision angle.  100 
For this report, we assessed if microbes or microbial DNA associated with micro-particles 101 

could be captured by an aerogel. Dust particles that are present at LEO altitudes and their sizes have been 102 

characterized (McBride et al. 1999; Kitazawa et al. 2000; Hörz et al. 2000), although microbe-containing 103 
particles have not been identified to date. LEO dust particle densities are quite small (Hörz et al., 2000). 104 
For the Tanpopo mission, we will determine if DNA molecules are present in particles found in the 105 

retrieved aerogel as such molecules would indicate the presence of microbes captured by the aerogel. We 106 
plan on staining the interior of the aerogel, if it contains particles and their tracks, with the DNA-specific 107 
dye SYBR Green I and visualizing by fluorescence microscopy. Similar detection methods have been 108 

widely used for environmental samples, e.g., soil, marine sediment, and water. Fluorescence dyes, e.g., 109 
acridine orange (Francisco et al. 1973; Daley and Hobbie 1975), 4',6-diamidino-2-phenylindole (Poter 110 
and Feig 1980), SYBR Green I, and SYBR Green II (Noble and Fuhrman 1998; Weinbauer et al. 1998; 111 
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Patel et al. 2007), have been used to detect environmental microbes. SYBR Green I binds to 112 
double-stranded DNA and emits green light when excited by blue light (excitation maximum, 497 nm; 113 
emission maximum, 520 nm), and has been used to characterize the sizes, shapes, and number of 114 

microbes present in a sample, e.g., marine sediment (Sunamura et al. 2003). However, inorganic, 115 
especially vitrified, materials, e.g., soil, minerals, sediment, and rocks, have large autofluorescence 116 
signals, which overlap with microbial signals (Morono et al. 2009). The Tanpopo aerogel and captured 117 

micro-particles are inorganic materials. Therefore, we needed to develop a method that would distinguish 118 
between DNA-associated fluorescence and vitrified inorganic material autofluorescence after retrieval of 119 
the aerogel from the ISS. 120 

For the study reported herein, we established methods for the characterization of captured 121 
particles and their tracks and entrance holes, and for the identification of microbial DNA by fluorescence 122 
spectroscopy in an aerogel that had been shot with particles. We first shot Deinococcus radiodurans 123 

R1-containing Lucentite particles into an aerogel using a two-stage light-gas gun (LGG). The sizes of the 124 
captured particles and their exposed tracks were recorded with a microscope/camera and then measured. 125 
The interior of the aerogel containing the tracks and particles was then stained with SYBR Green I to 126 

develop a method that would allow for the identification of microbial DNA.  127 
  128 

Materials and methods 129 

Preparation of projectiles 130 
 We prepared micrometer-size particles made of a mixture of the smectite clay Lucentite 131 
(Lucentite SWN, Co-op Chemical) and D. radiodurans R1 (ATCC 13939). D. radiodurans was cultured 132 

overnight in 1% (w/v) Bacto Tryptone, 0.6% (w/v) beef extract, and 0.2% (w/v) glucose, pH 7.0 at 30°C 133 
with shaking at 150 rpm until the culture reached the stationary phase. D. radiodurans cells were 134 

collected by centrifugation at 3000 rpm for 10 min at 4°C in a centrifugal concentrator 135 
(TOMY, High-Speed Micro-Refrigerated Centrifuge, MR-160). The cells were washed with RT-PCR 136 
Grade water (Ambion Co., Ltd., AM9935), and centrifuged as before. The wash process was repeated a 137 

total of three times. Lucentite particles, (1 g) were dry-heat sterilized at 180°C for 4 h, suspended in 138 
RT-PCR Grade water (1 ml), and mixed with the suspended D. radiodurans cells ~108 cells/g Lucentite. 139 
After the suspension had been centrifuged at room temperature for 10 minutes, the supernatant was 140 
removed with a Pasteur pipet, and the precipitate was dried under vacuum in a centrifugal vacuum 141 

concentrator (Sakuma Co. Ltd., EC-57CS) for 3 days. The dried precipitate was crushed with a sterile 142 

spatula, and particles between 48 and 58 µm in diameter were selected by passing them through mesh 143 
(NBC Meshitec). Their dimensions were measured after capturing their images using a microscope 144 
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equipped with a CCD camera (Olympas Optical Co. Ltd, BX60; Fig. 1a). The average particle weight was 145 
estimated by weighing 100 particles on an ultra-microbalance (Sartorius, MC5; n = 3). Lucentite particles 146 
that had not been mixed with D. radiodurans were prepared in an identical fashion.  147 

