
Modeling, Implementation and Simulation of Virtual Factory
Based on Colored Timed Petri Net

Yang Jianhua Yasutaka Fujimoto

Dept. of Electrical & Computer Eng. Dept. of Electrical & Computer Eng.
Yokohama National University Yokohama National University

Tokiwadai 79-5, Hodogayaku, Yokohama 240-8501 Tokiwadai 79-5, Hodogayaku, Yokohama 240-8501
Japan Japan

Abstract − The Real-time Colored Petri Net (RTCPN), a
modification of traditional Colored Timed Petri net, is
proposed to describe virtual factory. In RTCPN, firing
discipline differs from traditional way in that the concept of
time-enabled transition is introduced to implement real-time
simulation. In this paper, we address how to describe virtual
factory using RTCPN model. Combined with block diagram,
the concept of virtual place is also proposed to model
large-scale factory rapidly and conveniently. At last, a
Java-built-in implementation of RTCPN tool is developed and
a Printed-Circuit-Board factory is given to investigate time
cost of developed tool. Concurrent feature of RTCPN is also
discussed to decrease simulation time and improved results
shows its effectiveness.

I INTRODUCTION

Virtual factory [1][2] can be regarded as a mapping in
computer world of an actual factory. A three-level virtual
model, composed of virtual enterprise, virtual factory and
virtual device, is introduced hereby to limit the range of our
study. Virtual factory is assumed that all jobs, hereafter
only discrete manufacturing considered, are given where
predicted jobs are also included. And optimization, if
needed, is concerned in sense of factory level. No detailed
inner behavior should be known for an operation on a
device, which will be included in virtual device level
[3][4]. Simply, virtual factory is concerned with the job
flow, processed on machines, transferred by conveyors and
stored in buffers.
 Many methodologies have been introduced to illustrate
the mechanism of virtual factory. Among them, Petri net
technique [5][6][7] is widely applied due to not only its
powerful graphic capacity but also its generalized
applications on almost all levels in a manufacturing
enterprise. In this work we propose a modification of
Colored Timed Petri net, Real-time Colored Petri Net
(RTCPN) to describe the manufacturing process, where its
firing discipline differs from traditional manner in order to
let all transitions work according to the same mode.
 In this work, we address how to simulate a virtual factory
using RTCPN model. A java-built-in implementation is
developed to investigate simulation time cost on different
computing environments. An algorithm is developed to
reduce simulation time based on concurrence features
existing in our proposed RTCPN model.

II REAL-TIME COLORED PETRI NET

 High-Level net, Colored Petri Net [8][9] is a modification
of low-level Petri net proposed by Dr C. A. Petri in early

1960s [10]. It had been widely applied to solve various
practical problems by the use of tokens that can distinguish
from each other. Simply a colored Petri net can defined as a
5-tuple set CPN },,,,{ 0 CMATP= , where P
stand for place, transition, arc, and initial marking as
described in low-level Petri net, and for token’s color.
Furthermore, Colored Timed Petri Net appears while the
element “Time” is introduce to Colored Petri Net. In fact,
the element “Time” can be also added into low-level Petri
Net, generating so-called Timed Petri Net. Thus Colored
Time Petri Net is a combination of Colored Petri Net and
Timed Petri Net.

0,,, MAT

C

 Traditionally two policies are adopted to introduce the
element “Time” [11][12]. The first, the transition is timed,
denoted by a box as shown in Fig.1 (a). It takes specified
time to complete the firing of a transition, moving specified
tokens into corresponding output places. The second, the
place is timed. A token will be kept in the input place until
its delay time is over. In practice, timed transition based
model can also be transformed into timed place based
model as shown in Fig.1 (b). Each timed transition is
converted to two instant transitions, denoted by bars, and
one timed place. Two instant transitions stand for the start
and the end of the firing of timed transition respectively.
The timed place stands for the firing status of timed
transition.

