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Background field method: Alternative way of deriving the pinch technique's results
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We show that the background field method (BFM) is a simple way of deriving the same gauge-
invariant results which are obtained by the pinch technique (PT). For illustration we construct
gauge-invariant self-energy and three-point vertices for gluons at the one-loop level by the BFM
and demonstrate that we get the same results which were derived via the PT. We also calculate the
four-gluon vertex in the BFM and show that this vertex obeys the same Ward identity that was
found with the PT.
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I. INTRODUCTION

The formulation of a gauge theory begins with a gauge-
invariant Lagrangian. However, except for lattice gauge
theory, when we quantize the theory in the continuum
we are under compulsion to fix a gauge. Consequently,
the corresponding Green's functions, in general, will not
be gauge invariant. These Green's functions in the stan-
dard formulation do not directly re8ect the underlying
gauge invariance of the theory but rather obey compli-
cated Ward identities. If there is a method in which
we can construct systematically gauge-invariant Green's
functions, then it will make the computations much sim-
pler and may have many applications.

Two approaches along this line exist: One is the pinch
technique and the other the background field method.
The pinch technique (PT) was proposed some time ago
by Cornwall [1,2] for a well-defined algorithm to form new
gauge-independent proper vertices and new propagators
with gauge-invariant self-energies. Using this technique
Cornwall and Papavassiliou obtained the one-loop gauge-
invariant self-energy and vertex parts in /CD [3,4]. Later
it was shown [5] that the PT works also in spontaneously
broken gauge theories, and since then it has been ap-
plied to the standard model to obtain a gauge-invariant
electromagnetic form factor of the neutrino [5], one-loop
gauge-invariant WW and ZZ self-energies [6], and pWW
and ZWW vertices [7].

On the other hand, the background field method
(BFM) was first introduced by DeWitt [8] as a tech-
nique for quantizing gauge field theories while retaining
explicit gauge invariance. In its original formulation, De-
Witt worked only for one-loop calculations. The multi-
loop extension of the method was given by 't Hooft [10),
DeWitt [9], Boulware [11],and Abbott [12]. Using these
extensions of the background field method, explicit two-
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loop calculations of the P function for pure Yang-Mills
theory was made first in the Feynman gauge [12,13], and
later in the general gauge [14].

Both the PT and BFM have the same interesting fea-
ture. The Green's functions (gluon self-energies and
proper gluon-vertices, etc.) constructed by the two meth-
ods retain the explicit gauge invariance; thus obey the
naive Ward identities. As a result, for example, a com-
putation of the /CD P-function coefficient is much sim-
plified. The only thing we need to do is to construct the
gauge-invariant gluon self-energy in either method and
to examine its ultraviolet-divergent part. Either method
gives the same correct answer [3,12]. Thus it may be
plausible to anticipate that the PT and BFM are equiv-
alent and that they produce exactly the same results.

In this paper we show that the BFM is an alternative
and simple way of deriving the same gauge-invariant re-
sults which are obtained by the PT. Although the final
results obtained by both methods are gauge invariant, we

have found, in particular, that the BFM in the Feynman
gauge corresponds to the intrinsic PT. In fact we ex-
plicitly demonstrate, for the cases of the gauge-invariant
gluon self-energy and three-point vertex, that both meth
ods with the Fey~~an gauge produce the same results
which are equal term by term. We also give the gauge-
invariant four-gluon vertex calculated in the BFM and
show explicitly that this vertex satisfies the same simple
Ward identity that was found with the PT,

The paper is organized as follows. In Sec. II we review
the intrinsic PT and explain how the gauge-invariant
proper self-energy and three-point vertex for the gluon
were derived in the PT. In Sec. III we write down the
Feynman rule for /CD in the BFM and compute the
gauge-invariant gluon self-energy at the one-loop level in
the BFM with the Feynman gauge. The result is shown
to be the same, term by term, as the one obtained by
the intrinsic PT. The BFM is applied, in Sec. IV, to
the calculation of the three-gluon vertex. The result is
shown to coincide, again term by term, with the one de-
rived by the intrinsic PT. In Sec. V we compute the
gauge-invariant four-gluon vertex at one-loop level in the
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BFM. We present each contribution to the vertex &om
the individual Feynman diagram. Then we show that
the acquired four-gluon vertex satis6es the same naive
Ward identity that was found with the PT and is re-
lated to the gauge-invariant three-gluon vertex obtained
previously by the PT and BFM.

