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Two-loop electroweak corrections to ther parameter beyond the leading approximation
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We show that in the framework of the pinch technique the universal part of ther parameter can be
meaningfully defined, beyond one loop. The universal part so obtained satisfies the crucial requirements of
gauge independence, finiteness, and process independence, even when subleading contributions of the top
quark are included. The mechanism which enforces the aforementioned properties is explained in detail, and
several subtle field theoretical issues are discussed. Explicit calculations of the subleading two-loop corrections
of orderO(Gm

2mt
2MZ

2) are carried out in the context of an SU~2! model, withMW5MZ , and various inter-
mediate and final results are reported.

PACS number~s!: 12.15.Lk, 11.10.Gh, 12.15.Ji
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I. INTRODUCTION

One of the most important quantities of the standa
model~SM! is ther parameter@1#, defined as the ratio of the
relative strength between neutral and charged current in
actions, at low momentum transfer: namely,

r5
GNC~0!

GCC~0!
5

1

12Dr
. ~1.1!

The r parameter displays a strong dependence onmt and
affects most electroweak parameters such asDr , MW , and
sin2ueff(MZ). Ther parameter defined above as the ratio
two amplitudes is a gauge-independent and finite quantity.
addition, it is manifestly process dependent, and its val
depends on the quantum numbers of the external partic
chosen. To fully determine the value ofr for a given neutral
and charged process, one must compute the complete se
Feynman diagrams~self-energy, vertex, and box graphs! to a
given order in perturbation theory. However, traditionall
one focuses instead on the quantityD, defined as

D5
AW~0!

MW
2 2

AZ~0!1~2s/c!AgZ~0!

MZ
2 , ~1.2!

whereAW , AZ , and AgZ are the cofactors ofgmn in the
WW, ZZ, and gZ self-energies, respectively, and
s2512c25sin2uW. The parameterD is often called the
‘‘universal’’ part of r, by definition, it does not depend on
the details of the process. According to the standard lore,D
contains the dominant contribution tor.

In this paper we address theoretical issues related to
definition and calculation of the universal part of ther pa-
rameter. Several of the ingredients of the subsequent anal
are known, but they exist in a fragmented fashion and th
relevance in the context ofr-parameter calculations has no
been fully recognized. The purpose of the present work is
provide a unified view of all relevant facts, incorporatin
them into a coherent framework.
536-2821/96/53~7!/3942~20!/$10.00
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The leadingmt contributions toD, both from one- and
two-loop diagrams, are gauge independent and ultraviolet fi
nite. However, as soon as the subleading contributions a
considered,D becomes gauge dependent and ultraviolet di
vergent. More specifically, the leading one-loopmt contribu-
tions toD ~of orderGmmt

2) are manifestly gauge indepen-
dent, since the gauge-fixing parameter does not appear insi
fermion loops, and ultraviolet~UV! finite. On the other hand,
as was explicitly shown by Degrassi, Kniehl, and Sirlin@2#,
the one-loop bosonic contributions toD ~subleading inmt

2 ,
of orderg2mt

0) aregauge dependentand, except when for-
mulated within a restricted class of gauges, UV divergent@3#.
Similarly, the leading two-loop contributions toD @4–6# ~of
orderGm

2mt
4) are also gauge independent and UV finite, ex-

actly as their one-loop counterparts. On the other hand,
straightforward calculation of the subleading two-loopmt
contributions~of orderGm

2mt
2MZ

2) to D, carried out in the
renormalizable Feynman gauge (jW5jZ51), gives rise to
an answer which is ultraviolet divergent, in the sense tha
1/e terms survive@7,8#. In addition, as stated in@7#, the result
for D is gauge dependent, in the context of theRj gauges.
The reason for this rather striking analogy between the one
and two-loop analysis is the fact that, as soon as the sublea
ing contributions~of ordermt

0 at one loop and of ordermt
2 at

two loops! are considered, Feynman graphs containing th
W andZ gauge bosons must be included. It is the inclusion
of such graphs which, when carried out without a concrete
guiding principle, gives rise to the aforementioned patholo
gies.

In order to understand the origin of the problems associ
ated with the subleading contributions, one has to first estab
lish the mechanism which enforces the good behavior of th
leading contributions, in particular their UV finiteness. If we
denote the leading contributions~both at one and two loops!
to theWW andZZ self-energies by@PW

mn# ( l ) and @PZ
mn# ( l ),

respectively~the superscriptl stands for ‘‘leading’’! and use
the fact thatAgZ

( l ) (0)50, we can write, forD ( l ),

D~ l !5
AW

~ l !~0!

MW
2 2

AZ
~ l !~0!

MZ
2 . ~1.3!
3942 © 1996 The American Physical Society
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It is elementary to show~see Sec. III! that D ( l ) is finite as
long as the following relation holds:

1

ZW
~ l ! 5

1

ZZ
~ l ! 2S dc2

c2 D ~ l !

, ~1.4!

whereZW andZZ are the wave-function renormalization con
stants of theW andZ fields, respectively, and

S dc2

c2 D ~ l !

5
Re@AW

~ l !~MW
2 !#

MW
2 2

Re@AZ
~ l !~MZ

2!#

MZ
2 . ~1.5!

Equation~1.4! is indeed true for the leading contribution
due to a set of QED-like Ward identities relating the vert
fermion wave-function renormalization constants~the QED
analogue ofZ15Z2). An equivalent way for establishing th
finiteness of the leading contributions is to resort to the W
identities

qmqn@PW
mn#~ l !5MW

2 Pf
~ l ! ,

~1.6!
qmqn@PZ

mn#~ l !5MZ
2Px

~ l ! ,

wherePf andPx are theff andxx self-energies, respec
tively, with f(x) the charged~neutral! would-be Goldstone
boson. Writing the general self-energy in the form

Pmn~q2!5A~q2!gmn1B~q2!
qmqn

q2
~1.7!

and using the algebraic identity

A~0!5F d

dq2
$qmqnPmn~q2!%G U

q250

, ~1.8!

together with the Ward identities of Eq.~1.6! and the fact that
AgZ
( l ) (0)50, we can write, forD ( l ),

D~ l !5
AW

~ l !~0!

MW
2 2

AZ
~ l !~0!

MZ
2 5F d

dq2
$Pf

~ l !2Px
~ l !%G U

q250

. ~1.9!

The final ingredient which enforces the finiteness of the
sult for the leading Dr contributions is the equality
Zf
( l )5Zx

( l ) , whereZf
( l ) andZx

( l ) are the wave-function renor
malization constants ofPf

( l ) andPx
( l ) , respectively~see Sec.

III !. However, none of the above conditions are valid an
more, when one calculates the subleading parts of theW and
Z self-energies in the framework of theRj gauges. Conse-
quently, since the mechanism enforcing the finiteness d
not operate any more, the resulting expressions do not h
to be UV finite, and, indeed, they are not.

The standard way to circumvent the above problems is
readily abandon the notion of a ‘‘universal’’ part ofDr by
stating that, instead of onlyD, the entire process must now
be considered in order to restore the finiteness and ga
independence of the final answer. So one has to introd
vertex and box corrections, which render the result gau
independent and finite at the expense of making itprocess
dependentand, therefore, nonuniversal.

This unpleasant trade-off between gauge independe
and process independence can be avoided, however@2#, if
one
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defines the universal part ofr within the framework of the
pinch technique~PT! @9–15#. As shown in Ref.@2#, the PT at
one loop gives rise to a gauge-independent and UV-finite
answerwithout introducing any process dependence. This is
so because all PT self-energies are individually gauge inde
pendent, and in addition, all conditions which enforce the
finiteness are valid forboth leading and subleading contribu-
tions. Evidently, the PT restores the mechanism for the can
cellation of the UV divergences and at the same time guar
antees the gauge and process independence of the fin
answer.

In this paper we propose to elevate theD defined in terms
of the PT self-energies as the truly universal part ofDr,
beyond one loop, in the spirit originally suggested in Ref.
@2#. This new quantity, which we denote byD̂, is endowed
with three crucial properties:~i! D̂ is independent of the
gauge-fixing procedure and the gauge-fixing parameter,~ii !
D̂ is ultraviolet finite, and~iii ! D̂ is process independent.

