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Gluon self-energy in the Coulomb and temporal axial gauges via the pinch technique

Massimo Passera* and Ken Sasaki†

Department of Physics, New York University, 4 Washington Place, New York, New York 10003
~Received 5 June 1996!

TheS-matrix pinch technique is used to derive an effective gluon self-energy to one-loop order, when the
theory is quantized in the Coulomb gauge~CG! and in the temporal axial gauge~TAG!. When the pinch
contributions are added, the gluon self-energies calculated in the CG and TAG turn out to be identical and
coincide with the result previously obtained with covariant gauges. The issue of gauge independence of several
quantities in hot QCD is discussed from the pinch technique point of view. It is also pointed out that the
spurious singularities which appear in TAG calculations cancel out once the pinch contributions are combined.
@S0556-2821~96!05521-X#
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I. INTRODUCTION

TheS-matrix pinch technique~PT! is an algorithm which
enables us to construct gauge-independent~GI! modified off-
shell n-point functions through the rearrangement of Fey
man graphs contributing to certain physicalS-matrix ele-
ments. First introduced by Cornwall@1# some time ago to
form the new GI-QCD proper vertices and propagators
the Schwinger-Dyson equations, the PT was used to ob
the one-loop GI effective gluon self-energy and vertices
QCD @2,3#. It has then been extensively applied to the sta
dard model@4#. Recently the PT was applied also to QCD
high temperature to calculate the gap equation for the m
netic mass@5# and to obtain the GI thermalb function @6,7#.

Indeed, the PT algorithm has scored a success in its
plications to various fields. However, we can hardly say t
it was fully understood and well established. In particul
since in theS-matrix PT the effective amplitudes are ob
tained through the rearrangement of Feynman graphs, t
uniqueness is at stake. One may argue that arbitrary pi
can always be moved around by hand from the vertex or
diagrams, as long as one does not alter the uniqueS-matrix
element. On the other hand, theS-matrix PT algorithm is
expected to give rise to the same answers, even when
may choose anS-matrix element for a different process o
start calculations with different gauge-fixing choices. Unfo
tunately, there exists so far no general proof on this po
and, therefore, we may have to examine individual case
convince ourselves of the validity of the PT algorithm. Th
process independence of the PT has been recently prove@8#
via explicit one-loop calculations. The independence of
gauge-fixing choices has been shown for the case of the
fective gluon self-energy at one-loop order in the covaria
gauge@2#, the background field gauge@9,10# and one of the
noncovariant gauges, namely, the light-cone gauge@1#. How-
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ever, the PT calculations have not been carried out in th
other interesting noncovariant gauges up to the present.

Noncovariant gauges such as the Coulomb gauge~CG!
and the axial gauges have long been used, both for theore
cal analyses and for various numerical calculations in gaug
theories@11#. These gauges are sometimes called ‘‘physical’’
gauges since in these gauges there is a close corresponde
between independent fields and ‘‘physical’’ degrees of free
dom. In particular, the CG and the temporal axial gauge
~TAG! have been often chosen for the perturbative calcula
tions of QCD at finite temperature@12–14#. The reasons for
these gauges being used are, for the CG, that it is a natur
gauge choice for the study of interactions between charge
and, for the TAG, that for a thermal system the rest frame o
the heat bath singles out the four-vectornm5~1.0.0,0! @15#.

The gluon self-energy is a gauge-dependent quantity. It
one-loop expression in the CG differs from the one in the
TAG. And the transversality relation is satisfied by the one-
loop gluon self-energy calculated in the TAG but not by the
one in the CG. However, the hard thermal loopdPmn in the
gluon self-energy is gauge independent, which means th
dPmn’s calculated in the CG and in the TAG are the same
The electric massmel , relevant for electric screening, and the
‘‘effective gluon mass’’mG in hot QCD are gauge indepen-
dent quantities and they can be obtained from the one-loo
gluon self-energy calculated in any gauge choice. Meanwhil
it is well known that in TAG calculations there appear spu-
rious singularities which are due to the unphysical poles o
(k•n)2l, l51,2 in the TAG gluon propagator@11,16#. Sev-
eral methods have been proposed to circumvent these sing
larities, and most noticeable are the principal-value prescrip
tion @17#, the nm* prescription@18#, and thea prescription
@19#.

In this paper we apply theS-matrix PT and calculate an
effective gluon self-energy to one-loop order in the CG and
the TAG. The one-loop gluon self-energies both in the CG
and the TAG have very complicated expressions. Even i
these gauges we find that once the pinch contributions a
added, we indeed obtain the same result for the effectiv
gluon self-energy as the one derived before in differen
gauge choices. This gives another support for the usefulne
of theS-matrix PT. We can also argue why the transversality
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5764 54MASSIMO PASSERA AND KEN SASAKI
relation holds for the gluon self-energy calculated in t
TAG, but not for the one in the CG, from the analysis of th
structure of the pinch contributions. Moreover, we can e
plain why the thermal loops, the electric massmel , and the
effective gluon massmG in hot QCD are gauge independen
from a simple inspection of the pinch contributions. Co
cerning the spurious singularities which appear in the glu
self-energy in the TAG, we point out that these singulariti
also appear in the pinch contributions and they exactly c
cel against the counterparts in the gluon self-energy.
show explicitly how these cancellations occur, we calcula
in the TAG the one-loop gauge-independent thermalb func-
tion bT in hot QCD.

The paper is organized as follows. In the next section,
develop the general prescription necessary for extracting
pinch contributions to the gluon self-energy from the on
loop quark-quark scattering amplitude. To establish our n
tation and to illustrate how to use the prescription develop
in the previous section, we briefly review, in Sec. III, th
derivation of the pinch contribution to the gluon self-energ
in the Feynman gauge~FG!. In Sec. IV we calculate both the
gluon self-energy and the pinch contribution in one-loop o
der in the CG with an arbitrary gauge parameterjC , and
show that when combined they give the same expression
the effective gluon self-energy as the one obtained before
different gauge choices. In Sec. V the similar calculations
performed in the TAG with an arbitrary gauge parameterjA .
Also we calculate the thermalb function bT at one-loop
order in the TAG and show how the spurious singulariti
appearing in the TAG gluon self-energy cancel against
counterparts in the pinch contribution. Section VI is devot
to summary and discussion. In addition, we present th

FIG. 1. ~a! The gluon self-energy diagrams for the quark-qua
scattering.~b! The gluon self-energy diagram with three-gluon in
teractions.~c! The tadpole diagram for the gluon self-energy.~d!
The ghost diagram for the gluon self-energy.

FIG. 2. ~a! The vertex diagrams of the first kind for the quark
quark scattering.~b! Their pinch contribution.
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Appendices. In Appendix A we first give the one-loop pinch
contributions to the gluon self-energy in the CG withjCÞ0
from the vertex diagrams of the first and second kind an
from box diagrams, separately. Then we give the expressio
of the pinch contribution rewritten in terms of different ten-
sor bases. In Appendix B, we give the similar expression
calculated in the TAG withjAÞ0. In Appendix C we list the
formulas for thermal one-loop integrals necessary for calcu
lating bT in the TAG in Sec. V.