II. INTRINSIC PINCH TECHNIQUE

There are three equivalent versions of the pinch tech-
nique: the S matrix PT [1—3], the intrinsic PT [3], and
the Degrassi-Sirlin alternative formulation of the PT [6].
To prepare for the later discussions and to establish the
notation, we brieBy review, in this section, the intrinsic
PT and explain the way the gauge-invariant proper self-

energy and three-point vertex for gluons at the one-loop
level were obtained in Ref. [3].

In the S-matrix pinch technique we obtain the gauge-
invariant effective gluon propagator by adding the pinch
graphs in Figs. 1(b) and 1(c) to the ordinary propagator
graphs [Fig. 1(a)]. The gauge dependence of the ordinary
graphs is canceled by the contributions &om the pinch
graphs. Since the pinch graphs are always missing one
or more propagators corresponding to the external legs,
the gauge-dependent parts of the ordinary graphs must
also be missing one or more external propagator legs.
So if we extract systematically &om the proper graphs
the parts which are missing external propagator legs and
simply throw them away, we obtain the gauge-invariant
results. This is the intrinsic PT introduced by Cornwall
and Papavassiliou [3].

We will now derive the gauge-invariant proper self-

energy for gluons of the gauge group SU(N) using the in-
trinsic PT. Since we know that the PT successfully gives
gauge-invariant quantities, we use the Fey~man gauge.
Then the ordinary proper self-energy whose correspond-
ing graphs are shown in Fig. 2 is given by

IIpv
j~g

2 (2z)D k2(k+ q)z

x [I' „i,(k, q)I'p„(k + q, —q)
—k„(k + q)„—k„(k + q)„],

where we have symmetrized the ghost loop in Fig. 2(b)
and omitted a trivial group-theoretic factor b s. We as-
sume dimensional regularization in D = 4 —2e dimen-
sions. The three-gluon vertex I' „~(k,q) has the expres-
sion [15]

I' „p(k, q) = I' „i,(k, q, —k —q)
= (k —q)gg „+(k+ 2q) g„i,

—(2k+ q)„gg . (2)

r.„,(k, q) = I'.„„+r.„„,
&(k, q) = —(2k+ q),gio + 2qagga& 2qAgap,

I' „i,(k, q) = k g„i, + (k+ q)pg „.
The full vertex I' „~(k,q) satisfies the Ward identities

Here and in the following we make it a rule that when-
ever the external momentum appears in the three-gluon
vertex, we put it in the middle of the expression, that is,
like q„ in Eq. (2). Now we decompose the vertices into
two pieces: a piece I'+ which has terms with external
momentum q and a piece I'+ (P for pinch) which carries
the internal momenta only:

(a)

(b)

(c)

FIG. 1. 8-matrix pinch technique applied for the elastic
scattering of two fermions. Graphs (b) and (c) are pinch
parts, which, when added to the ordinary propagator graphs
(a), yield the gauge-invariant efFective gluon propagator.

(b)

FIG. 2. Graphs for the ordinary proper self-energy II„„.
(a) Gluon loop. (b) Ghost loop. Momenta and Lorentz indices
are indicated.
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k I' „p(k, q) = P„p(q)d (q) —P„i(k+ q)d (k+ q),

(k + q)"I' „ (k, q) = P „(q)d '(q) —P „(k)d '(k), (4)

where we have defined

Pg v(q) = 9p—v + qpqvq d '(q) = q'.

The rules of the intrinsic PT are to let the pinch vertex
I act on the full vertex and to throw out the d i(q)
terms thereby generated. We rewrite the product of the
two full vertices 1 „pl g„as

r.„,l,„.= r.„„r„„.+ r.„„r,„.+ r.„„r„..F I' P P

-r. ~r (6)

Using the Ward identities in Eq. (4) we find that the
sum of the second and third terms of Eq. (6) turns out
to be

r~„„r„„.+ r.„,r~„=4P„„(q)d (q)
—2P„„(k)d '(k)

2P„„(—k + q) d '(k + q). (7)

k
I

I

I

k& i
I

I

k2

k3
I

I

I

k( g
I

I

We drop the first term on the right-hand side (RHS)
of (7) following the intrinsic PT rule. Now we use
the dimensional regularization rule (which we adhere to
throughout this paper)

(8)

