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Dynamic Model of Decentralized Systems with
Informational Connection
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Kouhei Ohnishi, Fellow, IEEE

Abstract— This paper presents a design method of decen-
tralized systems with informational connection. The infor-
mational connection in this paper denotes a event link which
establish a signal links among physical controlled plants via
communication network. A dynamic transition of informa-
tional connection among decentralized systems is considered
and the mathematical structures are discussed using a con-
cept of eigenvalues and eigen-connections over the Galois field
GF (2). The global system has variable structure charac-
teristics due to the transition of informational connection.
Examples of decentralized variable structure systems are
shown. In an industry field, there are many engineering sys-
tems that have dynamic transition of informational connec-
tion. The mathematical model would be useful for analysis
and synthesis of various informationally connected systems.

I. Introduction

RECENT years, many industrial systems are becoming
too complex to understand how they work. Since these

systems are designed by hierarchical and distributed meth-
ods, it is difficult to guarantee the stability and the safety
of the global systems. The difficulty comes from an un-
expected interaction among independently designed sub-
systems. There are several works related to distributed
systems[1]–[6].

Fig. 1 shows a general concept of hierarchical distributed
systems that has a event link layer and a signal link layer.
The signal links among physical controlled plants are estab-
lished via communication network due to event links among
connection controllers. In general, many industrial systems
are implicitly designed so that the information flow will
change due to conditions of the physical plant and the con-
troller. Namely, the information flow is determined by their
logical variables of the conditions. This double-layer model
has the potential advantage of clearness, performance, and
reuse effectiveness of the modules. Explicitly considering
the double-layer concept, the model is expected to settle
the difficulties of large complex systems. Similar concepts
are found in Responsive Processor[7] and IEC61499 Func-
tion Blocks[8]. They, however, just provide frame works.

In this paper, analysis and design method for the logic
layer of the information flow is proposed because it is im-
portant to systematically handle transitions of information
flow depending on the logical condition variable. A dy-

Manuscript received November 14, 2000; revised February 15, 2002.
Y. Fujimoto is with the Department of Electrical and Computer

Engineering, Yokohama National University, Tokiwadai, Yokohama
240–8501 Japan. T. Yakoh and K. Ohnishi are with the Department
of System Design Engineering, Keio University, Hiyoshi, Yokohama
223–8522 Japan. E-mail: fujimoto@ynu.ac.jp, yakoh@sd.keio.ac.jp,
ohnishi@sd.keio.ac.jp

namic transition of informational connection is considered
and the mathematical structure is discussed using a con-
cept of eigenvalues and eigen-connections over the Galois
field GF(2). The global system has variable structure char-
acteristics due to the transition of informational connec-
tion.
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Fig. 1. Basic concept of informationally connected systems
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Fig. 2. An example of an informationally connected system

II. Dynamic Model of Connection Systems

Consider informationally connected systems which con-
sist of n sub-systems. A connection matrix X ∈ GF(2)n×n

is defined as:

xij =

⎧⎨
⎩

1 if there is connection from

jth system to ith system

0 otherwise

(1)

where xij is the (i, j) element of the matrix X . GF(2) rep-
resents the Galois field having two elements {0, 1}. Fig. 1
shows an example of an informationally connected system
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which consists of sub-systems {S1, S2, S3, S4}. The connec-
tion matrix of this system becomes:

X =

S1DS2DS3DS4D

S1R

S2R

S3R

S4R

⎡
⎣ 0 1 0 0

1 0 1 0
1 0 0 0
0 0 1 0

⎤
⎦ (2)

where the subscript D and R represent Donator and Re-
ceptor of information[2].
The operations on the Galois field GF(2) are defined as

follows[9]:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0,

0− 0 = 0, 0− 1 = 1, 1− 0 = 1, 1− 1 = 0,

0× 0 = 0, 0× 1 = 0, 1× 0 = 0, 1× 1 = 1,

0÷ 0 = Indeterminate, 0÷ 1 = 0,

1÷ 0 = Indeterminate, 1÷ 1 = 1.

