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Abstract— The exact and general formulation of optimal con-
trol for biped robots based on numerical representation of motion
equation is proposed. We can solve exactly the minimum energy
consumption trajectories for a biped running motion. Through
the numerical study of a five link planar biped robot, it is found
that big peak power and torque is required for the knee joints
but its consumption power is small and the main work is done
by the hip joints.

I. INTRODUCTION

Recent years, many studies have reported analysis of bipedal

locomotion and its application to bipedal robots[1]–[10]. Sev-

eral autonomous humanoid robots are actually developed[4]-

[8]. Generally, careful design is required for development of a

bipedal robot. Selection of gears and actuators, taking their

rate, power, torque, and weight into account, is especially

important. Development of rare-earth permanent magnet ma-

terials Nd-Fe-B and power conversion technology based on

semiconductor switching devices in the last decade enables

improvement of power/weight ratio of actuators and realization

of such autonomous bipedal robots. However, they are still

underpowered to achieve fast walking and running motions.

There are several researches on running control of bipedal

model[11]–[13]. Kajita, et. al. reported that their proposed

running pattern requires at least 28 to 56 times more powerful

actuators than that of their actual humanoid robot HRP1, and

also the consumption power is estimated ten times bigger than

the human runner.

It is useful to know the lower bound of the consumption

energy when we design the bipedal robot and select actuators.

In this paper, a method to generate a trajectory of a run-

ning motion with minimum energy consumption is proposed.

The generation of low-energy trajectories for biped robots

remained an open problem. Usually, it is formulated as an

optimal control problem. Since symbolic expression of motion

equation of robots becomes extremely complicated in the

case that the number of links increases, only specific simple

type of a structure of robots was investigated and simplified

assumptions such as ignoring the effects of centripetal forces

were made in the past works[3]. In this paper, exact and

general formulation of optimal control for biped robots based

on numerical representation of motion equation is proposed to

solve exactly the minimum energy consumption trajectories.

The rest of the paper is organized as follows. In Section II,

the problem definition is introduced where the formulation

of the biped running robot is given. The minimization of

consumption energy is explained in the Section III, and the

computational scheme is proposed in the Section IV. The

numerical study of a five link planar biped robot is provided

in Section V, and conclusions are outlined in the Section VI.

II. MODEL OF BIPED RUNNING ROBOT

Consider a three dimensional bipedal robot with open-chain

mechanism consisting of N joints and N + 1 rigid links.

Since the robot is not fixed on the ground, it is modeled as

a free-fall manipulator which has N + 6 motion-degree-of-

freedom[14][15]. The model in general form is given by

Hẍ + Cẋ + g = u (1)

where H ∈ R(N+6)×(N+6) is an inertia matrix, C ∈
R(N+6)×(N+6) specifies centrifugal and Coriolis effects, g ∈
RN+6 specifies gravity effects, x = [θ,ϕ,p]> ∈ R(N+6)

specifies displacements of joints, and posture and position

of a base link. u = [n,0,0]> ∈ R(N+6) specifies input

generalized forces. Also θ,n ∈ RN specify joint angles and

input joint torques, respectively. ϕ,p ∈ R3 specify posture

and position of a base link, respectively. An example of the

coordinates for the case of planner biped is shown in Fig. 1.

The motion of running is decomposed to two phases; single-

leg support phase and flight phase.
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Fig. 1. A five link biped robot.



A. Model of Support Phase

Let the tip position of the support leg with respect to the

origin of the base link system be h(θ,ϕ). Then its position

with respect to the origin of the world coordinate system is

represented by

y = h(θ,ϕ) + p. (2)

Since the foot of the support leg is fixed on the ground during

single support phase, it is subject to the following conditions.

ẏ = Jθ̇ + Rϕ̇ + ṗ = 0 (3)

ÿ = Jθ̈ + J̇ θ̇ + Rϕ̈ + Ṙϕ̇ + p̈ = 0 (4)

where J = ∂h/∂θ> and R = ∂h/∂ϕ> are Jacobian

matrices.

Eliminating ṗ and p̈ from (1) using (3) and (4), the

following dynamics is obtained.

Hsẍs + Csẋs + gs = us (5)

where xs = [θs,ϕs]
> and us = [ns,0]>. The subscript s

represents variables during support phase. The state equation

is given by

ẇs =

[
ẋs

H−1
s (us − Csẋs − gs)

]
(6)

where ws = [xs, ẋs]
> = [θs,ϕs, θ̇s, ϕ̇s]

> ∈ R2N+6 is a

state vector.

