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Two-loop electroweak corrections to thep parameter beyond the leading approximation
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We show that in the framework of the pinch technique the universal part op tparameter can be
meaningfully defined, beyond one loop. The universal part so obtained satisfies the crucial requirements of
gauge independence, finiteness, and process independence, even when subleading contributions of the top
quark are included. The mechanism which enforces the aforementioned properties is explained in detail, and
several subtle field theoretical issues are discussed. Explicit calculations of the subleading two-loop corrections
of orderO(Gime%) are carried out in the context of an &) model, withM\,=M,, and various inter-
mediate and final results are reported.

PACS numbds): 12.15.Lk, 11.10.Gh, 12.15.Ji

I. INTRODUCTION The leadingm; contributions toA, both from one- and
two-loop diagrams, are gauge independent and ultraviolet fi-
One of the most important quantities of the standardnite. However, as soon as the subleading contributions are
model(SM) is thep parametef1], defined as the ratio of the consideredA becomes gauge dependent and ultraviolet di-
relative strength between neutral and charged current intekergent. More specifically, the leading one-lampcontribu-

actions, at low momentum transfer: namely, tions to A (of order G,m;) are manifestly gauge indepen-
dent, since the gauge-fixing parameter does not appear inside
Grel(0) 1 fermion loops, and ultraviolgtJV) finite. On the other hand,

(1.2 as was explicitly shown by Degrassi, Kniehl, and Sifl#],
the one-loop bosonic contributions #o (subleading irm?,
of ordergzm?) are gauge dependergnd, except when for-

The p parameter displays a strong dependencemprand o, jated within a restricted class of gauges, UV diverg@ht
affects most electroweak parameters sucl\asMy, and  gimjlarly, the leading two-loop contributions to [4—6] (of

sirff.:(M2). The p parameter defined above as the ratio OforderGme) are also gauge independent and UV finite, ex-
two amplitudes is a gauge-independent and finite quantity. ”&ctly as their one-loop counterparts. On the other hand, a
addition, it is manifestly process dependent, and its valugiraightforward calculation of the subleading two-loop
depends on the quantum numbers of the external particlegntributions(of order G2m?M2) to A, carried out in the
chosen. To fully determine the value pffor a given neutral  enormalizable Feynmaﬁ gaugeéy= &,=1), gives rise to
and charged process, one must compute the complete set @ answer which is ultraviolet divergent, in the sense that
Feynman diagram&elf-energy, vertex, and box graplts &  1/e terms survivd 7,8]. In addition, as stated ii7], the result
given order in perturbation theory. However, traditionally for A is gauge dependent, in the context of fRe gauges.
one focuses instead on the quantity defined as The reason for this rather striking analogy between the one-
and two-loop analysis is the fact that, as soon as the sublead-
ing contributiongof orderm? at one loop and of orden? at

two loop9 are considered, Feynman graphs containing the
W andZ gauge bosons must be included. It is the inclusion
where Ay, Az, andA , are the cofactors of“” in the of .sgch gr.ap.hs whi_ch, when carried out with_out a concrete
WW, ZZ, and yZ self-energies, respectively, and gp|d|ng principle, gives rise to the aforementioned patholo-
s2=1-c2=sir’4,. The parameter is often called the 9'€S: - .
“universal” part of p, by definition, it does not depend on In order to understand the origin of the problems associ-

the details of the process. According to the standard ibre ated with the subleading contributions, one has to first estab-
contains the dominant coﬁtribution 10 " lish the mechanism which enforces the good behavior of the

In this paper we address theoretical issues related to tH§ad|?gt(;]onltrlb;tlons, Irt] %artt_lcubljartkt]he:r v fm:jtetnesls. I we
definition and calculation of the universal part of thepa- enote the leading contributiorisoth at one and two loops

. (1 v(l
rameter. Several of the ingredients of the subsequent analydf the WW andZZ self-energies bYH\l/LV“]() and[115"]®,
are known, but they exist in a fragmented fashion and theif€SPectively(the superscript stands for “leading) and use

\ : D0y , |
relevance in the context gf-parameter calculations has not the fact thatA(}(0)=0, we can write, forA®),

P=Ged0)  1-Ap’

_Aw(0)  Az(0)+(2s/c)A,z(0)
MG M2 ’

(1.2)

been fully recognized. The purpose of the present work is to Al)  AD(0)
provide a unified view of all relevant facts, incorporating A= W2 — Z_z (1.3
them into a coherent framework. Mw Mz
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It is elementary to showsee Sec. Il that A() is finite as  defines the universal part @f within the framework of the
long as the following relation holds: pinch techniquéPT) [9—15]. As shown in Ref[2], the PT at
NG one loop gives rise to a gauge-independent and UV-finite
i: i_ (2) (1.4) answerwithout introducing any process dependence. This is
zy) z9 et ' so because all PT self-energies are individually gauge inde-
) o pendent, and in addition, all conditions which enforce the
whereZ,, andZ; are the wave-function renormalization con- finjteness are valid foboth leading and subleading contribu-
stants of the/V andZ fields, respectively, and tions. Evidently, the PT restores the mechanism for the can-
Do nn2 Down2 cellation of the UV divergences and at the same time guar-
(i&)(l):Rqu(MW)]_ RG[A(Z)(MZ)] antees the gauge and process independence of the final
2 2 7 . (19
C My Mz answer.
In this paper we propose to elevate thalefined in terms
of the PT self-energies as the truly universal partAgf,
beyond one loop, in the spirit originally suggested in Ref.
[2]. This new quantity, which we denote ky, is endowed
dfvith three crucial properties(i) A is independent of the
gauge-fixing procedure and the gauge-fixing paraméigr,

Equation(1.4) is indeed true for the leading contributions,
due to a set of QED-like Ward identities relating the vertex
fermion wave-function renormalization constalfitise QED

analogue ofZ;=2,). An equivalent way for establishing the
finiteness of the leading contributions is to resort to the War

identities ) . S ) .
A is ultraviolet finite, andiiii) A is process independent.
9,0, [T =MEIy), In addition to the above obvious theoretical advantages,
(1.6)  the calculation of is significantly facilitated by the fact that
q#q,,[HQ”]“)= M%H;'), only self-energy-like graphs need be considered. In particu-

) lar, no vertex or box diagrams need be calculated in order to
wherell, andlIl, are the¢ andyx self-energies, respec- render the answer finite, as is the case in the conventional
tively, with ¢(x) the chargedneutra) would-be Goldstone  reatmen{16]. ThereforeA lends itself as the natural gener-
boson. Writing the general self-energy in the form alization of the conventionak, which can consistently ac-
q9“q” commodateboth leading and subleading contributions and

> 1.7 can be expressed in a closed analytic form up to two loops.
q In Ref. [7] the nature of the two-loop subleading contri-
butions, as well as their numerical importance for tos-
ventionallydefinedA, was studied in the context of an &)

I1,,(a9)=A(9%9,,+B(9?)

and using the algebraic identity

d , 5 model, withMy,=M;=M and no photon. In Ref.8] the
A(0)= d—qz{Q"q 1,,,(a%} : (1.8 previous analysis was extended to the full standard model;
4?=0 the two answers turned out to be numerically rather close.
together with the Ward identities of E€1..6) and the factthat Since we are mainly interested in addressing the conceptual
A(y'%(O)zo, we can write, forA(), issues involved, in this paper we also restrict ourselves to the

study of this simplified version of the standard model. Of
course, we have na priori knowledge if theA of the SU2)
1.9 and A of the full standard model will be numerically close,
as was the case between the results of R&{§).
The final ingredient which enforces the finiteness of the re- The paper is organized as follows. In Sec. Il we briefly
sult for the leadingAp contributions is the equality review the PT, mainly as it applies in the present context. In
zgj:zg('), wherezg) andZ" are the wave-function renor- Sec. lll we define the universal quantifyand discuss some
malization constants dﬂg) andl‘[;'), respectively(see Sec. of its properties. In Sec. IV we calculate the subleading top
II1). However, none of the above conditions are valid any-quark contributions toA in the framework of the S(2)
more, when one calculates the subleading parts ofttend ~ Model. This section is rather technical and contains several
Z self-energies in the framework of ttR; gauges. Conse- intermediate results. Finally, we present our conclusions in
quently, since the mechanism enforcing the finiteness doe3€c. V. In addition, we present two appendixes concerning
not operate any more, the resulting expressions do not hawealar two-loop integrals at zero momentum transfer and the
to be UV finite, and, indeed, they are not. Feynman rules we have used.
The standard way to circumvent the above problems is to
readily abandon the notion of a “universal” part d&fp by
stating that, instead of onlj, the entire process must now Il. PINCH TECHNIQUE
be considered in order to restore the finiteness and gauge
independence of the final answer. So one has to introduce
vertex and box corrections, which render the result gauge The simplest example that demonstrates how the PT
independent and finite at the expense of makingritcess ~Works is the gluon two-point functiofil0]. Consider the
dependenand, therefore, nonuniversal. S-matrix elementT for the elastic scattering such as
This unpleasant trade-off between gauge independend®d.—d:02, whereq;,q, are two on-shell test quarks with
and process independence can be avoided, howe\eif massesn; andm,. To any order in perturbation theor¥,is
one independent of the gauge-fixing paramegerOn the other

