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Topological aspect of Wulff shapes

By Takashi Nishimura and Yu Sakemi

Abstract. In this paper we investigate Wulff shapes in Rn+1 (n ≥ 0)
from the topological viewpoint. A topological characterization of the limit of

Wulff shapes and the dual Wulff shape of the given Wulff shape are provided.
Moreover, we show that the given Wulff shape is never a polytope if its support
function is of class C1. Several characterizations of the given Wulff shape
from the viewpoint of pedals are also provided. One of such characterizations

may be regarded as a bridge between the mathematical aspect of crystals at
equilibrium and the mathematical aspect of perspective projections.

1. Introduction

In 1901 Wulff gave the simple geometric construction for the shape of a crystal

at equilibrium ([22], see also [16, 20, 21]). In this paper, we study Wulff shapes,

which are the sets obtained by Wulff’s geometric construction, from the topological

viewpoint.

We first review Wulff’s construction. For any non-negative integer n we let Sn

be the unit sphere in Rn+1. Let γ : Sn → R+ be a continuous function where

R+ = {λ ∈ R | λ > 0}. For any θ ∈ Sn ⊂ Rn+1 put

Γγ,θ = {x ∈ Rn+1 | x · θ ≤ γ(θ)},

where the dot in the center stands for the scalar product of x, θ ∈ Rn+1. Then, the

Wulff shape associated with the support function γ is the following set Wγ :

Wγ =
∩

θ∈Sn

Γγ,θ.

Wulff showed in [22] that for any crystal at equilibrium the shape of it can be

constructed as the Wulff shape Wγ by an appropriate support function γ. It is

clearly seen that any Wulff shape Wγ is compact, convex and the origin of Rn+1 is

contained in Wγ as an interior point. It is known that its converse, too, holds as

follows (see page 573 of [20]).
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Figure 1. Wulff’s construction.

Proposition 1.1. Let W be a subset of Rn+1. Then, there exists a parallel

translation T : Rn+1 → Rn+1 such that T (W ) is the Wulff shape associated with

an appropriate support function if and only if W is compact, convex and has an

interior point.

In this paper, we first study dissolution of Wulff shapes. Let H(Rn+1) be

the set of non-empty compact subsets of Rn+1. Let dH : H(Rn+1) × H(Rn+1) →
R+∪{0} be the Hausdorff metric (for the Hausdorff metric, see for instance [4, 5]).

Then, it is well-known that the metric space (H(Rn+1), dH) is a complete metric

space (for the complete metric space (H(Rn+1), dH), see for instance [4, 5]). Let

Hconv(Rn+1) be the subset of H(Rn+1) consisting of non-empty compact convex

subsets:

Hconv(Rn+1) =
{
W ∈ H(Rn+1) | W is convex

}
.

Any Wulff shape Wγ belongs to Hconv(Rn+1) since it is compact, convex and

having an interior point. Any Cauchy sequence of Wulff shapes with respect to the

Hausdorff metric converges in Hconv(Rn+1) since the following Lemma 1.1 holds.

Lemma 1.1. The metric space (Hconv(Rn+1), dH) is complete.

Proof of Lemma 1.1. Let {Wi}i=1,2,... ⊂ Hconv(Rn+1) be a Cauchy sequence

with respect to the Hausdorff metric dH . Put

W =
{
x ∈ Rn+1

∣∣∣ ∃xi ∈ Wi (i ∈ N); lim
i→∞

xi = x
}
.
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Then, it is known that {Wi}i=1,2,... is convergent to W in (H(Rn+1), dH) (see for

instance [4]). Thus, it is sufficient to show that W is convex.

Let x, y be two points of W and let {xi ∈ Wi}i=1,2,... (resp. {yi ∈ Wi}i=1,2,...)

be a sequence such that limi→∞ xi = x (resp. limi→∞ yi = y). Then, since

Wi ∈ Hconv(Rn+1), it follows that (1 − t)xi + tyi ∈ Wi for any t ∈ [0, 1] and any

i ∈ N. On the other hand, it is clear that

(1− t)x+ ty = lim
i→∞

((1− t)xi + tyi)

for any t ∈ [0, 1]. Thus, by definition of W , we have that (1− t)x+ ty ∈ W for any

t ∈ [0, 1]. Therefore, W is convex. 2

The zero dimensional Euclidean space R0 = {0} itself may be regarded as the

Wulff shape in R0 associated with a support function S−1 → R+ where S−1 =

{x ∈ R0 | ||x|| = 1} = ∅; since R0 is compact, convex and has an interior point.

Then, we have the following:

Theorem 1.1. Let {Wγi}i=1,2,... be a Cauchy sequence of Wulff shapes in

Hconv(Rn+1) with respect to the Hausdorff metric dH . Then, there exist an integer

k (0 ≤ k ≤ n + 1), a rotation R : Rn+1 → Rn+1 around the origin of Rn+1 and

a parallel translation T : Rn+1 → Rn+1 such that T ◦ R(limi→∞ Wγi) is a Wulff

shape in (Hconv(Rk × {(0, . . . , 0)}), dH).

Since the definitions of Hconv(Rk × {(0, . . . , 0)}) and Wulff shapes in it are

clear, we omit to state them.

Secondly, we study the dual Wulff shape for the given Wulff shape Wγ of a

given support function γ : Sn → R+. Let γ : Sn → R+ be a continuous function.

For any θ ∈ Sn put

Γ̃γ,θ = {(x, 1) ∈ Rn+1 × {1} | (x, 1) · (θ, 0) ≤ γ(θ)},

where the dot in the center stands for the scalar product of (x, 1), (θ, 0) of Rn+2.

Consider the following set:

W̃γ =
∩

θ∈Sn

Γ̃γ,θ.

It is clear that Wγ and W̃γ are congruent. Thus, W̃γ may be regarded as the Wulff

shape. Our result is stated in terms of W̃γ , the following spherical polar set X◦ of

a set X ⊂ Sn+1 and the following central projection αN . For any point P of Sn+1,
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we let H(P ) be the following set:

H(P ) = {Q ∈ Sn+1 | P ·Q ≥ 0}.

