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Gluon self-energy in the Coulomb and temporal axial gauges via the pinch technique
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The S-matrix pinch technique is used to derive an effective gluon self-energy to one-loop order, when the
theory is quantized in the Coulomb gau@@G) and in the temporal axial gaug&AG). When the pinch
contributions are added, the gluon self-energies calculated in the CG and TAG turn out to be identical and
coincide with the result previously obtained with covariant gauges. The issue of gauge independence of several
guantities in hot QCD is discussed from the pinch technique point of view. It is also pointed out that the
spurious singularities which appear in TAG calculations cancel out once the pinch contributions are combined.
[S0556-282(96)05521-X]

PACS numbes): 12.38.Bx, 11.10.Wx, 11.15.Bt

[. INTRODUCTION ever, the PT calculations have not been carried out in the
other interesting noncovariant gauges up to the present.
The S-matrix pinch techniquéPT) is an algorithm which Noncovariant gauges such as the Coulomb ga@®)

enables us to construct gauge-independ@ht modified off-  and the axial gauges have long been used, both for theoreti-
shell n-point functions through the rearrangement of Feyn-cal analyses and for various numerical calculations in gauge
man graphs contributing to certain physicmatrix ele- theoried11]. These gauges are sometimes called “physical”
ments. First introduced by Cornwdll] some time ago to gauges since in these gauges there is a close correspondence
form the new GI-QCD proper vertices and propagators foPetween independent fields and “physical” degrees of free-
the Schwinger-Dyson equations, the PT was used to obtaifom. In particular, the CG and the temporal axial gauge
the one-loop Gl effective gluon self-energy and vertices in(TAG) have been often chosen for the perturbative calcula-
QCD[2,3]. It has then been extensively applied to the standions of QCD at finite temperatufd 2—-14. The reasons for
dard mode[4]. Recently the PT was applied also to QCD atthese gauges being used are, for the CG, that it is a natural

high temperature to calculate the qap equation for the madd@u9e choice for the study of interactions between charges
nlegtic ma§{5] :nd to obtaliJn the Gl ?heprngufu:]ction[G 7 9gmd, for the TAG, that for a thermal system the rest frame of

Indeed, the PT algorithm has scored a success in its aﬁhe heat bath singles out the four-vects=(1.0.0,0 [15].

plications to various fields. However, we can hardly say thal The gluon self-energy is a gauge-dependent quantity. Its

it ful derstood and well established. | fioul ne-loop expression in the CG differs from the one in the
't was Tully understood and wel establisned. In particllalrag - ang the transversality relation is satisfied by the one-
since in theS-matrix PT the effective amplitudes are ob-

) loop gluon self-energy calculated in the TAG but not by the
tained through the rearrangement of Feynman graphs, theje in the CG. However, the hard thermal o8, in the

uniqueness is at stake. One may argue that arbitrary piec%mon self-energy is gauge independent, which means that
can always be moved around by hand from the vertex or boxyy J's calculated in the CG and in the TAG are the same.
diagrams, as long as one does not alter the un®uatrix  The electric masB,, relevant for electric screening, and the
element. On the other hand, ti®matrix PT algorithm is  “effective gluon mass”mg in hot QCD are gauge indepen-
expected to give rise to the same answers, even when oRent quantities and they can be obtained from the one-loop
may choose ars-matrix element for a different process or gluon self-energy calculated in any gauge choice. Meanwhile
start calculations with different gauge-fixing choices. Unfor-it is well known that in TAG calculations there appear spu-
tunately, there exists so far no general proof on this pointrious singularities which are due to the unphysical poles of
and, therefore, we may have to examine individual cases ték-n) ~*, A=1,2 in the TAG gluon propagatdf1,16. Sev-
convince ourselves of the validity of the PT algorithm. Theeral methods have been proposed to circumvent these singu-
process independence of the PT has been recently pf8Yyed larities, and most noticeable are the principal-value prescrip-
via explicit one-loop calculations. The independence of theion [17], the n} prescription[18], and thea prescription
gauge-fixing choices has been shown for the case of the ef19].
fective gluon self-energy at one-loop order in the covariant In this paper we apply th&matrix PT and calculate an
gauge[2], the background field gaud®,10] and one of the effective gluon self-energy to one-loop order in the CG and
noncovariant gauges, namely, the light-cone gddy§eHow-  the TAG. The one-loop gluon self-energies both in the CG
and the TAG have very complicated expressions. Even in
these gauges we find that once the pinch contributions are
*Electronic address: passera@mafalda.physics.nyu.edu added, we indeed obtain the same result for the effective
"Permanent address: Dept. of Physics, Yokohama National Unigluon self-energy as the one derived before in different
versity, Yokohama 240, Japan. Electronic  address:gauge choices. This gives another support for the usefulness
sasaki@mafalda.physics.nyu.edu or sasaki@ed.ynu.ac.jp of the S-matrix PT. We can also argue why the transversality
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FIG. 3. (a) The vertex diagram of the second kind for the quark-
quark scattering(b) Its pinch contribution.

MA/{:}/\M M\’i&\/\/\l\ﬁ JW\‘{\,/b\\/\/\N\‘
g k ks Appendices. In Appendix A we first give the one-loop pinch
(b) (c)

Y contributions to the gluon self-energy in the CG wigh#0
from the vertex diagrams of the first and second kind and
FIG. 1. (@ The gluon self-energy diagrams for the quark-quark from box diagrams, separately. Then we give the expression
scattering.(b) The gluon self-energy diagram with three-gluon in- of the pinch contribution rewritten in terms of different ten-
teractions.(c) The tadpole diagram for the gluon self-ener¢y)  sor bases. In Appendix B, we give the similar expressions
The ghost diagram for the gluon self-energy. calculated in the TAG witl#,#0. In Appendix C we list the
formulas for thermal one-loop integrals necessary for calcu-
lating By in the TAG in Sec. V.

relation holds for the gluon self-energy calculated in the
TAG, but not for the one in the CG, from the analysis of the
structure of the pinch contributions. Moreover, we can ex- Il. PINCH TECHNIQUE
plain why the thermal loops, the electric masg, and the : . . .
effective gluon massg in hot QCD are gauge independent . In this section we explain how to obtain the one—lqop
from a simple inspection of the pinch contributions. Con_pmch contributions to the gluon self-energy. Let us consider

cerning the spurious singularities which appear in the gluorﬁhes}m"’ltrlx elementr for the elastic quark-quark scattering

self-energy in the TAG, we point out that these singularitiesat one-loop order in the Minkowski space, assuming that

also appear in the pinch contributions and they exactly car:!(;Juarks have the same mass Throughout this paper we use
cel against the counterparts in the gluon self-energy. T A . .
show explicitly how these cancellations occur, we calculatéd @™ in Fig. 1a), the vertex diagrams of the first and second

in the TAG the one-loop gauge-independent thergiédnc- ! inq and the box diagrams contri.buteTo They are _shoyvn