In this paper, a vector space in a set GF(2)n×n is called a
connection space. A norm of a connection X ∈ GF(2)n×n

is defined as GF(2)n×n → N by |X | = ∑n
i=1

∑n
j=1Xij ,

whereN denotes a set of all natural numbers. Note that the
addition in the summation takes on N . A distance between
two connected systemsX1 andX2 is expressed as |X1−X2|.
Distance represents how different two informationally con-
nected systems are. An inner product of two connections
X,Y ∈ GF(2)n×n is defined as GF(2)n×n × GF(2)n×n →
N by 〈X,Y 〉 = ∑n

i=1

∑n
j=1XijYij . The connection space

becomes metric space by these definitions. The metric
space is needed to express a dynamic transition of an in-
formational connection because a fluctuation is based on a
concept of a distance.
Conventionally, a concept of a distance was not consid-

ered in a connection analysis because it uses a Boolean
algebra. Boolean algebra is applicable not to a dynamic
transition analysis but to a kinematics structure analysis.
Assume that a transition of an informational connection

is affected by a current state of the connection and envi-
ronmental event inputs, then we have informationally con-
nected systems of the general form

X(t+ 1) = f(X(t), u1(t), u2(t), . . . , um(t), t) (3)

where t is a unit time and ui is event input from envi-
ronment and controller. Each element of the connection
matrix X represents not only the connection itself but also
the condition of the transition of the information flow struc-
ture. Also event input ui represents the condition of the
transition depending on status of the low layer controller
and the physical plant.

A. Dynamic Model affected by Donator Connection

As a sub-class of the system (3), we have a linear dynamic
model of informational connection affected by a current
state of the Donator connection.

X(t+ 1) = AD(t)X(t) + bD(t)uD(t)T (4)

where AD(t) ∈ GF(2)n×n represents Donator matrix,
uD(t) ∈ GF(2)n represents a external event input to
change Donator connection, and bD(t) ∈ GF(2)n repre-
sents its coefficient matrix. Note that ith column of the
connection matrix X(t) represents Donator connection of
ith subsystem. The multiplication of X(t) by AD(t) from
the left affects each column of X(t), i. e., Donator connec-
tion of each subsystem.

Example II-1

Consider the Donator-type informationally connected
system

{AD, bD, X(0)} =
{[

0 1 0
0 0 1
1 0 0

]
,

[
0
0
1

]
,

[
0 0 0
0 0 0
0 0 0

]}
(5)

and the external event input uD = [uD1, uD2, uD3]
T . When

an impulsive event input is imposed on the first subsystem,

uD1(t) =

{
1 if t = 0
0 otherwise

(6)

the impulse response of the transition of the connection
becomes as shown in Fig. 3 (a). In this case, a periodic
transition can be observed.
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(a) Donator-type connection system
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(c) Donator-receptor-type connection system

Fig. 3. Impulse transition of connection system

B. Dynamic Model affected by Receptor Connection

As a dual system of the donator model (4), we have a
linear dynamic model of informational connection affected
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by the Receptor connection

X(t+ 1) = X(t)AR(t)
T + uR(t)bR(t)

T (7)

where AR(t) ∈ GF(2)n×n represents Receptor matrix,
uR(t) ∈ GF(2)n represents a external event input to change
Receptor connection, and bR(t) ∈ GF(2)n represents its co-
efficient matrix. Since ith row of the connection matrix
X(t) represents Receptor connection of ith subsystem, the
multiplication of X(t) by AR(t) from the right affects each
row of X(t), i. e., Receptor connection of each subsystem.

Example II-2

Consider the Receptor-type informationally connected
system

{AR, bR, X(0)} =
{[

0 1 0
0 0 1
1 0 0

]
,

[
0
0
1

]
,

[
0 0 0
0 0 0
0 0 0

]}
(8)

and the external event input uR = [uR1, uR2, uR3]
T . When

an impulsive event input is imposed on the first subsystem,
the impulse response of the transition of the connection
becomes as shown in Fig. 3 (b). Also in this case, a periodic
transition can be observed.

