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We examine the radiative corrections to the mass of the lightest Higgs boson in the minimal super-
symmetric extension of the standard model. We use the renormalization-group-improved efFective
potential which includes the next-to-leading-order contributions. We find that the higher-order cor-
rections to the lightest Higgs boson mass are non-negligible, adding 3—11 GeV (3—9 GeV) to the
result in the leading logarithm approximation for the range of top quark mass 100 GeV (m«200
GeV and for the supersymmetry-breaking scale Msus& = 1 TeV (MsUsv = 10 TeV). Also we find
that our result is stable under the change of the renormalization parameter t.
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Although the standard model (SM) is highly successful
and in excellent agreement with all the measurements at
preset energies, it is widely believed that SM is not the
final theory for the world of elementary particles. The
minimal supersymmetric extension of the standard model
(MSSM) is one of the most promising candidates beyond
the SM. The MSSM possesses in its physical spectrum
three neutral and two charged Higgs bosons, and there
exists a tree-level relation which implies that at least one
neutral Higgs boson is lighter than the Zo mass (Mz).
Radiative corrections to the masses of these Higgs bosons
have been calculated by several groups [1—14], who found
that they are quite significant, depending strongly on the
top quark mass and the scale of supersymmetry breaking
(MsUsv) or the quark masses. All the above works except
Ref. [6] considered the one-loop radiative corrections to
Higgs boson masses.

Now that the one-loop corrections have been found to
be significantly large, it is quite natural to ask next how
large the higher order corrections would be. Indeed, Es-
pinosa and Quiros [6] have analyzed the "two-loop" ra-
diative corrections to the mass of the lightest Higgs bo-
son in the minimal and nonxninimal (including a gauge
singlet) supersymmetric standard xnodel. They used the
efFective potential (EP) in the leading logarithm approx-
imation and examined the evolution of the Higgs quar-
tic coupling A by renormalization group (RG) techniques
with the one- and two-loop P functions. They found that
the "two-loop" correction is negative and stays within a
few percent even in cases where the one-loop correction
is larger than the tree-level mass.

Recently there appeared interesting papers [15—17]
which discussed the improvement of the EP by using
the renormalization group equation (RGE). It was shown
there that to improve the EP which satisfies the RGE
with up to the two-loop P functions and anomalous di-
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mension p, one should include the one-loop-level poten-
tial with the running parameters into the solution. In
this respect, the work of Espinosa and Quiros [6] seexns
unsatisfactory: they used the EP in the leading logarithm
approximation, which is the tree-level potential with the
ru»ing parameters, and they made use of the two-loop
P functions only to determine the evolution of these pa-
rameters. In this paper we reanalyze the mass of the
lightest Higgs boson (my) in the MSSM using the EP
improved by the RGE up to the next-to-leading order.
We find that new terms which were not considered by
Espinosa and Quiros give non-negligible contributions to
the my. We also find that the predicted values of m4, are
stable under the change of the renormalization parame-
ter t when we use the RGE-improved EP which includes
the next-to-leading-order contributions.

Two basic ass»options were made in their analysis of
the lightest Higgs boson mass [6]: (a) all supersymmetric
(SUSY) partners of SM particles have masses of the or-
der of the supersymmetry-breaking scale MsUsY' , (b) one
linear combination H of the two Higgs boson doublets,
H =(H H ) and H2 ——(H+ H )

H —H1 cos p + z'r2H2 sin p

is light, while the other linear combination, which is or-
thogonal to the forxner one, is as heavy as the SUSY
partners. Under these assumptions, it is clear that the
efFective theory below the scale MsUsv is the usual SM
with one light Higgs boson doublet H. Throughout the
following analyses, we will make the same assxxmptions