Ition Br in hot QCD b gauge-indep P in Figs. 2a), 3(a), and 4a), respectively. These contributions
The paper is organized as follows. In the next section, W@rg’ In g(;jenera_\llh gauge d_eplendent,hwrllle; thhe sumnls fgarl]uge

develop the general prescription necessary for extracting tHgdependent. Then we single out the “pinch parts” of the

pinch contributions to the gluon self-energy from the one-vertex and box diagrams, which are depicted in Figh),2

loop quark-quark scattering amplitude. To establish our no-:f’(b)’.and 4b). Th((jay gr;:ergfe when @' matrix Oﬁ? thz qbuark
tation and to illustrate how to use the prescription developetyne is contracted with a four-momentuk), offered by a

in the previous section, we briefly review, in Sec. lll, the gl_uon propagator or a bare three-gluon vertex. Such a term
derivation of the pinch contribution to the gluon self-energytrlggers an elementary Ward identity of the form

in the Feynman gaugé&G). In Sec. IV we calculate both the

gluon self-energy and the pinch contribution in one-loop or- k=(p+Kk—m)—(p—m). (1)

der in the CG with an arbitrary gauge paramefgr, and

show that when combined they give the same expression folthe first term removespinches out the internal guark

the effective gluon self-energy as the one obtained before in .
: : L : ropagator, whereas the second term vanishes on shell, or
different gauge choices. In Sec. V the similar calculations ar¢.

performed 1 e TAGwih ananivary gauge parameler e Vel 1S Procedure eade (o connuonstouty,
Also we calculate the therma® function B; at one-loop q propag ' '

: : . .. these contribution3 , “pinch parts” of T.
order in the TAG and show how the spurious singularities Next we extract froniT the pinch contributions to the

appearing in 'the TAG gluon sglf-gnergy cgncel r?lgalnst thg%luon self-energy1*”. First note that the contribution of the
counterparts in the pinch contribution. Section VI is devote . . . .
on self-energy diagram td is written in the form[see

to summary and discussion. In addition, we present thre%li; 1a)]

Ptk btk ptk
p + = + =
k p k 4
k [ P )
(a) (b) (a) (b)

FIG. 2. (a) The vertex diagrams of the first kind for the quark- FIG. 4. (a) The box diagrams for the quark-quark scatterifiy.
quark scattering(b) Their pinch contribution. Their pinch contribution.

he metric(+,—,—,—). In addition to the self-energy dia-
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T(SE)z[Tay“]Dw(k)H“”DVﬂ(k)[Tayﬁ], 2) where (u—v) terms are the contributions from mirror dia-
grams. A further simplification can be made by using a for-

where D(k) is a gluon propagatorT® is a representation Mula

matrix of SUN), and y* and ¥* are y matrices on the ex-
ternal quark lines. The pinch contributidhg” to T, should
have the same form. Thus we must take away
[T?y*]D,,.(K) and D"A(k)[T2y”] from Tp. For that pur- The pinch part of the one-loop box diagrams depicted in
pose we use the following identity satisfied by the gluonFig. 4b) has a form

propagator and its inverse:

kzpj?’z k?d""p; . +k"(kp;). (12)

gaﬂ=DaM(k)[D_l]"ﬁ(k)=Dw(k)[—kzd“ﬁ]-%-ka term T?:box)z[Ta] [ya][ya]co+in Cii[bi10;] [T?]. (12
=D, {(k)D*A(k)=[ —k?d,,, ]D*#(k) + ks term, (3)

Again from Eq.(3) we see thafy*][y,] and [p;][ b;] are
rewritten as

kHK” (Y1 7ol =[ 7 1D au(K)[K*d“ 1D, p(K)[ v4],  (13)

e @
(AL =(771D., (LKD" by I0 (K75l

where

drvV= g,UvV_

The k, and kg terms give null results when they are con-

tracted withy, and y,, respectively, of the external quark 4 ths we obtain for the contributionsHe” from the box

lines. ;
. . . diagrams
The pinch part of the one-loop vertex diagrams of the first g

kind depicted in Fig. tb) plus their mirror graphs has a form
v I =[k*d*"|Co+ [k*d* d" 12 C;pinpj-- (15)
ToV= A[T2yID (K[ T2¥7], (5) L

It is observed that the prescription developed here is gen-
eral and can be applied to the calculation of the one-loop
pinch contributions in any gauge.

where A (also By, Bjj, Cp, and;; in the equations below
contains a loop integral. Using E) we find

Y°Dap(K)¥P =y Do (K[—K?d“ID 4(k) ¥, (6)

Thus the contributions tdéI** from the vertex diagrams of Ill. PT GLUON SELF-ENERGY
the first kind are written as IN THE FEYNMAN GAUGE

In order to establish our notation, in this section we
briefly review the derivation of the effective gluon self-
energy in the Feynman gau¢feG) (the covariant gauge with
The pinch part of the one-loop vertex diagrams of the£=1). In the following we discuss the gluon self-energy both

A"V =[ - k2d "] A. (7)

second kind depicted in Fig(l3 has a form at T=0 and at finite temperature. In both cases we use the
same notationfdp for the loop integral. AtT=0 the loop
x K int | should read
= Ta{[y 150t 3 Bn[pi]p,-] D s(k[T2yF],  Megraishouldreadas
8 o d°p
( ) f dp:_lﬂ’4 DJ (27T)D’ (16)

where p; and p; are four-momenta appearing in the dia-
grams. By redefinition of the loop-integral momentum weyhere , is the t Hooft mass scale, while at finite tempera-

can choosep; ,pj=p or n in the cases of the CG and the y,re we use the imaginary time formalism of thermal field
TAG wherep is the loop-integral momentum amdis a unit theory, and the loop integral should read as

vector n*=(1,0,0,0 appearing in the CG and TAG gluon
propagators. Using Edq6) and

3
f dp=f %TE (imaginary time formalism
(119D «p(K)=[¥*1D 4, (K)[ — K*d**]pix ;D ,5(k), oo