In addition to the above obvious theoretical advantages
the calculation ofD̂ is significantly facilitated by the fact that
only self-energy-like graphs need be considered. In particu
lar, no vertex or box diagrams need be calculated in order t
render the answer finite, as is the case in the convention
treatment@16#. ThereforeD̂ lends itself as the natural gener-
alization of the conventionalD, which can consistently ac-
commodateboth leading and subleading contributions and
can be expressed in a closed analytic form up to two loops

In Ref. @7# the nature of the two-loop subleading contri-
butions, as well as their numerical importance for thecon-
ventionallydefinedD, was studied in the context of an SU~2!
model, withMW5MZ5M and no photon. In Ref.@8# the
previous analysis was extended to the full standard mode
the two answers turned out to be numerically rather close
Since we are mainly interested in addressing the conceptu
issues involved, in this paper we also restrict ourselves to th
study of this simplified version of the standard model. Of
course, we have noa priori knowledge if theD̂ of the SU~2!
and D̂ of the full standard model will be numerically close,
as was the case between the results of Refs.@7,8#.

The paper is organized as follows. In Sec. II we briefly
review the PT, mainly as it applies in the present context. In
Sec. III we define the universal quantityD̂ and discuss some
of its properties. In Sec. IV we calculate the subleading top
quark contributions toD̂ in the framework of the SU~2!
model. This section is rather technical and contains severa
intermediate results. Finally, we present our conclusions in
Sec. V. In addition, we present two appendixes concernin
scalar two-loop integrals at zero momentum transfer and th
Feynman rules we have used.

II. PINCH TECHNIQUE

A. Gauge-invariant effective self-energies

The simplest example that demonstrates how the PT
works is the gluon two-point function@10#. Consider the
S-matrix element T for the elastic scattering such as
q1q̄2→q1q̄2 , whereq1 ,q2 are two on-shell test quarks with
massesm1 andm2 . To any order in perturbation theory,T is
independent of the gauge-fixing parameterj. On the other
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hand, as an explicit calculation shows, the conventiona
defined proper self-energy depends onj defined through the
tree-level gluon propagator

Dmn~k,j!5
2 i

k2 Fgmn2~12j!
kmkn

k2 G . ~2.1!

At the one-loop level, this dependence is canceled by con
butions from other graphs, which, at first glance, do not se
to be propagatorlike. That this cancellation must occur a
can be employed to define a gauge-invariant~GI! self-energy
is evident from the decomposition

T~s,t,m1 ,m2!5T0~ t,j!1T1~ t,m1 ,j!1T2~ t,m2 ,j!

1T3~s,t,m1 ,m2 ,j!, ~2.2!

where the functionT0(t,j) depends kinematically only on
the Mandelstam variablet52( p̂12p1)

252q2, and not on
s5(p11p2)

2 or on the external masses. Typically, se
energy, vertex, and box diagrams contribute toT0 , T1 , T2 ,
andT3 , respectively. Such contributions arej dependent, in
general. However, as the sumT(s,t,m1 ,m2) is GI, it is easy
to show that Eq.~2.2! can be recast in the form

T~s,t,m1 ,m2!5T̂0~ t !1T̂1~ t,m1!1T̂2~ t,m2!

1T̂3~s,t,m1 ,m2!, ~2.3!

where theT̂i ( i50,1,2,3) areindividually j independent. The
propagatorlike parts of vertex and box graphs which enfo
the gauge independence ofT0(t) are called pinch parts. They
emerge every time a gluon propagator or an elemen
three-gluon vertex contributes a longitudinalkm to the origi-
nal graph’s numerator. The action of such a term is to trig
an elementary Ward identity of the form
k”5(p”1k”2m)2(p”2m) when it gets contracted with ag
matrix. The first term removes~pinches out! the internal
fermion propagator, whereas the second vanishes on s
From the GI functionsT̂i ( i51,2,3) one may now extract a
GI effective gluon (G) self-energyP̂mn(q), GI Gqiq̄i verti-
cesĜm

( i ) , and a GI boxB̂, in the following way:

T̂05g2ū1g
mu1F S 1q2D P̂mn~q!S 1q2D G ū2gnu2 ,

T̂15g2ū1Ĝn
~1!u1S 1q2D ū2gnu2 ,

T̂25g2ū1g
nu1S 1q2D ū2Ĝn

~2!u2 , ~2.4!

T̂35B̂,

whereui are the external spinors andg is the gauge cou-
pling.

The one-loop expression forP̂mn(q), calculated in the
Feynman gaugej51, is given by@10#

P̂mn~q!5Pmn
~j51!~q!1tmnPP~q!, ~2.5!
lly

tri-
em
nd

f-
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where tmn52gmn1qmqn/q2, lmn5qmqn/q2 are the usual
transverse and longitudinal projectors and

PP~q!52icag
2q2E

D

1

k2~k1q!2
, ~2.6!

where

E
D

[m42DE dDk

~2p!D

is the dimensionally regularized loop integral,D is the di-
mensionality of space-time, andca is the quadratic Casimir
operator for the adjoint representation@for SU(N), ca5N#.
After integration and renormalization we find

PP~q!52caS g2

16p2Dq2lnS 2q2

m2 D . ~2.7!

Adding this to the Feynman-gauge proper self-energy,

Pmn
~j51!~q!5F53 caS g2

16p2Dq2lnS 2q2

m2 D G tmn , ~2.8!

we obtain, forPmn(q),

P̂mn~q!5bg2tmnq
2lnS 2q2

m2 D , ~2.9!

where

b5
1

16p2

11ca
3

is the coefficient of2g3 in the usualb function of QCD
without fermions. This procedure can be extended to an ar-
bitrary n-point function; of particular physical interest are
the GI three- and four-point functionsĜmna @17,18# and
Ĝmnab @19#. Finally, the generalization of the PT to the case
of nonconserved external currents is technically more in-
volved, but conceptually straightforward@20,21#.

B. Current algebra formulation of the pinch technique

An important alternative formulation of the PT in the con-
text of the SM has been introduced by Degrassi and Sirlin
@12#. In this approach the interaction of gauge bosons with
external fermions is expressed in terms of current correlation
functions, i.e., matrix elements of Fourier transforms of
time-ordered products of current operators@22#. This is par-
ticularly economical because these amplitudes automatically
include several closely related Feynman diagrams. When one
of the current operators is contracted with its four-
momentum~i.e., the four-momentum absorbed by the cur-
rent!, a Ward identity is triggered. The pinch part is then
identified with the contributions involving equal-time com-
mutators in the Ward identities and therefore involve ampli-
tudes in which the number of current operators has been
decreased by one or more. As emphasized in Ref.@12#, this
procedure has an important advantage when one consider
external particles endowed with strong interactions. Because
the contributions from the equal-time commutators are not
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affected by the dynamics of the strong interactions, the afo
mentioned identification ensures the universality of t
‘‘pinch parts.’’ That is, the cofactors of the current operato
in the pinch parts are the same whether the external parti
are leptons or strongly interacting fermions.

To illustrate the method with an example, consider t
non-Abelian partiU z

l(W) of the one-loopZc̄c vertex; it
corresponds to the Feynman diagram with an incomingZ,
splitting into twoW bosons, which then couple to the incom
ing and outgoing massless fermions.

The functioniU z
l(W) can be written as

iU z
l~W!5

ig3c

2 E dDk

~2p!D
Dar
W ~k!Dsb

W ~k1q!@grs~2k1q!l

2gls~2q1k!r2grl~k2q!s#

3E dDxeikx^ f uT* @JW
a†~x!JW

b ~0!#u i &, ~2.10!

where

iD i
mn~k,j i !5

2 i

k22Mi
2 Fgmn2~12j i !

kmkn

k22j iM i
2G , ~2.11!

with i5W,Z,g andMg50, are the propagators of the gaug
bosons in a generalRj gauge. An appropriate momentum
say,ka , from the three-gauge-boson vertex or the longitu
nal part of the propagator can be transformed into a deri
tive d/dxa acting on theT* product. Invoking current con-
servation, this leads to an equal-time commutator of curr
operators. Thus such contributions are proportional to
matrix element of a single current operator, name
^ f uJ3

lu i &; these are precisely the pinch parts. Callin
iU z

l(W)P the total pinch contribution from Eq.~2.10!, we
find, in thej i51 gauge,

Uz
l~W!P5 ig3c^ f uJ3

lu i &E 1

~k22MW
2 !@~k1q!22MW

2 #
.

~2.12!

Clearly, the integral in Eq.~2.12! is the generalization of the
QCD expression~2.6! to the massive gauge boson case.

C. Ward identities of the PT

Another important fact is that the PT Green’s function
satisfytree-levelWard identities~WI’s!. Most noticeably, the
GI QCD vertexGqiq̄i satisfies the Ward identity

qmĜm5Ŝ~p1q!2Ŝ~p!, ~2.13!

where Ŝ(p) is the GI quark self-energy@23#. The above
QED-like Ward identity, which is not true for the conven
tional Gm

( i ) , enforces the equalityẐ15Ẑ2 between the vertex
renormalization constantẐ1 and the quark wave-function
renormalization constantẐ2 . Consequently, exactly as hap
pens in QED, the PT vacuum polarization contains the en
running of the QCD coupling, as shown already by the e
plicit result of Eq.~2.9! @10,24#.