B. Model of Flight Phase

During flight phase, there is no restriction on the motion

equation (1). The conservation law of angular momentum is

already included equivalently in (1), which corresponds to no

existence of external forces. Therefore the dynamics becomes

Hf ẍf + Cf ẋf + gf = uf (7)

where xf = [θf ,ϕf ,pf ]> and uf = [nf ,0,0]>. The

subscript f represents variables during flight phase. The state

equation is given by

ẇf =

[
ẋf

H−1
f (uf − Cf ẋf − gf )

]
(8)

where wf = [xf , ẋf ]> = [θf ,ϕf ,pf , θ̇f , ϕ̇f , ṗf ]> ∈

R2(N+6) is a state vector.

III. MINIMUM ENERGY CONSUMPTION GAIT

It is useful to know the lower bound of the consumption

energy when we design the bipedal robot and select actuators.

An ideal actuator is assumed in this paper to investigate

the consumption energy, although real actuators with high-

ratio gears such as harmonic gears have large frictions and

roughly 70% of energy efficiency. The energy regeneration

is considered. The problem is to find input joint torques

and initial posture that minimize input energy during running

motion under the condition that the robot takes completely

periodic and symmetric motion, given the step period and the

stride. The problem is described as follow.

minimize E =

∫ T

0

θ̇
>

ndt (9)

subject to θ(T ) = Kθ(0) (10)

ϕ(T ) = ϕ(0) (11)

p(T ) = p(0) + S (12)

where T is a period for one step. |S| is the stride. K is a

coordinate conversion matrix;

K =




Ib 0 0
0 0 I`

0 I` 0


 (13)

where Ib and I` are identity matrices whose dimensions are

same as number of joints in body and one leg, respectively.

Since the structure of dynamics is variable depending on the

phase as shown in the previous section, a reflection of time

axis is introduced. A new time axis is given by

τ =





t

αT
for 0 ≤ t ≤ αT

T − t

(1 − α)T
for αT ≤ t ≤ T

. (14)

The timing chart of events are shown in Fig. 2. All variables

in the rest of this section are functions of τ .
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Fig. 2. Timing chart of events.

The objective function (9) is represented by

E =

∫ αT

0

θ̇
>

s nsdt +

∫ T

αT

θ̇
>

f nfdt

=

∫ 1

0

(
αθ̇

>

s ns + (1 − α)θ̇
>

f nf

)
Tdτ. (15)

The state equations (6) for 0 ≤ t ≤ αT and (8) for αT ≤ t ≤
T are transformed onto τ -axis as follows.

dws

dτ
= αT

[
ẋs

H−1
s (us − Csẋs − gs)

]
(16)

dwf

dτ
= (α − 1)T

[
ẋf

H−1
f (uf − Cf ẋf − gf )

]
(17)

State variables should include the support phase ratio α in

order to find its optimal value as well. Then, the following

differential equation is introduced.

dα

dτ
= 0 (18)



Finally, the problem is transformed into a Bolza problem.

minimize Ẽ = g(z1) +

∫ 1

0

(
f0(z(τ),v(τ))

+ λ(τ)>
(dz(τ)

dτ
− f(z(τ),v(τ))

))
dτ(19)

where z = [ws,wf , α]> = [xs, ẋs,xf , ẋf , α]> = [θs,ϕs,
θ̇s, ϕ̇s,θf ,ϕf ,pf , θ̇f , ϕ̇f , ṗf , α]> ∈ R4N+18 is a state vec-

tor, v = [ns,nf ]> ∈ R2N is a input vector, λ ∈ R4N+12 is a

Lagrange multiplier, z1 = z(1) is state at the terminal period,

and

f0(z,v) =
(
αθ̇

>

s ns + (1 − α)θ̇
>

f nf

)
T (20)

f(z,v) =




αT ẋs

αTH−1
s (us − Csẋs − gs)

(α − 1)T ẋf

(α − 1)TH−1
f (uf − Cf ẋf − gf )

0




.(21)

The function g(z1) represents penalty for the terminal condi-

tion which is introduced to guarantee continuity of the state

variable at the instant of the taking-off.

g(z1) = W
(
‖θs1 − θf 1‖

2 + ‖θ̇s1 − θ̇f 1‖
2

+ ‖ϕs1 − ϕf 1
‖2 + ‖ϕ̇s1 − ϕ̇f 1

‖2

+ ‖ps1 − pf 1
‖2 + ‖ṗs1 − ṗf 1

‖2
)

(22)

where W is an weight coefficient. The subscript 1 is at τ = 1.

The variables ps, and ṗs are implicitly defined here. They are

represented by functions of ws.