(9) (17)
we obtain for the contributions tB** from the vertex dia- Where the summation goes over the integén p,=2minT.

grams of the second kind In the FG the gluon propagatoD g, =i dapD{kg), has
a very simple form

1"V =~ k2d#")Bo+ [~ K™ ] 3 Bypiap; + (e v),
h Dire (k)= w9 (18)

(10
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and the three-gluon vertex is expressed as )
Tirs(pk,a)=—gf*Iry,(p.k,a) +T5,,(p.k,a)], kl% I(pk,0) = of o —pon]  (a)
(19 P
C////Z g
where

=

I‘)l?;/,v(p!qu) = p}\g;LV_ qvg)\;/, ’

kol

b
lé T3(p, &y ) = —ig f™[n,] (b)

I (p.k0)=2K\0,,~ 2K, 8\, (2p+K) .0, (20) A
R AN
and f2°¢ are the structure constants of the group B)(In
the vertex each momentum flows inward and, thusk+q
=0. The expression of the one-loop gluon self-energy in th(?e

FG is well known:

FIG. 5. (a) The ghost-gluon vertex in Coulomb gauge dhgin
mporal axial gauge.

1 Ty _ 2 p_'u % —
Hé‘;ﬁ;)(k)zNng dp ozgz [20P"+ 200" 1 (kk,=2Ng f ap| 2tz (=0 8
—(p%+g?)gH’—kHk¥+ 2k2d#7]. (21) (i) As was shown explicitly at one-loop levi?], the PT

modified gluon three-point functiogfabTﬂm and IT#”(k)
The one-loop pinch contribution to the gluon self-energysatisfy the followingtree-levelWard-Takahashi identity

in the FG is calculated as follows. We consider Smatrix . . .
elementT for the quark-quark scattering at one-loop order. PUT 4 a(P,a,r) = —11,,(q) +11,,,(r). (27)
Since the gluon propagator in the FG does not have a longi-
tudinal k“k” term, the pinch contribution t@ only comes This implies that the wave function renormalization for the
from the vertex diagram of the second kind with the three-PT modified gluon self-energl ,, contains the running of
gluon vertex of the typ&" (and its mirror graph[2], and is  the QCD couplings. Indeed, at zero temperature, after inte-

given by gration and renormalization it is rewritten as
V2 2[T2ym ! a8 ik = g2(gie— ke b In 5 + (28
Tplre=—2NgT2y] de D (K[ T2¥A]. (k)=9%(g )| bn 2 Teonst, )
(22)
whereb= —11N/(4872) is the coefficient ofj® in the usual
The inverse of the gluon propagator is QCD g function without fermions.
[D kg ]*" (k) = —k*g"", (23

IV. PT GLUON SELF-ENERGY
and thusD g, and its inverse satisfy the identities in E§). IN THE COULOMB GAUGE
We can then apply the formulas Ed8) and (10) to TV

o< . oee P(FG) The gauge fixing term in the Coulomb gau¢€G) is
obtaining the FG pinch contribution to the gluon self-energy:given by
2% 21,24 mv 1 ipay2
HP(FG)(k):ZNg kd de- (24 E=—E(&Ai) . (29
The sum ofll{g andIlp e, is given by Then, with a unit vecton#=(1,0,0,0, the CG gluon propa-

gator,iD fpce)=1danD{cg), and its inverse are expressed as

N 1
H'”(k)=N92J dp 2 [2P*p"+ 204" , 1 k2| kK"
Dice(="jz | 9"+ 1 ¢ 2] o
—(p?+9?)g"’—kHk"+ 4k?d#"]. (25
Ko
This is the effective gluon self-energy obtained before in the T K2 (k“n”+n*k") |,
PT framework{1,2,10. It is noted thatlI#”(k) can also be
derived without using PT but by the background field KAk
method with a special value of the gauge paraméter1 [D(’cle)]””(k)= —k?|gtr— <z
[9]. )
The effective gluon self-energyf#”(k) has the following 1

features. + — [k*k”—ko(k“n”+ n#k”) + k2n“n"].

(i) It satisfies the transversality relation. Indeed using &
k+p+qg=0 we find (30
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The three-gluon vertex is the same as in the FG, that is, o o 1/( . Kk
I 25 (p.k,q) in Eq.(19), and the ghost propagatiof®G ¢, Dico=iz: Dice=0. D(CG) & Sli— -
and the ghost-gluon verteRM(CG)(p k,q) [see Fig. $a)] in (32)

the CG are given by
However, its inverse does not exist in this limit. The one-

loop CG gluon self-energy was calculated in R&f] in the
1 &:=0 limit using the gluon propagator in E(32).
Gico(k)= 2 In the framework of PT, we need to use the identities in
Eq. (3), satisfied by the gluon propagator and its inverse, to
extract fromTp the pinch contributions to the gluon self-
abe _ eab energy. Therefore, in principle, we must work with a non-
wce)(PK.a)=gf®Tp,—pon,]. (8D zero&.. Thus we recalculate the one-loop gluon self-energy
in the CG with an arbitrary gauge parameggr. The results
for the contributions from Fig. (b), the tadpole diagram
In the limit £&-=0, D'(“é'G)(k) reduces to the well-known [Fig. 1(c)], and the ghost diagrarfFig. 1(d)] are, respec-

form [20] tively, as follows:
|
k*(k*-29*—4k-p)+q* (p-a)? 4p-q
I co(k) = f g’”(SK2 [ > +p2)+(p<—>q) Hiprp! | =8+t
p p°q p
2 2
q (P 1 1
— —— (3p?+ 202+ 4p®+ g2+ 4pydo) +(qu)]+(p“q +0“p")| =5— —— +2(p- q)( +—
pg° pq q
p2q2 v v 1 2 2
e +1 (n*p”+p“n”) 2 [ka(p“do—0a“Po—2p- d(Po— o)) — 4KoPodo(P Q)

2podo

—(g%p?do+ p?g®po— P+ A(P2do+d°pPo)) + P242do+4?a’po] + (P> ) | +n#n” ol 2k*(pa) — pzqz)}

N 1 2 q° 1
+ée = Zfd w{(—k4—+k2———+ +1 pHp” k2p2— (kq)2—2(kp)p?
éc5 9 P 9 R 0 p? (p=q) | +)p*p p2p2q4( p°—(ka)*—=2(kp)p
1 2~2 2 l v v
—2kopo(k))+ P (k“g“— (kq)“+ 2KoQo(kq)) — —7— 7 +(p<q) +(p*g"+g*p”)
k?q?+ (kp)(kq) +kodo(p?—a%) kg 2 kq { do  Po )
X + — —|+(p=Qq) |+ (n*p”+p*n” k2 —
[( q2p4q2 p4q2 p4 (p~0q) (n“p’+p )pzqz quz p2q2