Here, the dot in the center stands for the scalar product of P,Q ∈ Rn+2.

Definition 1.1. Let X be a subset of Sn+1. Then, the set∩
P∈X

H(P )

is called the spherical polar set of X and is denoted by X◦.

Let N be the point (0, . . . , 0, 1) ∈ Sn+1 where N stands for the north pole

of Sn and let Sn+1
N,+ be the upper hemisphere {P ∈ Sn+1 | N · P > 0}. Thus,

Sn+1
N,+ = Sn+1 −H(−N). We let αN : Sn+1

N,+ → Rn+1 × {1} be the map defined by

αN (P1, . . . , Pn+2) =

(
P1

Pn+2
, . . . ,

Pn+1

Pn+2
, 1

)
for any P = (P1, . . . , Pn+2) ∈ Sn+1

N,+ . The map αN is called the central projection

relative to N (see Figure 1).

N

(P)
N

P

Figure 2. Central projection relative to N .

Definition 1.2. Let X̃ be a subset of Rn+1 × {1}. Then the following set is
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called the convex hull of X̃ and is denoted by conv(X̃).

conv(X̃) =

{
k∑

i=1

ti(xi, 1)

∣∣∣∣∣ (xi, 1) ∈ X̃,
k∑

i=1

ti = 1, ti ≥ 0, k ∈ N

}
.

In Definition 1.2 we may assume k ≤ n + 2 by Carathéodory’s theorem (for

Carathéodory’s theorem, see for instance [10]).

Definition 1.3. Let {(x1, 1), . . . , (xk, 1)} be a finite subset of Rn+1 × {1}.
Suppose that conv({(x1, 1), . . . , (xk, 1)}) has an interior point. Then, we call

conv({(x1, 1), . . . , (xk, 1)}) the polytope generated by (x1, 1), . . . , (xk, 1).

Theorem 1.2. Let γ : Sn → R+ be a continuous function. Then, for the

Wulff shape W̃γ ⊂ Rn+1 × {1} the following hold:

1. The set αN ((α−1
N (W̃γ))

◦) is the Wulff shape associated with an appropriate

support function.

2. The given Wulff shape W̃γ is a polytope if and only if αN ((α−1
N (W̃γ))

◦) is a

polytope.

By Theorem 1.2 it is reasonable to call the Wulff shape αN ((α−1
N (Wγ))

◦) the

dual Wulff shape of Wγ . In §5 it turns out that the dual Wulff shape of Wγ is

exactly the convex hull of 1
γ polar plot. Thus, the dual Wulff shape of Wγ may be

regarded as a generalization of Frank-Meijering construction (for details, see §5).

Thirdly, as an application of Theorem 1.2, we show the following:

Theorem 1.3. Let γ : Sn → R+ be a function of class C1. Then the Wulff

shape Wγ is never a polytope.

This paper is organized as follows. In Section 2, we prepare several properties of

spherical polar sets for proofs of Theorems 1.2 and 1.3. Theorems 1.1, 1.2 and 1.3

are proved in Sections 3, 4 and 5 respectively. Finally, in Section 6, we investigate

Wulff shapes from the viewpoint of pedals.

2. Spherical polar sets

In this section we investigate properties of spherical polar sets in Sn+1. The

notion of spherical polar sets seems to be less common. Since Theorem 1.3 is proved

by using spherical polar sets and Theorem 1.2 is stated in terms of spherical polar

sets, we emphasize that the notion of spherical polar sets is significant.

It is clear that X◦ = ∩P∈XH(P ) is closed for any X ⊂ Sn+1.
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Lemma 2.1. Let X,Y be subsets of Sn+1. Suppose that the inclusion X ⊂ Y

holds. Then, the inclusion Y ◦ ⊂ X◦ holds.

Proof of Lemma 2.1. Let Q be an element of Y ◦. Then, by definition we have

that P ·Q ≥ 0 for any P ∈ Y . Thus by the assumption we have that P̃ ·Q ≥ 0 for

any P̃ ∈ X and therefore by definition Lemma 2.1 follows. 2

Lemma 2.2. For any subset X of Sn+1, the inclusion X ⊂ X◦◦ holds.

Proof of Lemma 2.2. For any point P of X the inclusion X◦ ⊂ {P}◦ = H(P )

holds by Lemma 2.1. Hence the inequality P · Q ≥ 0 holds for any Q ∈ X◦ by

definition. Therefore, again by definition we have that P ∈ X◦◦. 2

Definition 2.1. A subset X ⊂ Sn+1 is said to be hemispherical if there exists

a point P ∈ Sn+1 such that H(P ) ∩X = ∅.

Definition 2.2. A hemispherical subset X ⊂ Sn+1 is said to be spherical

convex if PQ ⊂ X for any P,Q ∈ X.

Here, PQ stands for the following arc:

PQ =

{
(1− t)P + tQ

||(1− t)P + tQ||
∈ Sn+1

∣∣∣∣ 0 ≤ t ≤ 1

}
.

Note that ||(1 − t)P + tQ|| ̸= 0 for any P,Q ∈ X and any t ∈ [0, 1] if X ⊂ Sn+1

is hemispherical. Note further that X◦ is spherical convex if X is hemispherical

and has an interior point. However, in general, X◦ is not necessarily spherical

convex even if X is hemispherical (for instance if X = {P} then X◦ = H(P ) is not

spherical convex).

Lemma 2.3. Let Xλ ⊂ Sn+1 be a spherical convex subset for any λ ∈ Λ .

Then, the intersection ∩λ∈ΛXλ is spherical convex.

Proof of Lemma 2.3. Let P,Q be two points of ∩λ∈ΛXλ. Since P,Q belong

to Xλ and Xλ is spherical convex for any λ ∈ Λ we have that PQ ⊂ Xλ for any

λ ∈ Λ. Therefore ∩λ∈ΛXλ contains PQ and thus it is spherical convex. 2

Definition 2.3. Let X be a hemispherical subset of Sn+1. Then, the follow-

ing set is called the spherical convex hull of X and is denoted by s-conv(X).

s-conv(X) =

{ ∑k
i=1 tiPi

||
∑k

i=1 tiPi||

∣∣∣∣∣ Pi ∈ X,
k∑

i=1

ti = 1, ti ≥ 0, k ∈ N

}
.
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It is clear that s-conv(X) = X if X is spherical convex. More generally, we

have the following:

Lemma 2.4. For any hemispherical subset X, the spherical convex hull of X

is the smallest spherical convex set containing X.

