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Abstract − The Real-time Colored Petri Net (RTCPN), a 
modification of traditional Colored Timed Petri net, is 
proposed to describe virtual factory. In RTCPN, firing 
discipline differs from traditional way in that the concept of 
time-enabled transition is introduced to implement real-time 
simulation. In this paper, we address how to describe virtual 
factory using RTCPN model. Combined with block diagram, 
the concept of virtual place is also proposed to model 
large-scale factory rapidly and conveniently. At last, a 
Java-built-in implementation of RTCPN tool is developed and 
a Printed-Circuit-Board factory is given to investigate time 
cost of developed tool. Concurrent feature of RTCPN is also 
discussed to decrease simulation time and improved results 
shows its effectiveness. 
 

I INTRODUCTION 
 

Virtual factory [1][2] can be regarded as a mapping in 
computer world of an actual factory. A three-level virtual 
model, composed of virtual enterprise, virtual factory and 
virtual device, is introduced hereby to limit the range of our 
study. Virtual factory is assumed that all jobs, hereafter 
only discrete manufacturing considered, are given where 
predicted jobs are also included. And optimization, if 
needed, is concerned in sense of factory level. No detailed 
inner behavior should be known for an operation on a 
device, which will be included in virtual device level 
[3][4]. Simply, virtual factory is concerned with the job 
flow, processed on machines, transferred by conveyors and 
stored in buffers.  
 Many methodologies have been introduced to illustrate 
the mechanism of virtual factory. Among them, Petri net 
technique [5][6][7] is widely applied due to not only its 
powerful graphic capacity but also its generalized 
applications on almost all levels in a manufacturing 
enterprise. In this work we propose a modification of 
Colored Timed Petri net, Real-time Colored Petri Net 
(RTCPN) to describe the manufacturing process, where its 
firing discipline differs from traditional manner in order to 
let all transitions work according to the same mode.  
 In this work, we address how to simulate a virtual factory 
using RTCPN model. A java-built-in implementation is 
developed to investigate simulation time cost on different 
computing environments. An algorithm is developed to 
reduce simulation time based on concurrence features 
existing in our proposed RTCPN model. 
 

II REAL-TIME COLORED PETRI NET 
 
 High-Level net, Colored Petri Net [8][9] is a modification 
of low-level Petri net proposed by Dr C. A. Petri in early 

1960s [10]. It had been widely applied to solve various 
practical problems by the use of tokens that can distinguish 
from each other. Simply a colored Petri net can defined as a 
5-tuple set CPN },,,,{ 0 CMATP= , where P  
stand for place, transition, arc, and initial marking as 
described in low-level Petri net, and  for token’s color. 
Furthermore, Colored Timed Petri Net appears while the 
element “Time” is introduce to Colored Petri Net. In fact, 
the element “Time” can be also added into low-level Petri 
Net, generating so-called Timed Petri Net. Thus Colored 
Time Petri Net is a combination of Colored Petri Net and 
Timed Petri Net. 
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 Traditionally two policies are adopted to introduce the 
element “Time” [11][12]. The first, the transition is timed, 
denoted by a box as shown in Fig.1 (a). It takes specified 
time to complete the firing of a transition, moving specified 
tokens into corresponding output places. The second, the 
place is timed. A token will be kept in the input place until 
its delay time is over. In practice, timed transition based 
model can also be transformed into timed place based 
model as shown in Fig.1 (b). Each timed transition is 
converted to two instant transitions, denoted by bars, and 
one timed place. Two instant transitions stand for the start 
and the end of the firing of timed transition respectively. 
The timed place stands for the firing status of timed 
transition. 
 
 
 
 
 

(a) Timed Transition         (b) Timed Place 
Fig.1 Time Petri Net 

 
Usually the timed transition based model is more widely 

applied than the timed place based model because of its 
simplicity and easy understanding. But both of them ignore 
a case that new tokens may be added in the future. To solve 
this problem, firing rule of some transitions should be 
modified to receive new tokens available in the future. 
However it will result in destroying the consistence of 
transition firing rule because some transitions deal with 
new tokens but others needn’t. Therefore we modify above 
policies by attaching a time point to tokens and changing 
its firing rule. Fig.2 illustrates its mechanism. 
 In Fig.2, the tokens are classified into black token and 
colored token. In definition of Colored Petri Net, it is 
unnecessary to distinguish them because all of tokens are 
colored. The black token introduced hereby is to 
conveniently model many practical problem. The black 



token is the same as the one in ordinary Petri net thus it can 
easily describe conditions such as logical switch. On the 
other hand, each colored token in our proposed Colored 
Timed Petri Net features a time point while the black token 
is attached nothing. The availability of colored token is 
related to its time point and current time while the black 
token is always available. If the time point is earlier than 
current time, the colored token will be available. If not, the 
colored token will be unavailable. Moreover, each place 
will specify which kind of tokens can be received. There 
are three cases: (1) black token can be received; (2) colored 
token can be received; and (3) a combination of black 
token and colored token can be received. A place only 
receives tokens whose color is specified by the place. In 
Fig.2, it is supposed that there are one black token in 
place , and two colored tokens, a , in place . Place  
is specified to receive black tokens and place  the 
colored tokens. Let current time point be 