C. Dynamic Model affected by Donator and Receptor Con-
nection

In General, both Donator and Receptor connection have
influence on the next state of the connection. A Combina-
tion of (4) and (7) yields the general linear dynamic model:

X(t+ 1) = AD(t)X(t)AR(t)
T + bD(t)u(t)bR(t)

T

+ bD(t)uD(t)TAR(t)
T +AD(t)uR(t)bR(t)

T (9)

where X(t), AD(t), AR(t) ∈ GF(2)n×n, bD(t), bR(t) ∈
GF(2)n. u(t) ∈ GF(2) represents a external event input to
change the connection directly and uD(t), uR(t) ∈ GF(2)n

represent external event inputs to change Donator and Re-
ceptor connection, respectively. The model can express
transmission of information from a subsystem to others.
This is one representation of decentralized system.

Example II-3

Consider the Donator-Receptor-type informationally con-
nected system

{AD, AR, bD, bR, X(0)} ={[
0 1 0
0 0 1
1 0 0

]
,

[
0 1 0
0 0 1
1 0 0

]
,

[
0
1
0

]
,

[
0
0
1

]
,

[
0 0 0
0 0 0
0 0 0

]}
.(10)

The impulse response from the event input u(t) becomes
as shown in Fig. 3 (c).

III. Structure of Connection Systems

In this section, the mathematical structure of the connec-
tion space is discussed based on the concept of eigenvalue
and eigen-connection.

A. Eigenvalues

It is well known that eigenvalues λ ∈ GF(2�) and eigen-
vectors v ∈ GF(2�)n exist for any matrix A ∈ GF(2)n×n

which satisfy λv = Av. � is an adequate positive integer
mentioned below. Then eigenvalues λ can be obtained by
solving a characteristic equation ψ(λ) = det(λI − A) = 0.
The equation ψ(λ) = 0 is solvable when we consider an
extension field of GF(2).
Let characteristic polynomials ofDonator matrixAD and

Receptor matrix AR be given by

ψD(λ) = det(λI −AD)

= λn + aDnλ
n−1 + . . .+ aD2λ+ aD1 (11)

ψR(λ) = det(λI −AR)

= λn + aRnλ
n−1 + . . .+ aR2λ+ aR1. (12)

where aDi, aRi ∈ GF(2) for 1 ≤ i ≤ n. The character-
istics polynomials ψD(λ) and ψR(λ) are elements in a set
GF(2)[λ] which is the ring of univariate polynomials over
GF(2). The factorizations of (11) and (12) over GF(2)[λ]
are represented by

ψD(λ) = ψD1(λ)
n1ψD2(λ)

n2 · · ·ψDpD (λ)
npD (13)

ψR(λ) = ψR1(λ)
n1ψR2(λ)

n2 · · ·ψRpR(λ)
npR (14)

where ψDi(λ) and ψRj(λ) are irreducible polynomials over
GF(2)[λ].
Let the degrees of irreducible polynomials ψDi(λ) and

ψRj(λ) be �Di and �Ri for 1 ≤ i ≤ pD and 1 ≤ j ≤ pR,
respectively. Then characteristic polynomials ψD(λ) and
ψR(λ) can be factorized into the form

ψD(λ) = (λ− λD1)
n1(λ − λD2)

n2 · · · (λ− λDpD
)npD

(15)

ψR(λ) = (λ− λR1)
n1(λ− λR2)

n2 · · · (λ− λRpR
)npR

(16)

over an extension field GF(2�), where

� = LCM(�D1, . . . , �DpD , �R1, . . . , �RpR) (17)

λDi, λRj ∈ GF(2�) correspond to eigenvalues of AD and
AR. In this paper, they are named Donator eigenvalue
and Receptor eigenvalue.

Example III-1

For the system {AD, AR, bD, bR, X(0)} of Example II-3,
the characteristic polynomial of AD and AR can be factor-
ized into irreducible polynomials:

ψD(λ) = ψR(λ) = λ3 + 1 = (λ + 1)(λ2 + λ+ 1). (18)

Since the degrees of irreducible polynomials are �D1 =
�R1 = 1, �D2 = �R2 = 2, the order of the extension
field is obtained from (17) as � = LCM(1, 2, 1, 2) = 2.
Let the root of one of second degree irreducible polyno-
mial λ2 + λ + 1 = 0 be α. (18) is further factorized on
polynomial modulo α2 + α+ 1.