II. PINCH TECHNIQUE

In this section we explain how to obtain the one-loop
pinch contributions to the gluon self-energy. Let us conside
theS-matrix elementT for the elastic quark-quark scattering
at one-loop order in the Minkowski space, assuming tha
quarks have the same massm. Throughout this paper we use
the metric ~1,2,2,2!. In addition to the self-energy dia-
gram in Fig. 1~a!, the vertex diagrams of the first and second
kind and the box diagrams contribute toT. They are shown
in Figs. 2~a!, 3~a!, and 4~a!, respectively. These contributions
are, in general, gauge dependent, while the sum is gau
independent. Then we single out the ‘‘pinch parts’’ of the
vertex and box diagrams, which are depicted in Figs. 2~b!,
3~b!, and 4~b!. They emerge when agm matrix on the quark
line is contracted with a four-momentumkm offered by a
gluon propagator or a bare three-gluon vertex. Such a ter
triggers an elementary Ward identity of the form

k”5~p”1k”2m!2~p”2m!. ~1!

The first term removes~pinches out! the internal quark
propagator, whereas the second term vanishes on shell,
vice versa. This procedure leads to contributions toT with
one or two less quark propagators and, hence, we will ca
these contributionsTP , ‘‘pinch parts’’ of T.

Next we extract fromTP the pinch contributions to the
gluon self-energyPmn. First note that the contribution of the
gluon self-energy diagram toT is written in the form@see
Fig. 1~a!#

rk
-

-

FIG. 3. ~a! The vertex diagram of the second kind for the quark-
quark scattering.~b! Its pinch contribution.

FIG. 4. ~a! The box diagrams for the quark-quark scattering.~b!
Their pinch contribution.
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T~SE!5@Taga#Dam~k!PmnDnb~k!@Tagb#, ~2!

whereD(k) is a gluon propagator,Ta is a representation
matrix of SU(N), andga andgb areg matrices on the ex-
ternal quark lines. The pinch contributionP P

mn to TP should
have the same form. Thus we must take awa
[Taga]Dam(k) andD

nb(k)[Tagb] from TP . For that pur-
pose we use the following identity satisfied by the gluo
propagator and its inverse:

gab5Dam~k!@D21#mb~k!5Dam~k!@2k2dmb#1ka term

5Dam
21~k!Dmb~k!5@2k2dam#Dmb~k!1kb term, ~3!

where

dmn5gmn2
kmkn

k2
. ~4!

The ka and kb terms give null results when they are con
tracted withga and gb , respectively, of the external quark
lines.

The pinch part of the one-loop vertex diagrams of the fir
kind depicted in Fig. 2~b! plus their mirror graphs has a form

TP
~V1!

5A@Taga#Dab~k!@Tagb#, ~5!

whereA ~alsoB0, Bi j , C0, andCi j in the equations below!
contains a loop integral. Using Eq.~3! we find

gaDab~k!gb5gaDam~k!@2k2dmn#Dnb~k!gb. ~6!

Thus the contributions toPmn from the vertex diagrams of
the first kind are written as

PP
mn~V1!

5@2k2dmn#A. ~7!

The pinch part of the one-loop vertex diagrams of th
second kind depicted in Fig. 3~b! has a form

TP
~V2!

5FTaH @gk#B01(
i , j
Bi j @p” i #pjkJ GDkb~k!@Tagb#,

~8!

where pi and pj are four-momenta appearing in the dia
grams. By redefinition of the loop-integral momentum w
can choosepi ,pj5p or n in the cases of the CG and the
TAG wherep is the loop-integral momentum andn is a unit
vector nm5~1,0,0,0! appearing in the CG and TAG gluon
propagators. Using Eq.~6! and

@p” i #pj
kDkb~k!5@ga#Dam~k!@2k2dml#pilpj

nDnb~k!,
~9!

we obtain for the contributions toPmn from the vertex dia-
grams of the second kind

PP
mn~V2!

5@2k2dmn#B01@2k2dml#(
i , j
Bi j pilpjn1~m↔n!,

~10!
y

n

-
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e
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where ~m↔n! terms are the contributions from mirror dia-
grams. A further simplification can be made by using a for
mula

k2pj
n5k2dntpj t1kn~kpj !. ~11!

The pinch part of the one-loop box diagrams depicted i
Fig. 4~b! has a form

TP
~box!5@Ta#H @ga#@ga#C01(

i , j
Ci j @p” i #@p” j #J @Ta#. ~12!

Again from Eq. ~3! we see that@ga#@ga# and [p” i ][ p” j ] are
rewritten as

@ga#@ga#5@ga#Dam~k!@k4dmn#Dnb~k!@gb#, ~13!

@p” i #@p” j #5@ga#Dam~k!@k4dmldntpilpj t#Dnb~k!@gb#,
~14!

and thus we obtain for the contributions toPmn from the box
diagrams

PP
mn~box!5@k4dmn#C01@k4dmldnt#(

i , j
Ci j pilpj t . ~15!

It is observed that the prescription developed here is ge
eral and can be applied to the calculation of the one-loo
pinch contributions in any gauge.

III. PT GLUON SELF-ENERGY
IN THE FEYNMAN GAUGE

In order to establish our notation, in this section we
briefly review the derivation of the effective gluon self-
energy in the Feynman gauge~FG! ~the covariant gauge with
j51!. In the following we discuss the gluon self-energy both
at T50 and at finite temperature. In both cases we use th
same notation*dp for the loop integral. AtT50 the loop
integral should read as

E dp52 im42DE dDp

~2p!D
, ~16!

wherem is the ’t Hooft mass scale, while at finite tempera-
ture we use the imaginary time formalism of thermal field
theory, and the loop integral should read as

E dp5E d3p

8p3 T(
n

~ imaginary time formalism!,

~17!

where the summation goes over the integern in p052p inT.
In the FG the gluon propagator,iD ab(FG)

mn 5 idabD (FG)
mn , has

a very simple form

D ~FG!
mn ~k!5

21

k2
gmn, ~18!
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and the three-gluon vertex is expressed as

Glmn
abc ~p,k,q!52g fabc@Glmn

P ~p,k,q!1Glmn
F ~p,k,q!#,

~19!

where

Glmn
P ~p,k,q!5plgmn2qnglm ,

Glmn
F ~p,k,q!52klgmn22knglm2~2p1k!mgln , ~20!

and f abc are the structure constants of the group SU(N). In
the vertex each momentum flows inward and, thus,p1k1q
50. The expression of the one-loop gluon self-energy in
FG is well known:

P~FG!
mn ~k!5Ng2E dp

1

p2q2
@2pmpn12qmqn

2~p21q2!gmn2kmkn12k2dmn#. ~21!