1p b, 2p 3p

4p

curχ , time point 
of colored tokens  be ba, ba χχ , . Let )p(µ  represent the 
number of tokens in place , including black tokens and 
colored tokens. We specify that transition  be fired if 

p

1t
0( p )1 >µ  && 0) >( 2pµ  && ( cura χχ ≤  || curb χχ ≤ ). 

For an example, if we have 0>)( 1pµ  && 0>)( 2pµ  
&& cura χχ ≤ , the place  will be added a new colored 
token  whose time point becomes 

4p
a acura τχχ += , 

where aτ  stands for its time cost on transition t . 
Meanwhile, the place  will be added a black token. 
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of “Enable” of transition keeps the same as that in 
low-level Petri net. Nevertheless, an enabled transition may 
not be fired unless it is a time-enabled one defined as 
follows.  

[Definition 3: Time-enabled Transition]  A transition 
 is time-enabled if  is enabled and 

jt jt curc χχ ≤∃  for all 
 where P , a subset of , stands for places 

with colored tokens, 
j

c
j PP ⊂∈ip c

j

c

jP

χ  for time point of certain colored 
token, curχ  for current time point. 

Based on above definition, the discipline of transition 
firing is introduced as follows.  

[Firing discipline]  A transition will be fired at once if 
only if it is time-enabled. 
 Fig.3 shows a RTCPN model of a mini-factory composed 
of two machines, one conveyor and four buffers. The black 
tokens in Fig.3 express available resources in the 
mini-factory. That no black token is set to buffers means 
that the capacity for all buffers is unlimited. It is possible to 
ignore the limitation of buffers if we know that no overflow 
occurs. In Fig.3, colored tokens will appear in places 
without black token pre-distributed. And some of them will 
be thrown into those places combined with black token. 
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Fig.2 Real-time Colored Petr
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1p : Buffer 1 stores jobs, receiving colored token. 
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2p : Machine 1 is idle, receiving black token. 

3p : Machine 1 is busy, receiving combination of black token and 

colored token. 

4p : Conveyor is idle, receiving black token. 

5p : Buffer 2 stores jobs, receiving colored token. 

6p : Conveyor mounts parts, receiving combination of black token 

and colored token. 

7p : Conveyor transfers parts, receiving combination of black token 

and colored token. 

8p : Machine 2 is idle, receiving black token. 

9p : Buffer 3 stores jobs, receiving colored token. 

10p : Machine 2 is busy, receiving combination of black token and 

colored token. 

11p : Buffer 4 stores jobs, receiving colored token. 
Fig.3 A RTCPN model of a mini-factory 

 
 Considering the problem of predicting complete time for 
ordered jobs, we know that the process of simulation is to 
move all colored tokens in buffers 1, 2, and 3 to buffer 4. It 
means that no enabled transition exists when simulation is 



end. Fig.4 gives the entire flow chart of simulation for a 
RTCPN, where all input places of enabled transitions are 
investigated to get next time point when no enabled 
transition is available at current time. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4 The simulation pro

 
III CONTRUCTION OF

 
 More factors should be 
employed to model a virtua
outline structure of virtual
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Fig.5 Structure o
 
 For an actual factory consist
buffers and conveyors, it ma
RTCPN model if we try to mo
is a convenient way to simp
blocks with the similar manne
can be equivalent to a manu
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except that their processing parameters differ. Therefore a 
sub-RTCPN model of a block can be easily copied to build 
another one and decrease the time cost. Between two 
sub-RTCPN models, we introduce a particular place, 
referred to as virtual place, to connect them. Fig.6 is an 
example of virtual place. Start 
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Fig.6 Virtual place and connection of two blocks 
 