Proof of Lemma 2.4. Let Y be a spherical convex set such that X ⊂ Y . Let∑k
i=1 tiPi

||
∑k

i=1 tiPi||
be an element of s-conv(X). Then, since Pi ∈ X ⊂ Y for any i

(1 ≤ i ≤ k) and Y is spherical convex, Pi1Pi2 is contained in Y for any i1, i2
(1 ≤ i1, i2 ≤ k). Let ti1 , ti2 be two non-negative real numbers such that ti1+ti2 = 1.

Then, since
ti1Pi1+ti2Pi2

||ti1Pi1
+ti2Pi2

|| and Pi3 are contained in Y and Y is spherical convex,

the set {
(1− ti3)ti1Pi1 + (1− ti3)ti2Pi2 + ti3Pi3

||(1− ti3)ti1Pi1 + (1− ti3)ti2Pi2 + ti3Pi3 ||

∣∣∣∣ 0 ≤ ti3 ≤ 1

}
is contained in Y . In this way, it is seen that the given point

∑k
i=1 tiPi

||
∑k

i=1 tiPi||
is contained

in Y . 2

Definition 2.4. Let {P1, . . . , Pk} be a hemispherical finite subset of

Sn+1. Suppose that s-conv({P1, . . . , Pk}) has an interior point. Then, we call

s-conv({P1, . . . , Pk}) the spherical polytope generated by P1, . . . , Pk.

Proposition 2.1. For any closed hemispherical subset X ⊂ Sn+1, the fol-

lowing hold:

1. The equality s-conv(X) = (s-conv(X))◦◦ holds. 1

2. The set s-conv(X) is a spherical polytope if and only if (s-conv(X))◦ is a

spherical polytope.

Note that for any closed hemispherical subset X ⊂ Sn+1, s-conv(X), too, is

closed and hemispherical. Note also that for any subset X ⊂ Sn+1, the inclusion

X ⊂ X◦◦ holds always by Lemma 2.2. However, even if X is closed and hemispher-

ical, the inverse inclusion X ⊃ X◦◦ does not hold in general as Figure 3 shows. For

the proof of Proposition 2.1, we need the following Maehara’s lemma.

Lemma 2.5 (Maehara’s lemma ([9])). For any hemispherical finite subset

1 The assertion 1 of Proposition 2.1 has been already known (see [7]). However, since no proofs
of this fact have been given in [7], we give a proof of the asertion 1 of Proposition 2.1 for the sake

of readers’ convenience.
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Figure 3. Left:X. Right: X◦◦.

X = {P1, . . . , Pk} ⊂ Sn+1, the following holds:{ ∑k
i=1 tiPi

||
∑k

i=1 tiPi||

∣∣∣∣∣ Pi ∈ X,
k∑

i=1

ti = 1, ti ≥ 0

}◦

= H(P1) ∩ · · · ∩H(Pk).

Since the reference [9] is written in Japanese, we give a proof of Lemma 2.5 here

for the sake of readers’ convenience.

Figure 4. (PQ)◦ = H(P ) ∩H(Q).

Proof of Lemma 2.5. Let Q be a point of Sn+1. Then, we see that the in-

equality Q ·
(∑k

i=1 tiPi

)
≥ 0 holds for any t1, . . . , tk such that

∑k
i=1 ti = 1, ti ≥

0 (1 ≤ i ≤ k) if and only if Q · Pi ≥ 0 for any i (1 ≤ i ≤ k). Therefore, Lemma

2.5 follows. 2
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Proof of the assertion 1 of Proposition 2.1. By Lemma 2.2, we have the in-

clusion s-conv(X) ⊂ (s-conv(X))◦◦. Conversely, suppose that there exists a

point P ∈ (s-conv(X))◦◦ such that P ̸∈ s-conv(X). Since s-conv(X) is hemi-

spherical closed and P ̸∈ s-conv(X), there exists a point Q ∈ Sn+1 such that

s-conv(X) ⊂ H(Q) and P ̸∈ H(Q) by the separation theorem (for the separation

theorem, see for instance [10]). Since s-conv(X) ⊂ H(Q) we have that Q · R ≥ 0

for any R ∈ s-conv(X), which implies that Q ∈ (s-conv(X))◦. Hence and since

P ∈ (s-conv(X))◦◦ we have that P ·Q ≥ 0, which contradicts that P ̸∈ H(Q). 2

Proof of the assertion 2 of Proposition 2.1. Suppose that s-conv(X) is a

spherical polytope. Let F1, . . . , Fℓ be n-dimensional cells of s-conv(X) (that

is, F1, . . . , Fℓ are facets of s-conv(X)). Then, since s-conv(X) is a spherical

polytope, we have that ℓ ≥ n + 2. Let Ai be the point of Sn+1 such that

s-conv(X) = H(A1) ∩ · · · ∩ H(Aℓ). By Maehara’s lemma (Lemma 2.5) we have

that (s-conv({A1, . . . , Aℓ}))◦ = H(A1) ∩ · · · ∩H(Aℓ). Thus, by the assertion 1 of

Proposition 2.1, we have that (s-conv(X))
◦
= s-conv({A1, . . . , Aℓ}). On the other

hand, since s-conv(X) has an interior point, it follows that there exists a sub-

set {i1, . . . , in+2} ⊂ {1, . . . , ℓ} such that Ai1 , . . . , Ain+2 are linearly independent.

Hence, s-conv({A1, . . . , Aℓ}) has an interior point. Therefore, (s-conv(X))◦ is a

spherical polytope.