{c)

FIG. 3. Graphs for the ordinary proper three-gluon vertex
I'„„„. (a) Gluon loop. (b), (c) Ghost loops. Momenta and
Lorentz indices are indicated.

and discard the parts which disappear after integration;
then the second and third terms can be written as

—2P„„(k)d (k) —2P„„(k+ q)d (k + q)

—I' „„I'„„=—2k„k —(k„q + q„k ). (10)

Now combining the first term on the RHS of Eq. (6) with
Eqs. (9) and (10), and inserting them into Eq. (1), we
arrive at the following expression for the gauge-invariant
self-energy [3]:

II„
iNg2 dDk 1

x[r. „(k,q)r„„.(k+
—2(2k + q)„(2k + q) ].

= —2k„k —2(k+q)„(k+q) . (9)

Also applying the dimensional regularization rule Eq. (8)
to the fourth term on the RHS of Eq. (6), we find

The same rules are applied to obtain the gauge-
invariant three-gluon vertex at the one-loop level. The
contributions of the graphs depicted in Fig. 3 to the or-
dinary proper three-gluon vertex are summarized as [15]

iXg' dDk

(2~)& k2k2k2

x„„.= r.„„(k„q,)r,„,(k3 q2)I (ki q3)

+kyvk2~k3& + ky~k2&k3vy

(12)

(13)

where the momenta and Lorentz indices are defined in
Fig. 3(a) and the overall group-theoretic factor 9f 3' is
omitted.

Decomposing I' into I'+ + I'+ and dropping the terms
involving d i(q;) which are generated by application of
I' to the full vertices, Cornwall and Papavassiliou ob-
tained the following expression for gauge-invariant proper
three-gluon vertex:

rp (qi q2 qs) =—

(14)

x~ kzk2k2 [r A( 2 qi)rA p(k3 q2)rp (kl q3) + 2(k2 + ks)p(k3 + ki) (ki + k2) ]

—(g~-a- —m-g -)&(gi) —g(g2I g g2 g, )&(gm) —g(g3 gl gSpg )+(gS)),
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where A(q;) is defined by

dak ].

(2 ) k'(k+;)' (15)

noted that the Feynman rule for the ghost-A vertex is
similar to the one which appears in the scalar QED. Now
let us write a three-point vertex with one A~ field as

III. BACKGROUND FIELD METHOD
AND THE GAUGE-INVARIANT GLUON

SELF-ENERGY

I'i,„.(p, q, r) = qf I'iu-(S»q &)

(I', (p q, ) =
I J —q+ -

I u, +
I
q- )i

+(r —p)u& ~.

(16)

In this section we write down the Feynman rules for
QCD in the background field calculations and compute
the gluon self-energy in the Fey~man gauge. Then we
will see that the result coincides, term by term, with the
gauge-invariant gluon self-energy derived via the intrinsic
PT.

In the BFM, the field in the classical Lagrangian is
written as A + Q, where A (q) denotes the background
(quantum) field. The Feynman diagrams with A on ex-
ternal legs and q inside loops need to be calculated. The
relevant Feynman rules [12] are given in Fig. 4. It is

Then we find that in the Feynman gauge ( = 1,
I' „g(k, q, —k —q) turns out to be

I uA(k) q) —k —q)I(=i = 2qAQau + 2q gu&
—(2k+ q) ~~i (»)

which coincides with the expression of I'
„& in Eq. (3).

This fact gives us a hint that the BFM may reproduce
the same results which are obtained by the intrinsic PT
(and we find later that it is true in fact).

Now we calculate the gluon self-energy in the BFM
with the Feynman gauge. The relevant diagrams are de-
picted in Fig. 5. Diagram 5(a) gives a contribution

--———~———-- ba

a,A

g..-(&-() ","

ibad

k +in

1
gf (v —e+ -~).g~ +(e —~ —-J)~g ~ +(~ —u) g-~

-( )
iNg2 d+k 1

(2~)D k2(I + q)2

xI'„„(k+q, —q),

where we have used the fact I' „pIt—i —— I
I'z„ I~ i —I'z+„. On the other hand, through the scalar
QED-like coupling for the background Beld and ghost
vertices, diagram 5(b) gives

C,V

P~

P

-c

—gf (u+ v)»

It is interesting to note that the contributions of diagrams
5(a) and 5(b), respectively, correspond to the first and

k+q

jf f (ggigup gglpguA + gg~ugAp)
+f' f"(g~ g~p —g»gup (gppguA)
+f'"f"'(g"g .—g..g")J

b,v

a
//J/

///
Cga (face f+dl) + fads:fed))

k+q

C,P

qv

FIG. 4. Feynman rules for background Seld calculations in
+CD. The wavy lines terminating in an A represent external
gauge Selds. The other wavy lines and dashed lines represent
q Selds and ghost Selds, respectively. Only shown are rules
vrhich are requisite for calculations in this paper.