The one-loop pinch contribution to the gluon self-ener
in the FG is calculated as follows. We consider theS-matrix
elementT for the quark-quark scattering at one-loop ord
Since the gluon propagator in the FG does not have a lo
tudinal kmkn term, the pinch contribution toT only comes
from the vertex diagram of the second kind with the thre
gluon vertex of the typeGP ~and its mirror graph! @2#, and is
given by

TP~FG!

V2 522Ng2@Taga#E dp
1

p2q2
Dab~k!@Tagb#.

~22!

The inverse of the gluon propagator is

@D ~FG!
21 #mn~k!52k2gmn, ~23!

and thusD ~FG! and its inverse satisfy the identities in Eq.~3!.
We can then apply the formulas Eqs.~8! and ~10! to TP(FG)

V2

obtaining the FG pinch contribution to the gluon self-energ

PP~FG!
mn ~k!52Ng2k2dmnE dp

1

p2q2
. ~24!

The sum ofP~FG!
mn andPP(FG)

mn is given by

P̂mn~k!5Ng2E dp
1

p2q2
@2pmpn12qmqn

2~p21q2!gmn2kmkn14k2dmn#. ~25!

This is the effective gluon self-energy obtained before in
PT framework@1,2,10#. It is noted thatP̂mn(k) can also be
derived without using PT but by the background fie
method with a special value of the gauge parameterjQ51
@9#.

The effective gluon self-energyP̂mn(k) has the following
features.

~i! It satisfies the transversality relation. Indeed usi
k1p1q50 we find
the

gy
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gi-
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P̂mn~k!kn52Ng2E dpH pm

p2
1
qm

q2 J 50. ~26!

~ii ! As was shown explicitly at one-loop level@2#, the PT
modified gluon three-point functiong fabcĜmna and P̂mn(k)
satisfy the followingtree-levelWard-Takahashi identity

pmĜmna~p,q,r !52P̂na~q!1P̂na~r !. ~27!

This implies that the wave function renormalization for the
PT modified gluon self-energyP̂mn contains the running of
the QCD couplings. Indeed, at zero temperature, after inte
gration and renormalization it is rewritten as

P̂mn~k!5g2~gmnk22kmkn!S b ln
k2

m2 1constD , ~28!

whereb5211N/(48p2) is the coefficient ofg3 in the usual
QCD b function without fermions.

IV. PT GLUON SELF-ENERGY
IN THE COULOMB GAUGE

The gauge fixing term in the Coulomb gauge~CG! is
given by

L52
1

2jC
~] iAi

a!2. ~29!

Then, with a unit vectornm5~1,0,0,0!, the CG gluon propa-
gator,iD ab(CG)

mn 5 idabD (CG)
mn , and its inverse are expressed as

D ~CG!
mn ~k!52

1

k2 Fgmn1S 12jC
k2

k2D kmkn

k2

2
k0
k2

~kmnn1nmkn!G ,
@D ~CG!

21 #mn~k!52k2Fgmn2
kmkn

k2 G
1

1

jC
@kmkn2k0~k

mnn1nmkn!1k0
2nmnn#.

~30!

FIG. 5. ~a! The ghost-gluon vertex in Coulomb gauge and~b! in
temporal axial gauge.
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The three-gluon vertex is the same as in the FG, that
G lmn

abc (p,k,q) in Eq. ~19!, and the ghost propagatoridabG~CG!

and the ghost-gluon vertexGm(CG)
abc (p,k,q) @see Fig. 5~a!# in

the CG are given by

G~CG!~k!5
1

k2
,

Gm~CG!
abc ~p,k,q!5g fabc@pm2p0nm#. ~31!

In the limit jC50, D (CG)
mn (k) reduces to the well-known

form @20#
is,
D ~CG!
00 5

1

k2
, D ~CG!

0i 50, D ~CG!
i j 5

1

k2 S d i j2
kikj

k2 D .
~32!

However, its inverse does not exist in this limit. The one
loop CG gluon self-energy was calculated in Ref.@13# in the
jC50 limit using the gluon propagator in Eq.~32!.

In the framework of PT, we need to use the identities in
Eq. ~3!, satisfied by the gluon propagator and its inverse, t
extract fromTP the pinch contributions to the gluon self-
energy. Therefore, in principle, we must work with a non-
zerojC . Thus we recalculate the one-loop gluon self-energ
in the CG with an arbitrary gauge parameterjC . The results
for the contributions from Fig. 1~b!, the tadpole diagram
@Fig. 1~c!#, and the ghost diagram@Fig. 1~d!# are, respec-
tively, as follows:
erse
P~a!~CG!
mn ~k!5

N

2
g2E dp

1

p2q2 FgmnH 8k22F S k2~k222q224k•p!1q4

p2
1p2D1~p↔q!G J 1H pmpnF231

~p•q!2

p2q2
1
4p•q

p2

2
q2

p2q2
~3p212q214p21q214p0q0!G1~p↔q!J 1~pmqn1qmpn!F252

~p•q!2

p2q2
12~p•q!S 1p2 1

1

q2D
2
p2q2

p2q2G1H ~nmpn1pmnn!
1

p2q2
@kq„p2q02q2p022p•q~p02q0!…24k0p0q0~pq!

2„q2p2q01p2q2p02p•q~p2q01q2p0!…1p2q2q01q2q2p0#1~p↔q!J 1nmnn
2p0q0
p2q2

~22k2~pq!2p2q2!G
1jC

N

2
g2E dpFgmnH S 2k4

1

q2p4
1k2

2

p4
2
q2

p4D1~p↔q!J 1H pmpnF 1

p2p2q4
„k2p22~kq!222~kp!p2

22k0p0~kq!…1
1

q2p4q2
„k2q22~kq!212k0q0~kq!…2

2

p4
2

1

q4G1~p↔q!J 1~pmqn1qmpn!

3F S k2q21~kp!~kq!1k0q0~p
22q2!

q2p4q2
1

kq

p4q2
2

2

p4D1~p↔q!G1H ~nmpn1pmnn!
kq

p2q2 Fk2S q0
q2p2

2
p0
p2q2D

2S q0p22
p0
q2D G1~p↔q!J G1jC

2 N

2
g2E dp

1

p4q4
@$~kq!2pmpn1~p↔q!%2~kp!~kq!~pmqn1qmpn!#, ~33!

P~b!~CG!
mn ~k!5

N

2
g2E dpFgmnH 1

p2
2

1

p2
1~p↔q!J 1H pmpn

1

p2p2
1~p↔q!J 1H ~nmpn1pmnn!

2p0
p2p2

1~p↔q!J G
1jC

N

2
g2E dpFgmnS p2p4 1~p↔q! D1pmpnS 21

p4
1~p↔q! D G , ~34!

Pghost~CG!
mn ~k!5

N

2
g2E dp

1

p2q2
@~pmqn1qmpn!2„q0~n

mpn1pmnn!1~p↔q!…1nmnn2p0q0#, ~35!

where we have chosen the variables ask1p1q50 and, therefore, the integrands can be written in the forms which are
symmetric in the variablesp andq. Here and in the following, the notation1(p↔q) implies symmetrization of the preceding
term under interchange ofp andq. The one-loop CG gluon self-energy is given by the sum

P~CG!
mn 5P~a!~CG!

mn 1P~b!~CG!
mn 1Pghost~CG!

mn . ~36!