 In Fig.6, the place  in Block 1 is completely the same 
as the place  in Block 2. They own the same tokens and 
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Fig.7 shows the inner structure of virtual 
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In Fig.7, the calendar, describing workday and their 
work time, appears. For most real enterprises, it is 
necessary because few factories work continuously without 
having a rest. Usually the calendar is attached to transitions 
to determine when it is available. The firing process of a 
transition should be modified as follows due to calendar. 
[Firing discipline including calendar] Let cτ  be firing 
time of a colored token  on transition t . Let current 
time point be 

c
j

curχ . The colored token ’s entering time 

c

c
χ  into its corresponding output place can be calculated 
by δτχχ +c+= curc , where δ  is an offset of rest time.  
 In our work, the workflow of virtual factory is designed as 
follows.  
 Step 1: Determine how many manufacturing cells should 
be modeled and how they are divided into corresponding 
blocks.  
 Step 2: Draw and describe blocks including their location, 
shape, identifier, characteristics etc. 
 Step 3: Focus on each block, drawing and describe its 
elements such as machines, buffers and/or conveyors.  
 Step 4: Focus on each block, building its corresponding 
RTCPN model. It can be shared or be copied from another 
block. 
 Step 5: Determine which places are related to final results, 
to be used to show GANTT and LOAD graph. 
 Step 6: Determine which transitions should be attached by 
a calendar.  
 Step 7: Given black tokens, which are obtained from 
elements in the block, and colored tokens, which are read 
from external file or database. For virtual factory, colored 
tokens will be applied to represent jobs including 
corresponding information of parts and routings. 
 Step 8: Simulate. 
 Step 9: Show GANTT and LOAD graph, including 
complete time for each job. 
  

IV EXAMPLE AND TIME COST 
 
 A PCB (printed circuit board) production factory, 
composed of 29 manufacturing cells each of which 
includes several machines, is used to demonstrate our 
proposed methodology. Basically it is a flow-shop, shown 
in Fig.8, except that three cells can receive jobs and some 
machines are shared at two processing stages.  
 
 
 
 
 
 
 
 
 
 
 

 
Fig.8 The routing view of the PCB production 

 
 Using virtual place introduced in previous section, it is 

very easy to deal with shared machines. Fig.9 models two 
manufacturing cells sharing three common machines.  
 

Virtual Place 

 
 
 
 
 
 
 
 
 
 
 

Fig.9 Virtual place and machine share 
 
 The RTCPN model of the above example includes 115 
places, 29 times transitions, 29 instant transitions (time 
delay=0), and 174 arcs. 358 future jobs and 930 
work-in-process jobs during two weeks are applied to 
demonstrate the performance of simulator. An original 
simulator, a specialized tool developed by C language, 
takes about 5~6 seconds to get final results on computing 
environment as show in Table 1. Because the original 
simulator cannot be expanded to deal with other factory 
and execute on other computing environment, a 
Java-built-in tool based on RTCPN is developed. The 
Java-built-in application takes about 34~35 seconds on the 
same computing environment.  
 

Table 1 Time cost of simulation 
Computing Environment Language Time Cost 
Pentium 1.4G Linux Standard C 5~6 s 
Pentium 1.4G Linux Java Jdk 1.4 34~35s 
Pentium 1G Windows 2K Java Jdk 1.4 50~52s 

 
 We hope to decrease the time cost of simulation to near 
that of the special simulator using C language in order to 
make Java-built-in application feasible to actual factory. 
The results in Table 1 are based on the algorithm given in 
Fig.4 without considering the block division. In fact, our 
proposed RTCPN model features that a transition may be 
fired several times at current time point because other 
firings may make it time-enabled. The most possible case is 
that the inner firings in a block may make transitions in the 
block time-enabled thus the time cost can be decreased if 
firing loop is firstly done within each block. This idea has 
been studied by G..Chiola [15], and the like works [16][17].  
However, the results, given in Table 2, show that it just 
speeds up by about 10~14%.  

Sharing machines 

Entering cells 

Manufacturing cells 

 
Table 2 Time cost of simulation with block loop 

Computing Environment Language Time Cost 
Pentium 1.4G Linux Standard C 5~6 s 
Pentium 1.4G Linux Java Jdk 1.4 30~31s 
Pentium 1G Windows 2K Java Jdk 1.4 45~46s 