A0 AW(O)  AZ(0)
My M3

d
— O }
qu{ ) X} q2=0

A. Gauge-invariant effective self-energies
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hand, as an explicit calculation shows, the conventionallywhere t#,,=—gw+q”“q”lq2, IM=q“q”/q2 are the usual
defined proper self-energy dependsédefined through the transverse and longitudinal projectors and
tree-level gluon propagator

1
—j e Hp(q)=2icagzqu —, (2.6)
A= 1z 9Lz (2D o Kl a)
where
At the one-loop level, this dependence is canceled by contri- b
butions from other graphs, which, at first glance, do not seem f _ 4-D d”k
to be propagatorlike. That this cancellation must occur and D_'“ (2m)°
can be employed to define a gauge-invari@ij self-energy
is evident from the decomposition is the dimensionally regularized loop integral, is the di-
mensionality of space-time, ang is the quadratic Casimir
T(s,t,my,my) =To(t,&) +T1(t,my, &)+ Ty(t,my,§) operator for the adjoint representatiffior SU(N), c,=N].
FTa(s,tmy My, £), 2.2 After integration and renormalization we find
g2 —q?
where the functionT(t,&) depends kinematically only on HP(q)=2ca(F qzln(—z). (2.7
the Mandelstam variable= — (p; — p;)?= —q?, and not on & K

s=(p1+p2)? or on the external masses. Typically, self- Adding this to the Feynman-gauge proper self-energy,
energy, vertex, and box diagrams contributelyg T, T,,

andTj, respectively. Such contributions afedependent, in _, 5 9° 5 —q?
general. However, as the sufs,t,m;,m,) is Gl, it is easy ()= §Ca(w q |”(7) ty, (2.8
to show that Eq(2.2) can be recast in the form
- - - we obtain, forll ,,(q),
T(S,t,ml,mz)zTo(t)+Tl(t,ml)+T2(t,m2) )
+Ta(s,t,my,my), (2.3 Hw(q)=bgztquln(7qz—), (2.9
where theT; (i=0,1,2,3) arendividually £ independent. The \yhere
propagatorlike parts of vertex and box graphs which enforce
the gauge independenceTf(t) are called pinch parts. They 1 1ic,
emerge every time a gluon propagator or an elementary 1602 3

three-gluon vertex contributes a longitudirkg] to the origi-

nal graph’s numerator. The action of such a term is to triggefs the coefficient of—g® in the usualB function of QCD

an elementary Ward identity of the form without fermions. This procedure can be extended to an ar-
k=(p+k—m)—(p—m) when it gets contracted with &  bitrary n-point function; of particular physical interest are
matrix. The first term removegpinches out the internal  the GI three- and four-point functionﬁwa [17,18 and
fermion propagator, whereas the second vanishes on sheﬁ.ﬂmﬁ [19]. Finally, the generalization of the PT to the case
From the Gl functionsT; (i=1,2,3) one may now extract a of nonconserved external currents is technically more in-
Gl effective gluon G) self-energyll,,(q), Gl Ggq; verti-  volved, but conceptually straightforwaf80,21].

cesI'l), and a GI boxB, in the following way:

1. 1
[ffuiol

,\ _ A 1)\_
T,= gZuJi”w(;) Uy y*Uy,

B. Current algebra formulation of the pinch technique

Uyy"Up, An important alternative formulation of the PT in the con-
text of the SM has been introduced by Degrassi and Sirlin
[12]. In this approach the interaction of gauge bosons with
external fermions is expressed in terms of current correlation
functions, i.e., matrix elements of Fourier transforms of
time-ordered products of current operat{2g]. This is par-

- _ 1\_ . ticularly economical because these amplitudes automatically
Tzzgzuﬂ’yul(az) ual'?uy, (2.4 include several closely related Feynman diagrams. When one
of the current operators is contracted with its four-
momentum(i.e., the four-momentum absorbed by the cur-
reny, a Ward identity is triggered. The pinch part is then
identified with the contributions involving equal-time com-
mutators in the Ward identities and therefore involve ampli-

To=g%uyy*u;

-’I\—3:é,

whereu; are the external spinors arglis the gauge cou-

pling. _ . _ tudes in which the number of current operators has been
The one-loop expression fdid,,(q), calculated in the gecreased by one or more. As emphasized in Réf, this
Feynman gaugé=1, is given by[10] procedure has an important advantage when one considers

- (=1) b external particles endowed with strong interactions. Because
I, ()=, “(q)+t,,I17(q), (2.5 the contributions from the equal-time commutators are not
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affected by the dynamics of the strong interactions, the aforethat the one-loop PT Green’s functions satisfy again tree-
mentioned identification ensures the universality of thelevel Ward identities[18,21,25. Therefore, the wave-
“pinch parts.” That is, the cofactors of the current operatorsfunction renormalizations for the Py and WW self-
in the pinch parts are the same whether the external particlemergies contain the running of the gauge couplieﬁsf)
are leptons or strongly interacting fermions. and g2(q?), respectively[12, 13. Denoting by II,, the

To illustrate the method with an example, consider thegauge boson PT self- energ@ﬂ)ﬁ or HZ ), by . the
non-Abelian partiU}(W) of the one-loopZyy vertex; it mixed PT self-energy of a gauge boson and its associated
corresponds to the Feynman diagram with an inconfing unphysical scalarl?jw ' _H+ H or HZX) and byQ
splitting into twoW bosons, which then couple to the incom-
ing and outgoing massless fermions.

The functioniUQ(VV) can be written as

the PT self-energies of the unphysmal scald@(or HX)
the following WI's hold[26]:

g q*il,,—iM®©,=0,
iUz (W) f 2n )DA (K)A75(k+a)[g””(2k+a)* o
9“0 ,+iMQ=0, (2.14

~g"(2q+k)"~ g (k= )" ) )
g“q'11,,—M?Q=0.
f dPxe*X(f| T*[IF (0 I{O)]li),  (2.10

Additional WI's between other PT Green’s functions can be
found in the literature. As was explained in detai[ 1], the

h
where PT Ward identities are instrumental for the final cancellation
. - krk? of gauge dependencies $matrix elements.
AP (k&) = 12| 94~ (1= &)z 2 AVHE (213 Imposing the elementary requirement that the renormal-
I

ized PT Green’s functions should respect the same Ward
with i=W,Z,y andM ,=0, are the propagators of the gauge identities as their unrenormalized counterparts, we obtain the
1 1 ’}/ 1

bosons in a generak; gauge. An appropriate momentum following relationships between the standard model renor-

say,k, , from the three-gauge-boson vertex or the longitudi-Malization constants:

nal part of the propagator can be transformed into a deriva- A oA

tive d/dx, actin * i i Zw=24%, (219
" g on theT* product. Invoking current con W™ “g

servation, this leads to an equal-time commutator of current R

operators. Thus such contributions are proportional to the 2,1_2,1+5_<32 2.16

matrix element of a single current operator, namely, z —Sw T og2e :

(f|33]i); these are precisely the pinch parts. Calling
iU*(W)P the total pinch contribution from Eq2.10, we and
find, in the ;=1 gauge,

TR L 217
] ) 1 H: = ¢: W—'——A—, .
U;\(W)legsc<f|‘])3\:|l>f(kZ_M\ZI\/)[(k+q)2_M\2/\I] * MW

(212 with

Clearly, the integral in Eg2.12) is the generalization of the > ~ ~ o
QCD expressiori2.6) to the massive gauge boson case. oc _ 5MW_ oMz

=Tz o7 (2.18
C. Ward identities of the PT

Another important fact is that the PT Green's functionsIn the simplified SW2) model that we will use later, we have

satisfytree-levelward identitiesWI's). Most noticeably, the 5 5 _5-2 (2.19
Gl QCD vertexGq;q; satisfies the Ward identity 2T WAy :
q“T,=3(p+a)—3(p), (213 and
& . 3 R R R R 5'\7'2
where 2(p) is the GI quark self-energy23]. The above ZH=ZX=Z¢,=Z’2+ _ (2.20

QED-like Ward identity, which is not true for the conven-
tional '), enforces the equality; =Z, between the vertex
renormalization constanZ; and the quark wave-function As usual, gauge boson self-energies are cast in the form
renormalization constarf,. Consequently, exactly as hap-
pens in QED, the PT vacuum polarization contains the entire
running of the QCD coupling, as shown already by the ex-
plicit result of Eq.(2.9) [10,24.