(a) Timed Transition (b) Timed Place
Fig.1 Time Petri Net

Usually the timed transition based model is more widely

applied than the timed place based model because of its
simplicity and easy understanding. But both of them ignore
a case that new tokens may be added in the future. To solve
this problem, firing rule of some transitions should be
modified to receive new tokens available in the future.
However it will result in destroying the consistence of
transition firing rule because some transitions deal with
new tokens but others needn’t. Therefore we modify above
policies by attaching a time point to tokens and changing
its firing rule. Fig.2 illustrates its mechanism.
 In Fig.2, the tokens are classified into black token and
colored token. In definition of Colored Petri Net, it is
unnecessary to distinguish them because all of tokens are
colored. The black token introduced hereby is to
conveniently model many practical problem. The black

token is the same as the one in ordinary Petri net thus it can
easily describe conditions such as logical switch. On the
other hand, each colored token in our proposed Colored
Timed Petri Net features a time point while the black token
is attached nothing. The availability of colored token is
related to its time point and current time while the black
token is always available. If the time point is earlier than
current time, the colored token will be available. If not, the
colored token will be unavailable. Moreover, each place
will specify which kind of tokens can be received. There
are three cases: (1) black token can be received; (2) colored
token can be received; and (3) a combination of black
token and colored token can be received. A place only
receives tokens whose color is specified by the place. In
Fig.2, it is supposed that there are one black token in
place , and two colored tokens, a , in place . Place
is specified to receive black tokens and place the
colored tokens. Let current time point be

1p b, 2p 3p

4p

curχ , time point
of colored tokens be ba, ba χχ , . Let)p(µ represent the
number of tokens in place , including black tokens and
colored tokens. We specify that transition be fired if

p

1t
0(p)1 >µ && 0) >(2pµ && (cura χχ ≤ || curb χχ ≤).

For an example, if we have 0>)(1pµ && 0>)(2pµ
&& cura χχ ≤ , the place will be added a new colored
token whose time point becomes

4p
a acura τχχ += ,

where aτ stands for its time cost on transition t .
Meanwhile, the place will be added a black token.

1

3p

N

prop
char

[D
Real
RTC
time
for t
vary
time
RTC

 [
is en
for i

 ip
In

of “Enable” of transition keeps the same as that in
low-level Petri net. Nevertheless, an enabled transition may
not be fired unless it is a time-enabled one defined as
follows.

[Definition 3: Time-enabled Transition] A transition
 is time-enabled if is enabled and

jt jt curc χχ ≤∃ for all
 where P , a subset of , stands for places

with colored tokens,
j

c
j PP ⊂∈ip c

j

c

jP

χ for time point of certain colored
token, curχ for current time point.

Based on above definition, the discipline of transition
firing is introduced as follows.

[Firing discipline] A transition will be fired at once if
only if it is time-enabled.
 Fig.3 shows a RTCPN model of a mini-factory composed
of two machines, one conveyor and four buffers. The black
tokens in Fig.3 express available resources in the
mini-factory. That no black token is set to buffers means
that the capacity for all buffers is unlimited. It is possible to
ignore the limitation of buffers if we know that no overflow
occurs. In Fig.3, colored tokens will appear in places
without black token pre-distributed. And some of them will
be thrown into those places combined with black token.

2p

1p 3p

4p

5p 6p 7p

Machine 1

ConveyorBuffer 2

Buffer 1

p pt

8p
Buffer 3

Machine 2

1

p

3

p

1

Fig.2 Real-time Colored Petr

ext we give the definition of Colo
osed in this paper. To emph
acteristic, we name it as Real-time
efinition 1: Real-time Color
-time Colored Petri net is define

},,,,,,{ 0 curCMATPPN χΓ=
C

 whe
 cost of colored tokens on tran
he current time point. The current t
 when RTCPN works. Each colored
 point which is also changeable w
PN.
Definition 2: Enabled Transitio
abled if 1)(≥ipµ for all

nput places of transition ,
i Pp ∈

)(ipjt µ
including black tokens and colored
 our proposed Real-time Colored P

2

a

b

cura χχ ≤

curb χχ >

2p
i

r
a
C
e

r
s
i

n

j

 t
e

9p 10p 11p
Buffer 4 4

curχ
p

1p : Buffer 1 stores jobs, receiving colored token.
 net

ed Ti
size
olore

d P
d as
e
itions

Γ

me po
 token
ith th

] A
, whe
for t

okens
tri ne

aχ
4

acur τχ +=
med Petri net
its real-time
d Petri net.

etri Net] A
a 7-tuple set
 stands for

 T and curχ
int curχ will
 is attached a
e running of

 transition
jt

re stands
jP

okens in place
.
t, the concept

2p : Machine 1 is idle, receiving black token.