The above QCD results have been generalized for
electroweak part of the standard model, where it was fou
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that the one-loop PT Green’s functions satisfy again tree
level Ward identities @18,21,25#. Therefore, the wave-
function renormalizations for the PTgg and WW self-
energies contain the running of the gauge couplingse2(q2)
and g2(q2), respectively @12,13#. Denoting by P̂mn the
gauge boson PT self-energies (P̂mn

W or P̂mn
Z ), by Q̂m the

mixed PT self-energy of a gauge boson and its associate

unphysical scalar (P̂m
W2f1

[P̂m
152P̂m

2 or P̂m
Zx), and byV

the PT self-energies of the unphysical scalars (P̂f or P̂x),
the following WI’s hold @26#:

qmP̂mn2 iM Q̂n50,

qmQ̂m1 iM V̂50, ~2.14!

qmqnP̂mn2M2V̂50.

Additional WI’s between other PT Green’s functions can be
found in the literature. As was explained in detail in@21#, the
PT Ward identities are instrumental for the final cancellation
of gauge dependencies inS-matrix elements.

Imposing the elementary requirement that the renormal
ized PT Green’s functions should respect the same War
identities as their unrenormalized counterparts, we obtain th
following relationships between the standard model renor
malization constants:

ẐW5Ẑg
22 , ~2.15!

ẐZ
215ẐW

211
d ĉ2

ĉ2
, ~2.16!

and

ẐH5Ẑx5Ẑf5ẐW1
dM̂W

2

M̂W
2 , ~2.17!

with

d ĉ2

ĉ2
5

dM̂W
2

M̂W
2 2

dM̂Z
2

M̂Z
2 . ~2.18!

In the simplified SU~2! model that we will use later, we have

ẐZ5ẐW5Ẑg
22 ~2.19!

and

ẐH5Ẑx5Ẑf5Ẑg
221

dM̂2

M̂2 . ~2.20!

As usual, gauge boson self-energies are cast in the form

P̂mn~q!5gmnÂ~q2!1
qmqn

q2
B̂~q2! ~2.21!

and the renormalization constants are defined from the ex
pansion
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Â~q2!5Â~M2!1~q22M2!
dÂ~q2!

dq2
U
q25M2

1Â~q2!finite

~2.22!

as

dM̂25Re@Â~M2!#, Ẑ21512
dÂ~q2!

dq2
U
q25M2

.

~2.23!

III. UNIVERSAL D̂

In this section we focus on the universal part ofr defined
by the PT. In particular, we will emphasize issues of gau
independence and finiteness.

Traditionally, the universal partD is defined as in Eq.
~1.2!. D vanishes in the limit of exact SU~2!V custodial sym-
metry, e.g., forMW5MZ ~no hypercharge! and for degener-
ate fermion doubletsmu5md @27#.

The fermionic one-loop contribution is given by@1#

D f
~1!5Nc

Gm

8A2p2 Fmu
21md

21
2mu

2md
2

mu
22md

2 ln
md
2

mu
2G . ~3.1!

Clearly,D f
(1)→0 asmu→md . When the mass splitting in the

fermion doublet is large, as in the case of the top and bott
quarks, the factor in square brackets in Eq.~3.1! is replaced
bymt

2 , the heavy fermion mass. By neglecting the contrib
tion of all light fermions, the one-loop fermionic contributio
is written as

D f
~1!5Ncxt , ~3.2!

where

xt5
Gmmt

2

8A2p2
5

g2

16p2

mt
2

4MW
2 . ~3.3!

If one attempts to use the definition of Eq.~1.2! to include
bosonic one-loop corrections, one is faced with two pro
lems:~a! The result isj dependent; ~b! unless computed in a
special class of gauges, it is ultraviolet divergent.

In particular, regarding the first point, the dependence
the gauge-fixing parameter enters through the tree-le
propagators for theW, theZ, and the photon, which, in the
Rj gauges, are given by Eq.~2.11!. In addition, the tree-level
propagators of the unphysical Goldstone bosons are given

iDs~q,j i !5
i

q22j iM i
2 , ~3.4!

with (s,i )5(f,W) or (x,Z), and they also explicitly depend
on j i . The conventional one-loop self-energies depend
plicitly on the gauge-fixing parameters, even atq250.

Regarding point~b!, unless the relation

jW5jgsin
2uW1jZcos

2uW ~3.5!

between the gauge-fixing parametersj i is satisfied, the re-
sulting expression forD contains a term proportional to
1/e.
ge

om

u-
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The problems mentioned above persist when one co
putes the two-loop contributions toD. Again, as happens in
the one-loop case, the leading contributions are both gau
independent and finite. As soon as the subleading contrib
tions are taken into account, the pathologies familiar fro
the one loop reappear: The results are again gauge depen
and, even when computed in the Feynman gaug
jW5jZ5jg51, which obviously satisfies the one-loop con
dition of Eq. ~3.5!, are ultraviolet divergent. Evidently, Eq.
~3.5! breaks down beyond one loop.

Before we proceed to the study ofD defined via the PT, it
is worthwhile to further elaborate on the gauge independen
of the leading two-loop contributions to the conventionalD
mentioned above. There is a simple way to understand
gauge independence from the point of view of the PT; sim
ply, the S matrix is gauge independent, and there are n
vertex or box contributions proportional tomt

4 which could
cancel any possible gauge dependences coming from
self-energy graphs. Therefore the conventional answer co
cides with the PT answer and is gauge independent. Con
quently, one is allowed to choose any convenient gauge
calculating these leading self-energy contributions. There
however, a subtle point which is worth clarifying. In particu
lar, if one chooses to work in the Feynman gauge (j51),
only graphs with scalars and fermions contribute to this o
der. This is not generally true, however, for an arbitrary valu
of the gauge-fixing parameterj. The graphs of Fig. 6 below,
for example, which do not contain leading contributions i
the Feynman gauge, will give rise to leadingmt

4 contribu-
tions in any other gauge-fixing choice, as a result of th
longitudinal parts of the gauge boson propagators. Su
terms arise by virtue of the elementary Ward identity

kmgmPL[k”PL5Si
21~p1k!PL2PRSj

21~p!1miPL2mjPR ,
~3.6!

wherePR,L5(16g5)/2, triggered by the longitudinal term
kmkn of the gauge boson propagator. It is this Ward identit
which when applied for bothkm andkn, gives rise to an extra
power ofmt

2 , thus converting pieces of a diagram, which i
subleading in the Feynman gauge, into leading in some ot
gauge. Obviously, the characterization ofindividual Feyn-
man graphs as ‘‘leading’’ and ‘‘subleading’’ is agauge-
dependentstatement. Therefore, in a general gauge, all di
grams must be considered and their leading contributio
extracted. It is only after all such contributions have bee
collected and added up that the correctj-independent answer
emerges; clearly, it will be identical to the one obtained
the Feynman gauge. It is instructive to briefly highlight th
mechanism enforcing the cancellations of the gauge dep
dences. To that end we can employ the elementary algeb
identity

1

q22jM2 5
1

q22M2 1
~12j!M2

~q22M2!~q22jM2!
~3.7!

in the graphs containing scalars and fermions. The first te
on the right-hand side~RHS! of Eq. ~3.7! is the Feynman
gauge scalar propagator, whereas the second term resem
the longitudinal part of the corresponding gauge bos
propagator. The final cancellation proceeds after employi



-

-

f
d

r
n

in

53 3947TWO-LOOP ELECTROWEAK CORRECTIONS TO THEr . . .
the elementary Ward identity of Eq.~3.6!. Finally, it is inter-
esting to observe that in the Feynman gauge the set of gra
which contains the GI leading answer coincidestopologi-
cally with the graphs one would consider in the gaugele
limit, e.g.,g5g850, whereg andg8 are the gauge-coupling
constants for the SU~2! and U~1! gauge groups, respectively
There is, however, a significant difference: In the gaugele
limit the Goldstone boson propagators used to evaluate th
graphs are massless~remember thatM5 1

2g^f&, and there-
fore M→0 asg→0); on the other hand, in the full theory
the Goldstone boson propagators are in general mass
(@k22jM2#21 in general, @k22M2#21 in the Feynman
gauge!. Therefore, the gauge-invariant answer of the fu
theory and the gauge-invariant answer of the gaugel
theory @28# do not coincide; they only become equal if one
takes the limitM→0 in the final gauge-invariant answer o
the full theory.

After this digression we return to the case of the sublea
ing contributions. If instead of the conventional definitio
one definesD in terms of the effectiveWW andZZ propa-
gators obtained via the PT, all problems associated with
gauge independence and finiteness of the subleading p
are automatically solved. We denoteD̂ the universal part of
Dr defined via the PT as

D̂5
ÂW~0!

