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We examine the magnetic field dependence of the muonium (p+e-)-antimuonium (F-e+) con- 
version in the models which accommodate the dilepton gauge bosons. The effective Hamiltonian for 
the conversion due to dileptons turns out to be in the (V-A) x (V+A) form and as a consequence, 
the conversion probability is rather insensitive to the strength of the magnetic field. The reduction 
is less than 20% for up to B ii: 300 G and 33% even in the large B limit. 

PACS number(s): 11.30.Hv, 12.15.Ji, 12.60.Cn, 36.10.Dr 
Muonium M, which is a bound state of p+ and e-, 

can be transformed to antimuonium ti, a bound state of 
pL- and e+, if there exists a lepton-number-nonconserving 
interaction [l]. F&berg and Weinberg [z] studied the M- 
z conversion with a postulated effective Hamiltonian of 

(V-A) x (V - A) form. Later, this process was studied 
within the left-right symmetric models and the models 
with doubly charged Higgs bosom [3-71. In these models, 
the effective Hamiltonian for the conversion is expressed 
either in the (V-A) x (V-A) form or in the (V + A) x 
(V + A) form. Thus far no M-z conversion has been 
observed [S]. 

Recently, an interesting class of models which have new 
SU(2)L-doublet gauge bosons were proposed ‘as exten- 
sions of the standard model [g-12]. In these models each 

family of leptons (1+, “lr I-)r. transforms, as & triplet un- 
der the gauge group SU(3) and the total lepton number 
defined as Z = Z. + Z, + Z, is conserved, while’the sepa- 

rate lepton number for each family is not. The new gauge 
bosom (Xr,XTF) c&y lepton number Z = f2. Hence, 
hereafter, we refer to these gauge bosom as dileptom. 
The gauge group SU(3) will be, for example, an SU(3)1 
in the SU(15) grand unification theory model [IO] or an 
SU(3)r. in the SU(3)c x SU(S)& x U(l)x mod&l [12]. 

The phenomenology on dilepton gauge bosom has been 
extensively studied. When the doubly charged dilep 
ton exists, the mixing of mu&urn and antimuonium is 
possible through the diagram in Fig. 1 and thus A4-a 
conversion takes place [13-151. In particular, the effec- 
tive Hamiltonian for the mixing turns out to be in the 
(V-A) x (V+A) form. One of the present authors (K.S.) 
and Fujii and Nakamura calculated the probability’ for 
the M-W conversion in the models with dileptons and 

FIG. 1. The doubly charged dilepton exchange diagram for 
muon-antimuonium conversion. The arrows show the flow of 
lepton number. 
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examined the lower mass bound on the doubly charged 
dilepton X** in 1141 but the analysis was done in the 
cake of absence of magnetic fields. Here we consider the 
M-a conversion in static external magnetic fields and 
study the field dependence of the conversion probability. 

The muonium or antimuonium system in the presence 

of &ic external magnetic field 2 is described by the 
Hamiltonian 

‘Hi,,t = ASf $ + /mge$. 2 + d$pst~ 2’, (1) 

where 3, rn., ge- = 
-+ 

-ge+ md S,, 1111z.c g,,+ = -sp- 
are spin, mass, the gyromagnetic ratio of electron (or 
positron), and p+ (or pm), respectively, and prc is Bohr 
magneton. The first term of Eq. (1) is the sowce of the 

1s hyperfine splitting of the muonium (or antimuonium) 
system and A = 1.846 x lOms eV. Taking the magnetic 
field direction as the spin-quantization axis, we obtain 
the mu&urn energy eigenvalues as [16] 

Eri&, +l) = (A/4) + P, Eiw(l, -1) = (A/4) - P, 

Erv(l,O) = -(A/4)(1 - 2m), 

EM(O,O) = -(A/4)(1 + 2m), (2) 
with 

ge- -g,-$ sz 5.76 x IO-‘B (eV/G), 

y = &B (ge- +gp-z) a 6.30 x lO-+B(l/G). (3) 

The corresponding eigenstates are expressed in a “nat- 
ural” basis IS;S:) as 

11, +l)M = I + +)&I, IL-1)M = I --j&f, 

ILO)‘% = c I- +).w + s I + -)M, 

lO,O)M = --s I - +)A4 t c I + -)M, (4) 

where I+ -)M means IS; = $5’: = -;)M, etc., and 

~=~~t~]l’z,d=~[l-~]l’z. 