 
Upon investigation to simulation process, the time cost 

of simulation can be evaluated by 
alsdwmfTimeCost += ),,,,(  



where 
    A function related to simulator implementation, −f

−m Total firing times of transitions, 
−w A coefficient related to scheduling method, 
−d Average time for a firing process, 
−s Average search time for determining next 

time-enabled transition, 
−l Average time of processing calendar, 
−a Pre-processing time for reading external 

information. 
 It is clear that all factors except for average search time 
are basically fixed unless we change the program structure. 
From viewpoint of algorithm, it is the average search time 
that make is possible to improve simulation performance. 
Return to algorithm shown in Fig.4, we should get next 
time point curχ  for whole RTCPN model after no 
time-enabled transition exists. The inner loop in block can 
limit the search range thus decrease search time. The 
question is that the number of time-enabled transitions in 
inner loop is not so many enough to improve simulator 
performance greatly.  
 The mode in Fig.4 works in series along time axis that a 
transition cannot fire until it is time-enabled at current time 
point and only one current time point exists for entire 
simulation. It can be modified under some conditions so 
that an independent current time point is attached to each 
block, making simulating concurrent and ignoring other 
blocks’ influence. It is easy to implement if the original 
system is completely flow-line type. From the first 
manufacturing cell to last one, simulating can be quickly 
carried out one by one because all jobs in current block 
become known once previous block has been simulated. 
Unfortunately, it is infeasible for the example in Fig.7 due 
to shared machines shown in Fig.9. Shared machines result 
in that a block may receive jobs from other blocks 
following current one. The jobs are not completely known 
before current block starts to runs. Thus for a generalized 
job-shop completely concurrent algorithm is almost 
impossible.  
 However, existence of buffers makes simulation 
concurrent a little possible. Fig.10 shows the maximum of 
blocking jobs in each buffer. 
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Fig.10 Maximum of blocking jobs in buffers 
 
 If too many jobs are blocked, it seems that the most of 
current jobs should be processed according to current jobs’ 
sequence, ignoring jobs coming in the future. In generally 

obtained results in this way are approximate. Let the upper 
limitation be 50 jobs. About 6% of GANTT blocks are out 
of order compared to accurate result. But a problem is that 
about 74% of wrong results appear due to emergency jobs. 
Let the upper limitation be 100, the results almost don’t 
change. Analysis of GANTT graph illustrates that 
emergency jobs have a great influence on old sequence thus 
cannot be ignored.  
 One of reasons for setting jobs emergency is to pass some 
manufacturing cells, referred to as bottlenecks, quickly. 
Obviously at a bottleneck cell, if emergency jobs exist, the 
processing sequence generally keeps until the last 
emergency job in current queue. The sequence of jobs 
following the last emergency job may become changeable 
due to possible coming of emergency jobs. A method to 
determine whether concurrent simulation at current block 
continues is predicting time duration for the next 
appearance of emergency job. For all future emergency 
jobs, we calculate the minimum duration θ  by 
 ∑ =

=
k

j jMin
0
τθ    (1) 

where  stands for remaining operations until entering 
current block. Let 

k
χ ′  be the time point of the last 

emergency job. Then the time depth of concurrent process 
can be determined by following formula. 
 ),( χθ ′= MaxL    (2) 
 Fig.11 gives a simulation algorithm based on concurrent 
process for each block. And improved results are given in 
Table 3.  
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Table 3 Time cost of improved simulation  

Computing Environment Language Time Cost 
Pentium 1.4G Linux Standard C 5~6 s 
Pentium 1.4G Linux Java Jdk 1.4 7~8s 
Pentium 1G Windows 2K Java Jdk 1.4 9~11s 

 
 The GANTT graph generated by algorithm depicted in 
Fig.11 has less wrong GANTT blocks than that without 
considering prediction of emergency jobs. Only about 1% 
of GANTT blocks lose their location and the errors of 
completed time of jobs are less than 2 hours compared to 
accurate results. Because of uncertainty in the future, 
generally the accurate simulation results are of 
approximation. The errors within reasonable range are 
allowed.  
 On the other hand, an independent application is often 
useless. An implementation of virtual factory should 
exchange information with other applications by network 
and database. Java application can make full use of 
compression technology to reduce data transferring time. 
The jobs and their related information given in above 
example need about 4.5 Mega bytes in text content while 
compressed file in ZIP format is just about 156k bytes. It 
will be of great benefit when a real-time simulator of 
virtual factory is applied over an intranet where other 
applications may access the same data resource 
simultaneously.  
 

V CONCLUSION 
 
 Real-time Colored Petri net (RTCPN) based model, 
introducing concept of time-enabled transition, is applied to 
describe virtual factory. The architecture, implementation 
structure and simulation algorithm of virtual factory are 
given. A PCB production factory is used to demonstrate the 
feasibility of our Java-built-in application of virtual factory. 
The time cost of simulation is discussed and a concurrent 
algorithm is proposed to obtain approximate results with 
higher simulating performance and less errors. 
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