Two-stage LGG experiment 148 
Hypervelocity impact experiments were performed using an LGG (Fig. 2a) at the Institute of 149 

Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA). The LGG is a 150 

hypervelocity accelerator that uses H2 (or He) as the accelerating medium. Sample particles were placed 151 
into a spherical cavity formed by the inner surfaces of a cylindrical bullet called a “sabot” (Fig. 2b). The 152 
bullet was accelerated by the LLG to ~4.2 km/s and stopped by a sabot stopper so that only the particles 153 

collided with the targeted aerogel. The aerogel was manufactured as described (Tabata et al. 2010, 2012) 154 
and consisted of two layers (Tabata et al. 2011) with the upper layer having a density of 0.01 g/cm3 and 155 
the lower layer having a density of 0.03 g/cm3. When PCR assayed, bacterial contamination was not 156 

detected in the aerogel (Tabata et al. 2011). The aerogel (3 cm × 3 cm × 2 cm) was placed into an 157 
aluminum holder that had been wiped clean with 70% (v/v) ethanol/water and then the aerogel/holder 158 
system was placed in the vacuum chamber (maintained at <10 Pa) of the LLG apparatus. We handled the 159 

container and the aerogel with sterile tools.  160 
 161 
Fluorescence imaging  162 

 Lucentite particles with and without D. radiodurans were shot at the aerogel at 4.2 km/s. 163 
After impact, the regions in the aerogel containing particle tracks were cut out with a sterilized razor 164 
blade (Feather Co., Ltd.). The aerogel was cut along the centers of the tracks. The aerogel is a 165 

hydrophobic material and is not degraded by water (Tabata et al. 2012). Because a strictly hydrophilic 166 
solution could not penetrate the aerogel, we used a SYBR Green I/DMSO/water/acetone solution, which 167 
provided fluorescent images with lower backgrounds than did other mixtures (data not shown). The 168 

staining solution contained 1 mL of SYBR Green I in DMSO (Invitrogen, Carlsbad, CA), 59 mL of 169 
RT-PCR Grade Water (Ambion Co., Ltd., AM9935), and 40 mL of acetone (Wako Pure Chemical 170 
Industries, Ltd., Japan). The aerogel, with its tracks exposed, was placed on a glass slide after being 171 

stained for 1 h, and then the stained tracks were subjected to fluorescence microscopy (Optical Co. Ltd, 172 
BX60). A green (NIBA), red (WIG), or blue (WU) fluorescence filter (Optical Co. Ltd, BX60), or no 173 
filter, was used when recording the images. Table 1 shows the excitation and fluorescence wavelengths of 174 

the filters. Images of 640 × 640 pixels, corresponding to 125.2 × 93.9 µm were recorded. Complete tracks, 175 
i.e., from their entry points to their termini, were photographed. The exposure time was 1.0 sec and an 176 
image was recorded every 10 or 30 sec for 300 sec. The fluorescence intensities of the pictures were 177 
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recorded using ImageJ 1.47n (Abràmoff et al. 2004). The total fluorescence intensity (Fi) of all images 178 
taken at a given time after the initial exposure was calculated by integrating the glary value for each pixel. 179 
The attenuation rate was defined as the quotient Fi/Fi0, where Fi0 is the total intensity at 0 sec.  180 

 181 
Microscopic observation of captured particles and their tracks and entrance holes 182 
 Photographs of captured particles, and their tracks and entrance holes were recorded using a 183 

microscope equipped with a CCD camera (Optical Co. Ltd, DP72). Their dimensions were measured 184 
using ImageJ 1.47n. 185 
 186 

Results 187 
Characteristics of the Lucentite particles  188 
 Micrographs of the D. radiodurans-containing Lucentite particles before impact are shown in 189 

Fig. 1a. The particles have irregular shapes but are of similar sizes. Smaller particles adhere to larger 190 
particles. The size distributions of the particles before impact are shown in Fig. 1b, with the minimum 191 

length and width being 42.0 µm and 28.0 µm, respectively; and the maximum length and width being 192 

80.0 µm and 82.0 µm, respectively. The average mass was 97.1 ± 6.6 ng.  193 
 194 
Curation of the captured particles and their tracks  195 