Conversely, suppose that (s-conv(X))◦ is a spherical polytope. Then, by the

argument so far, (s-conv(X))◦◦ is a spherical polytope. Therefore, by the assertion

1 of Proposition 2.1, s-conv(X) is a spherical polytope. 2

3. Proof of Theorem 1.1

Since {Wγi}i=1,2,... is a Cauchy sequence in (Hconv(Rn+1), dH), limi→∞ Wγi

exists inHconv(Rn+1) by Lemma 1.1. Hence, limi→∞ Wγi is a non-empty, compact

and convex subset of Rn+1. Then, since limi→∞ Wγi is convex, there exists the

unique integer k (0 ≤ k ≤ n + 1) and the unique k-dimensional linear subspace

V k of Rn+1 such that limi→∞ Wγi ⊂ V k and limi→∞ Wγi has an interior point in

V k. Therefore, there exist a rotation R : Rn+1 → Rn+1 around the origin of Rn+1

such that R(V k) = Rk × {(0, . . . , 0)} and R(limi→∞ Wγi) is compact, convex and

has an interior point in R(V k). Hence, by Proposition 1.1, there exists a parallel

translation T : Rn+1 → Rn+1 such that T ◦ R(limi→∞ Wγi) is the Wulff shape of

an appropriate support function γ : Sk−1 → R+ in Rk × {(0, . . . , 0)}. 2

4. Proof of Theorem 1.2

As defined in §1, N is the point (0, . . . , 0, 1) of Sn+1, Sn+1
N,+ is the upper hemi-

sphere {P ∈ Sn+1 | N · P > 0} and αN : Sn+1
N,+ → Rn+1 × {1} is the central
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projection relative to N .

Lemma 4.1. 1. For any spherical convex X ⊂ Sn+1
N,+ , αN (X) is convex.

2. For any convex X̃ ⊂ Rn+1 × {1}, α−1
N (X̃) is spherical convex.

Proof of Lemma 4.1. Let P,Q be two points of αN (X). Suppose that there

exists t ∈ [0, 1] such that (1− t)P + tQ ̸∈ αN (X). Let ℓ be the linear line of Rn+2

spanned by the (n + 2)-dimensional vector (1 − t)P + tQ. Since X is spherical

convex, the intersection of ℓ and Sn+1
N,+ belongs to X. Thus, the point (1− t)P + tQ,

which is the image of the intersection by αN belongs to αN (X). The contradiction

shows that αN (X) must be convex.

Next, let P,Q be two points of α−1
N (X̃). Suppose that there exists t ∈ [0, 1]

such that (1−t)P+tQ
||(1−t)P+tQ|| ̸∈ α−1

N (X̃). Let ℓ be the linear line of Rn+2 spanned by the

(n+ 2)-dimensional vector (1− t)P + tQ. Since X̃ is convex, the intersection of ℓ

and Rn+1 × {1} belongs to X̃. Thus, the point (1−t)P+tQ
||(1−t)P+tQ|| , which is the inverse

image of the intersection by αN , belongs to α−1
N (X̃). The contradiction shows that

α−1
N (X̃) must be spherical convex. 2

Let the cylinder {(θ, ρ) | θ ∈ Sn, ρ ∈ R} be denoted by CN and let βN :

Sn+1 − {±N} → CN be the map defined by

βN (P ) =

 P1√
P 2
1 + · · ·+ P 2

n+1

, . . . ,
Pn+2√

P 2
1 + · · ·+ P 2

n+1


for any P = (P1, . . . , Pn+2) ∈ Sn+1 − {±N}. The map βN is called the central

cylindrical projection relative to N (see Figure 5).

Lemma 4.2. Let X ⊂ Sn+1 be a closed and spherical convex subset. Suppose

that N = (0, . . . , 0, 1) ∈ Sn+1 is an interior point of X and X ⊂ Sn+1
N,+ . Define the

function γ : Sn → R by

βN (X − {N}) ∩ ({−θ} × R) = {−θ} × [γ(θ),∞) (∀θ ∈ Sn).

Then, γ is well-defined, continuous, γ(θ) > 0 for any θ ∈ Sn and the following

equality holds:

W̃γ = αN (X◦).

Proof of Lemma 4.2. Put Πθ = R(θ, 0) + RN for any θ ∈ Sn. Then, since X
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N
βN(P)

P

CN

Figure 5. Central cylindrical projection relative to N .

is closed and spherical convex and N is an interior point of X, for any θ ∈ Sn we

have two points P (θ), P (−θ) ∈ X such that P (θ) · (θ, 0) > 0, P (−θ) · (−θ, 0) > 0

and the intersection X ∩Πθ is exactly the arc P (θ)P (−θ).

Let {θi}i=1,2,... be a sequence of Sn satisfying

lim
i→∞

θi = θ0 and lim
i→∞

P (θi) = P0.

Then, since X is closed, P0 ∈ X. Thus, by the definition of P (θ0), the scalar

product N ·P0 must be greater than or equal to N ·P (θ0). Suppose that N ·P0 > N ·
P (θ0). Then, by the definition of P0, we may assume that there exists a sufficiently

small ε > 0 such that P (θi) ̸∈ Dn+2
ε (P (θ0)) for any i ∈ N, where Dn+2

ε (P (θ0)) is

the (n + 2)-dimensional disk with radius ε centered at P (θ0). However, since X

is spherical convex, the arc P (θi)P (θ0) belongs to X for any i ∈ N. Thus, there

must exist a point in X ∩ Πθi ∩ Dn+2
ε (P (θ0)) for any sufficiently large i. This

contradicts the definition of P (θi) for any sufficiently large i. Hence, we have that

N · P0 = N · P (θ0) which implies that the map P : Sn → Sn+1 is continuous.

Since N is an interior point of X, it is clearly seen that P (θ) ̸= N for any θ ∈ Sn.

Furthermore, since X ∩ H(−N) = ∅, it is trivial that P (Sn) ∩ H(−N) = ∅.

Since it is clear that βN : Sn+1 − {±N} → CN is a C∞ diffeomorphism and

βN (P (−θ)) = (−θ, γ(θ)), γ : Sn → R+ is a well-defined continuous function.