(b)

FIG. 5. Graphs for a calculation of the gauge-invariant
self-energy II„ in the BFM. (a) Gluon loop. (h) Ghost loop.
Momenta and Lorentz indices are indicated.
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second terms in the parentheses of Eq. (11) and the sum
of the two contributions coincides with the expression of
the gauge-invariant self-energy II„„which was derived in
Sec. II by the method of the intrinsic PT.

IV. GAUGE-INVARIANT THREE-GLUON
VERTEX

The success in deriving the gauge-invariant PT result
for the gluon self-energy by the BFM gives us momentum
to study, for the next step, the gauge-invariant three-
gluon vertex at the one-loop level. The relevant diagrams
are shown in Fig. 6, where momenta and Lorentz and
color indices are displayed. With the fact that an AQQ
vertex in the Feynman gauge, I'~ q, is equivalent to I'
in Eq. (3), it is easy to show that the contribution of
diagram 6(a) is

(a) gabe iNgsf s' d k 1
~Pvn(q» q» qS)

2 (2 iD k2k2k2~J 1 2 3

x [I' „q(k2, qi) F„p(ks, q2)

xI' (ki, qs)). (21)

The contribution of diagram 6(b) (and the similar one
with the ghost running the other way) is

iNgsf b' d k 1

2 (2x)D k k k

x[2(k, + ks)„(ks + ki)„(k, + k2) ].
(22)

'"I'„'„(qi,q2, qs) =—

When we calculate diagram 6(c), again we use the Feyn-
man gauge (( = 1) for the four-point vertex with two
background fields. Remembering that diagram 6(c) has
a symmetric factor 2 and adding the two other similar
diagrams, we End

iNg fI p (ql q2 qs) = [8(qingpv qivgpa)~(ql)
2

+8(q2~unv —q2aa~v) &(q2)

+8 (qSv9 pa qs pqva )~(qs)].

Finally, the contribution of diagraxn 6(d) (and two other
similar diagrams) turns out to be null because of the
group-theoretical identity for the structure constants f ~
such as

b,v

b,v

+ 2 peI'mutations

e,o,

(c)

b,v

I

I

I

I

I
I

I

I

I

e
a,p,

+ 2 permutations

FIG. 6. Graphs for a calculation of the gauge-invariant three-gluon vertex I'„„x in the BFM. (a), (c) Gluon loops. (b),(d)
Ghost loops. Momenta and Lorentz indices are indicated.
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fead
(fdba face + fdca fabc) (24)

q,"r„ (qi, q2, qs) = —II. (q2) + 11. (qs), (25)

which is indeed a naive extension of the tree-level one.

V. CAUCE-INVARIANT FOUR-CLUON
VERTEX AND ITS WARD IDENTITY

The gauge-invariant four-gluon vertex has been con-
structed by Papavassiliou [4] using the S-matrix PT. As
he stated in Ref. [4], the construction was a nontrivial
task because of the large number of graphs and certain
subtleties of the PT. Although he did not report the ex-
act closed form of the gauge-invariant four-gluon vertex,
he showed that the new four-gluon vertex is related to the
previously constructed I'„„ in Eq. (14) through a simple
Ward identity. In this section we apply the BFM with
the Feynman gauge to obtain the gauge-invariant four-
gluon vertex at the one-loop level. We give the closed
form of this vertex and show that it satis6es the same
Ward identity which was proved by Papavassiliou.

The bare four-gluon vertex in Fig. 7(a) is expressed as
—jg2I' ~"

gcvaP

Now adding the contributions from diagrams (a)—(c)
in Fig. 6 and omitting the overall group-theoretic factor
gf ~, we find that the result coincides with the expres-
sion of Eq. (14) which was obtained by the intrinsic PT.
Also we note that each contribution from diagrams 6(a)—
6(c), respectively, corresponds to a particular term in Eq.
(14).