(a) and (b). The tree-level Higgs boson potential below
MsUs& is then given by

V„„=—m']H/'+ -'A/H/ (2)

where

—,'A = 4(g,'+g,') cos'2P,

and gx and g2 are the gauge coupling constants of U(1)y.
and SU(2)L„respectively.
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When the neutral component of H acquires a vac-
uum expectation value (H ) = v/i/2, the above tree-
level potential (2) gives the physical Higgs boson P-:
(ReHP —v)/+2 [which corresponds to the lightest Higgs
boson under assumptions (a) and (b)] a squared mass

where X, = A, ht, m, g3, g2, g1, and g3 is the gauge cou-
pling constant of SU(3)c. The solution is easily found

by the method of characteristics and we get

V((p. X* c) = V((o.(t) X'(t) ~(t)) ~

m~ ——-Av1 (4)
where X;(t) are running couplings and running mass
which are determined by the equations

Also at the symmetry breaking, the top quark and the
Z, TV+ gauge bosons gain masses which are given by

md ——hgv/~2, Mz = 4(gi + g2)v, M~ = 4g2v

dX;(t)
dt

= p». (x~ (t)), x;, x~ = A, hd, m, gs, g2, gi

with the boundary conditions X,(0) = X;, and

where hq is the Yukawa coupling of t)) to the top quark.
The tree-level relation m2& ——M&2cos22P follows &om
Eqs. (3)—(5).

The (RGE-unimproved) EP of the SM up to the one-
loop level is given by

V1 = V(p) + V(1)

t

d(t)= exte (
— v&(t )dt )''

0

~.(t)= v.&(t)

p(t)= pe

Then using the result of tree- and one-loop-level EP of
Eqs. (7) and (8), we obtain the RGE-improved V as
follows:

1 2 2+ 1p 4 v = n(x, (t), „(t))+ v„,( .(t), x, (t))
+v„)(~.(t), x, (t), ~(t)) +. (14)3», I' h,'&pc.

V(, )
= — (h, p. ) ~

ln
64vr2 ' ( 2@2 2 j (8)

where y, is the classical field corresponding to the phys-
ical Higgs boson t)), and all the Yukawa couplings of t)) to
quarks and leptons except the top quark are neglected.
The calculation is performed in the Landau gauge and
in the modified minimal subtraction (MS) scheme to ob-
tain the one-loop result V(1), and p is the renormalization
scale. The ellipsis in Eq. (8) represent contributions to
the gauge bosons and the would-be Goldstone bosons.
Throughout this paper we use the Landau gauge which
is the most convenient for our purpose [18] and the MS
scheme.

Now we improve the EP by using the RGE. It was re-
cently emphasized by the authors of Refs. [15—17] that in
the MS scheme the EP V(tp, ) fails to satisfy the usual
(homogeneous) RGE unless V(0), a contribution to the
"vacuum energy, " is suitably dealt with. When we use
the RGE-improved EP in the leading order and obtain
m~, the consideration of V(0) term is unnecessary. How-
ever, as we shall see below, if we improve the EP by RGE
up to the next-to-leading order, V(0) becomes relevant
to us and we must take its presence into account. Thus
with an appropriate y -independent term being added,
the new EP V(tp, ) satisfies the following RGE of the
usual form:

where 0 is the y, -independent term which is added for
V to satisfy a RGE of the usual homogeneous form, and
the ellipses represent the higher loop contributions.

For later convenience, let us expand the RGE coefB-
cient functions P»,. and py by the number of loops as
follows:

p,»= hp») +5 p» +

pp
——hp~ + h p~

(1) 2 (2)

2
XQ AI) kt) mt ) g3e) g2) g1 )

(15)

where we have introduced the Planck's constant I so that
the power of 5 counts the number of loops and P» and(n)

p&(") are the n-loop contributions to P», and py, respec-
tively. Similarly, V has the loop expansion

(1) OV(p) (1) l9V(p} 3 417n+ h, P» —p~ (p, + h, tp, = 0,
t yc 32m

V = n+ V(p)(tp, (t)) + hV(i)(tp, (t)) +, (16)

and we have denoted n(X;(t), y, (t)) and

V(„)(tp,(t), X,(t), p(t)) as n and V(„)(tp,(t)), for short,
respectively.