Let ΨN : Sn+1 − {±N} → Sn+1 be the map defined by

ΨN (P ) =
1√

1− (N · P )2
(N − (N · P )P ).
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The map ΨN , which has been introduced in [12] and has been used in [12, 13] for

the study of singularities of spherical pedal curves, in [14] for the study of pedal

unfoldings of pedal curves and in [15] for the study of hedgehogs (see also [8] where

the hyperbolic version of ΨN has been introduced and studied), has the following

interesting properties:

1. For any P ∈ Sn+1 − {±N}, the equality P ·ΨN (P ) = 0 holds,

2. for any P ∈ Sn+1 − {±N}, the property ΨN (P ) ∈ RN + RP holds,

3. for any P ∈ Sn+1 − {±N}, the property N ·ΨN (P ) > 0 holds,

4. the restriction ΨN |Sn+1
N,+−{N} : Sn+1

N,+ − {N} → Sn+1
N,+ − {N} is a C∞ diffeo-

morphism.

By the property 3, αN ◦ΨN ◦P (θ) is well-defined for any θ ∈ Sn. Properties 1 and

2 yield the following by elementary geometry:

(a) γ(θ) = (αN ◦ΨN ◦ P (−θ)) · (θ, 0) (∀θ ∈ Sn).

By using of Maehara’s lemma(Lemma 2.5) and the equality (a), we have the fol-

lowing:

(x, 1) ∈ αN (X◦)

⇔ α−1
N (x, 1) ∈ X◦

⇔ α−1
N (x, 1) · P ≥ 0 (∀P ∈ X)

⇔ α−1
N (x, 1) · P (−θ) ≥ 0 (∀θ ∈ Sn)

⇔ (x, 1) ∈ Γγ,θ (∀θ ∈ Sn).

Here, the equivalence of the third line and the fourth line (resp., the fourth line

and the fifth line) is obtained by Maehara’s lemma (resp., the above equality (a)).

Therefore, the following holds:

αN (X◦) =
∩

θ∈Sn

Γγ,θ = W̃γ .

2

Definition 4.1. Let {(p1, 1), . . . , (pk, 1)} be a subset of Rn+1×{1}. Suppose
that the convex hull of {(p1, 1), . . . , (pk, 1)} has an interior point. Then, the convex

hull of {(p1, 1), . . . , (pk, 1)} is called the polytope generated by (p1, 1), . . . , (pk, 1).

Lemma 4.3. 1. Let X ⊂ Sn+1
N,+ be the spherical polytope generated by

P1, . . . , Pk. Then, αN (X) is the polytope generated by αN (P1), . . . , αN (Pk).
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2. Let X̃ ⊂ Rn+1 × {1} be the polytope generated by (p1, 1), . . . , (pk, 1). Then,

α−1
N (X̃) is the spherical polytope generated by α−1

N ((p1, 1)), . . . , α
−1
N ((pk, 1)).

Proof of Lemma 4.3. Since αN is a C∞ diffeomorphism, αN (X) has an interior

point ifX has an interior point and α−1
N (X̃) has an interior point if X̃ has an interior

point. Hence, Lemma 4.3 follows. 2

Proof of the assertion 1 of Theorem 1.2. We put C = βN ((α−1
N (W̃γ))\{N}).

Then, since W̃γ is compact, C is a closed subset of Sn×R and C∩(Sn×{0}) = ∅.

Let γ̃ : Sn → R be the function defined by C ∩ ({−θ} × R) = {−θ} × [γ̃(θ),∞)

for any θ ∈ Sn. Then, as in the proof of Lemma 4.2, γ̃(θ) > 0 holds for any

θ ∈ Sn and γ̃ is continuous. Thus, by Proposition 2.1 and Lemma 4.2, we have

that αN ((α−1
N (W̃γ))

◦) = W̃γ̃ . 2

Proof of the assertion 2 of Theorem 1.2. Suppose that W̃γ is a polytope.

Then, by Lemma 4.3, α−1
N (W̃γ) is a spherical polytope. Thus,

(
α−1
N (W̃γ)

)◦
is

a spherical polytope by Proposition 2.1. Hence, αN

((
α−1
N (W̃γ)

)◦)
is a polytope

by Lemma 4.3.

Conversely, suppose that αN

((
α−1
N (W̃γ)

)◦)
is a polytope. Then, by Lemma

4.3, the following set is a spherical polytope:

α−1
N

(
αN

((
α−1
N (W̃γ)

)◦))
=

(
α−1
N

(
W̃γ

))◦
.

Thus, the following set is a spherical polytope by Proposition 2.1.(
α−1
N (W̃γ)

)◦◦
=

(
α−1
N (W̃γ)

)
.

Hence, αN

(
α−1
N (W̃γ)

)
= W̃γ is a polytope by Lemma 4.3. 2

5. Proof of Theorem 1.3

Let f̃γ : Sn → Rn+1 × {1} − {N} be the C1 embedding defined by f̃γ(θ) =

(θ, γ(θ), 1), where N is the point (0, . . . , 0, 1) ∈ Rn+1 × {1} and (θ, γ(θ), 1) is the

polar coordinate expression of the point of Rn+1 × {1} − {N}. Put fγ = α−1
N ◦ f̃γ .

Then, fγ : Sn → Sn+1 is a C1 embedding. Then, by Maehara’s lemma, we have

the following:

Q ∈ (ΨN ◦ fγ(Sn))
◦

⇔ P ·Q ≥ 0 (∀P ∈ ΨN ◦ fγ(Sn))
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⇔
∑k

i=1 tiPi

||
∑k

i=1 tiPi||
·Q ≥ 0

(∀Pi ∈ ΨN ◦ fγ(Sn),∀ti ≥ 0 such that
k∑

i=1

ti = 1,∀k ∈ N),

where ΨN : Sn+1 − {±N} → Sn+1 is the map defined in §4. Thus, the following

holds:

(ΨN ◦ fγ(Sn))
◦
= (s-conv (ΨN ◦ fγ(Sn)))

◦
.

On the other hand, as in the proof of Lemma 4.2 the following holds:

W̃γ = αN

(
(ΨN ◦ fγ(Sn))

◦)
.

Therefore, the following holds:

W̃γ = αN

(
(s-conv (ΨN ◦ fγ(Sn)))

◦)
.

Hence, by Proposition 2.1 we have the following:

αN

((
α−1
N

(
W̃γ

))◦)
= αN (s-conv (ΨN ◦ fγ (Sn))) .

