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We investigate the one-gluon-exchange (��s) corrections to the real photon structure functions WTT ,

WLT ,W
a
TT andW�

TT in the massive parton model. We employ a technique based on the Cutkosky rules and

the reduction of Feynman integrals to master integrals. We show that a positivity constraint, which is

derived from the Cauchy-Schwarz inequality, is satisfied among the unpolarized and polarized structure

functions WTT , W
a
TT and W�

TT calculated up to the next-to-leading order in QCD.
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I. INTRODUCTION

Although a Higgs particle has been discovered at the
CERN Large Hadron Collider (LHC) [1], we need to
examine all of its properties with great accuracy to verify
its full identity. For that purpose, the construction of a new
eþe� collider machine called the International Linear
Collider (ILC) [2] is much anticipated. Even in the experi-
ments at the ILC, a detailed knowledge of the standard
model at high energies, especially based on QCD, is still
important.

It is well known that, in high energy eþe� collision
experiments, the cross section of the two-photon processes
eþe� ! eþe� þ hadrons dominates over other processes
such as the annihilation process eþe� ! �� ! hadrons.
The two-photon processes at high energies provide a good
testing ground for studying the predictions of QCD. In
particular, the two-photon process in which one of the
virtual photons is very far off-shell (largeQ2 � �q2), while
the other is close to the mass shell (smallP2 � �p2), can be
viewed as a deep-inelastic electron-photon scattering
where the target is a photon rather than a nucleon [3].
In this deep-inelastic scattering of a photon target, we can
study the photon structure functions, which are the analogs
of the nucleon structure functions. When polarized beams
are used in eþe� collision experiments, we can get infor-
mation on the spin structure of the photon.

For a real photon (P2 ¼ 0) target, there appear four
structure functions: three unpolarized structure functions
F�
2 ðx; Q2Þ, F�

Lðx;Q2Þ and W�
3 ðx;Q2Þ, and one spin-

dependent structure function g�1 ðx;Q2Þ, where x ¼
Q2=ð2p � qÞ. The analysis of F�

2 and F�
L was first made in

the parton model (PM) [4] and then investigated in pertur-
bative QCD (pQCD). The leading order (LO) QCD con-
tributions to F�

2 and F�
L were derived by Witten [5] and a

few years later the next-to-leading order (NLO) corrections
were calculated [6]. The structure function F�

2 has been

analyzed up to the next-to-next-to-leading order (NNLO)
[7]. The QCD analysis of the polarized structure function
g�1 ðx;Q2Þ was performed in the LO [8] and in the NLO

[9,10]. For more information on the theoretical and experi-
mental investigation of both unpolarized and polarized pho-
ton structure, see Ref. [11]. The photon structure functions
of a virtual photon target (P2 � 0) have also been analyzed
in pQCD. For more information on the study of the virtual
photon structure functions F�

2 ðx;Q2; P2Þ, F�
Lðx;Q2; P2Þ and

g�1 ðx;Q2; P2Þ, see, for example, Ref. [12].
So far in most of the QCD analyses of the photon

structure functions, all the active quarks have been treated
as massless. At high energies the heavy charm and bottom
quarks also contribute to the photon structure functions and
their mass effects may not be neglected. In fact, the NLO
QCD corrections due to heavy quarks have been calculated
for the unpolarized photon structure functions F�

2 and F�
L

[13]. The heavy quark mass effects on the polarized photon
structure function g�1 were analysed at NLO in QCD in

Ref. [10] by using the LO result of the massive PM.
Recently, we have investigated the heavy quark mass
effects on g�1 in the massive PM at NLO in QCD and

have found numerically that the first moment of g�1
vanishes up to the NLO [14].
In this paper we investigate the four real photon structure

functions WTT , WLT , W
a
TT and W�

TT in the massive PM at
NLO in QCD, and examine whether a positivity constraint
[15] is satisfied among the unpolarized and polarized
structure functionsWTT ,W

a
TT andW

�
TT at NLO. The photon

structure functions are defined in the lowest order of the
QED coupling constant � ¼ e2=4� and, in this paper, they
are of order �.
In the next section we discuss the photon structure func-

tions. In Sec. III we explain the method which we employed
to calculate these structure functions in the massive PM at
NLO. In Sec. IV the NLO results for WTT , WLT , W

a
TT and

W�
TT are given as a function of x for both cases of charm and

bottom quarks. We find that the positivity constraint among
WTT , W

a
TT and W�

TT is indeed satisfied for all the allowed x
region. The final section is devoted to the conclusion. In the
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Appendix the resummation formulas for the structure
functions are given.