3p : Machine 1 is busy, receiving combination of black token and

colored token.

4p : Conveyor is idle, receiving black token.

5p : Buffer 2 stores jobs, receiving colored token.

6p : Conveyor mounts parts, receiving combination of black token

and colored token.

7p : Conveyor transfers parts, receiving combination of black token

and colored token.

8p : Machine 2 is idle, receiving black token.

9p : Buffer 3 stores jobs, receiving colored token.

10p : Machine 2 is busy, receiving combination of black token and

colored token.

11p : Buffer 4 stores jobs, receiving colored token.
Fig.3 A RTCPN model of a mini-factory

 Considering the problem of predicting complete time for
ordered jobs, we know that the process of simulation is to
move all colored tokens in buffers 1, 2, and 3 to buffer 4. It
means that no enabled transition exists when simulation is

end. Fig.4 gives the entire flow chart of simulation for a
RTCPN, where all input places of enabled transitions are
investigated to get next time point when no enabled
transition is available at current time.

Fig.4 The simulation pro

III CONTRUCTION OF

 More factors should be
employed to model a virtua
outline structure of virtual
interface is always needed
according to structure of actua
engine of the virtual factor
results according to practica
scheduling, performance ev
predication etc.

Fig.5 Structure o

 For an actual factory consist
buffers and conveyors, it ma
RTCPN model if we try to mo
is a convenient way to simp
blocks with the similar manne
can be equivalent to a manu
information in the manufac
practice, many manufacturing

except that their processing parameters differ. Therefore a
sub-RTCPN model of a block can be easily copied to build
another one and decrease the time cost. Between two
sub-RTCPN models, we introduce a particular place,
referred to as virtual place, to connect them. Fig.6 is an
example of virtual place. Start

Have enabled transition?

Get next time

N

Have time-enabled
transition?

 N

Block 1

opip

Actual Facto

RTCPN Model

Interface

Virtual Factory
Y

s Block 2
Fire enabled transition
f

l

Y

 point

ip
op

Fig.6 Virtual place and connection of two blocks

 In Fig.6, the place in Block 1 is completely the same
as the place in Block 2. They own the same tokens and

op

ip
End
cess of RTCPN

 VIRTUAL FACTORY

included when RTCPN is
l factory. Fig.3 depicts the
 factory. A man-machine
 to build RTCPN model
l factory. The Simulator is an
y, which generates various
l use purpose, such as job
aluation, completion time

 Virtual Factory

ing of quantity of machines,
y take time to construct its
del it directly. Block diagram
ify modeling, especially for
r. Generally, a block diagram
facturing cell if the detailed
turing cell is ignored. In
 cells work in similar way

corresponding colors. The Block 1 in Fig.6 has th
structure as the Block 2 thus it can be copied to B
once it has been built. As pointed out previously, the
in corresponding place and the fire time of corresp
transition differ.
 In some studies [13][14], hierarchical Petri net m
developed to describe large-scale manufacturing
whose drawback is that the simulator will become c
and hard to implement. In fact, all simulation ope
should be performed at the lowest level for a hie
Petri net model. Therefore in this work all elem
RTCPN model are atomic. Combined with block d
it might rapidly construct a RTCPN model of larg
manufacturing system, making simulation simple a
as well.

ry

Simulator

Prediction

Scheduling

Evaluation

1 Block 2 Block …

Parts

Calendar

Routings

Virtual Factory

Fig.7 Implementation structure of Virtual Factory

Fig.7 shows the inner structure of virtual
implementation. Hereby exchanging informatio
external environment is also provided, including futu
and work-in-process jobs, whose parts and routin
given by CAPP (computer-aided-process-plan).
e same
lock 2

 tokens
onding

odel is
system,
omplex
rations
rarchic
ents of
iagram,
e-scale

nd easy

n
Block
RTCPN Model
Of Block 1
Real Object
Of Block 1

Jobs
factory
n with
re jobs
gs are

In Fig.7, the calendar, describing workday and their
work time, appears. For most real enterprises, it is
necessary because few factories work continuously without
having a rest. Usually the calendar is attached to transitions
to determine when it is available. The firing process of a
transition should be modified as follows due to calendar.
[Firing discipline including calendar] Let cτ be firing
time of a colored token on transition t . Let current
time point be