Since γ is of class C1 and the property 4 of ΨN in §4, the boundary of

αN (s-conv (ΨN ◦ fγ (Sn))) is a C1 manifold (for instance, see [19, 23]). Hence,

αN

((
α−1
N

(
W̃γ

))◦)
is not a polytope. Therefore, W̃γ is not a polytope by Theo-

rem 1.2. 2

As a by-product of the above proof, we have the following:

Theorem 5.1. Let γ1, γ2 : Sn → R+ be two continuous functions. Fur-

thermore, we let f̃γi : Sn → Rn+1 × {1} be the topological embedding defined by

f̃γi(θ) = (θ, γi(θ), 1) and let fγi be the composition α−1
N ◦ f̃γi for any i (i = 1, 2).

Then, W̃γ1 = W̃γ2 if and only if s-conv (ΨN ◦ fγ1 (S
n)) = s-conv (ΨN ◦ fγ2 (S

n)).

Furthermore, we can characterize the dual Wulff shape of Wγ for a given contin-
uous function γ : Sn → R+ as follows. For any continuous function γ : Sn → R+,

let f̃( 1
γ ,−) : S

n → Rn+1 × {1} be the map defined by f̃( 1
γ ,−)(θ) = (θ, 1

γ(−θ) , 1) and

put f( 1
γ ,−) = α−1

N ◦ f̃( 1
γ ,−). The image of f̃( 1

γ ,−) is called the 1
γ polar plot. Put

Dn+1(f̃( 1
γ
,−)) =

{
(1− t)

(
θ,

1

γ(−θ)
, 1

)
+ t

(
−θ,

1

γ(θ)
, 1

) ∣∣∣∣ θ ∈ Sn, 0 ≤ t ≤ 1

}
.

Note that the boundary of Dn+1(f̃( 1
γ ,−)) is exactly the 1

γ polar plot and
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Dn+1(f̃( 1
γ ,−)) is not convex in general. Then, since αN

((
α−1
N

(
W̃γ

))◦)
=

αN (s-conv (ΨN ◦ fγ (Sn))) and f̃( 1
γ ,−)(θ) = αN ◦ΨN ◦fγ(−θ), by Maehara’s lemma

and Theorem 1.2 we have the following:

Theorem 5.2. Let γ : Sn → R+ be a continuous function. Then, the following

hold:

1. The Wulff shape Wγ is exactly αN

((
f( 1

γ ,−)(S
n)
)◦)

.

2. The dual Wulff shape αN

((
α−1
N

(
W̃γ

))◦)
is exactly the convex hull of the

1
γ polar plot.

3. Suppose that Dn+1(f̃( 1
γ ,−)) is a polytope. Then, Wγ is a polytope.

By Theorem 5.2, the dual Wulff shape ofWγ may be regarded as a generalization

of Frank-Meijering construction ([6, 11]).

6. Wulff shapes from the viewpoint of pedals

Let γ : Sn → R+ be a continuous function, f̃γ : Sn → Rn+1 × {1} be the

topological embedding defined by f̃γ(θ) = (θ, γ(θ), 1) and fγ : Sn → Sn+1 be the

composition α−1
N ◦ f̃γ respectively. Then, as in §5, we have that

W̃γ = αN

(
(s-conv (ΨN ◦ fγ(Sn)))

◦)
,

αN

((
α−1
N

(
W̃γ

))◦)
= αN (s-conv (ΨN ◦ fγ(Sn))) .

In this section, we investigate Wγ in the case that there exists a Legendrian map

r : Sn → Sn+1
N,+ such that the spherical convex hull of the image of the dual of

r : Sn → Sn+1
N,+ is exactly the spherical convex hull of ΨN ◦ fγ(S

n). In this case,

Wγ can be expressed in three ways.

Definition 6.1. 1. A tangent oriented hyperplane field K on a (2m+1)-

dimensional oriented C∞ manifold M is said to be non-degenerate if α ∧
(dα)m ̸= 0 at any point of M where α is a 1-form defining K locally.

2. For a (2m+1)-dimensional oriented C∞ manifold M and a tangent oriented

hyperplane field K on M , (M,K) is said to be a contact manifold if K is a

non-degenerate hyperplane field.

3. A C∞ submanifold of a contact manifold (M,K) is said to be integral if its

tangent plane at every point belongs to K.
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4. Integral manifolds of the greatest possible dimension are said to be Legendrian

submanifolds of the contact manifold.

5. A C∞ bundle π : E2m+1 → Bm+1 is said to be Legendrian if its space E

furnished with a contact structure and its fibers are Legendrian submanifolds.

The projective cotangent bundle (PT ∗(M),K) furnished with the canonical

contact structure is a Legendrian bundle.

6. Let i : L → PT ∗(M) be a C∞ embedding of a Legendrian submanifold

L to the space of the projective cotangent bundle (PT ∗(M),K) of a C∞

oriented manifold M furnished with the canonical contact structure. Then,

the composition π ◦ i is said to be a Legendrian map.

7. For a Legendrian map π ◦ i : L → B, its image π ◦ i(L) is said to be a front.

For details on these definitions, see for instance [3]. Note that any C∞ immer-

sion Sn → Sn+1 is a Legendrian map. For a Legendrian map r : Sn → Sn+1, as

in [1, 17, 18, 12, 13, 15], we can define the spherical dual of r as follows. For

any θ ∈ Sn let GHr(θ) be the co-oriented great hypersphere tangent to r(Sn) at

r(θ). Let n : Sn → Sn+1 be the map which maps θ ∈ Sn to the unique point n(θ)

satisfying

n(θ) · P = 0 (∀P ∈ GHr(θ)) and n(θ) ·N ≥ 0.

The map n : Sn → Sn+1 is called the dual of r. Note that n is also a Legendrian

map and singularities of n belongs to the class of Legendrian singularities which

are relatively well-investigated (for instance, see [1, 2, 3]).