MW
2 2

ÂZ~0!

MZ
2 . ~3.8!

It is important to notice the absence of thegZ mixing term in
the above definition; this is so because in the PT thegZ
self-energy vanishes atq250, e.g.,P̂mn

gZ(0)50. The PT self-
energies are individually independent of the gauge-fixing p
rameters, and when combined according to Eq.~3.8!, they
give a UV-finite answer.

Although the gauge invariance of the result in the conte
of the PT is guaranteed by construction, its finiteness may
less obvious. There are two equivalent ways of understa
ing why the PT definition gives rise to a finite expressio
both relying on the Ward identities presented in Sec. II. Wr
ing theWW andZZ self-energies in the form

ÂW~q2!5ÂW~MW
2 !1~q22MW

2 !@12ẐW
21#1ÂW

f ~q2! ~3.9!

and

ÂZ~q
2!5ÂZ~MZ

2!1~q22MZ
2!@12ẐZ

21#1ÂZ
f ~q2!,

~3.10!

Eq. ~3.8! yields

D̂5D̂udiv1
ÂW
f ~0!

MW
2 2

ÂZ
f ~0!

MZ
2 . ~3.11!

D̂udiv , which contains the terms proportional to 1/e ~and pos-
sibly finite pieces, which we neglect at this point!, is given
by

D̂udiv5F ÂW~MW
2 !

MW
2 2

ÂZ~MZ
2!

MZ
2 G1~ ẐW

212ẐZ
21!50, ~3.12!
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where in the last step we used Eq.~2.16!. So D̂ of Eq. ~3.8!
is finite for leading, subleading, and bosonic contributions.

Another way to establish the finiteness ofD̂ is the follow-
ing. After computing the off-shellWWandZZ self-energies,
which have the form of Eq.~1.7!, we use Eq.~1.8! together
with the Ward identities of Eq.~1.6!; we can then write, for
D̂,

D̂5
ÂW~0!

MW
2 2

ÂZ~0!

MZ
2 5F d

dq2
$P̂f2Px%G U

q250

. ~3.13!

We then use the fact that

Pf~q2!5Pf~MW
2 !1~q22MW

2 !@12Ẑf
21#1Pf

f ~q2!

and

Px~q2!5Px~MZ
2!1~q22MZ

2!@12Ẑx
21#1Px

f ~q2!,

where

12Ẑf
215

dP̂f~q2!

dq2
U
q25M

W
2

and

12Ẑx
215

dP̂x~q2!

dq2
U
q25M

Z
2
.

Taking the difference of the two scalar self-energies and us
ing the fact thatẐf5Ẑx[Ẑ, we have

P̂f~q2!2P̂x~q2!5@P̂f~MW
2 !2P̂x~MZ

2!#1~12Ẑ21!

3@MZ
22MW

2 #1@P̂f
f ~q2!2P̂x

f ~q2!#.

~3.14!

The first two terms on the RHS of the last equation are pro
portional to 1/e, but they are constant, independent ofq2.
Therefore, upon differentiation with respect toq2, they van-
ish. The third term isq2 dependent and finite, and after dif-
ferentiating it with respect toq2 and subsequently setting
q250, we obtain the UV-finite expression forD̂. Clearly, the
above proof of finiteness does not depend on the choice o
the renormalization point; so instead of expanding aroun
q25MW

2 andq25MZ
2 , we can equally well expand around

q25m1
2 andq25m2

2 , respectively.
It is important to emphasize that all properties of the PT

self-energies stemming from the PT Ward identities hold fo
the corresponding conventional self-energies computed i
the background field method~BFM! @29# for everyvalue of
the gauge-fixing parametersjQ

W andjQ
Z used for the quantum

fields and toall orders in perturbation theory@30#. Conse-
quently, in the BFM the finiteness ofD is true for every
value of the gauge-fixing parameter and to all loops@31#.
The final answer is, however,not gauge invariant. This is so
because in the BFM the gauge boson self-energies depend
general on the choice of gauge-fixing parameters@23# ~these
gauge-dependent terms are, however, UV finite!; this remain-
ing gauge dependence doesnotcancel when the difference of
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theWWandZZ self-energies is formed in order to construc
D already at the one-loop level. So the one-loop boson
contributionDb

(1)uBFM , defined via the BFMoff-shellff and
xx, which are both explicitlyjQ dependent, has the form

Db
~1!uBFM5Db

~1!ujQ511Db
~1!~jQ!. ~3.15!

Db
(1)ujQ515D̂b

(1) is the gauge-independent bosonic PT resu
given by

D̂b
~1!5

g2

64p2 F11
9c228c41s~5c226!

s2~c22s!
ln~c2!

2
3s2s2

c2~c22s!~12s!
ln~s!G , ~3.16!

wheres5MH
2 /MZ

2 andMH is the mass of the Higgs scalar
Db
(1)(jQ) carries explicitly the gauge parameter dependen

~one sets for simplicityjQ
Z5jQ

W[jQ). Db
(1)(jQ) vanishes at

jQ51 and whenMW5MZ (s50), but is nonzero otherwise;
its explicit expression has been reported in@32#. As one can
see from Fig. 1, the gauge-dependentDb

(1)(jQ) is unbounded
from above and below and is numerically significant. W
observe that although the BFM endows the Green’s functi
with the desirable theoretical properties, it fails to address t
crucial issue of gauge-fixing parameter independence, as
other gauge-fixing procedure for that matter. Nevertheless
provides a convenient starting point for the implementatio
of the PT@23#.

FIG. 1. ThejQ-dependent part ofD in the background field
gauges at one loop@for MH5300 GeV and in units of
g2/(16p2)#.
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IV. SUBLEADING TOP CONTRIBUTIONS TO D̂

IN THE SU „2… MODEL

In this section we apply the formalism developed thus fa
to the case of an SU~2! model, which corresponds to the
standard SU~2!3U~1!, with electromagnetism turned off.
This means that s50 and c51 or, equivalently,
MW5MZ[M , and there is no photon. In such a model,
nonvanishingD̂ comes only from the mass splitting within a
fermion isodoublet; in particular, there are no genuinel
bosonic contributions toD̂, sinceMW5MZ . We ignore the
contributions of all light fermions and concentrate on the to
quark contribution. Since at one loopD̂ contains only fermi-
onic contributions, it is automatically gauge independent an
UV finite. Obviously, at one loop the PT definition coincides
with the conventional one.

At two loops there are two kinds of contributions:~i! the
leading, of ordermt

4 , which originate from graphs contain-
ing fermions and only scalars, without gauge bosons;~ii ! the
subleading, of ordermt

2 , which originate from the graphs of
~i!, if scalars are replaced by gauge bosons (W or Z).

The leading contributions of a very heavy top quark to th
conventionally definedD were first computed in@4#, in the
limit where MW5MZ5MH50. The case of an arbitrary
Higgs boson massMH , but still MW5MZ50, was com-
puted in@5,6#, and the caseMW5MZ5MÞ0 was presented
in @7#. In the above calculations the Feynman gauge w
used; as already explained in Sec. III, this convenient choi
of gauge is legitimate, since the result is guaranteed to
gauge independent and UV finite. Clearly, the PT and co
ventional definitions are identical for the leading part of th
calculation.

The subleading top contributions to the conventionall
definedD were first addressed in@7#; it was explicitly shown
that the resulting expressions contain leftover terms propo
tional to 1/e. In addition, it was pointed out that this result,
calculated in the renormalizable Feynman gauge, was in fa
gauge dependent, and it was correctly argued that because
this theoretical shortcomings the inclusion of subleading co
rections deprives the conventionally definedD of any physi-
cal meaning. In order to restore gauge invariance and finit
ness, several contributions from vertex and box diagram
were included; however, since no guiding principle such a
the PT was followed, these contributions rendered the a
swer process dependent. Furthermore, it was suggested t
since the subleading contributions cannot be defined in
process-independent way, the possibility of resumming the
@33# should probably be abandoned. Since no closed expr
sions for two-loop vertex and box graphs exist yet in th
literature, the process-dependent parts were calculated
proximately, up to orderO(M2/mt

2), for the case ofnme
scattering. The final conclusion was that the part ofDr that
one extracts with their method, for the case ofnme scatter-
ing, receives sizable corrections due to subleading top co
tributions.