Finally we close this section with a mention that
the constructed r» (qq, qi, qs) is related to the gauge-

invariant self-energy II„„ofEq. (11) through a Ward
identity [3]

p (fabe fcdh + facefdbe + fada fbce
)

x [(q4 —qs)-9 p + (q2 —q4)-gp- + (qs —q2)pg-]
(3P)

to the RHS of Eq. (28) and we obtain the tree-level Ward
identity [15]

f"—rp'. (q4, q2, e+qs)
f" r. (q q q+ ) (31)

f (ObCd) falrn fbrrarr fcrre fdel (32)

The bare three- and four-gluon vertices are manifestly
gauge independent. However, if we consider the usual
one-loop corrections to these vertices, they become gauge
dependent and do not satisfy Eq. (31) any more.

We now apply the BFM to the case of the four-gluon
vertex and show that the constructed gauge-invariant
vertex satisies the generalized version of the Ward iden-
tity in Eq. (31). The diagrams for the four-gluon vertex
at the one-loop level are shown in Fig. 8. It is noted
that the two-gluon loop diagrams 8(e) have a symmet-
ric factor 2. For later convenience let us introduce the
group-theoretic quantities

p=f *f' (9 9p —9pg )

+f f (gppgau 9 ugap)

+f f (gg ugpa gg agpu)r (26)

C,Q

(a)

while the bare three-gluon vertex in Fig. 7(b) is expressed
as gr„„„(kg k2 k3) with

b,v

I'„„„(k,k2, ks) = f 'r„„z(k„k2,ks)

and r»p(kl, k2, ks) is given by Eq. (2). Now acting with

q,"r„„.'p = f'*f'*(q
+f"*f"(epg —e 9 p)

+f'*f (n-gp- —qi-gp-).

Next with the help of the Jacobi identity

(28)

(b)

fabafcda + facafdba + fadefbca p

we add

(29) FIG. 7. The bare four-gluon vertex (a) and the bare
three-gluon vertex (b). Momenta and color and Lorents in-

dices are indicated.
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+ 2 permutations

y k
I

k+q2

+ 5 permutations

c,(x

(a)

a,p,

+ 2 permutations
+ d(i + 5 permutations

t

C,Q

+ '~ permutations

+ 2 permutations

(e)

+ 5 permutations

k

/
I
I
I

II
P

k+qI+q2

b,v + 5 permutations

c,a

(c)

FIG. 8. Graphs for a calculation of the gauge-invariant four-gluon vertex I'„p in the BFM. (a),(c),(e), Gluon loops.
(b),(d), (f) Ghost loops. Momenta and color and Lorentz indices are indicated.
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which satisfy the relations

f(abed) = f(bcda) = f (bade),

f(abed) —f(abdc) = —f—f'N
2

(34)

f aloof bmaf
cal fabc

2
(35)

The last relation is derived &om an identity for the struc-
ture constants f

and the Jacobi identity Eq. (29).
It is straightforward to evaluate the diagrams in Fig. 8,

and the relevant momenta, color, and Lorentz indices are
indicated in the graphs. The relations for color factors in
Eqs. (33) and (34) are extensively used. We present each
contribution to the vertex from the individual Feynman
diagram, expecting that each contribution corresponds
to the particular term of the intrinsic PT result once the
calculation is made in the future. The results are the
following.

(a) Diagrams 8(a) give

(a)pabcd
D

pvap(ql) q2t q3& q4) g f( )
(2 )D k2(k + )2(k )2(k )2

x[l'A' (k-q q )I'...(k q )I"...(k+q2 q3)l'.pA(k-qi-q4 q4)]

+((q2» v)::(q3 c ~)) + ((q3 c ~)::(q. d P)) (36)

where the notation ((q 2b, v);; (qs, c, a)) represents a term obtained from the first one by the substitution

(q2, b, v)::(qs, c, n). The same notation applies to the third terin, and also to the expressions below.

(b) Diagrams 8(b) give

(b) pabcd
D

(2x)~ k2(k+ q2)2(k —qi —q4)'(k —qi)2
x [2(2k —q, )„(2k + q2)„(2k —q, —q4 + q2)a (2k —2qi —q4) p]

+((q2 b v)::(q. c ~))+ ((q3 c ~)::(q4 d P)).