We have checked that thejC-independent part ofP~CG!
mn agrees with the results given in Eqs.~4.6!, ~4.8!, ~4.10!, and~4.12! of

Ref. @13#.
We now calculate the pinch contributions to the CG gluon self-energy. Since the CG gluon propagator and its inv

satisfy the relations in Eq.~3!, that is,
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Dam
~CG!~k!@D ~CG!

21 #mb~k!5Dam
~CG!~k!@2k2dmb#1

ka

k2
~k0n

b2kb!,

D ~CG!am
21 ~k!D ~CG!

mb ~k!5@2k2dam#D ~CG!
mb ~k!1~k0na2ka!

kb

k2
, ~37!

we can follow the prescription explained in Sec. II to extract the one-loop pinch contributions. The individual contribution
CG from the vertex~first and second kind! and box diagrams are presented in Appendix A 1. In total the pinch contribution t
the CG gluon self-energy is expressed as

PP~CG!
mn ~k!5

N

2
g2k2dmnE dp

1

p2q2 Fk22q224k•p

p2
1~p↔q!G1

N

2
g2k2dmadnbE dp

1

p2q2p2q2
$papb~k214p•q!

1~panb1napb!@p2q02q2p022p•q~p02q0!#1nanb4p0q0~pq!%1
N

2
g2FdmaE dpH pak

nF 1

q2p2
2

1

p2q2

1S 1q22 1

p2D p•q

p2q2G1nak
nF2

q0
p2q2

2
p0
q2p2

1S q0q2 1
p0
p2D p•q

p2q2G J 1~m↔n!G1jC
N

2
g2

3Fk2dmnE dpH k2S 1

q2p4
1

1

p2q4D2
1

p4
2

1

q4 J 1k2dmadnbE dp
1

p2q2 H papbFk2S 1

p2q2
1

1

q2p2D2
2

p2
2

2

q2G
1~panb1napb!F S p0q22

q0
p2D2k2S p0

p2q2
2

q0
q2p2D G J 1H dmaE dp

pak
n

p2q2 S k•pq2 2
k•q

p2 D1~m↔n!J G
1jC

2 N

2
g2k4dmadnbE dp

2papb

p4q4
. ~38!
In order to compare the above result withP~CG!
mn , it is

better to express Eq.~38! in terms of symmetric tensorgmn,
pmpn, qmqn, (pmqn1qmpn), (nmpn1pmnn), (nmqn1qmnn),
andnmnn. For that purpose, we first write Eq.~38! in terms
of gmn and symmetric tensors made up ofk, p, andn and
then rewrite it in terms ofgmn and symmetric tensors mad
up of p, q, andn. The terms proportional topmpn, kmkn, and
(pmkn1kmpn) and to (nmpn1pmnn) and (nmkn1kmnn) will
then be rewritten as

Rkmkn1S~pmkn1kmpn!1Tpmpn

5~R22S1T!pmpn1~R2S!~pmqn1qmpn!1Rqmqn,

U~nmpn1pmnn!1V~nmkn1kmnn!

5~U2V!~nmpn1pmnn!2V~nmqn1qmnn!. ~39!

The final expression forPP(CG)
mn is given in Appendix A 2.

From Eq.~A4! we find that the one-loop pinch contribu
tions are alsojC dependent and thesejC-dependent parts
exactly cancel against thejC-dependent parts ofP~CG!

mn . Fur-
thermore it is easy to see that adding thejC-independent
parts ofP~CG!

mn andPP(CG)
mn , we obtain

P̃mn~k!5P~CG!
mn ~k!1PP~CG!

mn ~k!

5Ng2E dp
1

p2q2
@~4k22p22q2!gmn

23~pmpn1qmqn!25~pmqn1qmpn!#, ~40!
e

-

which is equivalent toP̂mn(k) in Eq. ~25!. Thus we have
shown explicitly that the CG gluon self-energyP~CG!

mn and the
pinch contributionPP(CG)

mn , when combined, give theuniver-
sal effective gluon self-energyP̂mn(k).

We now examine the structure ofPP(CG)
mn and discuss

some of the properties of the CG gluon self-energy itself.
Only the jC-independent parts will be considered. First,
PP(CG)

mn is not transverse. In fact, we easily obtain, from Eq.
~38!,

PP~CG!
mn kn5

N

2
g2k2dmaE dpH paF 1

q2p2
2

1

p2q2

1S 1q22 1

p2D p•q

p2q2G1naF2
q0
p2q2

2
p0
q2p2

1S q0q2 1
p0
p2D p•q

p2q2G J , ~41!

where we have useddmnkn50 anddnbkn50. Since the sum
P̂mn(k) satisfies the transversality relation@see Eq.~26!#,
this means that the CG gluon self-energy is not transverse
either, i.e.,P~CG!

mn knÞ0, which was indeed pointed out in Ref.
@13#.

Next, let us analyzePP(CG)
mn in the context of hot QCD.

The hard thermal loopdPmn in the gluon self-energyPmn is
the piece proportional toT2, which is the leading term in the
high-temperature expansion~T@uku andT@uk0u! and is gen-
erated by a small part of the integration region in one-loop
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diagrams with hard momenta of orderT @14#. It is known
that dPmn is gauge independent and satisfies the transver
ity relation ~the Ward identity! kmdPmn(k)50 @21#. Now
Pmn has a dimension of mass2 and, apart from the tensoria
factors, is composed of nonsingular functions ofuku andk0.
Then look at the structure ofPP(CG)

mn in Eq. ~38! ~see also
jC-dependent parts!. It is made up of the terms proportiona
to k2dmn, k2dmadnb, anddmakn. Thedmakn terms appear as
a result of using the formula in Eq.~11!, that is,
k2dmap j

n5k2dmadntpj t1dmakn(kpj ). So by a simple di-
mensional analysis, we easily see that there is no way for
pinch contributionPP(CG)

mn to produce aT2 term. This means
that PP(CG)

mn does not contribute to the hard thermal loo
dPmn. These arguments can be applied to the pinch contr
tions to the gluon self-energy calculated in any gauge~see
Sec. V for the TAG calculation!. It is clear from the discus-
sion in Sec. II that by construction, the terms in the pin
parts always carry such factors ask2dmn, k2dma, k4dmn, and
k4dmadnb, and hence they do not generate aT2 term. The
gluon self-energy calculated in any gauge, when combi
with the pinch contribution, gives the universal and th
gauge-independentP̂mn(k). As the pinch part does not con
tribute to the hard thermal loopdPmn, dPmn should be gauge
independent. Moreover,dPmn should satisfy the transversa
ity relation kmdPmn(k)50 since P̂mn(k) does. This is an
explanation for the gauge independence and the transv
nature of the hard thermal loopdPmn from the PT point of
view.