Go P
(p—‘z’—q—" Hpea)| [+E2 5 g fdp s Lk pep*+ (pa) = (kp) (ka)(pra™+q*p")],  (33)
A o (k)= o Zfd il L (o) 4] PP =g + (P |+ (e ) 2 4 ()
(b)(CG) —29 P9 p? p? p<q ppzpz p<q p +p p2p? p<q
N p? -
téc5 9 fdp g"” FﬂDHQ) +p“p” FJF(PHQ) : (34)
) N ) 1
thostCG)(k)=E g j dpazaz [(p*q”+g*p”) — (qo(N*“p”+ p*n”) + (p—0))+ n*“n*2pydol, (35

where we have chosen the variableskasp+q=0 and, therefore, the integrands can be written in the forms which are
symmetric in the variableg andq. Here and in the following, the notatioh(p« q) implies symmetrization of the preceding
term under interchange @f andq. The one-loop CG gluon self-energy is given by the sum

H{ce =) co t by co T Minosico) - (36)

We have checked that thig-independent part dfl (¢, agrees with the results given in Ed8.6), (4.8), (4.10, and(4.12 of
Ref. [13].

We now calculate the pinch contributions to the CG gluon self-energy. Since the CG gluon propagator and its inverse
satisfy the relations in Eq3), that is,
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DUSP(K)[D ce 1K) =D (K)[ — k?d“F] + % (kon#—kA),

- k?
D (el K)D (&) (K) = [ ~K?d,,1D{EG (K) + (Koo —ko) {2 (37

we can follow the prescription explained in Sec. |l to extract the one-loop pinch contributions. The individual contributions in
CG from the vertexfirst and second kindand box diagrams are presented in Appendix A 1. In total the pinch contribution to
the CG gluon self-energy is expressed as

wv N v 1 [K*—g*~4k-p N 5> padvB 1 2
MMpice (k) =7 g°°d™” | dp 7 oz T (peoa) |t 5 g7k [ dp s {PaPs(kH4p-a)
2 2 N 2 a 12 1 1
+(PaNgtN.PEIPdo—1 po—2p-q(po—qo)]+nanﬁ4poqo(pq)}+5g d# fdp P.K 2 P2
1 1 p'q} [ do  Po (qo po) p-q N
+| =— =] == |tk — == o=+ | =+ =] ==|1+ +éc = g2
(? pT) pq o e’ @) p| TR TEe 9
X kzduvf dp[ kz( 1 _’_L)_i__ +k2d’uadvﬁf dp 1 ip p [ (L i)_i_ E}
a’p*  p’q*/ p* ¢ BT\ p%g? g%p?) p?
Po Qo Po Qo pak” ‘p k-q
- e 3 | fe [ ap B (253 )
(PaNg Pg) <q pz) p2q2 > P—=> q2 p2 (uev)
+§C—gzk4d““d”ﬁ f dp p;ﬂ”* (39)

In order to compare the above result witl{cg), it is  which is equivalent td:[’”(k) in Eq. (25). Thus we have
better to express Eq38) in terms of symmetric tensa@*”, shown explicitly that the CG gluon self-enerblfcc, and the
p“p”, g“q”, (p*a"+a*p”), (n“p"+p*n”), (n“q”+g*n”),  pinch contributionll5 sy, when combined, give theniver-

andn®n

". For that purpose, we first write E€38) in terms  sal effective gluon self-energyl*”(k).

of g** and symmetric tensors made uplafp, andn and We now examine the structure d1f(cs, and discuss
then rewrite it in terms of*” and symmetric tensors made some of the properties of the CG gluon self-energy itself.
up ofp, g, andn. The terms proportional tp”p”, k*k", and  Only the ¢.-independent parts will be considered. First,

(p“k"+k*p”) and to f*p”+p*n”) and (k" +k*n") will T4 is not transverse. In fact, we easily obtain, from Eq.
then be rewritten as (38
RK*KY+ S(p*k”+kH*p”) + Tp*p” N 1 1
:(R_28+,]-)pﬂpy+(R_S)(pp,qv+ qupv)+RqILqV' HlI;(VCG)kVZE ngZd;wff dp[ pa[quz_ p2q2
U(n*p”+ p#*n”) +V(n*k"+k#n") 1 1 p 9 o Po_
T A R e
=(U=V)(n*p"+p*n”) = V(n“g"+g"n"). (39
o  Po| P-4
The final expression foll5 g, is given in Appendix A 2. " (?Jr p ) p° qz} @

From Eq.(A4) we find that the one-loop pinch contribu-

tions are alsoé: dependent and thes&.-dependent parts
exactly cancel against thi-dependent parts dil{cg, . Fur-
thermore it is easy to see that adding theindependent
parts ofII{¢s and Il g, we obtain

147 (k) =TT/, (K) + T4/ (K)

where we have used“'k,=0 andd”?k,=0. Since the sum
I1#"(k) satisfies the transversality relatigpee Eq.(26)],
this means that the CG gluon self-energy is not transverse
either, i.e. IT1{¢gk,#0, which was indeed pointed out in Ref.
[13].

Next, let us analyzdlg p(cc) I the context of hot QCD.
The hard thermal looplI*” in the gluon self-energyI*” is

= Nng dp pzqz [(4k*—p®—g*)g*” the piece proportional t82, which is the leading term in the