(c) Diagrams 8(c) give

(37)

(c)I abed

(2 )D k2(k+q )2(k —q, )'
x{—[f(abed) + f(abdc)]g pl'&„(k —qi, qi)l' „&(k,q2)

+N f f'" [I'p &(k —qi, qi)I'&„(k, q2) —1' &(k —qi, qi)I'z„p(k, q2)])

+((q2 b&v) ' (q3&c&~))+ f(q2~b&v) ' ' (q4~4P))
+f(qi, a, lLi):: (qs, c, a))+ ((qi, a, p)::(q4, d, P))
+((qi, a, p)::(q3, c, a,), (q2, b, v)::(q4, d, P)).

(d) Diagrams 8(d) give

(d) I abed dDIc

(2~)D k2(k+ q2)2(k —qi)2
x [f(abed) + f(abdc)]2g p (2k —qi) „(2k + q2) „

+(( q2b, )v:: (qs, c, n))+(( q2b, )v:: (q4, d, P))
+&(q»a ~)::(q3 c ~)) + &(qi a p)::(q4 d P))
+((qi, ,u)::(q3» ~) (q2 b v)::(q4 d P)).

(e) Diagrams 8(e) give

' I' '„p(qi, q2 'q3 q4) = ig'&(ql+ q2)

x([f(abed) + f(abdc)]Dg„„g p+ 4Nf f'" (g„g„p —g„pg„))
+((q2»v):: (qs c ~))+((q2»v):: (q4 d»))

(38)

(3S)

(4o)

where A(q;) is defined in Eq. (15).
(f) Diagrams 8(f) give

' 'I' ."p(qi, q2, q3, q4) = ig'&(qi + q2) [f(abc—d) + f (abdc)]2g~-g-p

+((q2, b v): : (q. c ~)) + ((q2 b v): : (q4» P)). (41)
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@abed {a)@abed +(b} /abed +(c}/abed
pvap pvap pvap pvap

+(d)I abed +(e} jabcd +(f) jabcd
pvap pv&p p, vap (42)

Our next task is to show explicitly that the above four-
gluon vertex F„„dp satis6es the following generalized ver-
sion of the Ward identity in Eq. (31):

where

q,"I' .'p = f'—I""p.(q3, q4, ql + q2)

f- —I'p'..(q4, q2, q +q )

f "*—I'™*p(q2,q3, qi + q4),

I„.(q q q)=f"I' i(q q q)

(43)

(44)

Then the 6nal form of the gauge-invariant four-gluon
vertex I'„~"p at the one-loop level is given by the sum

first found by Papavassiliou with the PT [4], is naturally
expected to hold in the BFM formalism.

We act with q& on the individual contributions to
I' „'"p which are expressed in Eqs. (36)—(41). Before go-
ing through the evaluation we make some preparations.
Let us introduce the following integrals for the three-
point vertex with the constraint qq + q2 + qq = 0:

dDk 1

(2 ) k (k + q ) (k —q )
x [1'~„ (k —qi, qi)I'~„ (k, q2)

XI' i, (k + q2, q3)],
dDk 1

(2 )~ k2(k+„)2(k —„)2
x (2k —qi) „(2k + q2)

X (2k —qi + q2)a. (4

and I'„„2,(qi, q2, qs) is the gauge-invariant three-gluon
vertex given in Eq. (14). The Ward identity Eq. (43),

In terms of B„and C„„,the gauge-invariant three-

gluon vertex I'~„p in Eq. (14) is expressed as

i&g2
&(ql q2 'q3) (+ft ('ql q2 q3) + 2&ft-(qi, q2, q3)

8(ql 9&
——qlv gpa) &(ql) —8(q2, gav q2agpv)+(q2) 8(qsvgpa qspgva)+(q3)). (46)

These B„„and C„v satisfy the relations

B~-(qi q2 q3) + p(q2, qs, ql)
&-& (q2, q—l, q3),

(ql, q2, q3) = &. ,(q2, q3, ql )
+ fk (q2 qi q3)

(47)

(48)

F„„(k,q) = -I' „„(-k—q, q).