N

r S1 

n S1 

Figure 6. Images of r and its dual.
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Let γ : Sn → R+ be a continuous function. Hereafter until Theorem 6.3,

we assume that there exists a Legendrian map rγ : Sn → Sn+1
N,+ such that the

following (b) is satisfied; where nγ : Sn → Sn+1 is the dual of rγ , fγ is given by

fγ(θ) = α−1
N (θ, γ(θ), 1) and (θ, γ(θ), 1) is the polar coordinate expression of the

point of Rn+1 × {1} − {N}:

(b) s-conv (ΨN ◦ fγ(Sn)) = s-conv (nγ(S
n)) .

Our assumption is not strong, or rather, reasonable for studying Wulff shapes

from the viewpoint of Legendrian singularity theory. Actually, we can show the

following Theorem 6.1 which asserts that the condition (b) is equivalent to the

following condition (c):

(c) W̃γ = αN

(
(nγ(S

n))
◦)

.

Theorem 6.1. Let γ : Sn → R+ be a continuous function.

1. Suppose that there exists a Legendrian map rγ : Sn → Sn+1
N,+ such that the

condition (b) is satisfied, where nγ : Sn → Sn+1 is the dual of rγ , fγ is given

by fγ(θ) = α−1
N (θ, γ(θ), 1) and (θ, γ(θ), 1) is the polar coordinate expression

of the point of Rn+1 × {1} − {N}. Then, the condition (c) is satisfied.

2. Suppose that there exists a Legendrian map rγ : Sn → Sn+1
N,+ such that the

condition (c) is satisfied, where nγ : Sn → Sn+1 is the dual of rγ . Then,

the condition (b) is satisfied, where fγ is given by fγ(θ) = α−1
N (θ, γ(θ), 1) and

(θ, γ(θ), 1) is the polar coordinate expression of the point of Rn+1×{1}−{N}.

Proof of the assertion 1 of Theorem 6.1. Note that the condition (b) implies

that nγ(S
n) ⊂ Sn+1

N,+ . In particular, we have that N ̸∈
∪

θ∈Sn GHrγ(θ). As in §5,
the following holds:

W̃γ = αN

(
(s-conv (ΨN ◦ fγ(Sn)))

◦)
.

On the other hand, the following holds by Maehara’s lemma:

αN

(
(nγ(S

n))
◦)

= αN

(
(s-conv (nγ(S

n)))
◦)

.

Therefore, the assertion 1 of Theorem 6.1 follows. 2

Proof of the assertion 2 of Theorem 6.1. Note that the condition (c) implies

that nγ(S
n) ⊂ Sn+1

N,+ . In particular, we have that N ̸∈
∪

θ∈Sn GHrγ(θ). As in §5,
the following holds:

(s-conv (ΨN ◦ fγ(Sn)))
◦
= α−1

N

(
W̃γ

)
.
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Thus, by the assertion 1 of Proposition 2.1, the following holds:

s-conv (ΨN ◦ fγ(Sn)) =
(
α−1
N

(
W̃γ

))◦
.

On the other hand, the following holds by Maehara’s lemma:

(s-conv (nγ(S
n)))

◦
= (nγ(S

n))
◦
.

Thus, again by the assertion 1 of Proposition 2.1, the following holds:

s-conv (nγ(S
n)) = (nγ(S

n))
◦◦

.

Therefore, the assertion 2 of Theorem 6.1 follows. 2

Define the map s-pedrγ ,N : Sn → Sn+1
N,+ as s-pedrγ ,N (θ) is the unique nearest

point in GHrγ(θ) from N . The map s-pedrγ ,N is called the spherical pedal relative to

the pedal point N for rγ . Note that s-pedrγ ,N is well-defined since rγ(S
n) ⊂ Sn+1

N,+ .

It is easy to show that the spherical pedal relative to the pedal point N for rγ can

be characterized as follows (see [12]).

Lemma 6.1. s-pedrγ ,N = ΨN ◦ nγ .

Put r̃γ = αN ◦ rγ . Note that r̃γ is a Legendrian map since rγ is a Legendrian

map and αN : Sn+1
N,+ → Rn+1 × {1} is a C∞ diffeomorphism. For any θ ∈ Sn

let HPr̃γ(θ) be the hyperplane tangent to r̃γ(S
n) at r̃γ(θ). Then, we have that

N ̸∈
∪

θ∈Sn HPr̃γ(θ) since N ̸∈
∪

θ∈Sn GHrγ(θ). Define the map pedr̃γ ,N : Sn →
Rn+1×{1} as pedr̃γ ,N (θ) is the unique nearest point in HPr̃γ(θ) from N . The map

pedr̃γ ,N is called the pedal relative to the pedal point N for r̃γ . Then, since the

nearest point in GHrγ (θ) from N is mapped to the nearest point in HPr̃γ (θ) from

N by the central projection αN , the following clearly holds:

Lemma 6.2. pedr̃γ ,N = αN ◦ s-pedrγ ,N .

For the central cylindrical projection βN : Sn+1−{±N} → CN , we put βN (P ) =

(βN,Sn(P ), βN,R(P )) where βN,Sn(P ) ∈ Sn and βN,R(P )) ∈ R. Then, the following
equality holds by elementary geometry:

pedr̃γ ,N (θ) = (−βN,Sn(nγ(θ)), βN,R(nγ(θ)), 1)

Here, (−βN,Sn(nγ(θ)), βN,R(nγ(θ)), 1) is the polar coordinate expression of the

point of Rn+1 × {1} − {N}. Furthermore, put

∆ped,θ =
{
(x, 1) ∈ Rn+1 × {1} | (x, 1) · (−βN,Sn(nγ(θ)), 0) ≤ βN,R(nγ(θ))

}
.



Topological aspect of Wulff shapes 19

Note that the boundary of ∆ped,θ is exactly HPr̃γ(θ). By Theorem 6.1, we have the

following characterization of the Wulff shape associated with the support function

γ by using the pedal relative to N for r̃γ :

Theorem 6.2. Let γ : Sn → R+ be a continuous function. Suppose that

there exists a Legendrian map rγ : Sn → Sn+1 such that s-conv (ΨN ◦ fγ(Sn)) =

s-conv (nγ(S
n)) is satisfied; where nγ : Sn → Sn+1 is the dual of rγ , fγ is given

by fγ(θ) = α−1
N (θ, γ(θ), 1) and (θ, γ(θ), 1) is the polar coordinate expression of the

point of Rn+1 × {1} − {N}. Then, the following holds:

W̃γ =
∩

θ∈Sn

∆ped,θ.