Inserting Eq. (16) into Eq. (9) and picking the terms
up to of the order h, we find

with

8 ')

I

& —~~&. I
v(v. x* ~) =o

~V c)

where the last term in the curly brackets arises &om

y,BV(i)/c))Ld when we use the expression of V(i) in Eq. (8)
and neglect the contributions of the gauge bosons and
the would-be Goldstone bosons to V(1). If we further set

p = 0 in the above equation, we obtain
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&om which 0 can be determined to the leading order. For
the later discussion, however, we do not need the specific
form of 0, and we will see below that the knowledge of
Eq. (17) is sufficient for our purpose.

We will now analyze the mass of the lightest Higgs bo-
son using the RGE-improved V. At first, let us consider
the boundary conditions for coupling constants. Under
our basic ass»mptions explained before, the relation be-
tween the quartic coupling constant A and the gauge cou-
pling constants gi and g2 given in Eq. (3) should be
satisfied at the scale MsUsY, that is,

s~(MsUsY) =
4 [gi (MsUsY) + g2(MsUsY)] cos 2P ~

(19)

So we choose the renormalization scale y, to be MSUsY
and take the parameter t as t = ln((p, /MSUs Y). Then we
find that p(t) = (p, and the RGE-improved V is given by

V = 0+ V(o)((p, (t)) + hV(i)((p, (t)) + O(h'), (20)

with

V( )(v' (t)) =
64

" (t)(p (t)
W

where in V(i) ((p, (t)) we only include the top-quark con-
tribution to the one-loop EP, because, with its very large
Yukawa coupling, the contribution of the top quark is

dominant over those from the gauge bosons and the
would-be Goldstone bosons. We will obtain the lightest

Higgs boson mass by evaluating BzV/B(p, (t)z at (p, (t„) =
v = (+2G~) i~2 = 246 GeV under the minimum con-
dition BV/B(p, (t) = 0 at (p, (t ) = v. The value t„ is
determined by the equation (p, (t„) = v, which, with help
of Eq. (13), is transformed into

te
t„=ln + qq(t') dt' .

MSUSY p
(22)

It is noted that we difFerentiate V not by y, but by the
renormalized field (p, (t) and also that we evaluate the
differentials at the point of (p, (t„) = v and not at (p, = v.

Since X;(t), (p, (t), and p(t) are functions of t, we find

' (')=ap(')(t) ' +o(r, ),
B(p (t) '

(p (t)
(23)

~(' +o(a) .
Bv.(t) (p.(t)

(21) Thus we obtain

gQ 1 00 {y}

BV(o)(V c(t)) V, ( ( )) ~Px, (') BV(o)(V c(t)) O(~2)
B(p, (t) ( ) '

(p, (t) BX;(t)
(»((P.())

Z
3

4(t) 3(t) l
t()('() +O(g2)

(24)

It is now straightforward to evaluate BV/B(p, (t) from Eq. (24). Using the relation (17), we eliminate 170 term and
find

s= (I + ttpt (t)) (—ttt (t)tt, (t) + ttt(i)tt, (t)) + it — h, (t)p(t) jn ' , —i j+ 0(tt ) . (25)
B(pc t

Further difFerentiation of BV/B(p, (t) by (p, (t) gives

2V
, , = (1+&~.'"(t))(- '(t) + —.'&(t)~.'(t))+ &(-~"'(t)+ —.'&'"(t)~.'(t))
c

+h —,ty t n ''' '' —1 +Oh (26)

«ing the minimum condition BV/By, (t) = 0 at (p, (t„)= v, we finally obtain for the lightest Higgs boson mass in the
next-to-leading logarithm approximation