(5) 

It is noted that the (J = 1,5, = 0) state among the 
1S triplet and 1s singlet state (J = O,J, = 0), which 
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are both energy eigenstates in the absence of external 
magnetic fields, mix with each other in the presence of 

rt and they are not energy eigenstates any more. Thus 
it is understbod that energy eigenstates Il,O) and 10,O) 

are the states which approach the (J = 1, J, = 0) and 
(J = 0, J, = 0) states, respectively, when the magnetic 

field 2 vanishes. However, (J = l,J, = fl) states 
among 1S triplet remain as energy eigenstates even in the 

presence of 2. Energy eigenvalues and the correspond- 
ing eigenstates for the antimuonium system in the pres- 

ence of an external magnetic field rf are obtained from 
Eqs. (2) and (4) by interchanging M tt w, P tt -P, 
y ff -y, and c +t s. 

Now we consider the M-B conversion in the presence 
of static external magnetic fields. First we write down a 
useful formula for the M-a conversion which was derived 
by F&berg and Weinberg a long time ago [2]. If there 

exists an interaction 31,~ which would yield a matrix 

element for conversion of M into z equal to 

@%%mlW = A/2, (‘3) 

the mass matrix for the M-z system is written as 

(7) 

Then the probability for a muonium atomf the state 

IM) to decay as antimuonium of the state IM) at all is 

A2 
P(M) = 2[X2 + (EM - E# + AZ]’ (8) 

where X = Ggmi/192n3 is the muon decay rate and GF 
is Fermi constant. 

The magnetic field dependence of the M-ii? conversion 
has been studied in the case when the effective Hamilto- 
nian for M-z transition is written in the (V-A) x (V - 
A) form or (V + A) x (V + A) form 116,171: 

ti,% = +W(l F 7skGTi^lx(1 ‘F 75)elf H.c. (9) 

The effective Hamiltonian in this form arises in the left- 
right symmetric models and the models with doubly 
charged Higgs bosons (3-71. In Refs. [16,17] the prob- 
abilities of a muonium in the ]l,*l), I&O), and lO,O) 
states to decay as antimuonium were given as 

P($$‘(xq = 62/2[X2 + 4P2 + 621 (10) 

for the ]I, +l) and 11, -1) states, and 

P;;$yw) = P(y$)(M) = P/2[(1 + yZ)/v + P] (11) 

for the Il,O) and ]O,O) states, where 

6 = 16GM&/?L3, (12) 

and a is the Bohr radius of the muonium (rn&-l with 
rn;1 = ??&;’ +m;‘. Thus the assumption that each state 

is produced with equal weight at the beginning gives 

62 
%3”) = 4p* + 4p2 + 621 + 

62 

4[(1 + yyv + SZ]’ 

(13) 
for the “total” probability of a muonium to decay as an- 
timuonium. 

The magnetic field dependences of P[&,(%), 

$Jg’cm> ~q$,)( L ‘A’) ?i? and ~P(“‘o’ ?k?) are shown in 
4 FFTF)( 

Fig. 2 (dashed line& where the probabilities are nor- 
malized by P&(M)IB=o and G,m is taken to be 

O.lGp. The probability P::;j”(z) becomes negligibly 

small when B is in the order of 10-l G [Fig. 2(b)], since 

the presence of static external magnetic fields breaks the 
degeneracy between the Il,+l),,, and Il,+l)w states 
(II,-1)~ and II,-1)~) and the generated energy dif- 
ference severely suppresses the conversion. On the other 
hand, the ll,O)~ and Il,O)Mstates (]O,OjM and 10,O)z) 

remain degenerate and thus the conversion persists up to 
the fields in the order of lo3 G. In the limit of large B, the 
ll,O)~ state becomes a pure ] - +)M while the II,O)lii 
state becomes a pure I + -)v, and thus the matrix ele- 

ment &,0131,~ll,O)~ vanishes. Hence the probabil- 

ity P$‘!‘,(a) reduces to 0 in this limit [Fig. 2(c)]. By the 

same reasoning, P{:$))(%) vanishes in the large B limit 

[Fig. 2(d)]. Finally we see f&n Fig. 2(a) that in the case 

of the effective Hamiltonian being in the (V-A) x (V-A) 
form or (V + A) x (V + A) form and G,, = 0.1G~, the 