Moreover, we can show the following:

Theorem 6.3. Let γ : Sn → R+ be a continuous function. Suppose that

there exists a Legendrian map rγ : Sn → Sn+1 such that s-conv (ΨN ◦ fγ(Sn)) =

s-conv (nγ(S
n)) is satisfied. Then, the following holds:

W̃γ = Rn+1 × {1} −
∪

θ∈Sn

HPr̃γ(θ).

Here, nγ : Sn → Sn+1 is the spherical dual of rγ , fγ is given by fγ(θ) =

α−1
N (θ, γ(θ), 1) and (θ, γ(θ), 1) is the polar coordinate expression of the point of

Rn+1 × {1} − {N}, r̃γ = αN ◦ rγ and X stands for the topological closure of

X ⊂ Rn+1 × {1}.
Proof of Theorem 6.3. Let (x, 1) be an element of Rn+1×{1}−

∪
θ∈Sn HPr̃γ(θ).

Then, for any θ ∈ Sn the following holds:

(d) (x, 1) · (−βN,Sn (nγ(θ)) , 0) ̸= βN,R (nγ(θ)) .

For the x suppose that there exists an element θ0 ∈ Sn such that

(x, 1) · (−βN,Sn (nγ(θ0)) , 0) > βN,R (nγ(θ0)) .

Then, since both βN,Sn : Sn+1 − {±N} → Sn and βN,R : Sn+1 − {±N} → R are

continuous, for the x and any θ ∈ Sn the following (e) must hold by (d):

(e) (x, 1) · (−βN,Sn (nγ(θ)) , 0) > βN,R (nγ(θ)) .

On the other hand, by Theorem 6.2, we have that for any ξ ∈ Sn there exist
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θ1, θ2 ∈ Sn such that

ξ = −βN,Sn (nγ(θ1)) ,

−ξ = −βN,Sn (nγ(θ2)) .

Thus, by (e) we have the following:

(x, 1) · (ξ, 0) > βN,R (nγ(θ1)) > 0,

−(x, 1) · (ξ, 0) = (x, 1) · (−ξ, 0) > βN,R (nγ(θ2)) > 0.

By this contradiction we have that for any (x, 1) ∈ Rn+1 × {1} −
∪

θ∈Sn HPr̃γ(θ)

and any θ ∈ Sn the following holds:

(x, 1) · (−βN,Sn (nγ(θ)) , 0) < βN,R (nγ(θ)) .

Hence we have the inclusion W̃γ ⊃ Rn+1 × {1} −
∪

θ∈Sn HPr̃γ(θ). Since it is clear

that the converse holds, Theorem 6.3 follows. 2

Theorem 6.3 may be regarded as a bridge between the mathematical aspect of

crystals and the mathematical aspect of computer vision as follows.

Let f(Sn) ⊂ Rn+1 × {1} be a given front of a Legendrian map f : Sn →
Rn+1 × {1}. For any point p = (p1, . . . , pn+1) of Rn+1, the parallel translation

Tp : Rn+2 → Rn+2 defined by Tp(x1, . . . , xn+2) = (x1 − p1, . . . , xn+1 − pn+1, xn+2)

maps the point (p, 1) ∈ Rn+1 × {1} to the point N = (0, . . . , 0, 1) ∈ Rn+1 × {1}.
Put r̃p = Tp ◦ f . Furthermore, put EN = {P ∈ Sn+1 | N · P = 0} and define the

map πN : Sn+1 − {±N} → EN as πN (P ) is the unique point Q ∈ EN such that

Q ∈ EN ∩ (RN+RP ) and P ·Q > 0 for any P ∈ Sn+1. Then, we call the restricted

map πN ◦ α−1
N ◦ Tp|f(Sn) : f(Sn) → EN the perspective projection of f(Sn) from

the perspective point p ([15]). The perspective projection of the front f(Sn) from

the perspective point p is said to have no silhouette if N ̸∈ ∪θ∈SnHPr̃p(θ). Put

rp = α−1
N ◦ r̃p and let np : Sn → Sn+1 be the dual of rp. Put

NSf =

{
(p, 1) ∈ Rn+1 × {1}

∣∣∣∣∣ N ̸∈
∪

θ∈Sn

HPr̃p(θ)

}

=

{
(p, 1) ∈ Rn+1 × {1}

∣∣∣∣∣ (p, 1) ̸∈ ∪
θ∈Sn

HPf(θ)

}
.

Here, NS stands for “No Silhouette”. Figure 7 is a set of examples of NSf . In

Figure 7, the thick curves are the given fronts and the blank region is NSf for each

front f(S1). The following Lemma 6.3 is known for NSf .
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Figure 7. Various Wulff shapes constructed by tangent lines to fronts.
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Lemma 6.3 ([15]).

(p, 1) ∈ NSf

⇔ np(S
n) ⊂ Sn+1 − EN .

Hence, by changing the given orientation of the canonical hyperplane field K of

the projective cotangent bundle PT ∗(Sn+1) if necessary, we may assume

(p, 1) ∈ NSf

⇔ np(S
n) ⊂ Sn+1

N,+ .

Then, note that N ̸∈ np(S
n) for any p ∈ Rn+1 such that (p, 1) ∈ NSf since rp ⊂

Sn+1
N,+ . Thus, for any p ∈ Rn+1 such that (p, 1) ∈ NSf , the function γp : Sn → R+

given by βN (s-conv(np(S
n))) ∩ ({−θ} × R) = {−θ} × [γp(θ),∞) (θ ∈ Sn) is well-

defined. Therefore, by Theorem 6.3, we have the following equality if NSf is not

empty:

NSf = T−p

(
Wγp

)
for any p ∈ NSf .

Thus, NSf is an equilibrium form of crystal if NSf is not empty. Perspec-

tive projections having no silhouette themselves seem to be meaningless because

we can obtain no information about the object f(Sn) by the perspective projec-

tions. However, such meaningless perspective points themselves, if exist, create the

morphology NSf .
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