In the context of the PT, all aforementioned pathologie
are automatically bypassed. The answer is gauge indep
dent by construction, UV finite, and manifestly process inde
pendent. We conclude therefore that in the context of the P
there is no limitation whatsoever in defining the subleadin
top contributions to the universalD̂. In particular, the neces-
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sary condition for attempting the resummation of the univ
sal part ofr, i.e., the process independence, is still valid.
turns out that the relative size of the subleading contributio
compared to the leading is in accordance to what one wo
naively expect from a power series whose expansion par
eter r5M2/mt

2 is of the order of 1/4.
We now proceed to the more technical aspects of o

calculations.
~a! It has been known for years that when computing t

PT Green’s functions any convenient gauge may be chos
as long as one properly accounts for the pinch contributio
within that gauge@10#. In the context of the ‘‘renormaliz-
able’’ Rj gauges, the most convenient gauge-fixing choice
the Feynman gauge (j51). This is so because the longitu
dinal parts of the gauge boson propagators, which can pin
vanish forj51 and the only possibility for pinching stem
from the three-boson vertices. As was recently realized@30#,
the task of the PT rearrangement of theS matrix can be
further facilitated if one quantizes the theory in the conte
of the BFM. Even though the Feynman rules obtained via
BFM are rather involved, they become particularly suited f
one-loop pinching if one chooses the Feynman gau
(jQ51) inside the quantum loops. In fact, all possible on
loop pinch contributions are zero in this gauge; consequen
the one-loop PT Green’s functions~which one can obtain for
everygauge! are identical to theconventionalGreen’s func-
tions, calculated in the Feynman gauge of the BFM. Th
property of the Feynman gauge in the BFM persists in tw
loop calculationsonly for the subset of diagrams which con
tain at least one fermion loop@34#, which is precisely the

FIG. 2. Subleading two-loop graphs containing self-energy
sertions of a Higgs boson or a gauge boson.

FIG. 3. Subleading fermionic triangle graphs that contain
Higgs boson.
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type of graphs we are interested in@35#. We therefore choose
to work in the BFM Feynman gauge. This correspondenc
between the PT and BFM atjQ51 @36# breaks down for the
two-loop purely bosonic part@37#. The technical details lead-
ing to this conclusions will be presented in@38#.

~b! Using the algebraic identity of Eq.~1.8! and the WI of
Eq. ~2.14!, we write D̂ as in Eq.~3.13!. Therefore the entire
calculation boils down to calculating the derivative of eac
Feynman graph shown in Figs. 2–7, atq250. In these fig-
ures we show the complete set of two-loop irreducibl

n-

a

FIG. 4. Rest of the subleading graphs containing bosonic se
energy insertions.

FIG. 5. Rest of the subleading triangle graphs.
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graphs that contribute onlymt
2 terms to D̂ in the SU~2!

model. Graphs with photons or with couplings proportion
to sinuW in the standard model are omitted. For exampl
graphs such as those shown in Fig. 8 for the self-energies
the scalars do not contribute, since they contain couplin
proportional to sinuW50. In our calculation we have used a
fully anticommutingg5 since this does not produce any in
consistencies for the graphs we have to compute.

The validity of the Ward identity of Eq.~2.14! for the full
standard model has been verified by directly contracting
dividual graphs byqmqn beforecarrying out any loop inte-
grations. In fact, the Ward identities of Eq.~2.14! hold indi-
vidually for each of the graphs shown in Figs. 2–7, whe
the corresponding graph of the gauge boson self-ener
which is to be contracted byqmqn, can be obtained by re-
placing the externalf̂f̂ (x̂x̂) legs by ŴŴ (ẐẐ), respec-
tively. The only exceptions are some of the triangle graph
i.e., Figs. 5~a! and 5~c!, which need to be combined with

FIG. 6. Subleading fermionic bubble graphs with a vertex co
rection.
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graphs such as those depicted in Fig. 8, in order to yield zero
in the RHS of the WI. For example, we have

qmqn@Pmn
W 5~a!1Pmn

W 8~c!#2MW
2 @Pf5~a!1Pf8~d!#50,

~4.1!

qmqn@Pmn
W 5~c!1Pmn

W 8~a!#2MW
2 @Pf5~c!1Pf8~b!#50.

~4.2!

In the above equations, we note that although the graphs of
Fig. 8 for the self-energies of the scalars vanish for
sinuW50, the corresponding ones of the gauge bosons do
not.

Using the notation

Gk~q
2![2 i ~Feynman graphk!,

we find it more convenient to act with the four-Laplacian
instead of the regular derivative ofq2. Namely,

dGk~q
2!

dq2
U
q250

[
1

2D
@hqGk~q

2!#q50 . ~4.3!

This facilitates the computation enormously since it reduces
it to straightforward algebra that can be carried out easily by
hand. This procedure reduces each graph down to standard
scalar two-loop integrals at zero external momentum, for
which explicit expressions can easily be found~see Appen-

r-
s
t

FIG. 7. Subleading fermionic bubble graph
with self-energy insertions and their relevan
counterterms.
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dix A!. As it turns out, the results can be analytically e
pressed, like the leading corrections, in terms of logarithm
dilogarithms, and the two functionsg(x) and f (x,1). The

FIG. 8. Subleading graphs that contain a mixed self-energy
sertion. The graphs that correspond to the scalar self-energyff
vanish for sinuW50.
x-
s,

function g(x) stems from the on-shell counterterms, while
f (x,1) from the two-loop scalar integrals; they too can be
expressed in terms of logarithms and dilogarithms. Explicit
intermediate results for each of the set of graphs of Figs. 2–7
are given in the next section.

V. CALCULATIONS AND RESULTS

In this section we present the explicit results of the two-
loop one-particle irreducible contributionsD̂(2) to the univer-
sal partD̂ of ther parameter. We neglect the contributions of
the light fermions and consider only the effect of a single-
fermion doublet (t,b), with large mass splitting. The mass of
the lightest partner in the doublet has been set equal to zer
(mb50) from the beginning of the calculation; this has pro-
duced no mass singularities. We decomposeD (2) in three
parts as

D̂~2!5D̂lead
~2! 1D̂ sub

~2! 1D̂bos
~2! , ~5.1!

where D̂lead
(2) are the graphs with scalars and fermions that

contain leading contributions proportional tomt
4 as well as

mt
2 , D̂sub

(2) are the graphs with fermions and gauge bosons tha
contain contributions of ordermt

2 only, and finallyD̂bos
(2) is the

pure bosonic contribution which is independent ofmt and in
our approximation is zero. The results are given in terms of
two variablesh5MH

2 /mt
2 and r5M2/mt

2 , whereMH is the
mass of the Higgs boson andmt is the pole mass of the
heavy quark~top! in the doublet.

The leading contributionsD̂lead
(2) are given by@39#

in-
D̂lead
~2! 5Ncxt

2R~h,r !

5Ncxt
2H 2324h1

2h

h2r
211r1

p2

3
r 22S 22

h

2DAhg~h!1
r

2
Arg~r !1r 2ln2r

2~12r !2ln~12r !1F2622h212r1
3

2
r 21

2h2

~h2r !2
12h

~11h!

h2r
1

8

42r G lnr
1F24h1

h2

2
2

2h2

~h2r !2
22h

21h

h2r G lnh
1F2~12h!212h

~12h!2

~h2r !2
12

~12h!31~12h!2

h2r GLi2~12h!

1F211110h22h222hr116r25r 222h
~12h!2

~h2r !2
22

~12h!31~12h!2

h2r G Li2~12r !

1F624h1h212h2
42h

~h2r !2
22h

12~32h!2

h2r G f ~h,1!

1F26214h12h212hr230r17r 222h2
42h

~h2r !2
22h

11~32h!2

h2r
1

4

42r G f ~r ,1!J , ~5.2!

where f (x,1) is a function stemming from the two-loop scalar integrals@40,41,6# and is given in Appendix A, whileg(x) is
a function that originates from the on-shell counterterms,

g~x!5H A42x@p2f#, 0<x<4,

0, x54,

Ax24ln~2z!, 4>x.

~5.3!
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with the variablesy, z, andf defined as in@6#:

y5
4

x
, z5

A12y21

A12y11
, f52arcsinSAx2 D . ~5.4!

By taking ther→0 limit in Eq. ~5.2!, one can recover the result of Eq.~12! of @6# where the leading contributions were
calculated in the approximationMZ5MW50. In the analytic formula of Eq.~5.2!, the apparent mass singularities cancel in th
relevant limitsh→r and r→4. For example, in ther→4 limit the terms that containr24 in their denominator give
4@2lnr1f(r,1)#/(42r )→(4/3)(211 ln2). In the limit h→r , Eq. ~5.2! reduces to

D̂lead
~2! uh5r5Ncxt

2H 19217r1
p2

3
r 22~22r !Arg~r !1r 2ln2r2~12r !2ln~12r !22r ~102r !lnr

12~26114r25r 2!Li2~12r !14~11213r13r 2! f ~r ,1!J . ~5.5!