c
j

curχ . The colored token ’s entering time

c

c
χ into its corresponding output place can be calculated
by δτχχ +c+= curc , where δ is an offset of rest time.
 In our work, the workflow of virtual factory is designed as
follows.
 Step 1: Determine how many manufacturing cells should
be modeled and how they are divided into corresponding
blocks.
 Step 2: Draw and describe blocks including their location,
shape, identifier, characteristics etc.
 Step 3: Focus on each block, drawing and describe its
elements such as machines, buffers and/or conveyors.
 Step 4: Focus on each block, building its corresponding
RTCPN model. It can be shared or be copied from another
block.
 Step 5: Determine which places are related to final results,
to be used to show GANTT and LOAD graph.
 Step 6: Determine which transitions should be attached by
a calendar.
 Step 7: Given black tokens, which are obtained from
elements in the block, and colored tokens, which are read
from external file or database. For virtual factory, colored
tokens will be applied to represent jobs including
corresponding information of parts and routings.
 Step 8: Simulate.
 Step 9: Show GANTT and LOAD graph, including
complete time for each job.

IV EXAMPLE AND TIME COST

 A PCB (printed circuit board) production factory,
composed of 29 manufacturing cells each of which
includes several machines, is used to demonstrate our
proposed methodology. Basically it is a flow-shop, shown
in Fig.8, except that three cells can receive jobs and some
machines are shared at two processing stages.

Fig.8 The routing view of the PCB production

 Using virtual place introduced in previous section, it is

very easy to deal with shared machines. Fig.9 models two
manufacturing cells sharing three common machines.

Virtual Place

Fig.9 Virtual place and machine share

 The RTCPN model of the above example includes 115
places, 29 times transitions, 29 instant transitions (time
delay=0), and 174 arcs. 358 future jobs and 930
work-in-process jobs during two weeks are applied to
demonstrate the performance of simulator. An original
simulator, a specialized tool developed by C language,
takes about 5~6 seconds to get final results on computing
environment as show in Table 1. Because the original
simulator cannot be expanded to deal with other factory
and execute on other computing environment, a
Java-built-in tool based on RTCPN is developed. The
Java-built-in application takes about 34~35 seconds on the
same computing environment.

Table 1 Time cost of simulation
Computing Environment Language Time Cost
Pentium 1.4G Linux Standard C 5~6 s
Pentium 1.4G Linux Java Jdk 1.4 34~35s
Pentium 1G Windows 2K Java Jdk 1.4 50~52s

 We hope to decrease the time cost of simulation to near
that of the special simulator using C language in order to
make Java-built-in application feasible to actual factory.
The results in Table 1 are based on the algorithm given in
Fig.4 without considering the block division. In fact, our
proposed RTCPN model features that a transition may be
fired several times at current time point because other
firings may make it time-enabled. The most possible case is
that the inner firings in a block may make transitions in the
block time-enabled thus the time cost can be decreased if
firing loop is firstly done within each block. This idea has
been studied by G..Chiola [15], and the like works [16][17].
However, the results, given in Table 2, show that it just
speeds up by about 10~14%.

Sharing machines

Entering cells

Manufacturing cells

Table 2 Time cost of simulation with block loop

Computing Environment Language Time Cost
Pentium 1.4G Linux Standard C 5~6 s
Pentium 1.4G Linux Java Jdk 1.4 30~31s
Pentium 1G Windows 2K Java Jdk 1.4 45~46s