The above QCD results have been generalized for thand the renormalization constants are defined from the ex-
electroweak part of the standard model, where it was founghansion

ﬁw<q>=gWA<q2>+ng”B(q2> (2.2



3946 PAPAVASSILIOU, PHILIPPIDES, AND SASAKI 53

. . dA(g?) . N The problems mentioned above persist when one com-
A(g?)=A(M?)+(g*>—M?) 92 + A(g?)finite putes the two-loop contributions t. Again, as happens in
4 lgz-m2 the one-loop case, the leading contributions are both gauge
2.22 independent and finite. As soon as the subleading contribu-
as tions are taken into account, the pathologies familiar from

the one loop reappear: The results are again gauge dependent

- - - dA(qZ) and, even when computed in the Feynman gauges
SM?=RdA(M?)], Z '=1- i : éw= &= &,=1, which obviously satisfies the one-loop con-
a2=Mm?2 2.23 dition of Eq. (3.5), are ultraviolet divergent. Evidently, Eq.
' (3.5 breaks down beyond one loop.
I UNIVERSAL A Before we proceed to the study &fdefined via the PT, it

is worthwhile to further elaborate on the gauge independence

In this section we focus on the universal parpofiefined ~ Of the leading two-loop contributions to the conventional

by the PT. In particular, we will emphasize issues of gaugénentioned above. There is a simple way to understand the
independence and finiteness. gauge independence from the point of view of the PT; sim-

Traditionally, the universal part is defined as in Eq. Ply. the S matrix is gauge independent, and there are no
(1.2. A vanishes in the limit of exact S custodial sym- ~ vertex or box contributions proportional to;" which could
metry, e.g., foiM,=M} (no hyperchargeand for degener- cancel any possible gauge dependences coming from the

ate fermion doubletsn,=my [27]. self-energy graphs. Therefore the conventional answer coin-
The fermionic one-loop contribution is given p¥] cides with the PT answer and is gauge independent. Conse-
quently, one is allowed to choose any convenient gauge for

Zmﬁmg mg calculating these leading self-energy contributions. There is,

AfY= Ncﬁzﬁz Mg +mg+ WM—z . (3D however, a subtle point which is worth clarifying. In particu-
m lar, if one chooses to work in the Feynman gauge-1),

only graphs with scalars and fermions contribute to this or-

nqer. This is not generally true, however, for an arbitrary value

fermion doublet is large, as in the case of the top and botto fth Py tér Th hs of Eia. 6 bel
quarks, the factor in square brackets in E21) is replaced ot Ihe gauge-lixing parame et € grapns of Fig. © bEIoW,

2 . . . for example, which do not contain leading contributions in
by m¢, the heavy fermion mass. By neglecting the con'[rlbu—the Fevnman gauge. will give rise to IeadimgA contribu-
tion of all light fermions, the one-loop fermionic contribution . >y gauge, give )

tions in any other gauge-fixing choice, as a result of the

Clearly,A{Y—0 asm,—my. When the mass splitting in the

's written as longitudinal parts of the gauge boson propagators. Such
ALY =Nx,, (3.2  terms arise by virtue of the elementary Ward identity
where K,y“PL=KP_= S Y(p+k)PL— PRSfl(p) +miP . —m;Pg,
(3.9

G,m  g® . -
Xi= 2~ 1672 A2 (3.3 where P | =(1%* y5)/2, triggered by the longitudinal term
8\2m ™ w k#k” of the gauge boson propagator. It is this Ward identity,
) . 4 . .
If one attempts to use the definition of EG.2) to include which wherzl applied for bOFh af‘d"  QIVes fse to an e>'<tra.
power ofm;, thus converting pieces of a diagram, which is

bosonic one-loop corrections, one is faced with two prOb_subleadin in the Feynman gauge, into leading in some other
lems:(a) The result is¢ dependent(b) unless computed in a 9 Y gauge, 9

special class of gauges, it is ultraviolet divergent gauge. Obviously, the characterization inflividual Feyn-
In particular, regarding the first point, the dependence o eaneng(;:EQ; t:rsne:ﬁa$'lr?gre% Tg i;éble:ggr]gl 'Zugzu%ﬁ' dia-
the gauge-fixing parameter enters through the tree—Ieveq P : ' g gauge,

propagators for th&V, the Z, and the photon, which, in the grams must be considered and their leading contributions

R, gauges, are given by E2.11). In addition, the tree-level extracted. It is only after all such contributions have been

§ y . . y - .

propagators of the unphysical Goldstone bosons are given b&OIIECtEd_ and addgd up that_the qorrecndependent answer
merges; clearly, it will be identical to the one obtained in

the Feynman gauge. It is instructive to briefly highlight the
(3.9 mechanism enforcing the cancellations of the gauge depen-

i
iAS(q'gi):qz——giMiz’

dences. To that end we can employ the elementary algebraic
with (s,i)=(¢,W) or (x,Z), and they also explicitly depend identity
on &;. The conventional one-loop self-energies depend ex- _ 2
;S o 1 1 (1-6M
plicitly on the gauge-fixing parameters, evengat=0. 5 5= — 5+ — — > (3.7
Regarding pointb), unless the relation q°—¢éM° g°=M°  (g°—M)(g°—EM9)
Ew= gysinZQWJr £,C02 6,y (3.5  inthe graphs containing scalars and fermions. The first term

on the right-hand sidéRHS) of Eq. (3.7) is the Feynman
between the gauge-fixing parametéisis satisfied, the re- gauge scalar propagator, whereas the second term resembles
sulting expression forA contains a term proportional to the longitudinal part of the corresponding gauge boson
1/e. propagator. The final cancellation proceeds after employing



53 TWO-LOOP ELECTROWEAK CORRECTIONS TO THE ... 3947

the elementary Ward identity of E¢8.6). Finally, it is inter-  where in the last step we used E§.16. SoA of Eq. (3.8
esting to observe that in the Feynman gauge the set of graphsfinite for leading, subleading, and bosonic contributions.
which contains the Gl leading answer coincidepologi- Another way to establish the finitenessbfs the follow-
cally with the graphs one would consider in the gaugelessng. After computing the off-sheNVW andZ Z self-energies,
limit, e.g.,g=g" =0, whereg andg’ are the gauge-coupling \hich have the form of Eq(1.7), we use Eq(1.8) together

constants for the S@) and U1) gauge groups, respectively. with the Ward identities of Eq(1.6); we can then write, for
There is, however, a significant difference: In the gaugelesg

limit the Goldstone boson propagators used to evaluate these

graphs are masslesemember thaM =3g(¢), and there- . A,(0) A,(0) d .
fore M—0 asg—0); on the other hand, in the full theory A= M2 M2 =[d—qz{ﬂ¢—ﬂx}} (3.13
the Goldstone boson propagators are in general massive w z q2=0

([k?—&M2]7 in general,[k?®—M?]"! in the Feynman
gauge. Therefore, the gauge-invariant answer of the full
theory and the gauge-invariant answer of the gaugeless 17 (g2)=1I.(M2)+(a2—M2)[1—7-11+11%(q?
theory[28] do not coincide; they only become equal if one o a) #Miw)+(q wi o] o)
takes the limitM — 0 in the final gauge-invariant answer of gnd

the full theory. A

. After th|s cﬁgressm_n we return to the case of the sgb_lgad— HX(q2)=HX(M§)+(q2— M%)[l—z;l]JrHL(qz),
ing contributions. If instead of the conventional definition

one defines\ in terms of the effectivaVW andZZ propa-  Where

gators obtained via the PT, all problems associated with the

gauge independence and finiteness of the subleading parts 1_271_dH¢(q2)
6~ a2

We then use the fact that

are automatically solved. We dendiethe universal part of dqg 2=M2
Ap defined via the PT as W
o A and
~ Aw(0) Az(0) .
A— M\ZN - M% . (38) _"_1:dnx(q2)
X dqz q2:M§.