Finally, taking the limitr→0, one obtains the result of@4#:

D̂lead
~2! uh5r5052Ncxt

2~2p2219!, ~5.6!

where the leading contributions of a very heavy quark were calculated with all other masses neglected.
We now present our result forD̂sub

(2) in full analytic form. We decompose the result as

D̂sub
~2!5Ncxt

2@D̂1
~2!1D̂2

~2!1D̂3
~2!1D̂4

~2!1D̂5
~2!1D̂6

~2!1D̂6ct
~2! # ~5.7!

and give the analytic form of each intermediate resultD̂i
(2) as well. EachD̂i

(2) equals the contribution coming from the graphs
shown in Figs. 2–7, respectively. This grouping of graphs is dictated by their topology, the particles they contain the loop
the WI of Eq.~2.14!.

The graphs of Fig. 2 that contain bosonic self-energy insertions and the Higgs boson give

D̂1
~2!54r 2F2

p2

12
2

h2

4~h2r !2
ln2h1S 2

1

4
1

h2

4~h2r !2D ln2r2
~12h!2

~h2r !2
Li 2~12h!1S 211

~12h!2

~h2r !2 DLi2~12r !

1
~22h!~42h!

2~h2r !2
f ~1,h!2S 22r

2r
1
22h

2r

h~22r !12r

~h2r !2 D f ~r ,1!G . ~5.8!

In the difference of the self-energies, the graphs 2~a! and 2(a) cancel forMW5MZ and need not be computed. In theh5r
limit the above formula reduces to

D̂1
~2!uh5r54r 2F2

p2

12
1

1

4~42r !
lnr2

1

4
ln2r2Li2~12r !1

r22

r S 121
1

r ~42r ! D f ~r ,1!G . ~5.9!

For the uninteresting valuer54, the above result and the results that follow are all regular as can be seen from the ex
values off (4,1) andf 8(4,1) given in Appendix A.

The contribution of the graphs that contain a fermionic triangle and a Higgs boson, depicted in Fig. 3, is given by

D̂2
~2!52r F11

1

h2r
1S 12

1

h2r D hlnh2r lnr

h2r S h~42h!

~h2r !2
2
h226h16

h2r D f ~h,1!1S 2r 212rh26h12r

~h2r !2
1
r 226r16

h2r D f ~r ,1!

3S ~12h!2

~h2r !2
1

~32h!~12h!

h2r DLi2~12h!1S 12
~12h!2

~h2r !2
2

~32r !~12r !

h2r DLi2~12r !G . ~5.10!

Whenh5r this reduces to
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D̂2
~2!uh5r52r F21S 21

1

42r D lnr1~2r23!Li2~12r !1S 722r2
2

r
1

2

r ~42r ! D f ~r ,1!G . ~5.11!

The graphs of Fig. 4, which contain bosonic self-energy insertions without the Higgs boson, give

D̂3
~2!5r F2

12

42r
ln r1r ln2r1

p2

3
r14~21r !Li2~12r !12S 221

7

r
2r2

3

42r D f ~r ,1!G . ~5.12!

Graphs 4~a! and 4(a) as well as 4~c! and 4(g) are equal forMZ5MW and cancel in the difference.
From the fermionic triangle graphs with unphysical scalars of Fig. 5, we obtain

D̂4
~2!52r F816S 211

1

42r D ln r22r ln2r2
2p2

3
r26Li2~12r !1S 1424r2

1

r
1

3

42r D f ~r ,1!G . ~5.13!

The fermionic bubble graphs with vertex corrections of Fig. 6 give

D̂5
~2!5r F22r1r 2~42r !

p2

3
12S 4

42r
22r D lnr1r 2~42r !ln2r24r ~124r1r 2!Li2~12r !

12S 2

42r
2
2

r
18r26r 21r 3D f ~r ,1!G . ~5.14!

From the graphs of Fig. 7, which contain fermion self-energy insertions, we obtain

D̂6
~2!5r F2

3

e
16l m1

47

2
230r2r ~427r !

p2

3
110S 23r1

2

42r D lnr2r ~427r !ln2r12~27114r2r 2!Li2~12r !

12S 271
5

42r
2
5

r
234r18r 2D f ~r ,1!G , ~5.15!
o

wherel m5gE1 ln(pm2).
This last set of graphs requires counterterms which a

solely due to the one-loop mass renormalization of the t
quark. We perform the renormalizationon shell. The fermion
two-point functionG f is written as

G f~p!5 i ~p”2m0f !2 iS f~p!, ~5.16!

whereS f is the fermion self-energy function. The superscrip
G will denote the gauge boson’s contribution toS f shown in
Fig. 9. It is given by

S t
G~p!5p”PLS t,L

G ~p!, ~5.17!

with

FIG. 9. Gauge boson contributions to the one-loop top se
energy.
re
p

t

S t,L
G ~p!5

g2

16p2

22D

4
@B1~p

2,mt
2 ,MZ

2!12B1~p
2,0,MW

2 !#,

~5.18!

B1~p
2,m2,M2!5

d

2
2F1~p

2,m2,M2!, ~5.19!

where

d5
1

e
2gE2 lnp, PR,L5

16g5

2
, ~5.20!

and

F1~p
2,m2,M2!5E

0

1

dx x ln@~12x!m21xM22x~1

2x!p2#. ~5.21!

The mass counterterm is defined by

m0t5mt1dmt ~5.22!

and is determined by the on-shell renormalization conditions

G t~p!ut~p!up”5mt
50, ūt~p!G t~p!up”5mt

50, ~5.23!
lf-
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dmt

mt
52

1

2
S t,L
G ~p25mt

2!

52
g2

32p2 F2
3

4 S 1e 2@gE1 ln~pmt
2!# D211

3

4
r

2
5r 2212r

8
lnr1

~12r !2

2
lnu12r u2

r22

8
Arg~r !G .

~5.24!

This renormalization of the top quark mass gives rise
two kinds of counterterms forD̂sub

(2) . The mass-insertion
counterterms are shown in Fig. 7 (ct1,ct3) and the vertex
counterterms shown in Fig. 7 (ct2,ct4). The mass-insertion
counterterms diverge as 1/e, which cancels in the difference
and they give a finite contribution toD̂sub

(2) . In terms of scalar
integrals, this contribution equals

D̂6ct~mi!
~2! 5 i

g2

~2p!4
m2

M2 Fdmm GF222D

D S ~mm!2
m

m2D
2m2~mmm!G , ~5.25!

where henceforthm[mt . The vertex counterterms turn ou
to be just the one-loop fermion graphs multiplied by t
factor dm/m. In terms of scalar integrals, they are given b

D̂6ct~v !
~2! 5 i

g2

~2p!4
m2

M2 Fdmm GF222D

D

m

m2 1~mm!G . ~5.26!

To see how this comes about, we note that upon renorm
ization thefc̄c ~and similarly thexc̄c) vertex will get
modified to
to

,

t
he
y

al-

g0
m0

M0
f0c̄c→Zgg

m1dm

M1dM
Zf
1/2fc̄c,

where we have omitted wave-function renormalization of th
fermion fields, since it will cancel against the correspondin
wave-function renormalization of the fermion propagators
inside the loop. Then at one loop the modification reads

11dZg1
dm

m
2

dM

M
1
1

2
dZf511

dm

m
,

where in the last step we have used Eq.~2.20!. Finally, the
result for the counterterms is

D6ct
~2!5r F3e 26l m1

5

2
23r2r S 62

5

2
r D lnr22~12r !2

3 ln~12r !1
1

2
~r22!Arg~r !G . ~5.27!

We note that after the inclusion of the counterterms th
terms proportional to 1/e present inD6

(2) cancel and the final
result emerges finite as expected. In the limit where the ma
splitting in the doublet is zero, which in our case mean
mt5mb50, all of the above expressions vanish, as can b
seen from the asymptotic expressions of the function
g(x), f (x,0), andf (x,1) if we takex→` ~for x5r or h).

Adding together Eqs.~5.8!–~5.27!, we report, as our final
result,
Dsub
~2!5Ncxt

2S~h,r !

5Ncxt
22r H 222 35

2
r1

1

h2r
2r ~813r1r 2!

p2

6
1
1

4
~r22!Arg~r !

2F r

h2r S 12
1

h2r D16120r1
5

4
r 22

14

42r G lnr1
h

h2r F12
1

h2r G lnh
2~12r !2lnu12r u1F rh2

2~h2r !2
24r1

11

2
r 22

1

2
r 3G ln2r2

rh2

2~h2r !2
ln2h

2F ~122r !
~12h!2

~h2r !2
1

~32r !~12r !

h2r
18212r27r 212r 3GLi2~12r !