high-temperature expansidfi>|k| andT>|k,|) and is gen-
—-3(p*p’+9*g”)—5(p*q”"+g#p”)], (40 erated by a small part of the integration region in one-loop
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diagrams with hard momenta of ord&r[14]. It is known is a gauge independent quantity and is called “effective
that SII*" is gauge independent and satisfies the transversaffuon mass” squared.
ity relation (the Ward identity k*sI1#”(k)=0 [21]. Now
I1*” has a dimension of masand, apart from the tensorial
factors, is composed of nonsingular functionslikdfandk. V. PT GLUON SELF-ENERGY IN THE TEMPORAL
Then look at the structure dﬂ’P‘(VCG) in Eq. (38 (see also AXIAL GAUGE
éc-dependent partslt is made up of the terms proportional
to k2d*”, k?d“*d"#, andd““k’. Thed““k” terms appear as
a result of using the formula in Eq(1l), that is,
k?d“*p '=k?d**d""p;,+d“*k*(kp;). So by a simple di-
mensional analysis, we easily see that there is no way for the
pinch contributionl1% ., to produce ar? term. This means
that I15 ¢y does not contribute to the hard thermal loop
SII*Y, These arguments can be applied to the pinch contribu-
tions to the gluon self-energy calculated in any ga(sge
Sec. V for the TAG calculation It is clear from the discus-
sion in Sec. Il that by construction, the terms in the pinch
parts always carry such factors lkd*”, k?d“¢, k*d*”, and
k*d““d”?, and hence they do not generat&aterm. The
gluon self-energy calculated in any gauge, when combined
with the pinch contribution, gives the universal and thus 1
gauge-independerdi“*(k). As the pinch part does not con- Ditac)(K) =~ 12
tribute to the hard thermal loofl1#*, SI1*” should be gauge
independent. Moreove#dlI*” should satisfy the transversal- 1
ity relation k*sTI#*(k)=0 sinceIl#*(k) does. This is an ~ i (K" n#k?)
explanation for the gauge independence and the transverse 0
nature of the hard thermal loofl1** from the PT point of
view.

In a similar way we can argue for the gauge independence k#k? 1
of the electric massn, and “effective gluon mass’mg in [D (g ] (k)= —k2<9’”— K2 )— A n“n”.  (47)
hot QCD. From the expression bifg ¢, in Eq. (38), we see A
that its (00) component ak,=0, 112, (ko=0/k]), van-
ishes in the limitlk|—0. This is true for the one-loop pinch _
contributions calculated in any gauge, since, by constructioril 1 noted that the gauge parametyyr in the TAG has a

The gauge fixing term in the temporal axial gaygéG)
is provided by

L= (N“A%)?, (45)

2

where n#=(1,0,0,0. The gluon propagator in the TAG,

iD Antac) =1 9anD{Tac)» @nd its inverse are given by

k#k”

g+ (1+ £xK?) —
ko

, (46)

11%%s (more generallyl1£”) are proportional td2. Thus dimension of mas¥. The three-gluon vertex is given again
by I'22¢(p.k,a) in Eq. (19), and the ghost propagator
fim T1%(ko—0]k|)=0. 42 i 5%°G rac) and the ghost-gluon verteRZk(’%AG)(p,k,q) [see

k| —0 Fig. 5b)] in TAG are, respectively,

On the other hand, the limijk|—0 of I1{(ko=0Jk|) re-
mains finite. Hence the limit —i
G(TAG)(k): k_o’

1
lim H?ge)(ko=0,|k|)= 3 Ng2T?
|k|—0
: (43 T30 ac (P k,0) =g ~in, ]. (48)

=M
is a gauge-independent quantity. The inverse of electric mass )

m,, represents the screening length for static electric fields. 1he one-loop gluon self-energy in the TAG was calcu-
Another example is provided by a combination of pinch con-ated in Refs[12, 13 in the £,=0 limit. There, the ghost
tributions (1/2)((k¥kAII gO_H;nggHV) calculated in any loop contribution was omitted due to the argument that the
gauge. Obviously the combination is proportionakfoand ghost field decouples in this limit. However, in the limit

thus its limit ask®—0 is 0. Therefore, the limit £,=0 the inverse of the gluon propagator does not exist. So
in the framework of PT we work with a nonzeg . We

1 (K2 recalculate the gluon self-energy using the gluon propagator
mi=lim = | H?ge)_n&)gw with an arbitraryé, given in Eq.(46). For a nonzerd, the

202 \K ghost should be taken into account and at one-loop level it
contributes to thet,-independent part ofl X, [13]. The
contributions of Fig. b), of the tadpole diagrarifFig. 1(c)],

1
_ = 212
6 Ng™T (44 and the ghost diagrafiFig. 1(d)] are, respectively,
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N 1 k?(k®+2p%—qg?—4k-p)—p?q®
H#aﬁ(TAG)(k):E ng dpw{g’”[Skz—[( p(z) +p2 +(p<0q)
(p-a)®> 2p-q gt p?+q® @? ]
+{p"p!| =3+ —5— 5> (@°—203) + 55— ——5— + —3| +(p—Q)
[p P Podo  Polo @ %) Podo Po acz) (P=a
(p-q)? p2+g® 2 2) pzqz}
+(p*q’+gp")| —5— 7+ (P-Q)| ==+ =+ 3| - ==
(Pra™a’p?) o2z TP Oz T2t ) p
1
+[(n"p”+ p“n”) e [ka(—p?do+a°pe—2p- q(po—qo))—4kopoqo(pq)+q2poq§]+(qu)}
o0
2podo N 1 2 q2
+n#n* (—2K3(pq) —p?g?) |+ éx = zfd ’”[(k4 —k? =+ = | +(p—Qq)
Fﬁof (pa)—p-q §A29 Pl g m Bg Bg (p=q
1) (k? (1 1) 2Ko(ka) (do Po) 2 1 }
+1 p*p” —kz( + ) S+ =|—— | 5~ |+ =+ =|+(p=
(pp KT A e R v o) B R
—k2p3— (kp)(kq) + koPo(P2—9?) }
+(p“q”+g*p” + |+
(p*g"+9g*p”) ( 202 02 (p<=q)
kq{ (po do ]
+1 (N*p"+p*n”) —— | K?| =— —3| +qo—Po |+ (p—
{( p’+p )pgqg 02 o do—Po |+ (P—Qq)
N 1
65 ng dp 7z L{(ka)*pp"+ (p— @)}~ (kp) (ka)(p“q"+a"p") ], (49
o0
e L O B e b, 1 s 1
bac) (K =59 P9 Fz+307+(qu) +1p“p mﬂwq) +1(n*p"+p n)mﬂwq)
N 2 v _p2 v 1
téa5 9 fdp 9"z~ T (p=a) [ +p*p"| Z+(p=a) ||,
Po Po
y7a% N 2 v 2
thOS(TAG)(k):Eg dpnﬂn m (50)
The one-loop gluon self-energy in the TAG is then given by the sum
{Fac) = H{a) rac) T i) tac) T Hghostrac) - (51)

The é-independent part dfl{7,g) agrees with the results given in Edd.5), (4.7), (4.9), (4.11) of Ref.[13] except for the
ghost contribution td1%ag) -

We now calculate the pinch contributions in the TAG. Since the TAG propagator and its inverse satisfy the relations in Eq.
3, i.e,