B2V
P(2 looP) B 2(t)

y, (t„}=v

= —A(t„)v2+hv2 —)9~()(t ) ——&(t ) 2
—2' (t )

~
q (, )4 I Ie(t-)4 ('-), 1)+o(„.) (27)
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The first term in Eq. (27) gives

m~(, „)—,A(—t„)v

which is the result given by Refs. [1,4], except that the
authors of Ref. [1] have evaluated the running coupling
A(t) at t~4 = ln(m4, /MsUsY). As far as the leading
logarithm approximation is concerned, the terms of or-
der h in Eq. (27) are neglected as the higher order ef-
fects. An arbitrariness coming &om different choice of
the parameter t also falls in the higher order corrections
although it has no small efFect on the predicted values nu-

merically. Espinosa and Quiros have employed the "one-

loop" formula m&~ ——3A(t) v2, which is correct only in the
leading logarithm approximation, and computed A(t) at
t = 1n(mp/MsUsY) using RGE with up to two-loop

P functions [6]. However, if we make use of the two-

loop RGE coefficient functions for the running parame-
ters and evaluate the lightest Higgs boson mass m&~, we

should take into account the order-h terms in Eq. (27)
which also collect the next-to-leading logarithmic contn-
butions.

The one- and two-loop P functions and anomalous di-
mension p4, for the SM, which we will use in this anal-

ysis, read as follows [17]. We define the constant A as
A:—167r . For the Higgs boson quartic coupling A,

APq( ) ——4A + 12Ah, —36h, —3A(3g2 + g1) + 27g2 + 2g2g, + 9g, ,

A P1 = —
3 A —24A h~ + 6A (3g2 + g1) + A( —3h~ + hq(8()g3 + 45g2+ 85g2) 73g4+ 39g2g2+ 829 4)

+18Qh —h (192g +16g )+h ( g +63g g
5

g )+ 915gs 289 4 2 559 2 4 379 8 (2g)

For the top-quark Yukawa coupling h&,

APq —2h, —hg(8g3+ 4g2+ —,2g, ),(1) 9 3 2 9 17 2

A'P( ' = h, (—12h' —2Ah'+ h'(36g,'+ ',"g'+ "'g')
t

1
A

2 1()8g
4 + gg

2
g

2 + 19
g

2
g

2 23
g

4 3
g

2
g

2 + 1187
g

4 )

(3Q)

For the gauge couplings g3, g2, and g1,

A P( )= g (-2h —26g + -g + —"g )

(31)

For the mass parameter m2,

A P( )= g (--h + 12g + —g + -g )

AP(l) 41 3
g1 6

A2P(2) 3( 17h2 + 44 2 + 9 2 + 199 2)
91 gl 6 & 3 g3 2g2 18 g1

Ap~ ) = m (2A+ 6h, —
2g2

—2g, ),
A p~ ) = m (—-A —12Ah, + 4A(3g2 + g, ) ——h,

h2 (4Qg
2 + 45

g
2 j 85

g
2

)
145 g4 + 15

g
2
g

2 + 157g4

For the anomalous dimension py,

(1} 2 9 2 3 2
AP~ ——3h, —4g2 —4g1,

~2 (2} 1p2 27h4 + g2(20g2 + 45 2 + 85 2) 271 4 + 9 2 2 + 431 4
6 4 t t 4 g3 8 g2 24g1 j 32 g2 16g2g1 96 g1

When we substitute the expression of the RGE coefficient functions P&~ ), P~ ), and p&~
) into Eq. (27), we find that

many terms cancel out and we obtain a rather simple expression,

2 2

m4(2, )
——3Av + hv 3A + 2Ah, —2A(3g2+g, ) + s~g2+ 4g2g, + sg, —6h, ln3 2 8 4 8 2

(34)
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where it is understood that all the rImning parameters
are the ones evaluated at t = t„. It is interesting to note,
in particular, that an III term in Eq. (27), which comes
from the one-loop EP of Eq. (8), cancels with another

III4 term in P&~
) of Eq. (29) and, as a consequence, there

appears only one III4 term of the form hI4 ln(hI2(2/2) in the
order-5 contributions in Eq. (34). This makes the higher
order corrections to mp(2 1 p)

to be a milder one. From
the expression of Eq. (34) we expect that the next-to-
leading-order corrections give a positive contribution to
m2&, which will be shown numerically to be true below.