1F ~122r !
~12h!2

~h2r !2
1

~32h!~12h!

h2r GLi2~12h!

2F r ~22h!~42h!1r ~42r !

~h2r !2
2

~r22!212~h24!

h2r
237130r1

1

r
2

7

42r G f ~r ,1!

1F r ~22h!~42h!1h~42h!

~h2r !2
2

~h22!212~12h!

h2r G f ~h,1!J . ~5.28!
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In Fig. 10 we show together the functionsR(h,r ) and
S(h,r ), which describe, respectively, the leading and su
leading contributions forM /mt50.5 or r50.25 and a wide
range of values for the mass of the Higgs boson,MH , where
h5MH

2 /mt
2 . The functionR(h,r ) of the leading contribu-

tions grows asymptotically in the way described in@6#. On
the other hand, the functionS(h,r ) of the subleading contri-
butions becomes independent ofMH for a very heavy Higgs
boson~as pointed out in@7#!. For the phenomenologically
interesting range of values forMH , the two functions have
opposite sign. In Table I we give numerical results forD̂(2)

for different values of the ratiosM /mt andMH /mt in units
of Ncxt

2 . The first entry of each column corresponds to t
leading contributionD̂lead

(2) , while the second gives the tota
correctionD̂lead

(2) 1D̂sub
(2) . We notice that for a light Higgs bo-

son, whereD̂(2) is small, the two contributionsD̂lead
(2) and

D̂sub
(2) are comparable in magnitude, as can be seen from

entries in the first three rows of the first four columns. W
also observe that for a light top (M /mt50.6, fifth column!
the two corrections come with the same negative sign
MH<mt . On the other hand, for the largest part of the p
rameter space ofmt andMH , the subleading contributions
D̂ sub
(2) are approximately 22–27 % of the leadingD̂lead

(2) contri-
butions, which is what one would naively expect. Finally,
Fig. 11 we give the two-loop correctionD̂(2) as a function of
MH for M591.19 GeV andmt5175 GeV.

VI. CONCLUSIONS

In this paper we showed that in the framework of the P
one can define a universal part of ther parameter, which
satisfies all necessary field theoretical requirements, forboth
leading and subleading two-loop corrections. Most notic
ably, the PT universal part is by construction independent

FIG. 10. FunctionsR(h,r ) andS(h,r ) describing, respectively,
the leading and the subleading contributions toD̂ for r50.25.
b-

he
l

the
e

for
a-

in

T

e-
of

the gauge-fixing parameter and, at the same time, proce
independent; furthermore, by virtue of the PT Ward identi-
ties, it is also UV finite.

We have calculated the two-loop contributions at the sub
leading orderO(Gm

2mt
2MZ

2), in the limit MW5MZ and
s50. Their relative size was found to be around 25% with
respect to the leading ones. From the technical point of view
the computation involved self-energy graphs only, which ex-
ist in closed analytic form. The computational part was sig-
nificantly facilitated by the PT Ward identities, relating the
self-energies of the gauge bosons (WW andZZ) to the cor-
responding self-energies of the would-be Goldstone boson
(ff and xx). These Ward identities, which are valid for
both leading and subleading contributions, reduce the tas
into calculating Goldstone boson self-energies only.

Having laid out the framework of how such calculations
should proceed, it is straightforward to compute the two-loop
corrections to the universal part of ther defined via the PT
for the full SU~2! L3U~1!Y standard model. Results in this
direction will be presented elsewhere.

We want to emphasize that the present work is not mean
to replace a full two-loop calculation of ther parameter,
where vertex and box diagrams should also be considere
Instead, we focused on the fact that it is possible to define
physically meaningful universal part for ther parameter.
This part can in turn furnish us with a reliable process-
independent estimate of the size of the two-loop subleadin
corrections. The need for such an estimate becomes mo
pressing given the fact that the technology for carrying ou
the full two-loop calculation, e.g., computing two-loop ver-
tices and boxes, does not as yet exist. Should such comm
tations become possible, the universal part of our calculatio
can still be used unaltered, since it constitutes a GI subset o
the full answer.

Finally, even though the PT prescription used in this work
endows the computed quantities with various desirable theo
retical properties, the issue of their uniqueness is still open
In particular, one may argue that arbitrary pieces can alway
be moved around by hand from the vertex or the box, as lon
as one does not alter the uniqueS matrix. Even though the
above arbitrariness appears to be mathematically possible,
is severely restricted by a set of basic physical requirements
First of all, the PT rearrangement takes placebeforeany loop
integrations are carried out, and it only relies on the funda
mental Ward identities satisfied by the tree-level vertices o
the theory. In addition, as was recently shown@42#, the
charged-current PT self-energies contain onlyphysical ab-
sorptive parts, whereas all possible fixed unphysical pole
cancel. Furthermore, the PT rearrangement doesnot shift the
position of the GI pole of theW boson to any order in per-
turbation theory@42#. Also, it was explicitly shown up to two
loops @43# that these crucial properties persist in the case o
neutral currents, where theg-Z mixing effects must be prop-
erly taken into account. As has been argued@17# ~but not
explicitly demonstrated!, one should be able to establish the
uniqueness of the PT self-energies, vertices, and boxes b
appealing to the analytic properties of theSmatrix jointly in
the external masses and in the Mandelstam variabless and
t, incorporating allt-dependent subtraction terms into the
self-energy. Clearly, additional work is needed in order to
exploit the dispersion relations satisfied by the PT Green’s
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TABLE I. Numerical values forD̂(2) in units ofNcxt
2 for different values ofAh5MH /mt andAr5M /mt . The first entry of each column

corresponds to the leading contributionD̂lead
(2) in the approximationMW5MZ5M , while the second gives the total result

D̂(2)5D̂lead
(2) 1D̂ sub

(2) in the same approximation.

M /mt

0.40 0.45 0.50 0.55 0.60
MH /mt Leading Total Leading Total Leading Total Leading Total Leading Total

0.4 21.926 20.691 21.617 20.540 21.328 20.576 21.062 20.833 20.822 21.345
0.6 23.083 21.737 22.782 21.582 22.500 21.615 22.243 21.871 22.012 22.383
0.8 24.032 22.581 23.737 22.417 23.462 22.443 23.212 22.693 22.989 23.201
1.0 24.828 23.284 24.538 23.110 24.270 23.127 24.026 23.369 23.809 23.869
1.2 25.506 23.880 25.221 23.697 24.957 23.704 24.718 23.937 24.508 24.429
1.4 26.089 24.393 25.808 24.199 25.548 24.198 25.315 24.421 25.109 24.905
1.6 26.595 24.837 26.317 24.635 26.061 24.624 25.832 24.839 25.631 25.315
1.8 27.036 25.223 26.761 25.013 26.508 24.994 26.282 25.202 26.086 25.669
2.0 27.421 25.562 27.149 25.344 26.900 25.318 26.677 25.518 26.484 25.978
2.2 27.760 25.858 27.490 25.634 27.243 25.601 27.024 25.794 26.834 26.247
2.4 28.057 26.118 27.789 25.888 27.545 25.849 27.328 26.036 27.141 26.483
2.6 28.319 26.346 28.053 26.111 27.811 26.066 27.597 26.247 27.412 26.688
2.8 28.549 26.546 28.285 26.306 28.045 26.256 27.833 26.432 27.651 26.868
3.0 28.751 26.721 28.488 26.476 28.251 26.422 28.040 26.593 27.861 27.024
3.2 28.928 26.874 28.667 26.625 28.431 26.566 28.223 26.733 28.045 27.159
3.4 29.082 27.006 28.823 26.754 28.589 26.691 28.382 26.853 28.207 27.276
3.6 29.217 27.121 28.959 26.865 28.726 26.798 28.521 26.957 28.348 27.376
3.8 29.334 27.219 29.077 26.960 28.845 26.890 28.642 27.045 28.470 27.460
4.0 29.434 27.302 29.178 27.040 28.948 26.967 28.746 27.119 28.576 27.531
4.2 29.519 27.372 29.265 27.107 29.035 27.031 28.835 27.180 28.666 27.589
4.4 29.591 27.429 29.337 27.162 29.109 27.083 28.910 27.230 28.742 27.635
4.6 29.650 27.475 29.397 27.205 29.170 27.124 28.972 27.268 28.806 27.671
4.8 29.698 27.510 29.446 27.238 29.220 27.156 29.023 27.297 28.858 27.698
5.0 29.735 27.536 29.485 27.262 29.259 27.178 29.063 27.317 28.899 27.715
5.2 29.763 27.553 29.513 27.278 29.289 27.191 29.094 27.328 28.931 27.724
5.4 29.782 27.562 29.533 27.285 29.310 27.196 29.116 27.332 28.953 27.725
5.6 29.793 27.563 29.544 27.285 29.322 27.195 29.129 27.328 28.968 27.720
5.8 29.796 27.558 29.548 27.278 29.327 27.186 29.134 27.318 28.974 27.708
6.0 29.793 27.546 29.545 27.264 29.324 27.171 29.133 27.301 28.973 27.690
6.2 29.782 27.528 29.536 27.245 29.315 27.150 29.125 27.279 28.966 27.666
6.4 29.766 27.505 29.520 27.220 29.300 27.124 29.110 27.252 28.952 27.637
6.6 29.744 27.476 29.499 27.191 29.280 27.093 29.090 27.219 28.933 27.603
t

u
i

.

functions, so that this point of view can be pursued to i
final conclusion.
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APPENDIX A: SCALAR TWO-LOOP INTEGRALS

The scalar two-loop integrals at zero external momentu
are defined as in@40,41#:
s

l
n-

f
y

m

~A1!