M-z conversion probability is reduced to 50% at a field 
strength as low as 0.26 G, to 35.8% at B = 1 kG, and 
to 1.2% at B = 1 T. The dependence of the normalized 
probabilities on the coupling strength G,, is negligibly 
small for GM, < 1Gp. 

Next we consider the M-2 conversion in models with 
dileptons. The gauge interaction of dileptons with lep- 
tons is given by [18] 

Liat = -2”; -x,++1TC7ysl - g”lx;-~7”75c~~ 
hf5 

+2JZ p 
~x+Pcyql-^15)v~ 

+2Jz I” 
*x-vr^ly1- 7$?, (14) 

where 1 = e, p, 7, and C is the charge-conjugation matrix. 
The gauge coupling constant g3, is given approximately 
by 931 = 1.19e for the SU(15) grand unified theory (GUT) 
model [lo] and by ~31 = 92 = 2.07e for the Sum x 
U(l)x model [12], where e and g2 are the electric charge 
and the sum gauge coupling constant, respectively. It 
is noted that the vector currents that couple to doubly 

charged dileptons X** vanish due to Fermi statistics. 
Through the doubly charged-dilepton-exchange diagram 
illustrated in Fig. 1, we obtain the following effective 
Hamiltonian for the M-a conversion: 

Gd’- 
31’j&, = *[P7~(1- 7+l[TirX(1 +7&j + Kc., 

(15) 
where Gdim/fi = -gi,/(SM&) and MX++ is the 
doubly cf&ged dilepton mass. This form is obtained 
from Eq.(14) and with help of the Fierz transformation. 
It should be noted that the above effective Hamiltonian 
is in the (V-A) x (V+A) form. The most stringent lower 
mass bound for the doubly charged dileptons at present 
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FIG. 2. The magnetic field dependence of the M-2 con- 
version probabilities in models with dileptons (solid lines) and 
in models with an effective (VrA) x (VrA) type-Hamiltonian 

(dashed lines): (a) P;;‘(=) and P&,(%); (b) ;P::“)(%) 

and 3P&$(z); (c) $P$“‘(icI) and $P$‘$(%?); (d) 

fP~“sO)(~) and fP$‘:))(m). The probabilities are normal- 

ized by P&‘(li;i))l~,o or P$)(fi?)l~=o, and GGz = 0.1G~ 
and GMMB = 0.1G.w are assumed. In the large B 
limit, the normalized probabilities P$‘:pt(ii;i), $Pi:“‘(a), and 

fPp)(xT) p a preach the values 0.67, 0.33, and 0.33, respec- 

tively. 
&7(+ + Iq,& + +)M = m(- - IX$,l - -)‘l.f = ;, 

yq(+ - 1X$,&l +-)&I = w(- + I”$iiil -+)&I = -;, 

m(+ - Iq& - +).w = w(- + 17tgz;i-I + -)M = 8, 

other elements = 0, (16) 

Since 31$= is in the (V - A) x (V + A) form, 

the matrix elements ~i;(+ + 131’&] + +)M and 

x(+ - I”$+ + -)M take different values, and 

m(+ - IX’&;il- +)M and =(- + IX$,] + -)M do not 
vanish. 

for the ll,O)~ state, and finally 

(2 + l/&QyP pp’(W) = 
(21) 2[X2 + (2 + l/~)@l 

for the IO, 0)~ state. 
As before we assume that each state is produced with 

equal weight at the beginning, and we obtain 

is (M,y++/gsl) > 340 GeV (95% C.L.) [18]. This gives 
Gd+ < 0.13Gp. 