In a similar way we can argue for the gauge independe
of the electric massmel and ‘‘effective gluon mass’’mG in
hot QCD. From the expression ofPP(CG)

mn in Eq. ~38!, we see
that its ~00! component atk050, PP(CG)

00 (k050,uku), van-
ishes in the limituku→0. This is true for the one-loop pinch
contributions calculated in any gauge, since, by construct
P P

00’s ~more generallyP P
mn! are proportional tok2. Thus

lim
uku→0

PP
00~k050,uku!50. ~42!

On the other hand, the limituku→0 of P~CG!
00 ~k050,uku! re-

mains finite. Hence the limit

lim
uku→0

P~CG!
00 ~k050,uku!5

1

3
Ng2T2

5mel
2 ~43!

is a gauge-independent quantity. The inverse of electric m
mel represents the screening length for static electric fie
Another example is provided by a combination of pinch co
tributions ~1/2!„~k2/k2!P P

002P P
mngmn… calculated in any

gauge. Obviously the combination is proportional tok2 and
thus its limit ask2→0 is 0. Therefore, the limit

mG
2 5 lim

k2→0

1

2 S k2k2 P~CG!
00 2P~CG!

mn gmnD
5
1

6
Ng2T2 ~44!
sal-

l

l

the

p
ibu-

ch

ned
us
-

l-

erse

nce

ion,

ass
lds.
n-

is a gauge independent quantity and is called ‘‘effective
gluon mass’’ squared.

V. PT GLUON SELF-ENERGY IN THE TEMPORAL
AXIAL GAUGE

The gauge fixing term in the temporal axial gauge~TAG!
is provided by

L52
1

2jA
~nmAm

a !2, ~45!

where nm5~1,0,0,0!. The gluon propagator in the TAG,
iD ab(TAG)

mn 5 idabD (TAG)
mn , and its inverse are given by

D ~TAG!
mn ~k!52

1

k2 Fgmn1~11jAk
2!
kmkn

k0
2

2
1

k0
~kmnn1nmkn!G , ~46!

@D ~TAG!
21 #mn~k!52k2S gmn2

kmkn

k2 D2
1

jA
nmnn. ~47!

It is noted that the gauge parameterjA in the TAG has a
dimension of mass22. The three-gluon vertex is given again
by G lmn

abc (p,k,q) in Eq. ~19!, and the ghost propagator
idabG~TAG! and the ghost-gluon vertexGm(TAG)

abc (p,k,q) @see
Fig. 5~b!# in TAG are, respectively,

G~TAG!~k!5
2 i

k0
,

Gm~TAG!
abc ~p,k,q!5g fabc@2 inm#. ~48!

The one-loop gluon self-energy in the TAG was calcu-
lated in Refs.@12, 13# in the jA50 limit. There, the ghost
loop contribution was omitted due to the argument that the
ghost field decouples in this limit. However, in the limit
jA50 the inverse of the gluon propagator does not exist. So
in the framework of PT we work with a nonzerojA . We
recalculate the gluon self-energy using the gluon propagato
with an arbitraryjA given in Eq.~46!. For a nonzerojA the
ghost should be taken into account and at one-loop level i
contributes to thejA-independent part ofP~TAG!

00 @13#. The
contributions of Fig. 1~b!, of the tadpole diagram@Fig. 1~c!#,
and the ghost diagram@Fig. 1~d!# are, respectively,
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P~a!~TAG!
mn ~k!5

N

2
g2E dp

1

p2q2 FgmnH 8k22F S k2~k212p22q224k•p!2p2q2

p0
2 1p2D 1~p↔q!G J

1H pmpnF231
~p•q!2

p0
2q0

2 2
2p•q

p0
2q0

2 ~q222q0
2!1

q4

p0
2q0

22
p21q2

p0
2 1

q2

q0
2G1~p↔q!J

1~pmqn1qmpn!F252
~p•q!2

p0
2q0

2 1~p•q!S p21q2

p0
2q0

2 1
2

p0
2 1

2

q0
2D 2

p2q2

p0
2q0

2G
1H ~nmpn1pmnn!

1

p0
2q0

2 @kq„2p2q01q2p022p•q~p02q0!…24k0p0q0~pq!1q2p0q0
2#1~p↔q!J

1nmnn
2p0q0
p0
2q0

2 „22k2~pq!2p2q2…G1jA
N

2
g2E dpFgmnH S k4 1

q2p0
22k2

2

p0
2 1

q2

p0
2D 1~p↔q!J

1H pmpnF2k2S 1

p2q0
2 1

1

q2p0
2D 1

~kq!2

p0
2q0

2 S 1p2 1
1

q2D 2
2k0~kq!

p0
2q0

2 S q0q22 p0
p2D 1

2

p0
2 1

1

q0
2G1~p↔q!J

1~pmqn1qmpn!F S 2k2p0
22~kp!~kq!1k0p0~p

22q2!

p2p0
2q0

2 1
2

p0
2D 1~p↔q!G

1H ~nmpn1pmnn!
kq

p0
2q0

2 Fk2S p0p22 q0
q2D 1q02p0G1~p↔q!J G

1jA
2 N

2
g2E dp

1

p0
2q0

2 @$~kq!2pmpn1~p↔q!%2~kp!~kq!~pmqn1qmpn!#, ~49!

P~b!~TAG!
mn ~k!5

N

2
g2E dpFgmnH 21

p2
1

21

p0
2 1~p↔q!J 1H pmpn

1

p2p0
2 1~p↔q!J 1H ~nmpn1pmnn!

21

p2p0
1~p↔q!J G

1jA
N

2
g2E dpFgmnS 2p2

p0
2 1~p↔q! D 1pmpnS 1p02 1~p↔q! D G ,

Pghost~TAG!
mn ~k!5

N

2
g2E dpnmnn

2

p0q0
. ~50!

The one-loop gluon self-energy in the TAG is then given by the sum

P~TAG!
mn 5P~a!~TAG!

mn 1P~b!~TAG!
mn 1Pghost~TAG!

mn . ~51!

The jA-independent part ofP~TAG!
mn agrees with the results given in Eqs.~4.5!, ~4.7!, ~4.9!, ~4.11! of Ref. @13# except for the

ghost contribution toP~TAG!
00 .

We now calculate the pinch contributions in the TAG. Since the TAG propagator and its inverse satisfy the relations
~3!, i.e.,

Dam
~TAG!~k!@D ~TAG!