ψD(λ) = ψR(λ) = (λ+ 1)(λ+ α)(λ + α2). (19)
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Therefore the eigenvalues of AD and AR are λD1 = λR1 =
1, λD2 = λR2 = α, λD3 = λR3 = α2.

Fig. 4 illustrates the pole plot of (19). We shall call
this pole plot GF-plane for convenience. In GF-plane, the
origin denotes the element of zero. The points on the unit
circle denote all elements of GF(2�) except 0. In this case,
the pole α operates a state of connection to rotate by 2π/3
[rad] on GF-plane. Also the operation of α2 is by 4π/3
[rad]. Therefore, we can see the period of this system is
three.
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Fig. 4. Pole plot in GF-plane

B. Eigen-connections

Let ith generalized eigenvector of AD be vDi, jth gener-
alized eigenvector of AR be vRj . One of eigen-connections
Wij is defined by

Wij = vDivRj
T . (20)

If there is no duplicate eigenvalues in each of AD and AR,
the eigen-connection satisfies

λijWij = ADWijAR
T (21)

where λij = λDiλRj corresponds to the eigenvalue of con-
nection systems. The eigen-connections are special connec-
tions whose shapes are invariant during dynamic transition.
The norms are, however, variant due to the corresponding
eigenvalues.

Since the number of eigen-connections in a connection
system is n2 and they are independent each other, any
connection X can be expressed by the sum of them

X =

n∑
i=1

n∑
j=1

aijWij (22)

where aij ∈ GF(2�). The eigen-connections are basis which
span the connection space.

Example III-2

For the system {AD, AR, bD, bR, X(0)} of Example III-A-
1, the eigenvectors of AD and AR are given by vD1 = vR1 =
[1, 1, 1]T , vD2 = vR2 = [1, α, α2]T , vD3 = vR3 = [1, α2, α]T .
From (20), the eigen-connections are given by

{W11,W12,W13,W21,W22,W23,W31,W32,W33}

=

{[
1 1 1
1 1 1
1 1 1

]
,

[
1 α α2

1 α α2

1 α α2

]
,

[
1 α2 α
1 α2 α
1 α2 α

]
,

[
1 1 1
α α α
α2 α2 α2

]
,

[
1 α α2

α α2 1
α2 1 α

]
,

[
1 α2 α
α 1 α2

α2 α 1

]
,

[
1 1 1
α2 α2 α2

α α α

]
,

[
1 α α2

α2 1 α
α α2 1

]
,

[
1 α2 α
α2 α 1
α 1 α2

]}
. (23)

Then their eigenvalues are given by

{λ11, λ12, λ13, λ21, λ22, λ23, λ31, λ32, λ33}
= { 1 , α , α2,

α , α2, 1 ,
α2, 1 , α }.

(24)

There are three steady eigen-connections W11,W23,W32

and other six periodic eigen-connections.

C. Conjugate Connections

The connection space representation using eigen-
connections includes element α of the extension field
GF(2�). In this section, another basis of connection space
excluding α is introduced using sets of conjugate connec-
tions.
Let one of the eigenvalues be β. Then a set of the

eigenvalues {β, β2, β4, . . . , β2d−1} exist and they become
conjugate, where d is a minimum positive integer satis-

fying β2d = β. For example, two eigenvalues α, α2 in
Example III-A-1 are conjugate. We can examine it by
(λ+ α)(λ + α2) = λ2 + λ+ 1.
Let ith set of conjugate eigenvalues of AD be

{βi, β2
i , β

4
i , . . . , β

2di−1

i } and their eigenvectors be {vβi1, vβi2

, . . . , vβidi}. Consider n× n matrix GD ∈ GF(2�)

GD = block diag(GD1, GD2, . . . , GDi, . . .) (25)

where

GDi =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

βi β2
i β4

i β2di−1

i

β2
i β4

i β8
i β2di

i
...

...

βdi−1
i β

2(di−1)
i β

4(di−1)
i · · · β2di−1(di−1)

i

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(26)
Then let the inverse matrix of GD be

HD = GD
−1 = block diag(HD1, HD2, . . . , HDi, . . .) (27)

where

HDi = GDi
−1 =

⎡
⎢⎢⎢⎣
hDi11 hDi12 · · · hDi1d

hDi21 hDi22 hDi2d

...
...

hDid1 hDid2 · · · hDidd

⎤
⎥⎥⎥⎦ (28)
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Let us consider new vectors v′βij
defined by v′βij

=∑di

k=1 hDikjvβik i. e.