 The D. radiodurans-containing Lucentite particles were accelerated through the LGG 196 
apparatus at 4.2 km/s before colliding with the two-layered aerogel. Examples of the tracks in the aerogel 197 
caused by the particles are shown in Fig. 3. The left half of the aerogel had a density of 0.01 g/cm3 and 198 

the right half had a density of 0.03 g/cm3. Many short tracks overlapped each other (Fig. 3). Because the 199 
low-density portion of the aerogel is nearly opaque, not all the tracks could be observed. Entire tracks and 200 
the termini are seen in Fig. 4. Each terminus contained a particle, which would probably be a Lucentite 201 

particle given its large refraction index. Fig. 5 shows images of the particle entrance holes. The larger 202 
holes are associated with longer tracks. Some of the entrance holes are star shaped with fractures at their 203 
edges (Figs. 5a and b). Smaller holes and black particles are also observed at the entry surface of the 204 

aerogel. These holes were probably made by gun debris; because the debris had a slower speed than did 205 
the Lucentite particles, it would not have entered the aerogel. The average dimensions and associated 206 
uncertainties of the tracks, entry holes, and the residual particles are shown in Table 2. The average length 207 

and width of the residual particles are 48.8 ± 1.2 µm and 48.9 ± 2.4 µm, respectively. The average area of 208 
the particles is 1735.8 ± 100.3 µm2 assuming that they are oval in shape. The average length, width, and 209 
area of the entrance holes are 0.58 ± 0.06 mm, 0.62 ± 0.07 mm, and 0.20 ± 0.03 mm2, respectively. The 210 
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size distribution of the particles after collision is shown in Fig. 1b. The sizes of the particles are smaller 211 
after the collision with the aerogel than before. 212 
 213 

Fluorescent staining of microbial DNA  214 
 We developed a protocol to detect microbial DNA in the targeted aerogel that uses 215 
DNA-bound SYBR Green I fluorescence and that can distinguish microbial DNA from inorganic 216 

materials.  217 
  Lucentite particles with or without D. radiodurans cells were shot at the aerogel. After 218 
staining the aerogel with SYBR Green I, we observed the particles in the tracks using a fluorescence 219 

microscope equipped with or without a filter. Some small particles that did not contain D. radiodurans 220 
were observed at the track termini (Fig. 6a). These small particles autofluoresced under each filter (Fig. 6). 221 
Fig. 7a shows fluorescence images of aerogel-embedded Lucentite particles at different illumination 222 

times. Fig. 7b shows the fluorescence of stained, cultured D. radiodurans cells as observed by fluorescent 223 
microscopy. Fig. 8a shows the time course of the fluorescent intensity from Lucentite particles and SYBR 224 
Green I-DNA complexes. The graphs were plotted using the particle identified by the red arrow in Fig. 7a 225 

(open circles) and the average of the data from the three D. radiodurans DNA-SYBR Green I complexes 226 
identified by blue arrows shown in Fig. 7b (closed squares). In the Fig. 8b, the open squares indicate the 227 
average of the fluorescence intensities of the particle shown in Fig. 9a and two similar fast fading 228 

particles found in the same track. The closed circles indicate the average of the fluorescence intensities of 229 
the particle shown in Fig. 9b and two similar slow fading particles found in the same track. The Lucentite 230 
particles autofluoresced longer than 6 min (Fig. 7a, 8a), whereas the fluorescence associated with D. 231 

radiodurans decreased more rapidly (Fig. 7b, Fig. 8a).  232 
We visualized the tracks made by the D. radiodurans-containing Lucentite particles in the 233 

presence and absence of a filter (Fig. 10). The shaft of the black arrow is parallel to the direction of the 234 

impact in Fig. 10a. Particles (~1 µm in diameter) circled in red were observed only under the green filter 235 
(Fig. 10b). Conversely, the particles circled in white were visualized under all filters (Fig. 10). 236 

The fluorescence images of particles in the same track that were observable under the green 237 

filter were taken immediately after excitation (Figs. 9a and c). The inserts in Figs. 9a and c are 238 
enlargements of the particles shown in the main portions of the respective figures. During the 300 s that 239 
the particles were exposed to the excitation light, the fluorescence of the particle circled in red had 240 

decayed to a greater extent than had the fluorescence of the particle circled in blue (Figs. 9b and d). The 241 
attenuation rate was calculated from a plot of the fluorescence intensity versus the excitation time (Fig. 242 
8b) and was found to be different for the two particles.  243 
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We also counted the number of SYBR Green I-stained D. radiodurans cells in three un-shot 244 
Lucentite particles by fluorescence imaging. The number of cells was 22 ± 3 cells per particle. After the 245 
experiment, we found 8, 6, 7, and 8 D. radiodurans cells in four different particles (data not shown).  246 