Obviously,

Note that, within each of the three groups of masses in Eq
~A1!, all masses are equal. Any other integral, for which



s

a
l
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different masses appear within the same group, can
brought to the form of Eq.~A1! by use of partial fractions

1

k22m1
2

1

k22m2
2 5

1

m1
22m2

2 F 1

k22m1
2 2

1

k22m2
2G . ~A2!

All of these integrals can be calculated from knowledge of
single master integral, either by use of recurrence relatio
derived through integration by parts, or by differentiatio
with respect to one of the masses. For example,

~MMM uM1uM2!5
1

2

]

]M2 ~MM uM1uM2! ~A3!

and

~MM uM1M1uM2!5
]

]M1
2 ~MM uM1uM2!. ~A4!

For our purposes, we have found the following two recursio
relations very useful:

~M1!~M3M3!2~M3!~M1M1!1~M2!@~M1M1!2~M3M3!#

5~M1
22M2

22M3
2!~M3M3uM1uM2!1~M1

21M2
22M3

2!

3~M1M1uM2uM3! ~A5!

and

FIG. 11. Universal two-loopD̂(2) correction to ther parameter
as a function of the Higgs boson mass for different approximatio
in units ofNcxt

2 . Dotted line: the leading result in the approxima
tionMW5MZ50 @5,6#. Dashed line: the leading contribution in the
approximationMW5MZ5M @7#. Solid line: the total correction,
leading and subleading, forMW5MZ5M (mt5175 GeV,
M591.19 GeV!.
be

a
ns,
n

n

~D23!~M1uM2uM3!5M1
2~M1M1uM2uM3!

1M2
2~M2M2uM1uM3!

1M3
2~M3M3uM1uM2!. ~A6!

Integrals of the type (MM ) are one-loop integrals and are
defined at the end of this appendix. To prove Eq.~A5! we
consider

S~q2!

[E dDkdDl
2k•q

@~ l1q!22M1
2#~k22M2

2!@~ l1q1k!22M3
2#
,

~A7!

which is zero as can be easily seen by the shift of variable
l→ l1q. Then, from

dS~q2!

dq2
U
q250

[
1

2D
@hqS~q2!#q5050, ~A8!

one obtains Eq.~A5!. To prove the identity of Eq.~A6!,
which has also been given in@40#, we use

L~q2![E dDkdDl
]

]km F km

~k22M1
2!~ l 22M2

2!@~k1 l !22M3
2#G

50 ~A9!

and Eq.~A5!.
In @40# the master integral (MM uM1uM2) has been calcu-

lated. In @41# the same integrals have been discussed in
different mathematical framework and the master integra
(M uM1uM2) is given. In what follows we use the notation of
@40#. With D5422e the result for the master integral is

~MM uM1uM2!5p4F2
1

2e2
2

1

2e
~122l M !1 l M2 l M

2 2
1

2

2
p2

12
2 f ~a,b!G , ~A10!

where

l M5gE1 lnpM2, a5
M1

2

M2 , b5
M2

2

M2 .

The real functionf (a,b) is symmetric in its arguments and
defined as

f ~a,b!5E
0

1

dxS Li2~12m2!2
m2

12m2 lnm2D ,
m25

ax1b~12x!

x~12x!
,

with Li 2 the dilogarithm function:

Li2~x!52E
0

x

dy
ln~12y!

y
. ~A11!

ns
-
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The explicit form of f (a,b) is

f ~a,b!52
1

2
lna lnb1

12a2b

A Fp2

6
1Li2S 2

x2
y1

D
1Li2S 2

y2
x1

D1
1

4
ln2

x2
y1

1
1

4
ln2

y2
x1

1
1

4
ln2

x1
y1

2
1

4
ln2

x2
y2

G , ~A12!

with

A 5A122~a1b!1~a2b!2, x1,25
1
2 @11b2a6A #,

y1,25
1
2 @11a2b6A #.

It turns out that all of our results can be expressed
terms of f (a,0), and f (a,1). These functions are explicitly
given by

f ~a,0!5Li2~12a!5
p2

6
2Li2~a!2 lna ln~12a! ~A13!

and

f ~a,1!55
2

1

A12y
Fp2

6
12Li2~z!1

1

2
ln2zG , 4,a,

24 ln2, a54,

2
2

Ay21
Cl2~w!, a.4,

~A14!

where Cl2(x) is the Clausen function,

Cl2~x!5Im@Li2~e
ix!#, ~A15!

and the variablesy, z, andf are defined as before:

y5
4

a
, z5

A12y21

A12y11
, f52 arcsinSAa2 D .

The derivatives off (a,1) and f (a,0) are given by

d f~a,1!

da
5H 1

42a F lna1
2

a
f ~a,1!G , aÞ4,

2 1
6 ~112ln2!, a54,

d f~a,0!

da
5

lna

12a
.

We will also need the derivative

] f ~a,b!

]b
U
b51

5H 2
2

42a F lna1S 12
2

aD f ~a,1!G , aÞ4,

1
32 4

3 ln2, a54,

which we obtain directly from Eq.~A12!.
in

The following relationships are useful in expressing the
results in terms of only these two functions:

f S 1a,0D52 f ~a,0!2
1

2
ln2a,

f S 1a , 1aD52S 12
2

aD f ~a,1!2
1

2
ln2a. ~A16!

In our calculations we have encountered two-loop inte
grals with three, four, and five propagators. All integrals with
three propagators are converted to integrals with four prop
gators using Eq.~A6!. Most of the integrals with four propa-
gators can be directly obtained from Eq.~A10!. For the in-
tegrals (00umuM ) and (00u0uM ), we use Eq.~A5! and write
them as

~12r !~00umuM !5
1

m2 ~m!~MM !2~11r !~MM umu0!

and

~00u0uM !52~MM u0u0!,

with r5M2/m2 as usual.
The integrals with five propagators that we encountere

are

~MMM umum!5
1

2

]

]M2 ~MM umum!

5
p4

2M2 F1e 1122l M1
2lnr

42r

1
4

r ~42r !
f ~r ,1!G ,

~MMM umu0!5
1

2

]

]M2 ~MM umu0!

5
p4

2M2 F1e 1122l M1
lnr

12r G , ~A17!

~MMM u0u0!5
1

2

]

]M2 ~MM u0u0!

5
p4

2M2 F1e 1122l M G ,
~mmmumuM !5

1

2

]

]m2 ~mmumuM ! U
m5m

5
p4

2m2 F1e 1122l m1
] f ~a,r !

]a U
a51

1r
] f ~1,r !

]r G
5

p4

2m2 F1e 1122l m2
22r

42r
lnr

1
4

r ~42r !
f ~r ,1!G ,
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~mmummuM !5
]

]m2 ~mmumuM ! U
m5m

52
p4

m2

] f ~r ,b!

]b U
b51

5
p4

m2

2

42r F lnr1S 12
2

r D f ~r ,1!G ,
~A18!

~MM ummu0!5
]

]m2 ~MM umu0!

5
]

]M2 ~mmuM u0!52
p4

m2

d f~r ,1!

dr

52
p4

m2

lnr

12r
.

In addition to the two-loop integrals, our results also co
tain products of one-loop integrals. These integrals can all
n-
be

computed from the integral (m) through differentiation:

The expression for (m) up toO(e) is

~m!5E dnk

k22m2 5 ipm2F1e 112 l m1eS 11
p2

12
2 l m

1
1

2
l m
2 D G . ~A19!

APPENDIX B: FEYNMAN RULES IN THE BACKGROUND
FIELD GAUGES

In this appendix we give the Feynman rules that are rel
evant for the calculation of the subleading two-loop contri-
butions toD̂. The rules are given for the full standard model,
and the calculations in the text were carried out in the ap
proximationMW5MZ , s50,mb50:
Diagram 1.
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