V ′
D = VDHD (29)

where

VD = [vβ11, vβ12, . . . , vβ1d1 , vβ21, vβ22, . . . , vβ2d2 , . . . , ]

V ′
D = [v′β11, v

′
β12, . . . , v

′
β1d1

, v′β21, v
′
β22, . . . , v

′
β2d2

, . . . , ]

In a similar manner, let jth set of conjugate eigenvalues

of AR be {γj, γ2j , γ4j , . . . , γ2
rj−1

j } and their eigenvectors be
vγj1, vγj2, . . . , vγjrj . Then we compute

V ′
R = VRHR (30)

where

VR = [vγ11, vγ12, . . . , vγ1r1 , vγ21, vγ22, . . . , vγ2r2 , . . . , ]

V ′
R = [v′γ11, v

′
γ12, . . . , v

′
γ1r1 , v

′
γ21, v

′
γ22, . . . , v

′
γ2r2 , . . . , ]

The conjugate basis of connection space is given by

W ′
ij = v′Div

′
Rj

T
(31)

where v′Di denotes ith column vector of V ′
D and v′Rj denotes

jth column vector of V ′
R.

Example III-3

For the system of Example III-A-1, the conjugate con-
nections are computed as follows. We compute

GD = GR =

[
1 0 0
0 1 1
0 α α2

]
(32)

Then HD = GD
−1 and HR = GR

−1 are given by

HD = HR =

[
1 0 0
0 α2 1
0 α 1

]
(33)

From (29) and (30)

[v′D1, v
′
D2, v

′
D3] = [v′R1, v

′
R2, v

′
R3] =

[
1 1 0
1 0 1
1 1 1

]
. (34)

Therefore, the conjugate basis of connection space is
given by

{W ′
11,W

′
12,W

′
13,W

′
21,W

′
22,W

′
23,W

′
31,W

′
32,W

′
33}

=

{[
1 1 1
1 1 1
1 1 1

]
,

[
1 0 1
1 0 1
1 0 1

]
,

[
0 1 1
0 1 1
0 1 1

]
,

[
1 1 1
0 0 0
1 1 1

]
,

[
1 0 1
0 0 0
1 0 1

]
,

[
0 1 1
0 0 0
0 1 1

]
,

[
0 0 0
1 1 1
1 1 1

]
,

[
0 0 0
1 0 1
1 0 1

]
,

[
0 0 0
0 1 1
0 1 1

]}
. (35)

D. Autonomous Rhythm of Connections

In this section, the period of transition of connection
systems is discussed. For ith eigenvalue λDi of AD, the pe-
riod pDi is defined by the minimum positive integer which
satisfies λpDi

Di = 1. Let the generalized eigenvector corre-
sponding the eigenvalue λDi be vDi and its depth be qDi.
For the vector vDi, the depth qDi is defined by the posi-
tive number which satisfies vDi ∈ Ker(λDiI − AD)qDi and
vDi �∈ Ker(λDiI −AD)qDi−1. Then the period of ith eigen-
vector is given by 2gDipDi where gDi denotes a minimum
integer satisfying qDi ≤ 2gDi . In a similar manner, the
period of jth eigenvector of AR is also given by 2gRjpRj .
Now we compute the period pij for an eigen-connection

Wij = vDivRj
T as

pij = LCM(2gDipDi, 2
gRjpRj). (36)

Therefore the period P for a connection X is given by

LCM(P ), P = {pij |(i, j) ∈ C} (37)

where C represents a set of subscripts of eigen-connections
occupied by X given by C = {(i, j)|aij �= 0, X =∑n

i=1

∑n
j=1 aijWij}.

When a system has duplicate eigenvalues and the deeper
eigen-connection space is excited, the period is doubled,
quadrupled, etc. Also when a m-degree primitive polyno-
mial is included in the characteristic polynomial, the max-
imum period 2m − 1 is observed.