To evaluate m~&2 ~ ~&
of Eq. (34) numerically, we

choose the initial conditions for the gauge couplings
cI;:—g, /4m (i = 3, 2, 1) at the scale Mz = 91.2 GeV
to be

200

150
N

0 100
N0

CQ

bO
bQ

50

— Ms Us Y = I TeV

o.s(Mz)= 0.115, o2(Mz) = 0.0336,
o.I (Mz)= 0.0102, (35)

100 120 140 160 180

I I I i I I « I I I » I I I

200

hI(mI) = ~2mI/v with v = 246 GeV . (36)

which are consistent with preset experimental constraints
[19—21], and define the Yukawa coupling of the top quark
at the scale of its mass m~ as

Top Quark Mass (GeV)
FIG. 1. Values of the Higgs boson mass as a function of

mI, for Msusv = 1 TeV and cos 2P = 1 (npper two lines)
and cos 2P = 0 (lower two lines). The solid and dash-dotted
lines denote the next-to-leading-order and the leading-order
results, respectively.

The fact that the two-loop p&( l, pI(, ), and ps(,. )
(i = 3, 2, 1)

are functions of the couplings A, III, and g; casts Eq.
(12) into a very complicated system of coupled difFer-
ential equations. For given values of mI and MsIJsY,
we first solve the system (12) and (22) with P»,. and py
given in Eqs. (29)—(33) together with the initial condi-
tions Eqs. (35) and (36), and we obtain the appropriate
t„and A(t„) so that A satisfies the boundary condition,
Eq. (19), when it evolves from t„ to t = 0. At the same
time when we find the appropriate t, and A(t ), we gain
all the information on the parameters which appear on
the right-hand side of Eq. (34). This is how we calculate
m~&2 ~«~) for given values of mI and Msus Y.

In Fig. 1 we plot m~(2 ~QQp) as a function of mq for
MsusY = 1 TeV, cos 2P = 1 and cos22P = 0 along
with mp(p ] p) in the leading logarith~ approximation.
Figure 2 shows the case for MsUsY ——10 TeV. Since
it is suggested that mq is not too excessively large in
MSSM [22], we have studied md, (2 I ~) for mI &om 100
to 200 GeV. The curves for cos2 2P = 1(cos2 2P = 0) can
be considered as upper (lower) bounds for the lightest
Higgs boson mass in the MSSM. From Figs. 1 and 2
we observe that the next-to-leading-order eKects are non-
negligible. They add 3—11 GeV (3—9 GeV) to the result in
the leading logarithm approximation for the range of top
quark mass 100 GeV( m«200 GeV and for Msvs Y = 1
TeV (MsUsY = 10 TeV). These rather large corrections
come &om the order-5 terms of Eq. (34), since without
those terms we could indeed recover the result of Ref.
[6], namely, the higher order corrections being negative
and negligible for the considered range of parameters.
Contrary to the conclusion of Espinosa and Quiros, our
result shows that the higher order corrections turn out
to be positive and non-negligible when top quark is very
heavy.

200

MsUS Y = IO TeV

150U

100
0

bQ
bo

50

0 I I I I I I I I I I I I I I I I I I I I I I I I

100 120 140 160 180 200

Top Quark Mass (GeV)

FIG. 2. The same as in Fig. 1, but considering the case for
Msvsv = 10 TeV.