It is important to notice the absence of thé mixing term in
the above definition; this is so because in the PT #Ze  Taking the difference of the two scalar self-energies and us-
self-energy vanishes gf=0, e.g.,H;ZV(O)zo. The PT self-  ing the fact thar%_d)zﬁxsi, we have
energies are individually independent of the gauge-fixing pa- _ R R R R
rameters, and when combined according to E39), they 11,(0%) — 1L (g% =[1I4(MG) -1 (M3)]+(1-Z7})
give a UV-finite answer. ) ) T,
Although the gauge invariance of the result in the context X[MZ=My]+[11,(q%) —IL(g%)].
of the PT is guaranteed by construction, its finiteness may be (3.14
less obvious. There are two equivalent ways of understand-
ing why the PT definition gives rise to a finite expression,The first two terms on the RHS of the last equation are pro-
both relying on the Ward identities presented in Sec. Il. Writ-portional to 1£, but they are constant, independentodt
ing theWW andZZ self-energies in the form Therefore, upon differentiation with respectd®, they van-
~ . ~ ~ ish. The third term ig)?> dependent and finite, and after dif-
Aw(G?) =AW(M3) +(q?—MZ)[1-Z, 1+ A (g% (3.9  ferentiating it with respect t@? and subsequently setting
q?=0, we obtain the UV-finite expression far Clearly, the
and above proof of finiteness does not depend on the choice of
R R R . the renormalization point; so instead of expanding around
A (gD =A(M2)+(g?—M2)[1-Z; 1+ Al(g?), g>=M3, andg?>=M2, we can equally well expand around
(310  g?=u? andg®=pu3, respectively.
It is important to emphasize that all properties of the PT

Eq. (3.8 yields self-energies stemming from the PT Ward identities hold for
. . the corresponding conventional self-energies computed in
< Al(0) AN the background field metha@®FM) [29] for everyvalue of
A= Afgy+ M\2N N M% ' (3.19 the gauge-fixing parametef%’ and §é used for the quantum

fields and toall orders in perturbation theory30]. Conse-

A|div, which contains the terms proportional ta 1and pos- quently, in the BFM .the finiteness ot is true for every
sibly finite pieces, which we neglect at this poiris given ~ value of the gauge-fixing parameter and to all lo¢ps].

by The final answer is, howevempt gauge invariant. This is so
because in the BFM the gauge boson self-energies depend in

A AW(M\ZN) Az(Mé) . general on the choice of gauge-fixing parameEQEﬂ (the_se

Algy= - +(Zyt-2;H=0, (3.12  gauge-dependent terms are, however, UV fjnités remain-

M\%v M% ing gauge dependence daest cancel when the difference of
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IV. SUBLEADING TOP CONTRIBUTIONS TO A
IN THE SU(2) MODEL

)]

T 1T 1T 1 | T 1T T | | L

In this section we apply the formalism developed thus far
to the case of an S@) model, which corresponds to the
standard S(®2)xU(1), with electromagnetism turned off.
This means thats=0 and c=1 or, equivalently,
Mw=Mz=M, and there is no photon. In such a model, a
nonvanishingA comes only from the mass splitting within a
fermion isodoublet; in particular, there are no genuinely
bosonic contributions ta, sinceMy=M5. We ignore the
contributions of all light fermions and concentrate on the top
quark contribution. Since at one lodpcontains only fermi-
onic contributions, it is automatically gauge independent and
UV finite. Obviously, at one loop the PT definition coincides
with the conventional one.

At two loops there are two kinds of contribution($} the
leading, of ordermf, which originate from graphs contain-
ing fermions and only scalars, without gauge bosdinsthe
subleading, of ordenmtz, which originate from the graphs of
(i), if scalars are replaced by gauge bosownsdr Z).

€q The leading contributions of a very heavy top quark to the
conventionally defined were first computed ifi4], in the

FIG. 1. Theéy-dependent part ol in the background field [imit where My,=M;=M_,=0. The case of an arbitrary
gauges at one loopffor My=300 GeV and in units of Higgs boson mas$/,, but still My,=M,=0, was com-

9%/ (167%)]. puted in[5,6], and the cas#,=M,=M #0 was presented

in [7]. In the above calculations the Feynman gauge was
the WW andZ Z self-energies is formed in order to construct used; as already explained in Sec. lll, this convenient choice
A already at the one-loop level. So the one-loop bosoni®f gauge is legitimate, since the result is guaranteed to be
contributionAfjl)lBFM, defined via the BFMbff-shellpp and ~ 9auge independent and UV finite. Clearly, the PT and con-

X, Which are both explicitly,, dependent, has the form ventional definitions are identical for the leading part of the
' ’ calculation.

The subleading top contributions to the conventionally

Aﬁl)|BFM:AEl)|§Q:1+ Afal)(fq)- (3.15 definedA were first addre;sed (r]; it was explicitly shown

that the resulting expressions contain leftover terms propor-
tional to 1k. In addition, it was pointed out that this result,
calculated in the renormalizable Feynman gauge, was in fact
. ‘gauge dependent, and it was correctly argued that because of
given by this theoretical shortcomings the inclusion of subleading cor-
rections deprives the conventionally definkdf any physi-
cal meaning. In order to restore gauge invariance and finite-

(&9

1 1 [ | ’ [ | ( 1 | 1 1 1 i

A

|
[AV]
T T T 1 | T 17
| | ! | I |

|
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O
—_
(@]
Iav]
(@]

Ag1)|§QZ1=A§,1) is the gauge-independent bosonic PT result

A 9° 902—8c4+o(502—6)|n(02) ness, several contributions from vertex and box diagrams
b 64r? s’(c?— o) were included; however, since no guiding principle such as
2 the PT was followed, these contributions rendered the an-

- 235 d In(o)|, (3.16 swer process dependent. Furthermore, it was suggested that,
ci(c“~o)(1l-o) since the subleading contributions cannot be defined in a

process-independent way, the possibility of resumming them
[33] should probably be abandoned. Since no closed expres-
whereo=Mg/MZ andMy is the mass of the Higgs scalar. sions for two-loop vertex and box graphs exist yet in the
AE,”(gQ) carries explicitly the gauge parameter dependencéiterature, the process-dependent parts were calculated ap-
(one sets for simplicit3§é=§‘(’gVE £q). A{,l)(gQ) vanishes at proximately, up to ordeIO(MZ/th), for the case ofv,e
¢o=1 and wherM,=M; (s=0), but is nonzero otherwise; scattering. The final conclusion was that the part\pf that
its explicit expression has been reported32]. As one can one extracts with their method, for the casewge scatter-
see from Fig. 1, the gauge-dependﬁéﬁ)(gQ) is unbounded ing, receives sizable corrections due to subleading top con-
from above and below and is numerically significant. Wetributions.
observe that although the BFM endows the Green'’s function In the context of the PT, all aforementioned pathologies
with the desirable theoretical properties, it fails to address thare automatically bypassed. The answer is gauge indepen-
crucial issue of gauge-fixing parameter independence, as agignt by construction, UV finite, and manifestly process inde-
other gauge-fixing procedure for that matter. Nevertheless, pendent. We conclude therefore that in the context of the PT
provides a convenient starting point for the implementatiorthere is no limitation whatsoever in defining the subleading
of the PT[23]. top contributions to the universal. In particular, the neces-
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sertions of a Higgs boson or a gauge boson.

sary condition for attempting the resummation of the univer-

FIG. 2. Subleading two-loop graphs containing self-energy in- W e
sal part ofp, i.e., the process independence, is still valid. It ;@‘%
I

turns out that the relative size of the subleading contributions  w,
compared to the leading is in accordance to what one would ---%
naively expect from a power series whose expansion param- ..~
eterr=M?2/m? is of the order of 1/4.

We now proceed to the more technical aspects of our
calculations.