E. Steady Connection

In this section, a set of steady connections is derived.
When a pair of eigenvalues β and γ satisfies β × γ = 1,

they are defined as contrary eigenvalues. The system (9)
has a steady connection exceptX = 0, if and only if AD and
AR have a pair of contrary eigenvalues. Let ith eigenvalues
ofAD be βi and its contrary eigenvalue ofAR be γi. AD has

other conjugate eigenvalues β2
i , β

4
i , . . . , β

2d−1

i and AR has

also other conjugate eigenvalues γ2i , γ
4
i , . . . , γ

2d−1

i . Then
each of them makes a pair of contrary eigenvalues, i. e.,

β2j

i × γ2
j

i = 1 for 0 ≤ j ≤ d − 1. Let the corresponding
eigenvectors be

VDi = [vDi0, vDi1, . . . , vDid−1] (38)

VRi = [vRi0, vRi1, . . . , vRid−1] (39)

where vDij denotes the eigenvector for the eigenvalue β2j

i

and vRij denotes the eigenvector for the eigenvalue γ2
j

i , i.

e., vDij ∈ Ker(β2j

i I − AD) and vRij ∈ Ker(γ2
j

i I − AR).
Under these preparations, we have a following theorem.
Lemma 1: A set of steady connections is given by

Ω1 = {X |X = VDiVRi
T , i ∈ C} (40)

where C = {i|βiγi = 1}.
Proof: The definitions of VD and VR yield

ADVD = VDdiag(β, β2, . . . , β2d−1

) (41)

ARVR = VRdiag(γ, γ
2, . . . , γ2

d−1

) (42)
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Note that each of eigenvalues is contrary, i. e., β2jγ2
j

= 1
for 0 ≤ j ≤ d− 1. Then we compute

ADVDVR
TAR

T = VDdiag(βγ, β2γ2, . . . , β2d−1

γ2
d−1

)VR
T

= VDVR
T (43)

Therefore, the connection X = VDVR
T is the steady con-

nection which holds X = ADXAR
T . The necessity of the

condition is trivial.
The system (9) has a vanishing connection which con-

verges on the origin X = 0 within finite steps if and only
if AD or AR has eigenvalues 0.
Lemma 2: A set of the vanishing connections is given by

Ω0 = {X |X = vDaR
T + aDvR

T , vD ∈ KerAD
mD ,

vR ∈ KerAR
mR , ∀aD, aR ∈ GF(2)n}. (44)

The connection converges on 0 within max(mD,mR)
steps, where mD denotes a minimum integer satisfying
rankAD

mD = rankAD
n. Also mR is defined for AR in

a similar manner.
Proof: If either AR or AD has an eigenvalue 0, a

non-zero eigenvector vD ∈ KerAD
mD or vR ∈ KerAR

mR

exists. In a case of mD ≥ mR, we compute the connec-
tion in (44) after mD steps so that AD

mDX(AR
T )mD =

AD
mD(vDaR

T+aDvR
T )(AR

T )mD = 0 becauseAD
mDvD =

0 and AR
mDvR = AR

mD−mR × AR
mRvR = 0. The case of

mD < mR is also computed in similar manner.
Thus, a set of connections which converge on a steady

connection within finite steps is given by Ω0 ⊕ Ω1

IV. Control of Connection Systems

The eigenvalues of the connection systems (9) can be
designed using external event inputs u, uD, and uR. On
(9), when we set connection feedback

u = fD
TXfR, uD = XT fD, uR = XfR (45)

then the following dynamics of the connection is obtained.

X(t+ 1) = (AD + bDfD
T )X(t)(AR + bRfR

T )T (46)

Any eigenvalues can be designed if and only if both
(AD, bD) and (AR, bR) are controllable.

V. Decentralized Implementation

Let the connection matrix be X = [xD1, . . . , xDn] =
[xR1, . . . , xRn]

T . Each subsystem consists of {xDi, xRi,
AD, AR} where xDi, xRi ∈ GF(2)n and AD, AR ∈
GF(2)n×n. xDi and xRi represent local donator and recep-
tor connections of ith subsystems, respectively. Usually,
the subsystems communicate signals each other depending
on their donator and receptor connections xDi, xRi. The
matrices AD and AR are homogeneous among subsystems.
If an event occurs, the update procedure of connections is
carried out as follows:
1. Update donator connections by xDi ← ADxDi for
each subsystems.