- nf kP
Dige ' (K)ID rag)1*A(K) = DL T ([~ KEA E] k| 3= p) :
-1 upB 2 up N, kg B
D 726)au( KD {Hac) (K) =[ —k?d,,,, ID#5c) (k) + Pl k”, (52)

we can follow the same procedure as before and we obtain, for the pinch contribution to the gluon self-energy in the TAG,
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21,2 v 1
P(TAG)(k) ) 9 k<d dp P22

k?+2p2—q2—4k-p N 1
+(p+<0q) +5gzk2dﬂadvﬂj dp 55>

P p%a%p5ds
X{P.Ps(4poto—k?) +(P.Ng+ NP — P?do+9%Po— 2P d(Po— o) 1+ NN s4Pedo(PA)}

TR kzd’”f dp{—k( . —12- o +k2d"“d”ﬁf dp—zl—z{p R }
2 9% p%d3) Ps pods | F p° g
4—(panﬁ+-nap5>{ ~pok? 23— ] v gzk4d““d”BJ.drn Db (53
p 2 Seh
|

The individual contributions in the TAG from the vertex 1
(first and second kindand box diagrams are presented in d.p. of jdpw =—2A, (56)
Appendix B 1. P Po

The expression ofl§ 1) is further rewritten in terms of . : ' .
symmetric tensors g*’. pep’. q“q’. (pq’+q“p), where the loop integralldp is defined in Eq.(16) and

(n“p”+p*n”), (n*q”+g*n"), andn*n”. The result is given A=(1/167")[2/(4-D)]. Thus we find
in Appendix B 2. From this expression we can see that the

one-loop pinch contributions are al§g dependent and these d.p. of
&r-dependent parts exactly cancel against ghelependent

parts of II{fag). Also we find the sum ofll{fxs and

II5(ta) is equal toIl*” in Eq. (40) and thus equal to the and hence thé,-independent part ofl4(; g, is ultraviolet

universalll*” in Eq. (25). finite. We have shown in Sec. Il that, at zero temperature,
Let us now examine the results of these TAG calculationsthe divergent part of theniversal gluon self-energyl1*”,

We will only consider theé,-independent part. First it is \yhich is the sum ofl{fac) andIlf(rag) . gives us complete
easily seen from Eq.53) that the pinch contribution jntormation on the correct running ofthe QCD coupling con-

5 (1ac) is transverse, i.ek, Il =0. Hence the TAG  giant at one-loop level. The fact thBItS 7o) IS ultraviolet
gluon self-energyI{fyg) should be transverdd3]. Here itis  finjte, therefore, implies that in one-loop TAG calculations

noted that we have included the ghost-loop contribution ine only knowledge of the gluon self-energy is enough to

=0, (57)

3 d,uVH P(TAG)
§A:O

{thc)- ) determine the QCDB function, which is indeed true for
At zero temperatur€T =0) the £,-independent part of the £=0[22].
pinch contributionlIf 1,g) does not contain ultraviolet di- " There is one subtlety in the quantization of gauge theories

vergences. This can be eaSily seen from the examination Qf' the TAG[ll,lq Spurious Singu|arities appear in the |00p

the g* part of 1157 in the limit k=0 (and remains true calculations. The gauge conditio*A%=0 in the TAG is

for k+0). Applylng the projection operatokd,,, to the  not enough to fix the gauge uniquely and there still remains

éa-independent part dfl 74, , we find, in the I|m|tk=0, a freedom of time-independent gauge transformations. This

residual invariance manifests itself as unphysical poles in the
longitudinal part of the gluon propagator given in E46).
In the TAG calculation of the gluon self-energy, these un-
physical poles in the gluon propagator give spurious singu-
€a=0 larities. To circumvent these singularities, several methods
4 2 have been proposed, and most noticeable are the principal-
gzsz dp( > 2” value prescriptiorf17], the n7; prescription[18], and thea
P P prescription[19].

(54 We now know that the longitudinal part of the TAG
propagator gives rise to pinch parts. Thus the spurious sin-
gularities due to the unphysical poles of the propagator also

where an abbreviation “d.p. of” stands for “divergent part appear in the pinch contribution. Once this pinch contribu-

of” and we have dropped thkj terms in the numerator of tion is added to the TAG gluon self-energy, the singularities
the integrand which would only contribute to the finite part. due to the ill-fated unphysical poles cancel out. To illustrate

Also we have replaced, with —p, andq in the numerator how these cancellations actually occur, we present the PT

with —p, sinceq=—p—k and these replacements do not calculation in the TAG of the gauge-independent therpal

modify the ultraviolet divergent part. As a final step we usefunction in a hot Yang-Mills ga$6].

the following two integral formula22]: _ As stated in Sec. Ill, the PT modified gluon self-energy

I1,,, contains the running of the QCD coupling. When the

renormalization condition of the three-gluon vertex is chosen

at the static and symmetric point, the therngalunction B¢

is obtained through a formul23-25

d.p. of

3 d,u,VHp(TAG

=d.p. of | =

d.p. of =A, (55)

1
fdpp%p+m2
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__dg(T,) g _dIl(Tx) T fw 2
Br=T—g7 ~22" a1 (58) LTk = 72 odp pr(p)_az_rp“

+(K+ K3+ K° 2p+«
p 2p3 " 160°) " 2p—k

wherell, (T,x)=1II, (T,ky=0, k=|k|) is the transverse func-
tion of the gluon self-energl,,, at the static limit. Here for
I1,, we should usdI ,,, namely, the sum of the usual one-
loop gluon self-energy and the pinch contribution.

In the static limit k,=0, we have II (T,«)
=311;;(ko=0,x). The TAG calculation oflT;; (k,=0,x) was
performed in Ref[13]. After the p, summation and the an-
gular integration, but before thep(=|p|) integration,
(™9 (0,«) is given in Eq.(4.43 of Ref.[13] as

(62

where we have used formulas given in Appendix C. Note
that the integrand behaves as’®p? for small p. When
I1{™% and I1"(™® are combinedrememberll{"®) =1
11{™%(0,k)], the x%p? singularities cancel and the inte-
grand becomes regular as-0. We can, therefore, evaluate

the sum
Ng? [~ 2 ML (T, %) = P9, ) + AT, k)
Hi(iTAG)(OyK)Z ﬁ J' dp pl’(p)[—Z-ﬁ- —2+ 4? Ng2 - 2p 7K
47 Jo K 2p
(2p+5K K3 K° )I 2p+ K
—— T 51 - n .
x ' 2p 2pp> 16p%pi) [2p—«| xIn ;Ef: _ 63)

(59

without recourse to the principal value prescription or to the
other prescriptions mentioned before and obtain in the limit

<T

wheren(p) =1/[exp(p/T) —1] is the Bose-Einstein statistical
distribution function, and the principal value prescription
was supposed to be applied fop?/. If we do not use the 7
principal value prescription and replapé with p?, we see I, (T,k)~Ng?«T 1—6+O(K2). (64)
that the integrand(the terms in[]) would behave as
—4«%3p? for small p.