Upon investigation to simulation process, the time cost

of simulation can be evaluated by
alsdwmfTimeCost +=),,,,(

where
 A function related to simulator implementation, −f

−m Total firing times of transitions,
−w A coefficient related to scheduling method,
−d Average time for a firing process,
−s Average search time for determining next

time-enabled transition,
−l Average time of processing calendar,
−a Pre-processing time for reading external

information.
 It is clear that all factors except for average search time
are basically fixed unless we change the program structure.
From viewpoint of algorithm, it is the average search time
that make is possible to improve simulation performance.
Return to algorithm shown in Fig.4, we should get next
time point curχ for whole RTCPN model after no
time-enabled transition exists. The inner loop in block can
limit the search range thus decrease search time. The
question is that the number of time-enabled transitions in
inner loop is not so many enough to improve simulator
performance greatly.
 The mode in Fig.4 works in series along time axis that a
transition cannot fire until it is time-enabled at current time
point and only one current time point exists for entire
simulation. It can be modified under some conditions so
that an independent current time point is attached to each
block, making simulating concurrent and ignoring other
blocks’ influence. It is easy to implement if the original
system is completely flow-line type. From the first
manufacturing cell to last one, simulating can be quickly
carried out one by one because all jobs in current block
become known once previous block has been simulated.
Unfortunately, it is infeasible for the example in Fig.7 due
to shared machines shown in Fig.9. Shared machines result
in that a block may receive jobs from other blocks
following current one. The jobs are not completely known
before current block starts to runs. Thus for a generalized
job-shop completely concurrent algorithm is almost
impossible.
 However, existence of buffers makes simulation
concurrent a little possible. Fig.10 shows the maximum of
blocking jobs in each buffer.

Max of Jobs

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

Fig.10 Maximum of blocking jobs in buffers

 If too many jobs are blocked, it seems that the most of
current jobs should be processed according to current jobs’
sequence, ignoring jobs coming in the future. In generally

obtained results in this way are approximate. Let the upper
limitation be 50 jobs. About 6% of GANTT blocks are out
of order compared to accurate result. But a problem is that
about 74% of wrong results appear due to emergency jobs.
Let the upper limitation be 100, the results almost don’t
change. Analysis of GANTT graph illustrates that
emergency jobs have a great influence on old sequence thus
cannot be ignored.
 One of reasons for setting jobs emergency is to pass some
manufacturing cells, referred to as bottlenecks, quickly.
Obviously at a bottleneck cell, if emergency jobs exist, the
processing sequence generally keeps until the last
emergency job in current queue. The sequence of jobs
following the last emergency job may become changeable
due to possible coming of emergency jobs. A method to
determine whether concurrent simulation at current block
continues is predicting time duration for the next
appearance of emergency job. For all future emergency
jobs, we calculate the minimum duration θ by
 ∑ =

=
k

j jMin
0
τθ (1)

where stands for remaining operations until entering
current block. Let

k
χ ′ be the time point of the last

emergency job. Then the time depth of concurrent process
can be determined by following formula.
),(χθ ′= MaxL (2)
 Fig.11 gives a simulation algorithm based on concurrent
process for each block. And improved results are given in
Table 3.

Start

 For all blocks

curχ =Start time

Block has enabled
transitions?

i

?

iFor =1 to blocks

χ

Y

N

N

No en
For

Y

N

Fig.11 Simu
Block is blockedi
Simulate until
Lcurcur += χ

Y
Simulate until curχ

C

able transition
 all blocks

End

lation flow chart con
alculate next curχ

≥curχ End Time?

Y

N

cerning concurrency

Table 3 Time cost of improved simulation

Computing Environment Language Time Cost
Pentium 1.4G Linux Standard C 5~6 s
Pentium 1.4G Linux Java Jdk 1.4 7~8s
Pentium 1G Windows 2K Java Jdk 1.4 9~11s

 The GANTT graph generated by algorithm depicted in
Fig.11 has less wrong GANTT blocks than that without
considering prediction of emergency jobs. Only about 1%
of GANTT blocks lose their location and the errors of
completed time of jobs are less than 2 hours compared to
accurate results. Because of uncertainty in the future,
generally the accurate simulation results are of
approximation. The errors within reasonable range are
allowed.
 On the other hand, an independent application is often
useless. An implementation of virtual factory should
exchange information with other applications by network
and database. Java application can make full use of
compression technology to reduce data transferring time.
The jobs and their related information given in above
example need about 4.5 Mega bytes in text content while
compressed file in ZIP format is just about 156k bytes. It
will be of great benefit when a real-time simulator of
virtual factory is applied over an intranet where other
applications may access the same data resource
simultaneously.