II. PHOTON STRUCTURE FUNCTIONS

Let us consider the photon-photon forward scattering
amplitude, �ðq; aÞ þ �ðp; bÞ ! �ðq; a0Þ þ �ðp; b0Þ, illus-
trated in Fig. 1,

T����ðp; qÞ ¼ i
Z

d4xd4yd4zeiq�xeip�ðy�zÞ

� h0jTðJ �ðxÞJ �ð0ÞJ �ðyÞJ �ðzÞÞj0i; (1)

where q and p are four momenta of the probe and target
photon, respectively, and J � is the electromagnetic cur-
rent. Its absorptive part is related to the structure tensor
W���� as [16]

W���� ¼ 1

2�
ImT����: (2)

The s-channel helicity amplitudes are given by

Wða0b0jabÞ ¼ ���ða0Þ���ðb0ÞW������ðaÞ��ðbÞ; (3)

where ��ðaÞ represents the photon polarization vector, and
a, a0 ¼ 0,�1, and b, b0 ¼ �1. Note that the target photon
is real and has no longitudinal mode. Due to the angular
momentum conservation, parity conservation, and time
reversal invariance, we have in total four independent
s-channel helicity amplitudes [17], which we may take as

Wð1; 1j1; 1Þ; Wð0; 1j0; 1Þ;
Wð1;�1j1;�1Þ; Wð1; 1j � 1;�1Þ:

(4)

The first three amplitudes are helicity-nonflip and the last
one is helicity-flip.

For the real photon target, there appear four photon
structure functions, WTT , WLT , W

a
TT and W�

TT , which are
functions of Q2ð¼ �q2Þ and x ¼ Q2=ð2p � qÞ. They also
depend on the active quark masses. The subscripts T and
L correspond to the transverse and longitudinal photon,
respectively. The superscript ‘‘a’’ of Wa

TT refers to ��
antisymmetric part of W����, while the superscript ‘‘�’’
of W�

TT refers to transition with spin-flip for each of the

photons. These structure functions are related to the
s-channel helicity amplitudes as follows:

WTT ¼ 1

2
½Wð1; 1j1; 1Þ þWð1;�1j1;�1Þ�; (5a)

WLT ¼ Wð0; 1j0; 1Þ; (5b)

Wa
TT ¼ 1

2
½Wð1; 1j1; 1Þ �Wð1;�1j1;�1Þ�; (5c)

W�
TT ¼ Wð1; 1j � 1;�1Þ; (5d)

where WTT , WLT and W�
TT are called as the unpolarized

structure functions since they are measured, for example,
through the two-photon processes in unpolarized eþe�
collision experiments. When polarized eþ and e� beams
are used, we can get information on the polarized structure
function Wa

TT . Other definitions of the photon structure
functions are often used, which are F�

2 , F
�
L, g

�
1 and W�

3

and are related to Wi’s as follows:

F�
2 ¼ 2x½WTT þWLT�; F�

L ¼ 2xWLT;

g�1 ¼ 2Wa
TT; W�

3 ¼ 1

2
W�

TT:
(6)

There exist positivity constraints on the structure
functions, which are derived from the Cauchy-Schwarz
inequality [15]. For the case of real photon, we obtain
one positivity constraint as follows:

jW�
TTj � jWTT þWa

TTj: (7)

We will confirm positivity constraint at NLO.