Now let us calculate the pinch contributionltb (T,«) in
the TAG. Applying the projection operator

Inserting the above expression into E§8), we find for the
gauge-independent therm@lfunction

SN 65
BT_g 3_2;! ( )

1 kik;
t”_g e ©0 \yhich coincides with the result of Ref§24, 6. What we

have learned from these calculations is that spurious singu-
larities in the TAG appear only in the gauge-dependent parts
to the spatial part OH'S(VTAG) in Eq. (53) (we are only inter- and that when we deal with physical and/or gauge-

ested in theg-independent part we obtain, in the static independent quantities, these singularities cancel among
limit themselves and disappear.

VI. SUMMARY AND DISCUSSION

P(TAG — ij —
HJ_( )(T-K)_tinIFJ’(TAG)(kO_O’K) In this paper we have used tBematrix PT and calculated
K2+ 4k 1 5 the one-loop effective gluon self-energy in two non-
=—Nng<2fdp + -p+ _ covariant gauges, namely, the CG and the TAG. The one-
p%q%p:  p%p3 9%p3 loop gluon self-energies calculated in the CG and the TAG
are different in form from each other and have complicated
N (k-p)? expressions. However, we showed explicitly that once the
- — g% | dp p*~
4

K2 pinch contributions are added, they turn out to be identical
and coincide with the result previously obtained with cova-
| K2 4 ] riant gauges. Some properties of the CG and TAG gluon

(62 self-energies were discussed by simply analyzing the struc-
ture of their pinch contributions. In the context of hot QCD,
we could explain the gauge-independence of the hard ther-
mal loop SI1#%, the electric massn,, and the “effective

where the terms proportional t@{nz+n,pg) andn,ngin  gluon mass’mg from the PT point of view.

11§ ac) do not contribute td1{(™). After the p, summa- There appear spurious singularities in the TAG gluon self-

tion and the angular integratiof] ?(™®)(T, «) is rewritten  energy. These singularities are also present in the TAG pinch

as contribution. When the pinch contribution is added to the

p%a’pjas  p3a’ps
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TAG gluon self-energy, the singularities cancel out. For arbutions vanish on shell, and thus do not modify the result of
illustration of this cancellation, we calculated, in the TAG, Braaten and PisarskiLl4] for the gluon damping rate in the
the thermalB function in the framework of PT. Thg func-  leading order.

tion thus obtained is indeed gauge independéri]. How- Note added in proofAfter submitting this paper for pub-
ever, the result is incomplete in the following sense: adication, our attention has been called to a recent pgpér
Elmfors and Kobes pointed o[25], the leading contribution by Papavassiliou and Pilaftsis, where the independence of
to By, which gives a ternT/«, does not come from the hard the PT results on the gauge-fixing procedure and the unique-
part of the loop integral, responsible forTa/«* term, but  ness of the PT algorithm are discussed. We would like to
from soft loop integral. Hence it is not consistent to stop thethank Dr. Papavassiliou for bringif@7] to our attention.
calculation at one-loop order for soft internal momenta, and
the resummed propagators and vertice$ must be used to
obtain the complete leading contribution. The PT algorithm
still works even when we use the resummed propagators and The authors would like to thank Professor A. Sirlin, Pro-
vertices[26]. It can be shown that the resummed effectivefessor D. Zwanziger, Dr. M. Schaden, and Dr. K. Philippides
gluon self-energy obtained in the framework of PT is gaugefor useful discussions. K.S. would like to thank Professor A.
independent and that, using this effective gluon self-energy$irlin for the hospitality extended to him at New York Uni-
we can obtain the correct therm@lfunction in the leading versity where this work was done. This work was supported
order. Also it can be shown that the resummed pinch contriin part by Yokohama National University Foundation.
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APPENDIX A: COULOMB GAUGE

1. Pinch contribution

(i) The contribution of the vertices of the first kind:

-1 -1 N 1 1
uv(Vy) _ 21,24 mv 224 mY ==
g ce = > 9 k“d fdp(_p2p2+_q2q2 +téc59 k<d fdp p4+ q4)- (A1)

(ii) The contribution of the vertices of the second kind:

2 [—k-p —-k-q 1
A2 =N 2|<20|/”fo| ( + +N 2k2dﬂadvﬁfd —( oPp2P-G+N,N k?+2
P(CG) g p P’ |\ p? 2 g p P22’ PaPs<P-q pPodo( pa)
+( + )l[ 2 2+2( )( 2 )]—i—de//-fd( [1 L
an na ) - - - . ) “ a 2.2
P.Ng Pg 2 PoP”—doq Po—do)(Podo—<4P-q 2 g Py PoK %02 P’
1 1 p-q} { do  Po (qO po) p-q ] f
+| == =] 3|+ N K| — =2 =+ | 5+ +(uev)|+ENG? K2d* | d
9 pz) p2P P’ o?p? 2" p?) pPP (nev) |+ ENg? p
><||<21+1)1 +k2d“d3fd 1( k2(1+1>11+( +N4Pp)
——t+ | — —=— 2 agv —— 1 Pa ——t | —— = Ngtn,
0%t Tt p R P.Pg 2R 0?2 P.Ng Ps
| L[ Po qo) ( Po o ” [ f P.K” (k p kg ]
5|22 2| K| e g | | 0| dp 5 | |+
2\ P’ o’p Popze |7~ o7 | )
+ E2Ng2kédradrh f dp p;pﬁ (A2)
(iii) The box contribution:
1 1 N P.P +(pan +n.p )(QO pO)_znan,BquO
H,uv (box) __ 2k4d;wf d + + — 2k4d#adVﬁf d B B A
Pco) ~ 5 9 p —2_2p q az az > Y p P2Pp°P
-1 -1 P.Ps [ 1 1 PaNgtN.Ps [ Po Jo
+ 2 d‘”’fd ( - d#“dvﬂfd [— ( + )+
éc g P| =22 p2q4 p 0?q? | p2q? " o%p? P2 P2 o?p?
N pap,B
+ 2 2k4d,uadv,Bf d . A3
e > g p g (A3)
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2. Expression of (¢,