V CONCLUSION

 Real-time Colored Petri net (RTCPN) based model,
introducing concept of time-enabled transition, is applied to
describe virtual factory. The architecture, implementation
structure and simulation algorithm of virtual factory are
given. A PCB production factory is used to demonstrate the
feasibility of our Java-built-in application of virtual factory.
The time cost of simulation is discussed and a concurrent
algorithm is proposed to obtain approximate results with
higher simulating performance and less errors.

VI REFERENCES

[1] Bodner, D. A. and S. Reveliotis. "Virtual Factories: An

Object-Oriented, Simulation-Based Framework for
Real-Time FMS Control," Proceedings of the 1997 IEEE
International Conference on Emerging Technologies and
Factory Automation, 1997, pp.208-213.

[2] Han-Pang Huang, C.F.Yeh, “Development of a virtual
factory emulator based on three-tier architecture”, IEEE
Intl. Conf. On Robotics and Automation, Detroit, USA,
MAY 10-15, 1999, pp.2434-2439.

[3] Bodner, D. A., M. Damrau, P. M. Griffin, L. F. McGinnis, A.
McLaughlin, M. L. Spearman and C. Zhou. "Virtual
Machine Models for Electronics Assembly," Proceedings of
the 1997 Deneb International Simulation Conference and
Technology Showcase, Troy, MI, pp. 61-66, 1997.

[4] Wolfgang Mueller-Wittig; Reginald Jegathese,etc,
“Virtual Factory - Highly Interactive Visualisation for
Manufacturing”, Winter Simulation Conference, WSC
2002, San Diego, USA, 08-11 December, 2002

[5] Zhou, M. C., K. McDermott, and P. A. Patel, "Petri Net

Synthesis and Analysis of a Flexible Manufacturing System
Cell," IEEE Trans. on Systems, Man, and Cybernetics,
Vol.23 No.2, March/April 1993, pp.523-531.

[6] F. Balduzzi, A. Giua, C. Seatzu, “Modelling manufacturing
systems with First-Order Hybrid Petri Nets, ” International
Journal of Production Research, Special Issue on Modeling,
Specification and Analysis of Manufacturing Systems, Vol.
39, No. 2, January 2001, pp. 255-282

[7] Feldmann, K.; Colombo, A. W. “Monitoring of Flexible
Production Systems Using High-Level Petri Nets”, Control
Engineering Practice (CEP), Int. Journal of IFAC, vol. 7,
No.12, Pergamon Press Int. Dec.1999, pp.1449-1466.

[8] Jensen, K., Colored Petri Nets: Basic Concepts, Analysis
Methods, and Practical Use, Berlin, Germany,
Springer-Verlag, 1997.

[9] J. Peterson, “Petri net”, Computing surveys, Vol.9, No.3,
1977, pp223-252.

[10] C. Petri, Kommunikation mit Automation, Ph.D.
dissertation, University of Bonn, Boon, Germany, 1962.

[11] Murata, T., “Petri nets: properties, analysis and application”,
Proceedings of IEEE Vol.77, 1989, pp. 541-580.

[12] J.Wang, Timed Petri Nets, Theory and Application, Kluwer
Academic Publishers 1998.

[13] J.E. Hong and D.H. Bae, “HOONets: Hierarchical
object-oriented Petri nets for system modeling and
analysis”, KAIST Technical Report CS/TR-98-132,
November 1998.

[14] Yoshiaki Shimizu and Keisuke Hiraide, ”Timed Colored
Petri Net Model for Analyzing Operating Procedures for
Batch Processes”, Proc. of Int. Symposium on Process
Systems Engineering (PSE Asia 2000), PS-36,
2000,pp.279-284

[15] G. Chiola and A. Ferscha, “Distributed simulation of petri
nets”, IEEE Parallel & Distributed Technology, Vol.1, No.3,
August 1993, pp. 33--50.

[16] D. M. Nicol and W. Mao, “Automated Parallelization of
Timed Petri-net simulations”, Journal of Parallel and
Distributed Computing, Vol.29, No.1, Aug 1995.

[17] A. Ferscha, “Concurrent Execution of Timed Petri Nets”,
Proceedings of the 199d Winter Simulation Conference,
1994, pp. 229 - 236.