Ith this effective Hamiltonian, we find that the ma- 

trix elements for conversion of M into ?@ are given in a 
“natural” basis IS;.!?:) as 

where 

8 = -8G~&hra3. (17) 

In terms of the “energy eigenstates,” the matrix ele- 
ments for M-z conversion are written as 

m(l, *11x;&, fl)M = s/2, 

~(l,olx~mll,o)M = (I- 2&) 8, 

~(0,0131$m10,0)~=- (1+2&)d. (18) 

It is interesting to note that neither ~(1,0~3t’&;ill,O)~ 

nor ~(0, O~X’&~O,O)M vanishes in the large B (i.e., 
large y) limit. 

Again using the formula (S), we obtain the following 
probabilities of a muonium to decay as antimuonium in 
the models with dileptons: 

Pp*‘)(xq = 82/2[XZ + 4PZ + $21 

for the 11, kl).+, states, 

P-9 
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P;pt(z) = 
82 

4[X2 + 4P2 + 821 

(2 - l/m)@ 

+qx2 + (2 - l/~)@] 

+8[P 

(2 + l/J1?-;)@ 

+ (2 + l/m)“@1 (22) 

for the “total” probability of a muonium to decay as an-, 
timuonium. In the limit of B = 0, we have 

which is the result first obtained in Ref. [14]. 
In Fig. 2 we plot in solid lines the magnetic field 

dependence of P;Pt(%?), +P$“‘(i!?), +P~;“‘(w), and 

aPi?‘( They are all normalized by Pip”(?i?)l~=,, 

and we take Gzw = 0.1G~. As in the case of 

P::;:“(%), the probability P$‘*“(?%) becomes negli- 

gibly small when B reaches the order of 10-l G since 
the magnetic field breaks the degeneracy of the 11, +I)M 

and 11, fl)~ states [Fig. 2(b)]. However, the B de- 

pendences of Pb;“’ and PJo’o’(m) are quite differ- 

ent from those of PC& ) (“‘) 2 and P[$$ (?@) Figs. 2(c) 

and 2(d)]. First, up to B z 1 kG, the M-a con- 
version through the channel 10,O)~ --t lO,O)m is much 

prefered; therefore, Pjy’(?i?) gives a dominant contri- 

bution to P&‘*(z). Second, Pi:“)(?i?) and Pio,o)(?$) 
remain finite and reach the same value in the large B 
limit. This is due to the fact that the matrix elements 
 

w(l, 01X$&, O),,, and iiTj(O, O/XdiiiilO, 0)~ do not van- 
ish and become equal in magnitu 2. e m the large B limit 

when the effective Hamiltonian is in the (V-A) x (V+A) 
form. We see from Figs. 2(c) and 2(d) that the normal- 

ized probability aP~l”‘(~)/P~pt(~)I,=, starts to in- 

crease around B = 1 kG while $Pjo’O’(~)/P&‘t(?i?)IB=O 
starts to decrease and that both approach the value 0.33 
in the large B limit. We find that Pirt(?i?) is rather 
insensitive to the static external magnetic field. In fact 

Fig. 2(a) shows that Pip”(?i?) is lowered to 83% in the 

region 0.2 G< B < 300 G and only to 67% in the large 
B limit. At B = 1 kG (1 T) the reduction is 21.4% 
(32.9%). Again the dependence of the normalized proba- 
bilities on the coupling strength Ggm is negligibly small 

for G’& < 1Gp. 
In conclusion, we have studied the magnetic field de- 

pendence of the M-a conversion in the models with 
dileptons. We have found that the conversion is rather 
insensitive to the strength of the magnetic fields. If 
an experiment is performed in a magnetic field of1 T 
and if a bound for the conversion probability P(M) < 
IO-” is gained [17], then a bound for the coupling 
strength G,z < 1.8 x 10-‘G~ is obtained for the usual 
(VFA) x (VrA)-type Hamiltonian. On the other hand, 

the models with dileptons give a more stringent bound 
Gd’- < 2 8 x 10-3G~. MM . 
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