 247 
Discussion 248 
Characterization of the captured particles and their tracks in the target aerogel  249 

 Lucentite particles of ~60 µm in diameter were used as the model projectile for this 250 
hypervelocity experiment. We measured the size of the particles that were found at the ends of the tracks 251 
and found that both particle dimensions had decreased after impact (Table 1 and Fig. 1b). Many small 252 

particles were observed near the track termini and on the tracks themselves (Fig. 6a), suggesting that the 253 
original particles had fragmented. We and others have shown that the interiors of other types of particle 254 
projectiles, e.g., serpentine, cronstedtite, and cocoa powder, do not experience temperatures higher than 255 

their decomposition temperatures (Okudaira et al. 2004; Noguchi et al. 2007; Spencer et al. 2009), 256 
suggesting that any DNA from microbes in the interior of the Tanpopo particles would not be subjected to 257 
temperatures that would affect its integrity. Therefore, it should be possible to capture particles of ~60 258 

µm in diameter and to detect microbial DNA in the particles using the aerogel manufactured for the 259 
Tanpopo mission.  260 
The properties of particles and their tracks and entrance holes in an aerogel provide information regarding 261 

the characteristics and impact velocity of the particles (e.g., Burchell et al. 2008). “Hard” projectiles, e.g., 262 
soda-lime glass, meteorite samples, and various other minerals, have been used as projectiles (Burchell et 263 
al. 1998; Burchell et al. 2001; Burchell et al. 2009; Spencer et al. 2009; Hörz et al. 2006; Kearsley et al. 264 

2012), as have “soft” projectiles, e.g., cocoa powder (an aggregate of organic matter), montmorillonite, 265 
which is a clay, glycine crystals, Allende meteorite particles, and soda-lime glass beads (Anderson and 266 
Ahrens 1994; Spencer et al. 2009; Tabata et al. 2011; Nixon et al. 2012; Kearsley et al. 2012; Suzuki et al. 267 

2013). Lucentite particles, which had not been used previously as projectiles, created carrot shaped or 268 
“gobou” (burdock root)-shaped tracks (Tsuchiyama et al. 2009). The same type of track was found when 269 
Allende meteorite particles (Spencer et al. 2009), soda-lime glass beads (Tabata et al. 2011; Kearsley et al. 270 

2012), and Al2O3 (Hörz et al. 2009) were used as projectiles. Certain tracks created by comet dust from 271 
the Stardust mission had a similar shape (Brownlee et al. 2006; Tsuchiyama et al. 2009; Iida et al. 2010). 272 
Therefore, Lucentite particles act as “soft” projectiles. 273 

 The Lucentite particles created jagged entrance holes (Fig. 5), which was expected because 274 
the cross-sections of the particles were not circular in shape (Fig. 1a). The entry holes had deeply 275 
indented margins (Figs. 5a and d) such as were seen for aerogels impacted by glycine (e.g., Nixon et al. 276 
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2012). The features of these holes might be ascribed to the low density of the aerogel. To identify the type 277 
of particles that might collide with the aerogel used for the Tanpopo mission, we need to survey other 278 
types of particles, with different diameters and different accelerations, to characterize the types of tracks 279 

and entrance holes that they would produce. 280 
 281 
Detection of microbial DNA in the aerogel by fluorescence staining 282 

 The ability to detect microbes in a complex environment by fluorescent imaging has 283 
improved with the development of new stains and extraction methods (Noble and Fuhrman 1998; Shopov 284 
et al. 2000; Boenigk 2004; Zhou et al. 2007; Kallmeyer et al. 2008). In the aforementioned reports, 285 

fluorescence spectroscopy in conjunction with SYBR Green I staining was used to distinguish microbial 286 
DNA from inorganic particles. Sunamura et al. (2003) reported that the fluorescence of SYBR II-stained 287 
microbial DNA could be differentiated from autofluorescing substances. Fluorescent signals from SYBR 288 

Green I-stained microbes and non-specific background signals from inorganic particles have different 289 
colors under a long-pass filter, which is transparent over a wide wavelength range (Morono et al. 2009). 290 
Pure Lucentite particles intensely autofluoresce under the red, blue, and green filters (Fig. 6), whereas 291 

SYBR Green I-stained DNA fluorescence is observed through only the green filter. The track circled in 292 
white autofluoresced and could be visualized through all filters (Fig. 10). This fluorescence was, therefore, 293 
probably emitted by vitrified Lucentite fragments and/or the aerogel. Spectral discrimination was used to 294 

detect microbes present in low abundance in marine sediment (Sunamura et al. 2003). Because the 295 
number of particles captured in space is expected to be very limited, fluorescent imaging should provide 296 
sufficient sensitivity.  297 