(@ It has been. known for years that when computing the FIG. 4. Rest of the subleading graphs containing bosonic self-
PT Green’s functions any convenient gauge may be chosegnergjy insertions.
as long as one properly accounts for the pinch contributions

within that gauge[10]. In the context of the “renormaliz- - ne of graphs we are interested B5]. We therefore choose
able” R, gauges, the most convenient gauge-fixing choice igy \york in the BFM Feynman gauge. This correspondence
the Feynman gauge€1). This is so because the longitu- peqyeen the PT and BFM 4t,= 1 [36] breaks down for the
. o SO Ii\rvo-loop purely bosonic paf87]. The technical details lead-
vanish foré=1 and the only possibility for pinching stems ing to this conclusions will be presented|[i8g].
ILOemtetlrs]i tgfretﬁ;gb?:s?r:evaerr:;cnegsé r':Zr:,';laosf rfs%%]%'reigﬂe (b) Using the algebraic identity of E¢L.8) and the WI of

IX . ~ . .
further facilitated if one quantizes the theory in the contextEq' (2.14, we write A as in Eq.(3.13. Therefore the entire

X . lculati il lculati h ivati f h
of the BFM. Even though the Feynman rules obtained via théiixn?ggn;:;ﬁ gﬁ;vvcnt?ncgi;: a;gg E&te:%erllxaitrll\ézeoﬁg?c

BFM are rat_her !nvolyed, they become particularly suited forures we show the complete set of two-loop irreducible
one-loop pinching if one chooses the Feynman gauge

(ég=1) inside the quantum loops. In fact, all possible one-

1

loop pinch contributions are zero in this gauge; consequently, X t N8 t fz
the one-loop PT Green’s functioahich one can obtain for b=l |t yeee Bt == -t B
everygauge areidentical to the conventionalGreen'’s func- INGW N4 N
tions, calculated in the Feynman gauge of the BFM. This o b .

property of the Feynman gauge in the BFM persists in two-
loop calculationnly for the subset of diagrams which con-
tain at least one fermion loof84], which is precisely the

FIG. 3. Subleading fermionic triangle graphs that contain a
Higgs boson. FIG. 5. Rest of the subleading triangle graphs.
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. . , . graphs such as those depicted in Fig. 8, in order to yield zero
¢@ F; X@ % in the RHS of the WI. For example, we have
b [ t t
q”qv[HYLVVS(a)+HY/,VV 8(0)]_ M\Z/V[H¢5(a)+n¢8(d)]:0&4 1)

FIG. 6. Subleading fermionic bubble graphs with a vertex cor-  g#q"[IL )% +IT}", 82— M\ZN[H"%(C)#—H"SS(W]:O& )
rection. 4.2

) 5 ~ In the above equations, we note that although the graphs of
graphs that contribute onlyn; terms toA in the SU2)  Fig g for the self-energies of the scalars vanish for

model. Graphs with photons or with COUp”ngS proportionalsinng(), the Corresponding ones of the gauge bosons do
to sinf, in the standard model are omitted. For examplenot.

graphs such as those shown in Fig. 8 for the self-energies of Using the notation

the scalars do not contribute, since they contain couplings

proportional to sif,=0. In our calculation we have used a Gy(g%) = —i(Feynman graptk),
fully anticommutingys since this does not produce any in-
consistencies for the graphs we have to compute. we find it more convenient to act with the four-Laplacian

The validity of the Ward identity of Eq2.14) for the full  instead of the regular derivative gf. Namely,
standard model has been verified by directly contracting in-
dividual graphs byg*q” beforecarrying out any loop inte- dG(g?) 1 0 Gu(q? 43
grations. In fact, the Ward identities of E.14) hold indi- Tdf 50 [HaCGk(a%) lg=o0- (4.3
vidually for each of the graphs shown in Figs. 2—7, where
the corresponding graph of the gauge boson self-energfhis facilitates the computation enormously since it reduces
which is to be contracted bg“q"”, can be obtained by re- it to straightforward algebra that can be carried out easily by
placing the externalp¢ (yx) legs byWW (ZZ), respec- hand. This procedure reduces each graph down to standard
tively. The only exceptions are some of the triangle graphsscalar two-loop integrals at zero external momentum, for
i.e., Figs. %a) and Hc), which need to be combined with which explicit expressions can easily be fouisge Appen-

q2=0

i
---©--- 2. ---@--‘
b b
otl ot2 FIG. 7. Subleading fermionic bubble graphs
with self-energy insertions and their relevant
counterterms.
b i i 1
i t t i
t [ b t
o B Y é
¢
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function g(x) stems from the on-shell counterterms, while
f(x,1) from the two-loop scalar integrals; they too can be
expressed in terms of logarithms and dilogarithms. Explicit
intermediate results for each of the set of graphs of Figs. 2—7
are given in the next section.

V. CALCULATIONS AND RESULTS

a b In this section we present the explicit results of the two-
loop one-particle irreducible contributiod$) to the univer-
sal partA of the p parameter. We neglect the contributions of
the light fermions and consider only the effect of a single-
fermion doublet {,b), with large mass splitting. The mass of
the lightest partner in the doublet has been set equal to zero

t t (m,=0) from the beginning of the calculation; this has pro-
M;_Q 3:‘_@ duced no mass singularities. We decompas® in three
z X Z WX parts as
Tt L e Bt T b .
AP = NG+ M+ G, (5.9

where A,((fgd are the graphs with scalars and fermions that
¢ d contain leading contributions proportional mf‘ as well as
m?, A%),are the graphs with fermions and gauge bosons that
FIG. 8. Subleading graphs that contain a mixed self-energy infontain contributions of orden? only, and finallyA{Z)is the
sertion. The graphs that correspond to the scalar self-engegly —Pure bosonic contribution which is independentgfand in
vanish for siri,=0. our approximation is zero. The results are given in terms of
two variablesh=M2/m? andr=M?/mZ, whereM,, is the
dix A). As it turns out, the results can be analytically ex-mass of the Higgs boson amu, is the pole mass of the
pressed, like the leading corrections, in terms of logarithmsheavy quark(top) in the douplet.
dilogarithms, and the two functiong(x) and f(x,1). The The leading contributiond(2), are given by[39]

lead

A2 =NxZR(h,r)

) 2h w 5 h r _—
=Nx?{ 23— 4h+ —— —11r + —r2—| 2— = | /hg(h) + 5\rg(r) + r2n?r
h—r 3 2 2
1-r)2n(1 6—2h—12r 32, 20° 2h(1+h) 8 |
—(1-r)n(1-r)+| -6—2h- +or +(h—r)2+ oy T |Inr
+_ 4h+hz 2h° 2h hl h
| 2 (h-n2 ="
[ (1-h)2  _(1-h)3+(1-h)?|
—(1—h)2 _
+_ (1—h) +2h(h_r)2+2 — Lio(1—h)
[ 1—h)? 1—h)3+(1-h)?
+ —11+10h—2h2—2hr+16r—5r2—2h( )2—2( )+ ) Liy(1—r)
I (h—r) h—r
+-6 ah+h2+ 222" 2h1_(3_h)2 f(h,1
| (h—r)? h—r (h.
26— 1dn-+ 22+ 2hr— 30+ 7r2— 202" HE-hF 4 2
+_ —14h+2h“+2hr—30r + 7r°— =2~ T (r,d;, (5.2

wheref(x,1) is a function stemming from the two-loop scalar integfdld,41,§ and is given in Appendix A, whilg(x) is
a function that originates from the on-shell counterterms,

VA—x[7—¢], 0=x=<4,
g(x)= 0, x=4, (5.3

Vx=4In(—=¢),  4=x.
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with the variablesy, £, and ¢ defined as if6]:

4 Ji-y—1 [ X
y=;, {=W, ¢=2arcsv(7). (5.4

By taking ther—0 limit in Eq. (5.2), one can recover the result of EQ2) of [6] where the leading contributions were
calculated in the approximatidd ;= M,=0. In the analytic formula of Eq5.2), the apparent mass singularities cancel in the
relevant limitsh—r and r—4. For example, in the—4 limit the terms that contaim—4 in their denominator give
4[2Inr+1(r,1)]/(4—r)—(4/3)(— 1+In2). In the limith—r, Eq. (5.2) reduces to

2

A2 =Nex? 19-17r + 77-?rz—(Z—r)\/Fg(r)+rzlnzr—(l—r)zln(l—r)—2r(10—r)lnr
+2(—6+14r —5r?)Liy(1—r)+4(11—-13r + 3r2)f(r,1) ;. (5.5

Finally, taking the limitr — 0, one obtains the result ¢#]:
Agdh=r-0=—No¢(27?~19), (5.6

where the leading contributions of a very heavy quark were calculated with all other masses neglected.