2. Update receptor connection xRj to be consistent to
xDi for j �= i.

3. Update receptor connections by xRi
T ← xRi

TAR
T for

each subsystems.
4. Update donator connection xDj to be consistent to
xRj for j �= i.

S1

S2

S3S4

S5

(a) Ring network

S1

S2

S3S4

S5

S1

S2

S3S4

S5

S1

S2

S3S4

S5

S1

S2

S3S4

S5

S1

S2

S3S4

S5

(b) Token passing sequence

Fig. 5. Token passing protocol

VI. Illustrative Examples

A. Token Passing Protocol on Ring Network

Token Passing Protocol is a communication mechanism
for multi-node network that realizes time critical commu-
nications. To avoid collisions, the node passes a token from
one to another, and it has a right to talk on the network
only if it holds the token.

Consider a ring network with five nodes as shown in Fig.
5. First, the token is passed from the node S1 to the node
S2, then it is passed from the node S2 to the node S3.
Namely, it moves cyclically as S1 → S2 → S3 → S4 →
S5 → S1.

The delivery of token is modeled as an autonomous sys-
tem with informational connection: X(t+1) = ADX(t)AT

R

where

{AD, AR, X(0)} =⎧⎪⎨
⎪⎩
⎡
⎢⎣
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎦ ,

⎡
⎢⎣
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎦ ,

⎡
⎢⎣
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎦
⎫⎪⎬
⎪⎭. (47)

The characteristic polynomials of AD and AR are com-
puted as

ψD(λ) = ψR(λ) = λ5 + 1

= (λ+ 1)(λ4 + λ3 + λ2 + λ+ 1)

= (λ+ 1)(λ+ α3)(λ+ α6)(λ+ α9)(λ + α12) (48)
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where α ∈ GF(24) is a root of 4th degree irreducible poly-
nomial λ4 + λ + 1 = 0. From (48) the Donator eigenval-
ues λD and the Receptor eigenvalues λR are λD = λR =
{1, α3, α6, α9, α12}. Then eigenvalues of the system are
calculated as {1, α3, α6, α9, α12} by (21) for 1 ≤ i ≤ 5,
1 ≤ j ≤ 5. The system has five fivefold eigenvalues. Fig.
6 shows GF-plane of the system. It is observed that the
period of four eigenvalues {α3, α6, α9, α12} is five.
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Fig. 6. Pole plot of token passing model

S2 S3 S4

S12

S13

S14
S1

Fig. 7. Asynchronous 1-scheduler model

B. Asynchronous 1-Scheduler

The proposed modeling method is applied to an asyn-
chronous 1-scheduler for simple parallel computers. There
is a scheduler process that divides a job into multiple parts
and dispatches them to the other processes. Let S1 be
the scheduler process and S2, S3, S4, . . . be the other sub-
processes. A sequence of a request S1 → Si and an ac-
knowledgement S1 ← Si is asynchronously realized.

Assume that only three sub-precesses S2, S3, S4 exist.
The scheduler process S1 is divided into three parts ac-
cording to the condition of the communication as shown in
Fig. 7. Then we have the connection system: X(t + 1) =
ADX(t)AT

R +BDdiag(u1, u2, u3)B
T
R where

{AD, AR, BD, BR} =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭
(49)

where event input ui denotes a request flag from the sched-
uler to (i+ 1)th sub-process.

Since the characteristic equations of the Donator matrix
AD and the Receptor matrix AR are ψD(λ) = ψR(λ) =
λ6 = 0, the system has sixfold poles. The correspond-
ing eigenvectors are calculated as vD1 = [1, 0, 0, 0, 0, 0]T ,
vD2 = [0, 0, 0, 1, 0, 0]T , vD3 = [0, 1, 0, 0, 0, 0]T , vD4 =
[0, 0, 0, 0, 1, 0]T ,
vD5 = [0, 0, 1, 0, 0, 0]T , vD6 = [0, 0, 0, 0, 0, 1]T , vR1 =
[0, 0, 0, 1, 0, 0]T , vR2 = [1, 0, 0, 0, 0, 0]T ,
vR3 = [0, 0, 0, 0, 1, 0]T , vR4 = [0, 1, 0, 0, 0, 0]T , vR5 =
[0, 0, 0, 0, 0, 1]T , vR6 = [0, 0, 1, 0, 0, 0]T . Thus the system
has 36 eigen-connections given by (20). From BD and
BR, the eigen-connections excited by the external inputs
{u1, u2, u3} are {W22,W44,W66}. These eigen-connections
represent the dispatches of the jobs from the scheduler to
the sub-processes.