21 #mb~k!5Dam
~TAG!~k!@2k2dmb#1kaS nb

k0
2
kb

k2D ,

D ~TAG!am
21 ~k!D ~TAG!

mb ~k!5@2k2dam#D ~TAG!
mb ~k!1S na

k0
2
ka

k2D kb, ~52!

we can follow the same procedure as before and we obtain, for the pinch contribution to the gluon self-energy in the
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PP~TAG!
mn ~k!5

N

2
g2k2dmnE dp

1

p2q2 Fk212p22q224k•p

p0
2 1~p↔q!G1

N

2
g2k2dmadnbE dp

1

p2q2p0
2q0

2

3$papb~4p0q02k2!1~panb1napb!@2p2q01q2p022p•q~p02q0!#1nanb4p0q0~pq!%

1jA
N

2
g2Fk2dmnE dpH 2k2S 1

q2p0
2 1

1

p2q0
2D 1

1

p0
2 1

1

q0
2 J 1k2dmadnbE dp

1

p0
2q0

2 H papbF2k2S 1p2 1
1

q2D G
1~panb1napb!Fq02p01k2S p0p22 q0

q2D G J G1jA
2 N

2
g2k4dmadnbE dp

2papb

p0
2q0

2 . ~53!
x
i

t

n

r

r

o
s

The individual contributions in the TAG from the verte
~first and second kind! and box diagrams are presented
Appendix B 1.

The expression ofPP(TAG)
mn is further rewritten in terms of

symmetric tensors gmn, pmpn, qmqn, (pmqn1qmpn),
(nmpn1pmnn), (nmqn1qmnn), andnmnn. The result is given
in Appendix B 2. From this expression we can see that
one-loop pinch contributions are alsojA dependent and these
jA-dependent parts exactly cancel against thejA-dependent
parts of P~TAG!

mn . Also we find the sum ofP~TAG!
mn and

PP(TAG)
mn is equal toP̃mn in Eq. ~40! and thus equal to the

universalP̂mn in Eq. ~25!.
Let us now examine the results of these TAG calculatio

We will only consider thejA-independent part. First it is
easily seen from Eq.~53! that the pinch contribution
PP(TAG)

mn is transverse, i.e.,kmPP(TAG)
mn 50. Hence the TAG

gluon self-energyP~TAG!
mn should be transverse@13#. Here it is

noted that we have included the ghost-loop contribution
P~TAG!

mn .
At zero temperature~T50! thejA-independent part of the

pinch contributionPP(TAG)
mn does not contain ultraviolet di-

vergences. This can be easily seen from the examination
the gmn part ofPP(TAG)

mn in the limit k50 ~and remains true
for kÞ0!. Applying the projection operator13dmn to the
jA-independent part ofPP(TAG)

mn , we find, in the limitk50,

d.p. of F13 dmnPp~TAG!
mn G

jA50

5d.p. of FN6 g2k0
2E dpS 4

p2q2
1

2

q2p0
2D G

~54!

where an abbreviation ‘‘d.p. of’’ stands for ‘‘divergent pa
of’’ and we have dropped thek0

2 terms in the numerator of
the integrand which would only contribute to the finite pa
Also we have replacedq0 with 2p0 andq in the numerator
with 2p, sinceq52p2k and these replacements do n
modify the ultraviolet divergent part. As a final step we u
the following two integral formulas@22#:

d.p. of F E dp
1

p2~p1k!2G5D, ~55!
n

he

s.

in

of

t

t.

t
e

d.p. of F E dp
1

~p1k!2p0
2G522D, ~56!

where the loop integral*dp is defined in Eq.~16! and
D5~1/16p2!@2/~42D!#. Thus we find

d.p. of F13 dmnPP~TAG!
mn G

jA50

50, ~57!

and hence thejA-independent part ofPP(TAG)
mn is ultraviolet

finite. We have shown in Sec. III that, at zero temperature,
the divergent part of theuniversalgluon self-energyP̂mn,
which is the sum ofP~TAG!

mn andPP(TAG)
mn , gives us complete

information on the correct running of the QCD coupling con-
stant at one-loop level. The fact thatPP(TAG)

mn is ultraviolet
finite, therefore, implies that in one-loop TAG calculations
the only knowledge of the gluon self-energy is enough to
determine the QCDb function, which is indeed true for
jA50 @22#.

There is one subtlety in the quantization of gauge theories
in the TAG @11,16#. Spurious singularities appear in the loop
calculations. The gauge conditionnmA m

a50 in the TAG is
not enough to fix the gauge uniquely and there still remains
a freedom of time-independent gauge transformations. This
residual invariance manifests itself as unphysical poles in the
longitudinal part of the gluon propagator given in Eq.~46!.
In the TAG calculation of the gluon self-energy, these un-
physical poles in the gluon propagator give spurious singu-
larities. To circumvent these singularities, several methods
have been proposed, and most noticeable are the principal-
value prescription@17#, the nm* prescription@18#, and thea
prescription@19#.

We now know that the longitudinal part of the TAG
propagator gives rise to pinch parts. Thus the spurious sin-
gularities due to the unphysical poles of the propagator also
appear in the pinch contribution. Once this pinch contribu-
tion is added to the TAG gluon self-energy, the singularities
due to the ill-fated unphysical poles cancel out. To illustrate
how these cancellations actually occur, we present the PT
calculation in the TAG of the gauge-independent thermalb
function in a hot Yang-Mills gas@6#.

As stated in Sec. III, the PT modified gluon self-energy
P̂mn contains the running of the QCD coupling. When the
renormalization condition of the three-gluon vertex is chosen
at the static and symmetric point, the thermalb functionbT
is obtained through a formula@23–25#
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bT[T
dg~T,k!

dT
5

g

2k2 T
dP'~T,k!

dT
, ~58!

whereP'~T,k!5P' ~T,k050, k5uku! is the transverse func-
tion of the gluon self-energyPmn at the static limit. Here for
Pmn we should useP̂mn , namely, the sum of the usual one-
loop gluon self-energy and the pinch contribution.

In the static limit k050, we have P'(T,k)
5 1

2P i i (k050,k). The TAG calculation ofPi i ~k050,k! was
performed in Ref.@13#. After thep0 summation and the an-
gular integration, but before thep~5upu! integration,
P i i

(TAG)(0,k) is given in Eq.~4.43! of Ref. @13# as

P i i
~TAG!~0,k!5

Ng2

2p2 E
0

`

dp pn~p!F221
k2

p6
2 1

k4

4p2p6
2

1S 2pk 1
5k

2p
2

k3

2pp6
2 2

k5

16p3p6
2 D lnU2p1k

2p2kUG .
~59!

wheren(p)51/@exp(p/T)21# is the Bose-Einstein statistical
distribution function, and the principal value prescription
was supposed to be applied for 1/p6

2 . If we do not use the
principal value prescription and replacep6

2 with p2, we see
that the integrand~the terms in @ #! would behave as
24k2/3p2 for small p.

Now let us calculate the pinch contribution toP'~T,k! in
the TAG. Applying the projection operator

t i j5
1

2
S d i j2

kikj

k2
D ~60!

to the spatial part ofPP(TAG)
mn in Eq. ~53! ~we are only inter-

ested in thejA-independent part!, we obtain, in the static
limit,

P'
P~TAG!~T,k!5t i jPP~TAG!

i j ~k050,k!