We now present our result foﬁgﬁ{,in full analytic form. We decompose the result as

AC)=No@[AD + AP + AR+ AP + AR + A2+ A2)) (5.7

sub—
and give the analytic form of each intermediate rez&&;rf as well. Each&i(z) equals the contribution coming from the graphs
shown in Figs. 2—7, respectively. This grouping of graphs is dictated by their topology, the particles they contain the loops, and

the WI of Eq.(2.14).
The graphs of Fig. 2 that contain bosonic self-energy insertions and the Higgs boson give

NP h® 2 ! s ) . (1=h)? (1—h)2> .
Al =4r —E—mm h+ _Z+4(h—|’)2 In°r — (h_r)lez(l—h)+ —1+—2'(h_r) L|2(1—r)
(2—h)(4—h) (Z—r 2—hh(2-r)+2r
O A T T = e A (59

In the difference of the self-energies, the grapt® 2nd 2 () cancel forM,=M; and need not be computed. In the-r
limit the above formula reduces to

772+ L L1+
E 4(4—_r)nr—znr— |2( =)

r—2(1

A 1
ASZ)Ih_r=4r2[— r §+r(4_r))f(r,1)}. (5.9

For the uninteresting value=4, the above result and the results that follow are all regular as can be seen from the explicit
values off(4,1) andf’(4,1) given in Appendix A.
The contribution of the graphs that contain a fermionic triangle and a Higgs boson, depicted in Fig. 3, is given by

2 1 hlnh—rlnr(h(4—h) h?2—6h+6 —r?+2rh—6h+2r r2-6r+6
Ar=an it ( _h—r) h—r |(h-nz h-r '™ ( -z n-r )iD
(1-h)?2 (3—h)(1-h)| (1-h)2  (3-r)(1-1)|
((h—l’)2+ P )le(l—h)-i- 1- (h—l’)z_ - )le(l—r)}. (5.10

Whenh=r this reduces to
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AP, =2r|2+ Inr +(2r —3)Li,(1—r)+

2 2
7—2r——+—>f(r,1)}. (5.11)

2+ 1
4—r ror(4—r)

The graphs of Fig. 4, which contain bosonic self-energy insertions without the Higgs boson, give

2
G PPN+ = r+4(2+ 1) Lip(1— 1)+ 2
3 4—r 3 2

2 ! 3 f(r,1 5.1
- +F—r—ﬂ (r,1}. (5.12
Graphs 4a) and 4() as well as 4c) and 4(y) are equal foiM =M,y and cancel in the difference.

From the fermionic triangle graphs with unphysical scalars of Fig. 5, we obtain

272

AP =2r .

8+6

1 1 3
_ _ — 20 _ —6li _ —Ar— — 4+ —
1+4_r)ln r—2rin“r r—6Liy(1 r)+(l4 ar rJrél_r)f(r,l)}. (5.13

The fermionic bubble graphs with vertex corrections of Fig. 6 give

2
~ v
AP =r|—2r+r¥(4-r)5+2 Inr +r2(4—r)In’r —4r(1—4r+r?)Liy(1—r)

4 2
e

2 2
——F+8r—6r2+r3

+
2 4—r

f(r,l)}. (5.19

From the graphs of Fig. 7, which contain fermion self-energy insertions, we obtain

2
A2=r| =2 et 2 a0 r(a-7r) Tt 1~ 3r+ | (4 Tr)In?r 4 2(— 74 1 — r2)Lin(1-1)
6 e T 3 4—r 2

2
5 5
+2 27+H—F—34r+8r2)f(r,1)}, (5.15
|
wherel ,= yg+ In(7mP). . g2 2— s 9o o
This last set of graphs requires counterterms which are2(P)= 75—z —,—[Ba(p"m;,M2) +2B4(p*,0,My)],
solely due to the one-loop mass renormalization of the top (5.18

guark. We perform the renormalizatiom shell The fermion
two-point functionI'; is written as

é
By(p?,m?,M?) =2 —Fy(p>,m*,M?), (519

Li(p)=i(p—mof) —iZ¢(p), (5.16
where
where,; is the fermion self-energy function. The superscript
G will denote the gauge boson’s contributionX@ shown in 1 1+ s
Fig. 9. It is given by o=_~ve~Inm Pri=—%—, (5.20
2P =pPLEEL(P), (519  and
. 1
with Fl(pz,mz,M2)=f dx x In[(1—x)m2+xM?—x(1
0
—x)p?]. (5.2
w Z
;’N\’V‘"E (;‘J\NV\"% The mass counterterm is defined by
t —» 1 t - 1
b ¢ Mgy = M+ Sm, (5.22
a b

and is determined by the on-shell renormalization conditions

FIG. 9. Gauge boson contributions to the one-loop top self- —
energy ’ PP (PP p-m =0, U(P)T(P)lp-m, =0, (5.23
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5mt_ lEG o 2 my -— . m+6mzll2 -
™2 pL(pf=my) goM—0¢o¢/¢—> Iy o 2o PV
— gz 1 | 2 3
=302 gl Lyetin(mmy]| =1+ where we have omitted wave-function renormalization of the
) ) fermion fields, since it will cancel against the corresponding
o1 Inr + (1-1) In|1—r|— r_z\/Fg(r) wave-function renormalization of the fermion propagators
8 2 8 ' inside the loop. Then at one loop the modification reads
(5.29
i i ati i ; om oM 1 om
Th|§ renormalization of the t9p2 guark mass gl.ves r|.se to 14+ 02y —— ——+ 2 0Z,=1+—,
two kinds of counterterms foA?). The mass-insertion m M 2 m

sub-
counterterms are shown in Fig. €t(,ct3) and the vertex

counterterms shown in Fig. €{2,ct4). The mass-insertion _ )
counterterms diverge asel/which cancels in the difference, where in the last step we have used E220. Finally, the
and they give a finite contribution %{%). In terms of scalar result for the counterterms is

integrals, this contribution equals

3 5 5
. ~g®> m?[ém][ 2-D m @2 _ S 3r—rle-> —2(1—r1)2
Agi)t(mi):|WW o 2 5 ((mm)—ﬁ) Aga=Tr . 6Im+2 3r r(6 2r)lnr 2(1-r)
1
—m2(mmm}, (5.29 ><In(1—r)+§(r—2)\/Fg(r)}. (5.27

where henceforttm=m,. The vertex counterterms turn out _ )
to be just the one-loop fermion graphs multiplied by the We note that after the inclusion of the counterterms the
factor Sm/m. In terms of scalar integrals, they are given by terms proportional to ¥ present ifA{? cancel and the final
result emerges finite as expected. In the limit where the mass
splitting in the doublet is zero, which in our case means
' (5.26 m,=m,=0, all of the above expressions vanish, as can be
seen from the asymptotic expressions of the functions
To see how this comes about, we note that upon renormagy(x), f(x,0), andf(x,1) if we takex—o (for x=r or h).
ization the ¢y (and similarly theyy) vertex will get Adding together Eq95.8)—(5.27), we report, as our final
modified to result,

2 2-D m

Tﬁﬁ‘(mm)

Ao i 9 m? [ ém
sctw) = (2% M2| 'm.

A2)=Nx2S(h,r)
2

) 3B 1 ,m 1
=NoxP2r| 22— —r+ = —r(8+3r+r )€+Z(r—2)\/Fg(r)

-l— 1 4L—+6+2&+52 —EL|<+JL—1 —i—lh

h—r h—r I L L h—r|"

1-r)an|1—r|+ rh® 4+11213|2 2|2h
L AT it S L LT L

(1-h)? (3=r)(1-r)
2" hor

[ (1-h)?  (3=h)(1-h)| .
+-(1—2r) (h=r)? + — }Uz(l—h)

+8—12r —7r%+2r3

—1(1-2r) Lio(1—r)

r(2—h)(4—h)+r(4-r1) (r-2)2+2(h—4)
(h—r)2 - h—r

r(2—h)(4—h)+h(4—h) (h—2)?+2(1-h)
+» CEDE - - }f(h,l)]. (5.28

37+30r+1 ! f(r,1
r 4-r (r.2)
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In Fig. 10 we show together the functior®(h,r) and the gauge-fixing parameter and, at the same time, process
S(h,r), which describe, respectively, the leading and sub-independent; furthermore, by virtue of the PT Ward identi-
leading contributions foM/m,=0.5 orr=0.25 and a wide ties, it is also UV finite.