The eigen-connection W22 is composed of two eigenvec-
tors vD2 and vR2. Since the depth of these vectors is 2, dy-
namics of the sub-space is governed by W11 = ADW22A

T
R

instead of (21). The sub-spacesW44 and W66 are governed
by W33 = ADW44A

T
R and W55 = ADW66A

T
R as well. The

eigen-connections {W11,W33,W55} represent the acknowl-
edgements from sub-processes.

Then, the sub-spaces {W11,W33,W55} are governed by
(21), namely 0 = ADW11A

T
R, 0 = ADW33A

T
R, 0 =

ADW55A
T
R. They correspond to ends of the jobs.

ObjectLM LM
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S1

S3

Fig. 8. Decentralized acutuation system
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Fig. 9. Variable structure system with sliding mode
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C. Variable Structure System

Fig. 8 shows an illustrative example of a decentralized
positioning system with a object and two one-way linear
actuators. The system is regarded as a variable structure
system. Fig. 9 shows a block diagram of the system where
M is inertia of object, D is dumping factor, r is reference
position, y is position of object, e is error signal, u is force
imposed on object, and α and β are gains for actuator #1
and #2, respectively.
Since the system has two actuators, we consider the dy-

namic connection system:

{AD, AR, bD, bR, X(0)}

=

{[
1 0 0
0 1 0
0 0 1

]
,

[
1 0 0
0 1 0
0 0 1

]
,

[
0
1
1

]
,

[
0
1
1

]
,

[
0 1 0
1 0 0
0 0 0

]}
.

(50)

The external event inputs are given by the connection feed-
back (45) and fD = fR = [0, 1, 1]T . The event inputs are
activated when σ(t)×σ(t−Ts) < 0 where σ(t) is defined by
σ(t) = ce(t) + ė(t) and Ts is the control period. σ(t) = 0
denotes sliding surface. The connection feedback yields
controlled system matrices:

AD + bDf
T
D = AR + bRf

T
R =

[
1 0 0
0 0 1
0 1 0

]
. (51)

The dynamic transition of the informational connection is
shown in Fig. 10. The unit time in this representation is
defined as the minimal interval of the events. The Donator
eigenvalues and the Receptor eigenvalues are calculated as
λD = λR = {1}. The system has triple poles. From (37),
the period of the system becomes 2 because the depth of
one of the eigenvectors is 2. It corresponds to the fact that
the system has two structures.
The system is implemented in decentralized subsystems

connected via Fast Ethernet as shown in Fig. 11, where the
personal computer PC1 emulates the object. The PC2 and
PC3 are the controller S1 and S2, respectively. The pro-
tocol is implemented on the upper level over the UDP/IP.
Fig. 12 shows the experimental result of the phase plane
trajectory.
The proposed model gives an analytical system structure

from the view point of the upper event layer. Also it gives
an decentralized implementation model as shown in the
section V.
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S1

S2 S3

if   e>0

if   e<0

u e
e

u

σ

σ _

Fig. 10. Informational connection of VSS

PC1 PC2 PC3

Fast Ethernet

Fig. 11. System configuration
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Fig. 12. Experimental results in phase plane

VII. Conclusions

A design method of decentralized systems with informa-
tional connection is proposed. The dynamic transition of
informational connection among decentralized systems is
considered and the mathematical structures are discussed
using a concept of eigenvalues and eigen-connections over
the Galois field GF(2). Examples of decentralized variable
structure systems are shown. In an industry field, there are
many engineering systems that have dynamic transition of
informational connection. The mathematical model would
be useful for analysis and synthesis of various information-
ally connected systems.
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