III. CALCULATION

We calculate the cross sections for the two-photon
annihilation to the heavy quark qH �qH pairs

��ðqÞ þ �ðpÞ ! qH þ �qH; (8)

with one-loop gluon corrections and to the gluon brems-
strahlung processes

��ðqÞ þ �ðpÞ ! qH þ �qH þ g: (9)

We employ the technique which is based on the Cutkosky
rules [18] and the reduction of Feynman integrals to master
integrals. First, following the Cutkosky rules [19], the delta
functions which appear in the phase space integrals are
replaced with differences of two propagators,

2�i	ðr2 �m2Þ ! 1

r2 �m2 þ i0
� 1

r2 �m2 � i0
; (10)

where m is the quark mass. Then the cross sections for the
virtual corrections to the processes (8) and for the brems-
strahlung processes (9) are described by the two-loop
diagrams shown in Figs. 2 and 3, respectively, where a
cut propagator should be understood as the right-hand side
of Eq. (10).

FIG. 1. Photon-photon forward scattering with momenta qðpÞ
and helicities aðbÞ and a0ðb0Þ.
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We regularize the amplitudes in dimensional regulariza-
tion D ¼ 4� 2�. The absorptive part of the relevant
photon-photon scattering amplitude,W����, can be written
as [16]

W���� ¼ ðTTTÞ����WTT þ ðTLTÞ����WLT

þ ðTa
TTÞ����Wa

TT þ ðT�
TTÞ����W�

TT; (11)

where

ðTTTÞ���� ¼ R��R��; (12a)

ðTLTÞ���� ¼ k
�
1 k

�
1R

��; (12b)

ðTa
TTÞ���� ¼ R��R�� � R��R��; (12c)

ðT�
TTÞ���� ¼ 1

2
ðR��R�� þ R��R�� � R��R��Þ; (12d)

with

R�� ¼ �g�� þ q�p� þ q�p�

p � q � q2p�p�

ðp � qÞ2 ;

k
�
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q2

ðp � qÞ2
s �

p� � p � q
q2

q�
�
:

(13)

We introduce the following D-dimensional projection
operators,

ðPTTÞ���� ¼ 3D� 8

2DðD� 2ÞðD� 3Þ ðTTTÞ����

þ D� 4

DðD� 2ÞðD� 3Þ ðT
�
TTÞ����; (14a)

ðPLTÞ���� ¼ 1

D� 2
ðTLTÞ����; (14b)

ðPa
TTÞ���� ¼ 1

2ðD� 2ÞðD� 3Þ ðT
a
TTÞ����; (14c)

ðP�
TTÞ���� ¼ D� 4

DðD� 2ÞðD� 3Þ ðTTTÞ����

þ 2

DðD� 3Þ ðT
�
TTÞ����; (14d)

such that each structure function, WTT , WLT , W
a
TT and

W�
TT , can be extracted by means of the property

ðPiÞ����ðTjÞ���� ¼ 	ij.

We apply the above projection operators to the two-loop
diagrams given in Figs. 2 and 3. The contributions to each
structure function are expressed in a linear combination of
two-loop scalar integrals of the form

Að�iÞ � Að�k; �kq; �kp; �kpq; �l; �lq; �lp; �lpq; �klÞ ¼
Z dDk

ð2�ÞD
dDl

ð2�ÞD
1

D�k

k D
�kq

k�qD
�kp

k�pD
�kpq

k�p�qD
�l

l D
�lq

l�qD
�lp

l�pD
�lpq

l�p�qD
�kl

k�l;0

;

(15)

where

Dp ¼ p2 �m2; Dp;0 ¼ p2: (16)

Note that 1=Dk�l;0 corresponds to a gluon propagator. The
coefficients of these scalar integrals are written as func-
tions of x, Q2, m2 and D. Actually Að�iÞ has seven propa-
gators at most and at least two �i’s are zero. We choose the
loop integration variables k and l, such that momentum
assignment of the cut propagators corresponds to 1=Dk and
1=Dk�p�q for the diagrams in Fig. 2 and 1=Dl, 1=Dk�p�q

and 1=Dk�l;0 for the diagrams in Fig. 3. If �i’s of the cut
propagators are 0 or negative integer, those integrals do not
contribute to structure functions due to the Cutkosky rule.