52Ng2k2EdpH k214k•p

p2q2p0
2

1
1

p2p0
2
2

2

q2p0
2 J

2
N

4
g2k2E dpFp22 ~k•p!2

k2
G

3H k2

p2q2p0
2q0

2
2

4

p2q2p0
2 J , ~61!

where the terms proportional to (panb1napb) andnanb in
PP(TAG)

mn do not contribute toP'
P(TAG) . After thep0 summa-

tion and the angular integration,P'
P(TAG)(T,k) is rewritten

as
P'
P~TAG!~T,k!5

Ng2

4p2 E
0

`

dp pn~p!F2
k2

p2
2

k4

4p4

1S k

p
1

k3

2p3
1

k5

16p5D lnU2p1k

2p2kUG .
~62!

where we have used formulas given in Appendix C. Note
that the integrand behaves as 4k2/3p2 for small p. When
P'

(TAG) and P'
P(TAG) are combined@rememberP'

(TAG)5 1
2

P i i
(TAG)(0,k)#, the k2/p2 singularities cancel and the inte-

grand becomes regular asp→0. We can, therefore, evaluate
the sum

P'~T,k!5P'
~TAG!~T,k!1P'

P~TAG!~T,k!

5
Ng2

4p2 E
0

`

dp pn~p!F221S 2pk 1
7k

2pD
3 lnU2p1k

2p2kUG . ~63!

without recourse to the principal value prescription or to the
other prescriptions mentioned before and obtain in the limit
k!T

P'~T,k!'Ng2kT
7

16
1O~k2!. ~64!

Inserting the above expression into Eq.~58!, we find for the
gauge-independent thermalb function

bT5g3N
7

32

T

k
, ~65!

which coincides with the result of Refs.@24, 6#. What we
have learned from these calculations is that spurious singu
larities in the TAG appear only in the gauge-dependent parts
and that when we deal with physical and/or gauge-
independent quantities, these singularities cancel amon
themselves and disappear.

VI. SUMMARY AND DISCUSSION

In this paper we have used theS-matrix PT and calculated
the one-loop effective gluon self-energy in two non-
covariant gauges, namely, the CG and the TAG. The one
loop gluon self-energies calculated in the CG and the TAG
are different in form from each other and have complicated
expressions. However, we showed explicitly that once the
pinch contributions are added, they turn out to be identical
and coincide with the result previously obtained with cova-
riant gauges. Some properties of the CG and TAG gluon
self-energies were discussed by simply analyzing the struc
ture of their pinch contributions. In the context of hot QCD,
we could explain the gauge-independence of the hard ther
mal loop dPmn, the electric massmel , and the ‘‘effective
gluon mass’’mG from the PT point of view.

There appear spurious singularities in the TAG gluon self-
energy. These singularities are also present in the TAG pinch
contribution. When the pinch contribution is added to the
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TAG gluon self-energy, the singularities cancel out. For
illustration of this cancellation, we calculated, in the TAG
the thermalb function in the framework of PT. Theb func-
tion thus obtained is indeed gauge independent@6,7#. How-
ever, the result is incomplete in the following sense:
Elmfors and Kobes pointed out@25#, the leading contribution
to bT , which gives a termT/k, does not come from the hard
part of the loop integral, responsible for aT2/k2 term, but
from soft loop integral. Hence it is not consistent to stop t
calculation at one-loop order for soft internal momenta, a
the resummed propagators and vertices@14# must be used to
obtain the complete leading contribution. The PT algorith
still works even when we use the resummed propagators
vertices@26#. It can be shown that the resummed effecti
gluon self-energy obtained in the framework of PT is gaug
independent and that, using this effective gluon self-ener
we can obtain the correct thermalb function in the leading
order. Also it can be shown that the resummed pinch con
an
,

as

he
nd

m
and
ve
e-
gy,

tri-

butions vanish on shell, and thus do not modify the result o
Braaten and Pisarski@14# for the gluon damping rate in the
leading order.

Note added in proof.After submitting this paper for pub-
lication, our attention has been called to a recent paper@27#
by Papavassiliou and Pilaftsis, where the independence
the PT results on the gauge-fixing procedure and the uniqu
ness of the PT algorithm are discussed. We would like t
thank Dr. Papavassiliou for bringing@27# to our attention.
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APPENDIX A: COULOMB GAUGE

1. Pinch contribution

~i! The contribution of the vertices of the first kind:

PP~CG!

mn~V1!
5
N

2
g2k2dmnE dpS 21

p2p2
1

21

q2q2D1jC
N

2
g2k2dmnE dpS 1p4 1

1

q4D . ~A1!

~ii ! The contribution of the vertices of the second kind:

PP~CG!

mn~V2!
5Ng2k2dmnE dp

2

p2q2 S 2k•p

p2
1

2k•q

q2 D1Ng2k2dmadnbE dp
1

p2q2p2q2 H papb2p•q1nanbp0q0~k
212pq!

1~panb1napb!
1

2
@p0p

22q0q
212~p02q0!~p0q022p•q!#J 1

N

2
g2FdmaE dpH pak

nF 1

q2p2
2

1

p2q2

1S 1q22 1

p2D p•q

p2q2G1nak
nF2

q0
p2q2

2
p0
q2p2

1S q0q2 1
p0
p2D p•q

p2q2G J 1~m↔n!G1jCNg
2Fk2dmnE dp

3H k2S 1

q2p4
1

1

p2q4D2
1

p4
2

1

q4 J 1k2dmadnbE dp
1

p2q2 H papbFk2S 1

p2q2
1

1

q2p2D2
1

p2
2

1

q2G1~panb1napb!

3F12 S p0q22
q0
p2D2k2S p0

p2q2
2

q0
q2p2D G J 1H dmaE dp

pak
n

2p2q2 S k•pq2 2
k•q

p2 D1~m↔n!J G
1jC

2Ng2k4dmadnbE dp
2papb

p4q4
. ~A2!

~iii ! The box contribution:

PP~CG!
mn~box!5

N

2
g2k4dmnE dp

1

p2q2 S 1p2 1
1

q2D1
N

2
g2k4dmadnbE dp

papb1~panb1napb!~q02p0!22nanbp0q0
p2q2p2q2

1jC
N

2
g2k4FdmnE dpS 21

q2p4
1

21

p2q4D1dmadnbE dpH 2
papb

p2q2 S 1

p2q2
1

1

q2p2D1
panb1napb

p2q2 S p0
p2q2

2
q0
q2p2D J G

1jC
2 N

2
g2k4dmadnbE dp

papb

p4q4
. ~A3!
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2. Expression ofPP„CG…
µn

The pinch contribution to the gluon self-energy in the CG is rewritten in terms of symmetric tensorsgmn , pmpn , qmqn ,
(pmqn1qmpn), (nmpn1pmnn), (nmqn1qmnn), andnmnn :

PP~CG!
mn ~k!5

N

2
g2E dp

1

p2q2p2q2
†gmnk2$q2~k22q224k•p!1~p↔q!%1$pmpn@2~p•q!224~p•q!q214p0q0q

21q4

14p2q213p2q223p2q2#1~p↔q!%1~pmqn1qmpn!$~p•q!222~p•q!~p21q2!25p2q2%1$~nmpn1pmnn!