Variation of the extended objective function Ẽ is given by

δẼ = −λ>

0

∂z0

∂z′>
0

δz′

0 +
( ∂g

∂z1
+ λ1

)>
δz1

+

∫ 1

0

((∂f0

∂z
−

∂f>

∂z
λ −

dλ

dτ

)>
δz

+
(∂f0

∂v
−

∂f>

∂v
λ
)>

δv +
(dz

dτ
− f

)>
δλ

)
dτ.

(23)

In this equation, we assume that the initial state z0 is a

function of certain variables which consist of partial set of the

state, namely, a part of the initial state is independent and the

other depends on it. Let the independent initial state variables

be z′
0 = [θs(0),ϕs(0), θ̇f (0), ϕ̇f (0), ṗf (0), α(0)]>. The rest

of the initial state are decided by

θf (0) = Kθs(0) (24)

ϕf (0) = ϕs(0) (25)

pf (0) = −h(θs(0),ϕs(0)) + S (26)
[

θ̇s(0)
ϕ̇s(0)

]
=

[
K 0 0
0 I 0

]

×

(
I − H−1

f J̃
>

f

(
J̃fH−1

f J̃
>

f

)−1

J̃f

)


θ̇f (0)
ϕ̇f (0)
ṗf (0)


 . (27)

The first three equations are coordinate conversion at the

instant of landing and the last is the condition of perfectly

inelastic collision at the instant of landing. (See Appendix.)

From (23), the following conditions are obtained.

λ1 = −
∂g

∂z1
(28)

dλ

dτ
=

∂f0

∂z
−

∂f>

∂z
λ (29)

dz

dτ
= f (30)

Also the gradients are given by

∂Ẽ

∂z′
0

= −
∂z>

0

∂z′
0

λ0 (31)

∂Ẽ

∂v
=

∂f0

∂v
−

∂f>

∂v
λ. (32)

To find the optimal solution, the conjugate gradient method

in infinite dimensional space (Hilbert space) is applied to this

problem. The procedures of the algorithm are as follows.

1) The initial solution [z′
0,v(τ)] is given.

2) The initial state z0 is computed by (24)–(27).

3) The differential equation (30) is solved using z0.

4) λ1 is computed by (28) using the final value z1.

5) The differential equation (29) is backwardly solved

using λ1.

6) The gradients for z0 and v(τ) are computed by (31),

(32) using z(τ), λ(τ), and v(τ).
7) The temporary solution [z′

0,v(τ)] is updated toward the

direction of the conjugate gradient.

8) If the gradient is not small enough, return to 2.

Finally, the input joint torques n(t), the joint angles θ(t),
the posture and position (of the base link) ϕ(t), p(t), their

derivatives θ̇(t), ϕ̇(t), ṗ(t), and the support phase ratio α are

obtained.

A general method to compute the partial derivatives in (24)–

(32) is proposed in the next section.

IV. COMPUTATIONAL SCHEME FOR PARTIAL DERIVATIVE

It is difficult to calculate the partial derivatives in (24)–(32)

symbolically, because basically it costs very much to obtain a

symbolic expression of the equation of motion (1). In this sec-

tion, a computational scheme for the partial derivatives based

on numerical representation of motion equation is proposed.

Each partial derivative is represented as follows.

∂f

∂z>
= T ×



0 αI 0 0 ẋs

α
∂f

s

∂x>s
α

∂f
s

∂ẋ>s
0 0 fs

0 0 0 (α−1)I ẋf

0 0 (α−1)
∂f

f

∂x>
f

(α−1)
∂f

f

∂ẋ>f
ff

0 0 0 0 0




(33)



where

fs = H−1
s (us − Csẋs − gs) (34)

ff = H−1
f (uf − Cf ẋf − gf ). (35)

And then,

∂f

∂v>
=




0 0

αTH−1
s P s 0

0 0

0 (α−1)TH−1
f P f

0 0




(36)

where P s = [I,0]> ∈ R(N+3)×N , P f = [I,0,0]> ∈
R(N+6)×N are selection matrices. And also,

∂f0

∂z
=




0

0

αTns

0

0

0

0

(1−α)Tnf

0

0

T (θ̇
>

s ns − θ̇
>

f nf )




(37)

∂f0

∂v
=

[
αT θ̇s

(1−α)T θ̇f

]
(38)

∂g

∂z1
= 2W ×




θs1 − θf 1
+ J>s (hs + pf 1

) +
[

˙θT
s 1

∂J>s
∂θs1i

(Jsθ̇s1 + ṗf 1
)
]

ϕs1
−ϕf 1

+R>s (hs + pf 1
) +
[
ϕ̇s1

∂R>

s

∂ϕs1i
(Rsϕ̇s1

+ ṗf 1
)
]