Thus we only pick up Að�iÞ’s which are in the
form Að1; �kq; �kp; 1; �l; �lq; �lp; �lpq; �klÞ in Fig. 2 and
Að�k; �kq; �kp; 1; 1; �lq; �lp; �lpq; 1Þ in Fig. 3. The other
scalar integrals are discarded.
There are still a large number of scalar integrals. Next,

we apply the reduction procedure [20] and rewrite the
scalar integrals in terms of fewer number of master inte-
grals. This procedure is based on the method of integration
by parts [21] and the use of the Lorentz invariance of scalar
integrals [22]. We make use of FIRE [23], a public reduc-
tion code powered by MATHEMATICA, and express the
relevant Að�iÞs as a linear combination of the master
integrals, which are denoted as

FIG. 2. Two-loop diagrams with virtual corrections. Graphs with virtual corrections to the right of the cut lines and graphs with
ðq;�Þ and ðp; �Þ interchanged are added. Graphs with the external quark self-energies are not shown in the figure, but should be
included in the calculation.
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Mð�iÞ�Mð�k;�kq;�kp;�kpq;�l;�lq;�lp;�lpq;�klÞ; (17)

in the same way as the notation of Að�iÞs in Eq. (15).
Again the master integrals in the form of Mð1; �kq; �kp;

1; �l; �lq; �lp; �lpq; �klÞ are only relevant for the virtual-

correction diagrams in Fig. 2 and those in the form of
Mð�k; �kq; �kp; 1; 1; �lq; �lp; �lpq; 1Þ are relevant for the

real-gluon-emission diagrams in Fig. 2.
Finally, we perform the phase space integrations by

taking discontinuities of the master integrals with cut
propagators. For the two-cut and three-cut master integrals,
we evaluate

Discð2ÞMð1; �kq; �kp; 1; �l; �lq; �lp; �lpq; �klÞ

�
Z dDk

ð2�ÞD ð2�Þ	ðþÞðk2 �m2Þð2�Þ	ðþÞ

� ððpþ q� kÞ2 �m2Þ 1

D
�kq

k�qD
�kp

k�p

Z dDl

ð2�ÞD

� 1

D�l

l D
�lq

l�qD
�lp

l�pD
�lpq

l�p�qD
�kl

k�l;0

; (18)

and

Discð3ÞMð�k; �kq; �kp; 1; 1; �lq; �lp; �lpq; 1Þ

�
ZZ dDk

ð2�ÞD
Z dDl

ð2�ÞD ð2�Þ	þððk� lÞ2Þð2�Þ	þ

� ðl2 �m2Þð2�Þ	þððpþ q� kÞ2 �m2Þ
� 1

D�k

k D
�kq

k�qD
�kp

k�pD
�lq

l�qD
�lp

l�pD
�lpq

l�p�q

; (19)

respectively, and M’s are master integrals which remained
after applying a reduction algorithm. Note that at least
two �i’s are zero in both (18) and (19). The choice of a
set of master integrals is not unique and we are at liberty

to replace a master integral with one of the other scalar
integrals. We choose a set of master integrals such that the
coefficients of master integrals are finite in the limit D ! 4
[24]. With this choice of the set, the phase space integra-
tions for master integrals need only be evaluated up to the
finite terms in the series expansion in �.
The ultraviolet (UV) singularities appear in graphs (b),

(c), and (d) of Fig. 2, while the infrared (IR) singularities
emerge from graph (a) of Fig. 2 and from the real gluon
emission graphs (a), (b), (c), and (d) of Fig. 3. Both the
UV and IR singularities are regularized by dimensional
regularization. The UV singularities are removed by renor-
malization. We adopt the on-shell scheme both for the
wave function renormalization of the external quark and
for the mass renormalization. For the latter, we replace the
bare mass in the Born cross section by the renormalized
mass m,

mbare ! m

�
1þ �sð�Þ

4�
CFS

�

�
�2

m2

�
�
�
� 3

�
� 4

��
; (20)