3@2kq~p2q02q2p022p•q~p02q0!!14k0~pq!p0q01q2p2q01p2q2p02~p2q01q2p0!p•q#1~p↔q!%

1nmnn4k2~pq!p0q0‡1jC
N

2
g2E dp

1

p2q2p4q4
†gmnk2$k2~p2q41q2p4!2p2q2~p41q4!%

1$pmpn@q2p2„2kq~k0p0!1~kq!22k2p2…1p2p2„22kq~k0q0!1~kq!22k2q2…1p2q2„q41p2~2kq1p2!…#

1~p↔q!%1~pmqn1qmpn!$p2q2@~k0q0!~q
22p2!2~kp!~kq!2k2q2#1p2q2q2@q22kq#1~p↔q!%

1$~nmpn1pmnn!kq@k2~q2p2p02p2q2q0!2p2q2~p2p02q2q0!#1~p↔q!%‡1jC
2 N

2
g2E dp

1

p4q4

3@$2~kq!2pmpn1~p↔q!%1~kp!~kq!~pmqn1qmpn!#. ~A4!

APPENDIX B: TEMPORAL AXIAL GAUGE

1. Pinch contribution

Note that the gauge parameterjA has a dimension mass22.
~i! The pinch contribution from the vertices of the first kind:

PP~TAG!

mn~V1!
5
N

2
g2k2dmnE dpS 21

p2p0
2 1

21

q2q0
2D 1jA

N

2
g2k2dmnE dpS 21

p0
2 1

21

q0
2 D . ~B1!

~ii ! The contribution of the vertices of the second kind:

PP~TAG!

mn~V2!
5Ng2k2dmnE dp

1

p2q2 H p2p02 1
q2

q0
22

2k•p

p0
2 2

2k•q

q0
2 J 1Ng2k2dmadnbE dp

1

p2q2p0
2q0

2 H papb@k22p0
22q0

2#

1nanbp0q0~k
212pq!1~panb1napb!F12 ~p0p

22q0q
2!2p0~q

212p•q!1q0~p
212p•q!G J

1jANg
2Fk2dmnE dpH 2k2S 1

q2p0
2 1

1

p2q0
2D 1

1

p0
2 1

1

q0
2 J 1k2dmadnbE dp

1

p0
2q0

2 H papbF2k2S 1p2 1
1

q2D G
1~panb1napb!F12 ~p02q0!1p0

q212pq

p2
2q0

p212pq

q2 G J G1jA
2Ng2k4dmadnbE dp

2papb

p0
2q0

2 . ~B2!

~iii ! The pinch contribution from the box diagrams:

PP~TAG!
mn~box!5

N

2
g2k4dmnE dp

1

p2q2 S 1p02 1
1

q0
2D 1

N

2
g2k4dmadnbE dp

papb1~panb1napb!~q02p0!22nanbp0q0
p2q2p0

2q0
2

1jA
N

2
g2k4FdmnE dpS 1

q2p0
2 1

1

p2q0
2D 1dmadnbE dpH papb

p0
2q0

2 S 1p2 1
1

q2D 1
panb1napb

p0
2q0

2 S q0q22 p0
p2D J G

1jA
2 N

2
g2k4dmadnbE dp

papb

p0
2q0

2 . ~B3!

2. Expression ofPP„TAG …
µn

The pinch contribution to the gluon self-energy in the TAG is rewritten in terms of symmetric tensorsgmn , pmpn , qmqn ,
(pmqn1qmpn), (nmpn1pmnn), (nmqn1qmnn), andnmnn :
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PP~TAG!
mn ~k!5

N

2
g2E dp

1

p2q2 FgmnH k2~k212p22q224k•p!

p0
2 1~p↔q!J 1H pmpnF232

~p•q!2

p0
2q0

2 1
2p•q

p0
2q0

2 ~q222q0
2!

2
q4

p0
2q0

2 1
p2

p0
22

q2

q0
2G1~p↔q!J 1~pmqn1qmpn!F251

~p•q!2

p0
2q0

2 2~p•q!S p21q2

p0
2q0

2 1
2

p0
2 1

2

q0
2D 1

p2q2

p0
2q0

2G
1H ~nmpn1pmnn!

1

p0
2q0

2 @2kq„2p2q01q2p022p•q~p02q0!…14k0p0q0~pq!#1~p↔q!J
1nmnn

4p0q0k
2~pq!

p0
2q0

2 G1jA
N

2
g2E dpFgmnH S 2k4

1

q2p0
2 1k2

1

p0
2D 1~p↔q!J

1H pmpnFk2S 1

p2q0
2 1

1

q2p0
2D 2

~kq!2

p0
2q0

2 S 1p2 1
1

q2D 1
2k0~kq!

p0
2q0

2 S q0q22 p0
p2D 2

3

p0
22

1

q0
2G1~p↔q!J

1~pmqn1qmpn!F S k2p021~kp!~kq!2k0p0~p
22q2!

p2p0
2q0

2 2
2

p0
2D 1~p↔q!G

1H ~nmpn1pmnn!
kq

p0
2q0

2 F2k2S p0p22 q0
q2D 2q01p0G1~p↔q!J G

1jA
2 N

2
g2E dp

1

p0
2q0

2 @$2~kq!2pmpn1~p↔q!%1~kp!~kq!~pmqn1qmpn!#. ~B4!

APPENDIX C: THERMAL ONE-LOOP INTEGRALS

We list the thermal one-loop integrals in the static limitk050 which appear in Sec. V. The expressions are in the imaginary
time formalism and thus

E dp5E d3p

~2p!3
T(

n
, ~C1!

where the summation goes overp052p inT. We only give the matter part. Because of the constraintk1p1q50 we have

E dp f~p,q!5E dp f~q,p!. ~C2!

It is understood that in the right-hand side~RHS! of the expressions below,p[upu, k[uku, andn(p)51/@exp(p/T)21#:

k2E dp
k214k•p

p2q2p0
2 5

1

4p2 E
0

`

dp pn~p!S 2
k3

p3D lnU2p1k

2p2kU, ~C3!

k2E dp
1

q2p0
2 5

1

4p2 E
0

`

dp pn~p!S 22
k2

p2D , ~C4!

k2E dp
1

p2p0
2 5

1

4p2 E
0

`

dp pn~p!S 22
k2

p2D , ~C5!

k4E dpFp22 ~k•p!2

k2 G 1

p2q2p0
2q0

2 5
1

4p2 E
0

`

dp pn~p!H k4

p4
1

k3~4p22k2!

4p5
lnU2p1k

2p2kUJ , ~C6!

k2E dpFp22 ~k•p!2

k2 G 1

p2q2p0
2 5

1

4p2 E
0

`

dp pn~p!H k2

p2
1

k~4p22k2!

4p3
lnU2p1k

2p2kUJ . ~C7!
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