It is to be noted that our result in the leading logarithm
approximation differs numerically &om those of Refs.
[1,6] because we evaluated the running coupling A(t) at
t„given by Eq. (22), instead of at t ~

= 1n(m~/MsUsY).
In other words, we have made a different choice of t
&om the ones made in the above references. In the case
of cos22P = 1, for example, our predicted values for
m4, (z I ~) are smaller than those calculated in Refs. [1,6]
by 0—6 GeV (0—10 GeV) for the range 100 GeV( mI (
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200 +eV and for MsUsY —1 TeV (MsvsY = 10 TeV). In
the leading logarithm approximation, the predicted val-
ues for the lightest Higgs boson mass are rather sensitive
to the choice of the renormalization parameter t. How-

ever, in the next-to-leading logarithm approximation, it
is not possible to change the definition of t without mod-
ifying the O(h) terms of EP. In consequence, the result
is stable under the change of t. This is a well-known
issue which often arises in the renormalization group ap-
proach, and will be discussed in more detail in the second
and third comments below.

Figure 1 shows that the next-to-leading-order correc-
tions are large for cos 2p = 0 especially when MsUsY =
1 TeV. In the case of cos~ 2P = 0, the boundary condition
for A(t) at MsiisY is A(t = 0) = 0. When MsiisY = 1

TeV, the "evolution time" is not long enough for A(t) to
grow from the initial value A = 0, and thus a term of the
form —6hi 1n(hi2( /2) and gauge-coupling-constant terms
in the order-h contributions in Eq. (34) give relatively
large corrections compared with the leading 3A(t„)v .

A few comments are in order. The 6rst comment con-
cerns the de6nition of mass. The "mass" we have cal-
culated is not the on-shell mass. It might be necessary
to consider the correction coming &om the wave function
renormalization in order to make a realistic prediction for

the Higgs boson mass. However, this efFect is expected
to be small [2,23].

Secondly, we have taken the parameter t as t
ln(y /MsUs Y) to derive Eq. (27). But the physics should
not depend on the choice of t. For example, as was
stressed in Refs. [16,17], the "natural choice" of t may
be given by the equation

2) '(t) = 2S'e" = hi(t)V'. (t) (37)

Then the RGE-improved EP which we deal with wiB be

V = A(X;(t), p(t)) —-'m (t)p, (t) + 2'4A(t)p, (t)

+A, h, (t) t).()))128vr2

Since the expression of the order-h term of the above
equation is difFerent &om the one we analyzed previously,
we may think at first sight that we would obtain a dif-
ferent result for m~(2 i ~). In fact we follow the same

procedure as before, i.e., first difFerentiate V by y, (t),
use the relation (17) and eliminate 270 term, evaluate
02U/Rp, {t)2 at y, {t„)= v under the minimum condi-
tion BV/8&@,(t) = 0 at p, (t„) = v, and we obtain the
expression

(&)

y(~ i-p) = k().)" +"" fspi ()) ~&(&), - &&i ().) +,4()) )
+ o(&')m2 t. 7r

t„= ln
MSUSY

+ ln
h, , (t„)

2

Expanding A(t„) around t„, we find

A(t„)= A(t„) + AP„' '(t„)[t„—t„]

= ~(t„) —h, h'. (t„)1 "'('") '('") + . (41)
8vr2

A logarithmic term of the form
—(3/8m2)hv2hi4ln(hi2(2/2) which appeared in Eq. (27)
is missing. However, we should note that the definition
of t has been altered. Remembering that we have chosen
the renormalization scale p, to be MsUs~, we must now

evaluate the curvature of EP at the value of t„, which is

determined by

y, (t ) = v with t = ln(m4, /Msi)sY), that is, at the
scale p(t ) = my. Again we expect that the calculated
value with this choice of t will be very close to the result
for mp(2 J p) for the following reason. Suppose we Bnd
an appropriate function E(y, ) and choose the parameter
t » t = ln(E(yc)/MsusY) so that the imProved effective
potential be minimum at p, (t ) = v.