The pinch contribution to the gluon self-energy in the CG is rewritten in terms of symmetric tegysorp,.p,, 4,9,
(P.9,t0,P,), (n,LpV+ p.M.). (n9,+q,n,), andn,n,:

1
2T [9“"K3{q?(K?— g%~ 4k-p) + (p—q)}+{p“p"[ — (p-A)?—4(p- 4)G*+ 4poUoead®+q*

+4p?g®+3p%q?—3p%q?]+ (p—q)} + (p*g”+g“p"){(p- q)*—2(p- q)(p?+q?) — 5p?g®} +{(n“p"”+ p*n”)
X[ —ka(p?do—a?po—2p- A(Po— o)) +4Ko(PA) Poto+ 4%P2do+ P202Po— (Pdo+ G2Po)P- Al + (P—a)}

oo (9= o2 dp o

1 VIL2f1,2 4 4 2/ A4 4
pqpq4[g“k{k(pq+qp) p?g®(p*+q*)}
+{p“p"a®p?(2kq(Kepo) + (kq)2—k?p?) + pp?(— 2kq(Kodo) + (ka)2—k?g?) + p?q?(q*+ p?(2kg+ p?))]
+(p=a)}+ (p“g”+g“p"){p%a? (kodo) (0% — p?) — (kp) (ka) —k?g®]+ p?g®q*[g®— kq] + (p—a)}

VA2 N 2
+n“n"4k*(pa)podol+ &c 5 9 fdp

N
+{(n*p"+ p“n")ka[k2(a%p’po— p?a%0) — P47 (P*Po— a°do) ]+ (P a)}]+ ¢ QZJ dp Saga
X[{=(ka)*p*p"+ (p=a)}+ (kp)(ka)(p“q”+q"p")]. (A4)

APPENDIX B: TEMPORAL AXIAL GAUGE

1. Pinch contribution

Note that the gauge parametgr has a dimension mass
(i) The pinch contribution from the vertices of the first kind:

et = gzk2de dp(—z_ Mkl +gAEng2dwf dp(;;+;; . (B1)
P(TAG) ~ 2 p? Po d % Po Yo
(ii) The contribution of the vertices of the second kind:
Mp e = Ngzkzd’”f dp — (p—2+q—2 2op_ 2k q’+Ngzk2devﬁf 0P~ | PuPAIK— PG
P(TAG) P9’ |ps d5 Ps 95 pZo2p3a3 | TP o0
1
+1,n3PoGo(k*+2p0) + (PaNg+NaPg)| 5 (PoP”—Qoq”) — Po(d?+2p- Q)+ qo(P*+ 2p-q)”
+ EANG? kzdf”f dp{—kz(—lﬁ ! ) 12+ 12 +k2d#ed¥# | dp le(p pgl —k? 2+i2 }
9?5 P33 Py o pods |7 p° q
1 9%+2pq p2+2pq ~PaP
+(Pangt 1P| 5 (Po~To) +Po 5~ ENgHea [ dphBE (B2)
p q° OQO
(iii) The pinch contribution from the box diagrams:
1 N PuPst (PaNgtN.Ps) (do— Po) —2N,NPedo
T~ (box) __ 2k4d/u1f d N _ 2k4dMadV’Bf d
P(TAG) ~ 2 g p pzq pg qo 2 g p D q2p3q3
N 1 1 PaPg 1 PuNgt NP (0o Po
+ &5 = g2k? d*”J'd ( + +d““d”ﬁfd ( ( +—)+— —— —
a3z 9 Pla?n? " b7 Pl oz (2 @2 piz |\ P2
N
+ £ = g?kAdrad P j dp &‘%. (B3)
2 PoYo

2. Expression of b 1ag)

The pinch contribution to the gluon self-energy in the TAG is rewritten in terms of symmetric temsarp,.p,, 4,9,
(P4, *auP,), (NP, +pLN,), (N,.4,+0Q,N,), @andn,n,:
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N 1 k?(k?+2p?—q®—4k-p) (p-9)* 2p-q
8 pe) ()= o 2fd —{M[ +(perq) | +1{ prp’| —3— + ~2q3)
p(tAG)( 59 p 202 g p2 p<—q p~p poq(z) p(z)qo (9°—2q5
q* p? o p-q)? (p 9 ) pzqz}
-t —=— +(p— +(p*g”+gtp” 5+—2—2— —2—2—+—2+ ——
Podo  Po acz) (poa))+(pha™+a%p") Podo (p-a Podo  Po ag Podo

1
+ ( (n*p”+p~n?) pzqz [ —ka(—p2do+0%po—2p- d(Po— o))+ 4KoPodo(PT) ] + (qu)]
o0

+{pMpV kz(pzlqéJrqzlpS)_(rl:SZ)g(512+512)+%%l) %3—%3) 535 alg+(qu)J
T (prg+ qtp”) (k2p§+(kp)(lgg;(2)qlgopo(p2—q )_pgo +(qu)}
[(n"p”p“n”) ptgo{ (% 30 ool + (qu)]
+§A 59 fdppgqg [{=(ka)?p“p"+ (p=a)}+(kp) (ka)(p“a”+a“p")]. (B4)

APPENDIX C: THERMAL ONE-LOOP INTEGRALS

We list the thermal one-loop integrals in the static likgj=0 which appear in Sec. V. The expressions are in the imaginary
time formalism and thus

f dp= f S TE (CD
(2m)
where the summation goes oveg=2#inT. We only give the matter part. Because of the constiainp+g=0 we have

f dpf(p,q)=fdpf(q,p). (C2

It is understood that in the right-hand siRHS) of the expressions belove=|p|, x=|k|, andn(p) =1[exp(/T)—1]:

) k2+ 4k - p j”d K3| 2p+k c3
IOW a2 |, ppn(p)—ag n2p——;<' (Cy

5 1 K2
k fdpq YA, zf dp pn(p)| =22 (C4
fd ! fmd ( 2 c5
Dppo moppn(p)—y, (CH

(k-p)2 1 K4 3(4p2—l<2) Zp-‘r-K‘
k“fd [ 2— = J d — C6
p|p K2 pzqucz)qcz) g p pn(p) 4 4p5 (Co)
(k~p)2 1 j x(4p 2— k?) 2p+K‘
2 2_

k jdp{p Tz m s dp pn(p) —z+ ap° n2p—;<] : (C7
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