 When SYBR Green I binds to double-stranded DNA, it undergoes a conformational change 298 
that increases its fluorescent intensity (Zipper et al. 2004). Attenuation of SYBR Green I fluorescence 299 
intensity occurs when the molecule is damaged by oxygen radicals, increased temperature, and extremes 300 

in pH. Generally, detection of microbes by fluorescence microscopy is hampered by quenching of the 301 
DNA-bound fluorophore. However, the quenching rate can be used to distinguish SYBR Green I 302 
fluorescence from fluorescence by vitrified material. The fluorescence intensity of the vitrified particles 303 

in the aerogel decayed much more slowly than did that of the SYBR Green I-DNA complex (Fig. 8a), 304 
indicating that the difference in the decay kinetics can be used to distinguish the two types of 305 
fluorescence. We also measured the fluorescence decay (Fig. 8b) of the two particles shown in Fig. 10. 306 

The fluorescence of the particle that decayed more rapidly is most likely associated with SYBR Green 307 
I-DNA complexes (Fig. 9). The fluorescence of the particle that decayed more slowly is most likely 308 
associated with a vitrified particle and/or aerogel material. 309 
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The inserted image in Fig. 9a shows two particles, ~1 µm in size attached to one another. D. 310 
radiodurans cells tend to form diplococcal structures (Fig. 7b), which supports the idea that the detected 311 
particles in Fig. 9a are D. radiodurans cells.  312 

 313 
Assessment of microbial contamination during the space experiment 314 

We will attempt to minimize microbial contamination of the aerogel prior to its placement on 315 

the ISS by appropriately designing the apparatus used to contain it and taking precautions during its 316 
handling. However, the potential for microbial contamination remains.  317 

To minimize possible contamination, the manufacture of the aerogel and the following 318 

procedures will be performed in a clean room. Notably, we have already shown using PCR that an 319 
aerogel manufactured in the clean room is sterile within the detection limits of the experiment (Tabata et 320 
al 2011). We will place the aerogel in aluminum Capturer Panels (described in Tabata et al. 20014), and 321 

store the system in the sterile Ziploc bags (AsahiKASEI, Japan). After transporting the Capture 322 
Panels-aerogel system in the Ziploc bags to the ISS, the system will be removed from the bags and 323 
attached to the Exposed Experiment Handrail Attachment Mechanism. During this procedure, the aerogel 324 

surface may be contaminated by airborne microbes in the ISS pressurized area. The Capture 325 
Panels-aerogel system will then be transferred to the outside of the ISS thorough the ISS airlock where it 326 
will be attached to a handhold on the Exposure Facility of the JEM-ISS. After more than 1 year, Capture 327 

Panels will be transferred to the pressurized area through air lock. Upon pressurization of the air lock, 328 
air-bone microbial cells may contaminate any tracks present and the surface of aerogel. We have tested 329 
the ability of an aerogel to withstand re-pressurization as the hypervelocity experiment described herein, 330 

which was performed under vacuum, whereas the subsequent examination of the aerogel was performed 331 
at atmospheric pressure. In addition, we found that microbial contamination on the tracks to be less than 332 
the detection limit (Fig. 6 and 7a). An aluminum cover will be placed on the Capture Panel system to 333 

protect the aerogel, placed in the sterile Ziploc bags and returned to Earth. We will open the bags in a 334 
clean room. Next, we will recover the portion of the aerogel surrounding tracks. Tracks and entrance 335 
holes will be visualized because aerogel is transparency. Then we cut the gel so that the tracks were cut 336 

lengthwise along their interior and used one half tract for fluorescent imaging. The other half of the 337 
aerogel that contains the other half-track interiors is reserved for DNA analysis. Finally, we will stain the 338 
tracks with SYBR Green I and perform fluorescence microscopy to assess if any microbial cells are 339 

associated with particles that caused the tracks.  340 
 341 

Conclusion 342 



 12 

 We prepared particles of D. radiodurans-containing Lucentite that were shot at an aerogel in 343 
an LGG apparatus at 4.2 km/s. The fluorescence of the SYBR Green I-stained microbial DNA could be 344 
distinguished from non-biological fluorescence by fluorescence imaging. These results indicate that we 345 

can use the developed protocol to identify any microbes found in the aerogel situated at the LEO altitude. 346 
We are now establishing methods to isolate microbial DNA from an aerogel and identify the species from 347 
which it was obtained by PCR assessment of small-subunit rRNA.  348 
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