Now the RGE-improved EP to be dealt with will be

i = n(X;(t), p(t)) —2m (t)p, (t) + —'A(t)y, (t)

+h
'

h, (t),.(t) 1."'(')"(')
647r2 ' ' 2@2(t) 2

and p(t) = E(y, ) Again we . follow the same pro-

cedures as before, and evaluate the curvature of V at
y, (t ) = v under the minimum condition BV/Bp, (t) =
0 at y, (t ) = v. Since this time

Then substituting the above expression for A(t„) into Eq.
(39), we will obtain essentially the same result as Eq. (27)
except for the h~ and other nondominant terms. In fact,
we have calculated the mass m4, (2 $ p} with the above
choice of t, Eq. (37), and found the difFerence between
the two numerical results for mp(2 $~~p} and mp(2 $~~p)

being less than 1 GeV for m& & 200 GeV and MsUsY (
10 TeV.

Thirdly, we often found in the literature, such as in

Ref. [6], that the Higgs boson running mass is evaluated
at a scale p{t) equal to its mass. In principle, it is pos-
sible that we may choose the parameter t such that the
improved effective potential takes the minimum value at

OX, (t) (i) v)((p, )

B(p, (t) * y, (t)

P( )
( )

(P )Oc(h)
~v (t) v. (t)

where

we obtain, for m&,

(43)

(44)
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m&
—

—,'A(t, )v'+ hv'
~

—,'pl" (t, ) ——,'A(t,), ') —
2p& (&,) ~ [ ~(V.)

, h, (t, )4 ln ' ~ —w(y, ) + O(&'), (45)

where p, is the value of y, at which E(p, ) = my holds.
We expect that to(y, ) is close to 1 and since it appears
in the O(h) terms, we can safely set ur(y, ) = 1 in good
approximation. Again expanding A(t ) around t„, we
6nd this time

A(t, )= (t.) + hp„' '(t„)[t, —t„]

= A(t„) —h, h,'(t„)ln, + ".9 mz~(z (t„)
8m2 'U

(46)

Substituting the above expression for A(t ~) into Eq.
(45), changing the parameter t ~ in the O(h) terms into
t and setting to(p, ) = 1, we will obtain again essentially
the same result as Eq. (27) except for the ht2 and other
nondominant terms.

Finally, there is an argument that rp, (t) takes the value
v at the scale Mz and p, (t) at the minimum point for
the RGE-improved efFective potential V is difFerent &om
v. Still in this case we expect that the predicted value
will be very close to the numerical result for m4, (2 ] p) by
the following observations. First we choose the parame-
ter t such that the improved efFective potential takes the
minimum value at y, (tz) = v with &z ——1n(Mz/MsvsY),
that is, at the scale p(tz) = Mz. Repeating the same
procedures as we have done in the third comment, we
6nd that with this choice of t the calculated value is ex-
pected to be very close to the one for mp(2 f p) Next
we alter the value of y, (t) at the minimum point &om
e. This alteration, however, will bring about a change of

I

the evaluation point for t &om tz and thus bring about
changes for the values of the running parameters which
conspire, as before, to compensate the efFect caused by
the change of y, (t). And we will obtain the result which
is numerically very close to the one for mp(2 ] p).

In conclusion we have examined the mass of the lightest
Higgs boson in the MSSM beyond the leading logarithm
approximation. We have made use of the EP improved
by RGE up to the next-to-leading order. We have found
that the next-to-leading-order corrections to the Higgs
boson mass are non-negligible, adding 3—11 GeV (3—9
GeV) to the values predicted by the RGE approach in the
leading logarithm approximation for the range 100 GeV(
m, ( 200 GeV and for MsvsY = 1 TeV (MsvsY = 1o
TeV). We also found that the predicted values of m~ are
stable under the change of the renormalization parameter
t when we use the RGE-improved EP which includes the
next-to-leading-order contributions.
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