where �sð�Þ ¼ g2=ð4�Þ is the QCD running coupling
constant, CF ¼ 4=3 is the Casimir factor and S� ¼
ð4�Þ�e���E with Euler constant �E and � is the arbitrary
reference scale of dimensional regularization. The renor-
malization of the QCD gauge coupling constant is not
necessary at this order. The IR singularities cancel when
both contributions from the virtual correction graphs and
the real gluon emission graphs are added. Actually the IR
singularities reside in the two-cut master integrals in the
form Mð1; �kq; �kp; 1; 1; �lq; �lp; 1; 1Þ and the three-cut

master integrals Mð�k; �kq; �kp; 1; 1; �lq; �lp; �lpq; 1Þ with
�k þ �lpq ¼ 2.

IV. NUMERICAL RESULTS

We plot in Figs. 4 and 5 the real photon structure
functions WTTðx;Q2Þ, WLTðx;Q2Þ, Wa

TTðx;Q2Þ and

FIG. 3. Two-loop diagrams with a real gluon emission. Similar graphs corresponding to (e) and (f) are included. Also graphs with
ðq;�Þ and ðp; �Þ interchanged are added.
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W�
TTðx;Q2Þ predicted by the massive PM up to the

NLO for the case of Q2 ¼ 30 GeV2. We choose charm
and bottom quark as a heavy quark for Figs. 4 and 5,
respectively. For the running coupling constant, we take
�s ¼ 0:21 choosing �2 ¼ Q2. We take mc ¼ 1:3 GeV,
mb ¼ 4:5 GeV, ec ¼ 2

3 and eb ¼ � 1
3 . We show two

curves for each structure function: the LO result and the

result up to the NLO. The allowed x region is 0 � x � xQ
with

xQ ¼ 1

1þ 4m2

Q2

: (21)

The LO results are already known [16] such as

WLO
TT ðx;Q2Þ¼	q

�
�1

2

�
ln
1þ


1�


�
ðð
4�5Þx2�2ð
4�3Þxþ
4�3Þþ
ðð
2�5Þx2�2ð
2�3Þxþ
2�2Þ

�
; (22a)

WLO
LT ðx;Q2Þ¼	q2ð1�xÞx

��
ln
1þ


1�


�
ð
2�1Þþ2


�
; (22b)

Wa;LO
TT ðx;Q2Þ¼	q

��
ln
1þ


1�


�
ð2x�1Þþ
ð�4xþ3Þ

�
; (22c)

W�;LO
TT ðx;Q2Þ¼	q

�
�1

2

�
ln
1þ


1�


�
ð
2�1Þðx�1Þðð
2þ3Þx�
2þ1Þþ
ðð
2�3Þx2�2ð
2�1Þxþ
2�1Þ

�
; (22d)

where


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2x

Q2ð1� xÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

xQ

1� x

s
; (23)

and

	q ¼ 3�

2�
e4q: (24)

For x ! xQ, 
 goes to zero and thus structure functions
vanish at xQ in LO.

We observe that the radiative corrections in NLO are
noticeable. In the graphs (a), (c), and (d) of Figs. 4 and 5 we
find that the radiative corrections toWTT ,W

a
TT andW

�
TT are

large near the threshold (near xQ). Indeed those NLO

curves do not vanish at xQ. This is due to the Coulomb

singularity, which appears when the Coulomb gluon is
exchanged between the quark and antiquark pair near
threshold. The diagram in Fig. 2(a) is responsible for this
threshold behavior. The virtual correction to the left of the
cut line in Fig. 2(a) gives rise to a factor 1=
 while a factor

 comes out from the phase space integration. They are

0.0 0.2 0.4 0.6 0.8

0

2

4

6

x

a WTT x,Q2

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x

b WLT x,Q2

0.0 0.2 0.4 0.6 0.8

4

3

2

1

0

1

x

c WTT
a x,Q2

0.0 0.2 0.4 0.6 0.8
2.0

1.5

1.0

0.5

0.0

x

d WTT x,Q2

FIG. 4 (color online). The charm quark effects on the real photon structure functions (a) WTT , (b) WLT , (c) W
a
TT , and (d) W�

TT , in the
PM for Q2 ¼ 30 GeV2, mc ¼ 1:3 GeV and ec ¼ 2

3 with �s ¼ 0:21. The vertical axes are in unit of (3�e4c=ð2�Þ). We plot the LO

results (red dotted line) and the results up to the NLO (blue solid line).
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combined and yield a finite but nonzero result at xQ.
On the other hand, the radiative corrections to WLT

shown in Figs. 4(b) and 5(b) evade the Coulomb singularity
and vanish at threshold. This is because the structure of
Coulomb enhancement is given by WNLO

i 	 ðWLO
i Þ �

�s=
 and WLO
LT behaves as 
3 for 
 ! 0. Thus WNLO

LT

vanishes as 
2 near the threshold.
The jump size of Coulomb enhancement for each struc-

ture function is calculable in another way. It is well known
that the contributions of Coulomb gluons can be summed
up to all orders. The result of all order resummation is
given by the Sommerfeld factor. Using Taylor expansion of
the Sommerfeld factor in strong coupling constant �s,
leading Coulomb singularity can be reproduced to all
orders in �s. Combining the LO photon structure function
WLO with the Sommerfeld factor, we can predict that the
jump of the structure function is given by a derivative of
LO structure function at the threshold multiplied by
CF�s�=2. That is given by

WNLO
i ðx; Q2Þ ¼
!0

�



�
dWLO

i

d


�

¼0

�
�

�
CF�s�

2


�
þOð
Þ;

(25)

where the part in the first parentheses corresponds to phase
space integration of heavy quark pair and squared LO
amplitude and the second is the Coulomb singularity.
This formula is assured by the factorization of hard cor-
rection and the Coulomb singularities near the heavy quark

threshold. Our NLO results are consistent with (25) near
the threshold. The formula also predicts that the NNLO
calculation in the massive PM suffers from a divergence,

� ðCF�s=ð2
ÞÞ2, near threshold due to double Coulomb
gluon exchange. Therefore fixed order calculation near
threshold becomes ill defined and we need to resort to
the method of resummation of the Coulomb singularities.
Resummation formulas for the structure functions are
given in the Appendix.
For x ! 0, the NLO contributions toWTT andWa

TT both
diverge. The sum (WTT þWa

TT) remains finite in LO but
diverges in the NLO as x ! 0 [see Figs. 6(a) and 6(b)].
This is due to the collinear divergence. The limiting pro-

cedure x ¼ Q2

sþQ2 ! 0 with fixed Q2 is equivalent of taking

s ! 1. Thus the situation at x ¼ 0 is the same as if we are
dealing with massless quarks. When a gluon is emitted
from a massless quark, a collinear divergence appears.
We also see in Fig. 4(b) the rise of the NLO contributions
to WLT near x ¼ 0, which is again due to the collinear
divergence. On the contrary, the LO and NLO contribu-
tions to W�

TT vanish at x ¼ 0. A collinear divergence does
not occur for the helicity-flip amplitude W�

TT .
We plot the PM predictions of (WTT þWa

TT) and jW�
TTj

for the case of the charm quark in Fig. 6(a) and for the
bottom case in Fig. 6(b). In both cases we observe that the
positivity constraint (7) for a real photon target is satisfied
up to the NLO for all the allowed x region with a wide
margin except at the threshold xQ. At the threshold, we can

find the following relation:
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FIG. 5 (color online). The bottom quark effects on the real photon structure functions (a)WTT , (b)WLT , (c)W
a
TT , and (d)W

�
TT , in the

PM for Q2 ¼ 30 GeV2, mb ¼ 4:5 GeV and eb ¼ � 1
3 with �s ¼ 0:21. The vertical axes are in unit of (3�e4b=ð2�Þ). We plot the LO

results (red dotted line) and the results up to the NLO (blue solid line).
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jW�
TTðxQ;Q2Þj ¼ WTTðxQ;Q2Þ þWa

TTðxQ;Q2Þ: (26)

At the threshold, we find the following relation (26) from
our numerical analysis. This is also checked analytically
using the resummation formula given in the Appendix.