Throughout the algebraic manipulations, we often take
the means of changing the integration variables under the
constraint qz +q2+ q3+ q4

——0 and make use of identities

ql I'A„(k —ql ql) = [(k —qi)' —k']gip

q,"(2k —qi)„= k —(k —q, ) (50)

which can be proved by changing integration variables
under the constraint q~ + q2 + q3 ——0 and using the fact

to reduce the number of propagators by 1, the relations
of Eqs. (47)—(49) for B„„,C„„,and I &„ to classify
terms into groups with the same color factors. We also
use the identity of Eq. (34). The results are

I'q+ (k —qs, q3) I'+p„(k, q4)
( ) q,

" I'„„"p(q,q, q, q ) = g' [f( b d)+'f( bd )]q

+~f '*f' &p (q3 q4 'ql+-q2)
2

d~k Fs (k —tys, tls)Fsp (k, tt4) —(c::t)
)(2vr) (k —q3) k (k + q4)

+{cyclic permutations j,
where (cyclic permutations) represents two terms which are obtained from the first term by the substitution

(( q2tvb) + (qs, c, o) ~ (q4, d, p) -+ ( q, 2vbt) j and the substitution ((q b 2vt) t-+ (q4, d, )9) ~ (qs, c, a) i (q2, b, v)).
The same notation applies to the expressions below:

(b) ql ~f vap(q»q»q»q4) ='9 [f((ibcd)+ f(obdc)](
dDk (2k —q3) (2k+ q4)p

+Nf f c s (tys, ys, tr + tts)) + (cyclic perrcctsticcs), (52)
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(c) q~
' b„„g(qx, qqqqq4) =ig [f(abed)+ f(abdc)][ Dq~„—g gA(qi+qg)

dgb b'.,(b —qs, e)g,g~(b q4)I
(2~) (k —qs)'k'(k+ q4)'

+gqf' f' {4(q*-gg- q*gg-—)[d(q +q*) —d(q*)l

drbk Ff (k —qs, qs)F~p„(k, q4) —(v,' '. A)

(2m) (k —q3) k (k+q4)
+(cyclic permutations),

(d) qz r „g(qq, q qq qq4) =ig [)(abed)+ f(abdc)][gq~ g

gA(qadi-qq)

dDk (2k —qs) (2k + q4) p
+2q&v

( )& ( )2 2 + (CyCliC permutatiOnS), (54)

(e) q~
' I' „p(qq, q2, qs, q4) = ig ([f(abed) + f(abdc)]Dqz„g pA(q~+ q2)

+Nf f'" 4(qqagpv —qqpg„a)A(qq + q2)) + (cyclic permutationsj,

(f) qz F„„p(qq, q2, qs, q4) = ig [f(abed) + f(abdc)]( —2qqv)g pA(qq + q2) + (cyclic Permutations).

Adding together all the contributions [Eqs. (51)—(56)], we find

qlFbg p(n, q2, qs, q4) = f" f' [& p (q3 q4 m + q2) + 2&-p-(q3 q4 n + q2)2
—8((m+q2)pgva (q~+q2) g p)A(ql+q2)
+8 (q2pg„—q2 g„p) A(q2)) + (cyclic permutations).

X( 8(q2Pgva —q2agvP) A(q2)
—8(qs„gaP —qsP ga v) A(q3)

8(q4agpv q4vg—pa)A(q4) j (58)

to the RHS of Eq. (57) and to use Eq. (46), and we
arrive at the desired result of Eq. (43).

VI. CONCLUSIONS

In this paper we demonstrated that the background
Seld method is an alternative and simple way of deriving
the same gauge-invariant results which are obtained by
the pinch technique. We have found, in particular, in the
cases of gauge-invariant gluon self-energy and the three-
gluon vertex that both the BFM in the Feynman gauge
and the intrinsic PT produce the same results which
are equal term by term. We also calculated the gauge-

It is noted that all the terms which are proportional
to factors [f(abed) + f(abdc)], [f(acdb) + f(acbd)], and
[f(adbc) + f (adcb)] cancel out and only terms with fac-
tors Nfaba fcda, Nfacafdba, and Nfadafb a remain in
the final result. The last step is to add

[fabafcdz + facafdba + fadafbcz]ig2N

2

l

invariant four-gluon vertex in the BFM and presented its
exact form. Finally we explicitly showed that this four-
gluon vertex satisfies the same simple Ward identity that
was found with the PT.

Note added. After submitting this paper for publica-
tion, we learned that Denner, Weinglein, and Dittmaier
[16] very recently dealt with the same topic and reached
the same conclusion as we have. They have applied the
BFM also to the electroweak sector of the standard model
and derived various Ward identities.
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