range of values for the mass of the Higgs boddp,, where We have calculated the two-loop contributions at the sub-
h=Mg/m¢. The functionR(h,r) of the leading contribu- leading orderO(G2m?M32), in the limit My=M; and
tions grows asymptotically in the way described[@]. On  s=0. Their relative size was found to be around 25% with
the other hand, the functio®(h,r) of the subleading contri- respect to the leading ones. From the technical point of view,
butions becomes independentM{, for a very heavy Higgs the computation involved self-energy graphs only, which ex-
boson(as pointed out if7]). For the phenomenologically ist in closed analytic form. The computational part was sig-
interesting range of values fadl,, the two functions have nificantly facilitated by the PT Ward identities, relating the
opposite sign. In Table | we give numerical results Ad¢f) self-energies of the gauge bosoM¥\\V andZZ7) to the cor-

for different values of the ratiod/m; and M /m;, in units  responding self-energies of the would-be Goldstone bosons
of Nox2. The first entry of each column corresponds to the(¢¢ and xx). These Ward identities, which are valid for
leading contributionA(2),, while the second gives the total both leading and subleading contributions, reduce the task
correctionﬁ(z)de A We notice that for a light Higgs bo- into ca_lculatl_ng Goldstone boson self-energies only. _
Having laid out the framework of how such calculations

leal sub* N
(@) j ibuti (2)
son, whereA™ is small, the two contributionsjgzg and should proceed, it is straightforward to compute the two-loop

Agﬂ,_are_ compa}rable in magnitude, as can be seen from th@orrections to the universal part of tihedefined via the PT
entries in the first three rows of the first foqr columns. Wesor the full SU2), X U(1) standard model. Results in this
also observe that for a light togM/m,= 0.6, fifth column direction will be presented elsewhere.

the two corrections come with the same negative sign for \ye want to emphasize that the present work is not meant
Mp=m;. On the other hand, for the largest part of the pa-, replace a full two-loop calculation of the parameter,
rAarzneter space af, and My, the subleading contributions \yhere vertex and box diagrams should also be considered.
AQ), are approximately 22—27 % of the leadindf), contri-  |nstead, we focused on the fact that it is possible to define a
butions, which is what one would nai\’{ely expect. Fina”y, in phys|ca||y meaningfu| universal part for thﬁ parameter.
Fig. 11 we give the two-loop correctiaki® as a function of ~ This part can in turn furnish us with a reliable process-
My for M=91.19 GeV andn,;=175 GeV. independent estimate of the size of the two-loop subleading
corrections. The need for such an estimate becomes more
pressing given the fact that the technology for carrying out
the full two-loop calculation, e.g., computing two-loop ver-

In this paper we showed that in the framework of the pTtices and boxes, does not as yet exist. Should such commu-
one can define a universal part of tpeparameter, which tations become possible, the universal part of our calculation
satisfies all necessary field theoretical requirementg)dyﬂ“ can still be used unaltered, since it constitutes a Gl subset of
leading and subleading two-loop corrections. Most noticethe full answer.

ably, the PT universal part is by construction independent of Finally, even though the PT prescription used in this work
endows the computed quantities with various desirable theo-

retical properties, the issue of their uniqueness is still open.

S - T ] T T In particular, one may argue that arbitrary pieces can always
be moved around by hand from the vertex or the box, as long
- S - as one does not alter the unig8ematrix. Even though the
above arbitrariness appears to be mathematically possible, it
is severely restricted by a set of basic physical requirements.
First of all, the PT rearrangement takes plaeéoreany loop
integrations are carried out, and it only relies on the funda-
mental Ward identities satisfied by the tree-level vertices of
the theory. In addition, as was recently sho2], the
charged-current PT self-energies contain ophysical ab-
sorptive parts, whereas all possible fixed unphysical poles
cancel. Furthermore, the PT rearrangement ca¢shift the
position of the Gl pole of th&V boson to any order in per-
turbation theory42]. Also, it was explicitly shown up to two
loops[43] that these crucial properties persist in the case of
neutral currents, where theZ mixing effects must be prop-
erly taken into account. As has been argyéd] (but not
explicitly demonstrated one should be able to establish the
unigueness of the PT self-energies, vertices, and boxes by
appealing to the analytic properties of tBenatrix jointly in
the external masses and in the Mandelstam variablasd
t, incorporating allt-dependent subtraction terms into the

FIG. 10. Function®R(h,r) andS(h,r) describing, respectively, self-energy. Clearly, additional work is needed in order to
the leading and the subleading contributiongitéor r =0.25. exploit the dispersion relations satisfied by the PT Green’s

VI. CONCLUSIONS
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TABLE |. Numerical values fon?® in units of Nox? for different values offh=M,, /m, andr =M/m,. The first entry of each column
corresponds to the leading contributio‘m,(ja)\d in the approximationM,=M;=M, while the second gives the total result
A@=AD +AD in the same approximation.

M/my
0.40 0.45 0.50 0.55 0.60
My /m;, Leading Total Leading Total Leading Total Leading Total Leading Total
0.4 —1.926 —0.691 —-1.617 —0.540 —1.328 —0.576 —1.062 —0.833 —0.822 —1.345
0.6 —3.083 —1.737 —2.782 —1.582 —2.500 —1.615 —2.243 —-1.871 —2.012 —2.383
0.8 —4.032 —2.581 —3.737 —2.417 —3.462 —2.443 —-3.212 —2.693 —2.989 —3.201
1.0 —4.828 —3.284 —4.538 —3.110 —4.270 —-3.127 —4.026 —3.369 —3.809 —3.869
1.2 —5.506 —3.880 —-5.221 —3.697 —4.957 —-3.704 —4.718 —-3.937 —4.508 —4.429
1.4 —6.089 —4.393 —5.808 —4.199 —5.548 —4.198 —5.315 —4.421 —5.109 —4.905
1.6 —6.595 —4.837 —6.317 —4.635 —6.061 —4.624 —5.832 —4.839 —5.631 —5.315
1.8 —7.036 —5.223 —6.761 —-5.013 —6.508 —4.994 —6.282 —5.202 —6.086 —5.669
2.0 —7.421 —5.562 —7.149 —5.344 —6.900 —5.318 —6.677 —-5.518 —6.484 —5.978
2.2 —7.760 —5.858 —7.490 —5.634 —7.243 —5.601 —7.024 —5.794 —6.834 —6.247
2.4 —8.057 —6.118 —7.789 —5.888 —7.545 —5.849 —7.328 —6.036 —7.141 —6.483
2.6 —8.319 —6.346 —8.053 —6.111 —7.811 —6.066 —7.597 —6.247 —7.412 —6.688
2.8 —8.549 —6.546 —8.285 —6.306 —8.045 —6.256 —7.833 —6.432 —7.651 —6.868
3.0 —8.751 —-6.721 —8.488 —6.476 —8.251 —6.422 —8.040 —6.593 —7.861 —7.024
3.2 —8.928 —6.874 —8.667 —6.625 —8.431 —6.566 —8.223 —6.733 —8.045 —7.159
34 —9.082 —7.006 —8.823 —6.754 —8.589 —6.691 —8.382 —6.853 —8.207 —7.276
3.6 —-9.217 —-7.121 —8.959 —6.865 —8.726 —6.798 —8.521 —6.957 —8.348 —7.376
3.8 —9.334 —7.219 —-9.077 —6.960 —8.845 —6.890 —8.642 —7.045 —8.470 —7.460
4.0 —-9.434 —7.302 —-9.178 —7.040 —8.948 —6.967 —8.746 —-7.119 —8.576 —7.531
4.2 —9.519 —7.372 —9.265 —7.107 —9.035 —7.031 —8.835 —7.180 —8.666 —7.589
4.4 —9.591 —7.429 —-9.337 —7.162 —-9.109 —7.083 —-8.910 —7.230 —8.742 —7.635
4.6 —9.650 —7.475 —9.397 —7.205 —-9.170 —7.124 —8.972 —7.268 —8.806 —-7.671
4.8 —9.698 —7.510 —9.446 —7.238 —9.220 —7.156 —9.023 —7.297 —8.858 —7.698
5.0 —9.735 —7.536 —9.485 —7.262 —9.259 —7.178 —9.063 —-7.317 —8.899 —7.715
5.2 —9.763 —7.553 —9.513 —7.278 —9.289 —-7.191 —9.094 —7.328 —8.931 —7.724
54 —9.782 —7.562 —9.533 —7.285 —9.310 —7.196 —9.116 —7.332 —8.953 —7.725
5.6 —9.793 —7.563 —9.544 —7.285 —9.322 —7.195 —9.129 —7.328 —8.968 —7.720
5.8 —9.796 —7.558 —9.548 —7.278 —9.327 —7.186 —9.134 —7.318 —8.974 —7.708
6.0 —-9.793 —7.546 —9.545 —7.264 —-9.324 —-7.171 —-9.133 —7.301 —-8.973 —7.690
6.2 —9.782 —7.528 —9.536 —7.245 —-9.315 —7.150 —-9.125 —7.279 —8.966 —7.666
6.4 —9.766 —7.505 —9.520 —7.220 —9.300 —7.124 —9.110 —7.252 —8.952 —7.637
6.6 —9.744 —7.476 —9.499 —-7.191 —9.280 —7.093 —9.090 —7.219 —8.933 —7.603
functions, so that this point of view can be pursued to its
final conclusion. (uluh&,_ﬁ)
dPkdP1
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APPENDIX A: SCALAR TWO-LOOP INTEGRALS T T oo