θ̇s1 − θ̇f 1
+ J>s (Jsθ̇s1 + ṗf 1

)

ϕ̇T
s 1

− ϕ̇f 1
+R>s (Rsϕ̇s1

+ ṗf 1
)

−θs1 + θf 1

−ϕs1
+ϕf 1

hs + pf 1

−θ̇s1 + θ̇f 1

−ϕ̇s1
+ ϕ̇f 1

Jsθ̇s1 + ṗf 1

0




(39)

∂z0

∂z′>
0

=




I 0 0

Γ Λ 0

K̃ 0 0

0 I 0

0 0 1




(40)

where

K̃ =




K 0

0 I

−Js −Rs


 (41)

Λ = K̃`

(
I − H−1

f J̃
>

f

(
J̃fH−1

f J̃
>

f

)−1

J̃f

)
(42)

K̃` =

[
K 0 0

0 I 0

]
(43)

Γ =

[
∂Λ

∂xsi

ẋf

]
(44)

∂Λ

∂xsi

= K̃`H
−1
f

∂Hf

∂xf i

H−1
f J̃

>

f ΩJ̃f

− H−1
f

∂J̃
>

f

∂xf i

ΩJ̃f − H−1
f J̃

>

f Ω
∂J̃f

∂xf i

+ H−1
f J̃

>

f Ω

(
∂J̃f

∂xf i

H−1
f J̃

>

f − J̃fH−1
f

∂Hf

∂xf i

H−1
f J̃

>

f

+ J̃fH−1
f

∂J̃
>

f

∂xf i

)
ΩJ̃fK̃r (45)

Ω =
(
J̃fH−1

f J̃
>

f

)−1

(46)

K̃r =




K 0

0 I

0 0


 (47)

The other partial derivatives are computed by using modified

Newton-Eular formulations.

TABLE I

SPECIFICATIONS OF ROBOT.

length [m] weight [kg]

body 0.6 20
thigh 0.3 10
shin 0.3 10

total height & weight 1.2 60

TABLE II

CONTROL PARAMETERS.

stride |S| 0.5 [m]
period of one step T 0.5 [s]
running speed T/|S| 1 [m/s]

V. NUMERICAL STUDY OF FIVE-LINK PLANAR BIPED

The proposed method is applied to a five-link planar biped

robot. The specification is shown in Table I. The robot is 1.2

[m] height and 60[kg] weight. The coordinates are taken as

shown in Fig. 1. The control parameters are selected as shown

in Table II.

The optimal trajectories are computed as shown in Fig. 3–

Fig. 6. In Fig. 4, there are some discontinuous points due

to the impact force at the instant of landing. Snapshots of

the running motion are also shown in Fig. 7. Table III shows

requirements for the actuators based on this result. It is found

that very big power is required for knee joints. However,

the total consumption power of them has small negative

values. Therefore, the main work is done by the hip joints.

Since the negative power is also big, the introduction of the
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Fig. 4. Angular velocities of joints.

energy regeneration mechanism such as elastic actuators or

combination of high backdrivable actuators and bidirectional

power converters is effective to reduce the total consumption

power.

VI. CONCLUSION

In this paper, the method to generate a trajectory of a run-

ning motion with minimum energy consumption is proposed. It

is useful to know the lower bound of the consumption energy

when we design the bipedal robot and select actuators. The

exact and general formulation of optimal control for biped

robots based on numerical representation of motion equation

is proposed to solve exactly the minimum energy consumption

trajectories. Through the numerical study of a five link planar

biped robot, it is found that big peak power and torque is

required for the knee joints but its consumption power is small

and the main work is done by the hip joints.
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APPENDIX

At the instant of the landing, impact force δf is inflicted at

the foot of support leg and the generalized velocity changes

discontinuously. From (1), the generalized velocity after the

collision is given by

ẋ+ = ẋ− + H−1J̃
>

δf (48)

where ẋ+ and ẋ− denote the generalized velocities after and

before collision, respectively. J̃ = [J ,R, I] is an extended

Jacobian. Since it is support phase after the collision, the

condition (3) holds, namely,

J̃ ẋ+ = 0. (49)

Eliminating δf from above two equations, we have

ẋ+ =

(
I − H−1J̃

>
(
J̃H−1J̃

>
)−1

J̃

)
ẋ−. (50)
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Fig. 7. Snapshots of running trajectory

TABLE III

ACTUATOR REQUIREMENTS.

hip knee

peak angular velocity [rad/s] 14.5 11.6
peak torque [N.m] 48.2 117.6
peak power (positive) [W] 355 1265
peak power (negative) [W] −699 −849

consumption power [W] 27.9 −5.37
total consumption power of robot [W] 45.1
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