V. SUMMARY

In this paper, we have investigated heavy quark mass
effects for the real photon structure functions in the mas-
sive PM in the NLO in QCD. There are four structure
functions WTT , WLT , W

a
TT and W�

TT for the real photon
target. We have found that the radiative corrections toWTT ,
Wa

TT andW
�
TT are large near the threshold. This is due to the

Coulomb singularity, which appears when the Coulomb
gluon is exchanged between the quark and antiquark pair
near threshold. On the other hand, the radiative corrections
to WLT evade the Coulomb singularity and vanish at
threshold. We also have found that although the sum
(WTT þWa

TT) remains finite in LO but diverges in the
NLO as x ! 0. This is due to the collinear divergence.

The limiting procedure x ¼ Q2

sþQ2 ! 0 with fixed Q2 is

equivalent of taking the high energy limit s ! 1. In other
words, the situation at x ¼ 0 corresponds to the massless
quark limit. A collinear divergence appears when a gluon is
emitted from a massless quark. We also see the collinear
divergence in the NLO contributions to WLT near x ¼ 0.
Finally we have shown from the numerical plots of the PM
predictions of (WTT þWa

TT) and jW�
TTj and the positivity

constraint (7) for a real photon target is satisfied for all the
allowed x region.

APPENDIX: THRESHOLD RESUMMATION FOR
STRUCTURE FUNCTIONS

The Green function sums up leading Coulomb singular-
ity for photon-photon forward scattering amplitude. The
contribution to the structure function is given by the imagi-
nary part of the Green function,

ImGCð
Þ ¼ m2


4�

2
4 CF�s�




1� e�
CF�s�




�ð
Þ

þ 4�




X1
n¼1

a3n	ð
2 þ a2nÞ
3
5; (A1)

with an ¼ CF�s=ð2nÞ. The terms with 	 function are
due to Coulomb bound states, which can have nonzero
contribution to the structure functions for s < 4m2 because


 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2=s� 1

p
becomes pure imaginary.

We combine the LO photon structure function WLO and
the Coulomb Green functionGð
Þ [25,26] in the following
form:

ŴLO
i ðx;Q2Þ ¼ WLO

i ðx;Q2ÞSðxÞ þ CiTðxÞ; (A2)

where S encodes the Coulomb singularity and T is the
contribution due to boundstate poles. They are defined by

SðxÞ ¼
CF�s�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xQð1�xÞ
xQ�x

r

1� exp

�
�CF�s�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xQð1�xÞ
xQ�x

r ��ðxQ � xÞ; (A3)

TðxÞ ¼ X1
n¼1

4�a3nxQð1� xQÞ
ð1þ a2nxQÞ2

	

�
xQð1þ a2nÞ
1þ a2nxQ

� x

�
: (A4)

The matching factors are calculable for each structure
function as

Ci ¼ fCTT; C
a
TT; C

�
TTg ¼ f1; 1;�2g	q: (A5)

The resummation formula for structure function can be
applied for the cases WTT , W

a
TT and W�

TT . Near threshold
WLT is order of 
3 at LO, which is suppressed by 
2

compared to the S-wave case. Therefore its Coulomb
singularity at NLO is suppressed by 
2 and the resumma-
tion effect becomes moderate.
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FIG. 6 (color online). The positivity constraint and the PM prediction up to the NLO for Q2 ¼ 30 GeV2 and �s ¼ 0:21. (a) Case of
charm quark with mc ¼ 1:3 GeV and ec ¼ 2

3 . (b) Case of bottom quark with mb ¼ 4:5 GeV and eb ¼ � 1
3 . The vertical axes are in

unit of (3�e4b=ð2�Þ). The result up to the NLO (LO) for (WTT þWa
TT) is depicted in the red solid (red dashed) line. The result up to the

NLO (LO) for jW�
TT j is depicted in the blue solid (blue dashed) line.
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