The scalar two-loop integrals at zero external momentunNote that, within each of the three groups of masses in Eq.
are defined as if40,41: (A1), all masses are equal. Any other integral, for which



53 TWO-LOOP ELECTROWEAK CORRECTIONS TO THE ... 3957

] — ‘ (D=3)(M1|M2|M3)=M5(M;M4|M,[My)

B my,, =175 A

+M3(M;Mo|M | M3)
+M3(M3M3|My|My). (AB)

Integrals of the type NIM) are one-loop integrals and are
defined at the end of this appendix. To prove E&5) we
consider

S(a?)
2k-q
_fd kd I[(I+q)z_M§](k2_M§)[(|+q+k)2—|\/|§]’
(A7)

which is zero as can be easily seen by the shift of variables
|—1+q. Then, from

L L L | | L L ] | I dS(qZ)
0 500 1000 dq2
MHiggs (GeV)

1
2D

[l:qu(qz)]q:OZO, (A8)
92=0

one obtains Eq(A5). To prove the identity of Eq(A6),
FIG. 11. Universal two-loop\® correction to thep parameter ~ Which has also been given [A0], we use

as a function of the Higgs boson mass for different approximations
in units of Nox?. Dotted line: the leading result in the approxima- L(g?) = dedDIi
tion My,=M,=0 [5,6]. Dashed line: the leading contribution in the (9%)= ok*
approximationMy=Mz=M [7]. Solid line: the total correction,
leading and subleading, foMy=M;=M (m=175 GeV, =0 (A9)
M=91.19 GeV.

k

o
(K2=M)(12=M3)[(k+1)>=MZ]

and Eq.(A5).
different masses appear within the same group, can be N [40] the master integralM|M4|M,) has been calcu-

brought to the form of Eq(A1) by use of partial fractions lated. In[41] the same integrals have been discussed in a
different mathematical framework and the master integral

(M|M4|M,) is given. In what follows we use the notation of

1 1 1
2}. (A2)  [40]. With D=4-2e¢ the result for the master integral is
2

2 2 1.2 27 2 2
k“—mi k*—m5; mi—mj;

1
KK—m? kZ-m

1
I 2
All of these integrals can be calculated from knowledge of a (MMM y|M2)=7 [_ 22 2172w+ In—lw—3
single master integral, either by use of recurrence relations,

derived through integration by parts, or by differentiation w? fab
with respect to one of the masses. For example, T 12 (a,b)|, (A10)
1 9 where
(MMM[M;[M)= 5 ——5(MM[M3|M;)  (A3)
2 oM M2 M2
and | M= YE In'ﬂ'M y a M 2 b M 2

The real functionf(a,b) is symmetric in its arguments and
(9 .
(MM|M1M1|M2):W(MM|M1|M2), (A4) defined as
1

. u?
For our purposes, we have found the following two recursion f(a,b)= fo dx( Lio(1=p%) 1- 42 ol
relations very useful:
, ax+ b(1—x)
(M) (M3M3)—=(M3)(M{M 1)+ (M2)[(MM1) = (M3M3)] m= x(1-x)

=(MZ=M3—M2%)(M3M3|M M)+ (M2+M35—M3
(M1=M3=M3)(M3M[My|M2) +(M31+M2=M3) with Li , the dilogarithm function:
X(M1M4|M;|M3) (A5)

In(1—-y)

S (A11)

Lis(x)=— foxdy

and
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The explicit form off(a,b) is The following relationships are useful in expressing the
results in terms of only these two functions:
f(ab)= — Sina Inb+ 22 7° X2 1 1
’ 2 6 T2 ﬁ) f(—,0)=—f(a,0)——ln2a,
a 2
iy = 22) ke LY 11 > 1
1 4y 40X —— =—(1—— f(a,1)— =In?a. (A16)
a'a a 2
1 .x 1 X
Z'” _1_ Z'”zg ) (A12) In our calculations we have encountered two-loop inte-
grals with three, four, and five propagators. All integrals with
with three propagators are converted to integrals with four propa-

gators using Eq(A6). Most of the integrals with four propa-
J =V1-2(a+b)+(a—b)?, x;,=i[1+b—axy ], gators can be directly obtained from Heé10). For the in-
' tegrals (00m|M) and (000|M), we use Eq(A5) and write
y1,=3[1+a-b=xy 1. them as

1
It turns out that all of our results can be expressed in (l—r)(OOImIM)=W(m)(MM)—(Hr)(MMImlO)
terms off(a,0), andf(a,1). These functions are explicitly

given by and
2
T —
f(a.0)=Liy(1-a)= 5 —Lij@)—Inain(l-a)  (AL3) (00/0[M) =—(MM|0]0),
with r=M?/m? as usual.
and The integrals with five propagators that we encountered
are
( 1 772+2L_ (§)+1| zé’ 4<a 1 9
-—— = i =In“¢Z|, : - —
iyl 6 2 2 (MMM|m|m) 53 > (MM |m|m)
f(a,1)=4 —4In2, a=4, i 2Inr
2 i » “amz|e 1Tty
_—[_ 2 (P ’ a 1
: -1 + 4 f(r,1
(AL4) D),
where ChL(x) is the Clausen function, 1 9
. (MMM|m[0)=5 > (MM|m|0)
Cly(x)=Im[Li,(e™)], (A15)
. _ a1 Inr
and the variabley, ¢, and ¢ are defined as before: = o>m2 ;+1—2IM+ 1=l (A17)
4 ; Ji-y-1 o2 ’(\E) 1 s
y=7, {(=—F——, =2 arcsin —|. 1
a I-y+1 2 (MMM]0]0)= 5 —5(MM]0]0)
The derivatives of (a,1) andf(a,0) are given by (1
L 2 _WZ E+1—2|M ’
S - a#4,
e mimIM)= 5 (il M)
a mmmm|M)= - —(m
471 af(a,r
df(a0) _Ina_ AR PGl
da 1-a 2m°| e ac1
We will also need the derivative o af(Lr)
5 ar
of(a,b) ———|lha+|1-—-|f(a,1)|, a#4, 4 2
b - = 4-a a :ﬁ Z+1_2|m_4_ Inr
b=1 %_%Inz, a:41

which we obtain directly from EqA12). +
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computed from the integrah{) through differentiation:

J
(m”’im”ﬂM)Ia—Mz(mfﬂMM)

. )_f k1 d"
, M (m---m)= [kZ_mZ]n_'(n_l)! d(mZ)n(m)
79f(r,b) "
“m?Z b . .
b=1 The expression forrQ) up toO(e) is
il —2 Inr+{1 2 f(r,1) d"k 2
Tma—r | M AT )Y :f_:- 2 T
(m) 2z =l E+1 Intel 1+ 7 I'm
(A18)
+ 1|2) (A19)
J = .
(MM|mm0)=~— (MM|m|0) 2"
om
_ 9 (mmM|0)= 7 df(r.1) APPENDIX B: FEYNMAN RULES IN THE BACKGROUND
IM? m?  dr FIELD GAUGES
* Inr In this appendix we give the Feynman rules that are rel-
T T Ml evant for the calculation of the subleading two-loop contri-

butions toA. The rules are given for the full standard model,
In addition to the two-loop integrals, our results also con-and the calculations in the text were carried out in the ap-
tain products of one-loop integrals. These integrals can all bproximationMy,=M,, s=0, m,=0:

H,H
i
7 f
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Diagram 1.
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P Wi
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Wi X wiF X
o* Wi
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