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Abstract: A decision model, stemmed from Bayesian thinking, is proposed to predict the 
operator’s behavior in manufacturing system. The decision model is addressed 
using non-parametric distribution where a binary division method is proposed 
to reduce the complexity of the model, eliminating irrelevant features. 
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1. INTRODUCTION 

In general a manufacturing plan should be set up to meet the time 
constrains of orders, while the delivery dates are also determined by 
prediction of complete time of orders based on the capacity of manufacturing 
system. In many case, we find that a shop floor is controlled by a group of 
operators who make their decisions according to some rules usually given by 
a guide, their experience obtained from manufacturing history, and probably 
their mood of that day. Therefore, the human interference should be included 
if we hope to predict the future of manufacturing. Errors might be decreased 
if we can correctly identify the behaviors of operators using the past decision 
data.  

The identification of human behavior in manufacturing system differs 
from general pattern recognition [1] in that sampling data, the manufacturing 
history, have been given and random sampling is not applicable. Therefore 
sufficient manufacturing history data are needed to make it possible to 
identify the human behavior. The model used in this paper is primarily 
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developed and originated from Bayesian thinking, where some special 
transformations are introduced for constituting feature vector from 
parameters of factors. And a full non-parametric model is proposed to 
dispose of both continuous and discrete variables with irregular distributions. 
To solve the complexity problem that a non-parametric model might result in 
an explosion of data storage [2] and the relevance selection problem that 
irrelevant factors should be eliminated [3], we propose a binary division 
method in this paper. 

2. MODELLING 

With respect to the problem we consider, it is unnecessary to obtain a 
general model of human’s brain. In fact, it is also unrealistic until today even 
if we have received some clues about its operation mechanism. In order to 
clearly illustrate the nature of the problem, we formulate the process of 
human’s decision making as follows. Let the operator’s surroundings be C , 
the operator’s status be M , the operator’s decision mechanism be D , and the 
final decision be Q . The process of human’s decision making can be 
represented by D . Unfortunately we often only know the partial 
surrounding information 

Q: M →C ∪
I  around the operator and try to employ D  

to represent the decision process of the manufacturing system. In other 
words, the decision recognition can be expressed by R , where 

QI →:

DQI →),(: R  
stands for recognition mechanism. Errors are inevitable if φ≠∪− MI )C( . 
Therefore the topic about error decreasing in this paper is always discussed 
over R . 

Bayesian thinking [4] is often employed in pattern recognition. Let Ω  be 
sampling space, which is composed of n  independent hypotheses, noted by 

. The probability of occurrence for result },,,{ 21 nBBB L x  can be computed by 
following equation: 

)(/)()|()|( xpBpBxpxBp kkk =                       (1) 
For identification of operator’s behavior, we let hypotheses be operator’s 

decision D , let results be history system data I  and history decision data Q . 
According to equation (1), we get  

                   (2) )),((/)()|),(()),(|( QIpDpDQIpQIDp =

Furthermore, suppose that an operator always select no more than one job 
based on the current status of surroundings. The surroundings data at that 
time are addressed by a feature vector , then  (2) can be expressed by X

)(/)()|()|( XpDpDXpXDp =                      (3) 
From manufacturing history, distribution p  and  can be 

obtained although sometimes it is hard and complex to do so. For prior 
distribution , suppose that it is a uniform distribution. As a result, the 

)|( DX )(Xp

)(Dp
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posterior distribution p  is fundamentally determined by 

. Let   
)|( XD
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|() XpD = .                    (4) 
The  can be regarded as a force, the operator’s decision, driving the 
prior probability distribution p  to the posterior probability distribution 

. Finally for the future status, we predict that operator will select a 
job  such that , i.e., )|(|( F

jXDpXDp

                    (5) ))|( DDX F
j =

3.  DECISION ACQUISITION 

As illustrated in Section 2.1, the decision recognition distribution )|( DXη  
naturally describes the operator’s decision mechanism and shows how much 
information is obtained.  

To simply illustrate it, let [  be logarithm of probability variable )(•p , 
then we have  

log]| pD = , [ .          (6) )(log] XpX =

And we define 

[)]|( XDX =                  (7) 

∫= dXXD |[|)                 (8) 

where  is referred to as intensity of operator’s decision and ∫ stands 
for a generalized integral operator which can compute over both discrete and 
continuous variables. 

In general, the higher the intensity means the stronger operator’s decision. 
If the p  have the same distribution with p , we get )|( DX 0)( =DF . It 
means that we learn nothing from manufacturing history, i.e., one might 
select jobs randomly. Therefore we certainly cannot predict the future. But 
for an effective identification, we always have . For instance, only a 
feature 

0)( >DF
 is considered. Given 6.0)0( ==xp  and 4.0)1( ==xp

2.0)|
. After 

operator’s decision, we get p  and 8.0)| =D 1( == Dxp . Then how 
much can we learn from history? Or . ?)( =DF

 Here the is substituted by the ∑ , then we get 
∑ − []|[| DX  

)|(log DXp  426.0|4.0log2.0log||6.0log8.0log| =−+−=  
Note that definition of η  is invalid if 0)|( =DXp  or 0)( =Xp . 

Therefore integral F  defined in formula (8) does not always exist. To 
strictly define it, we discuss some properties over so-called valid sampling 

)(D
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space. Let  Ω  stand for valid sampling space of p  such that , 

 for valid sampling space of  such that , respectively. 
We have following conclusions. 

R

Ω

p

∫=)

)(X
|(Xp

0)( >Xp
DΩ

RΩ

)|( DXp

0) >D

dX

0) >D

0) > 0 X

∆Ω

|(X )D

(Xη

)(Xp

VXp )(≅

S

[Property 1] . DR Ω≥
It can be obviously proved because a sampling point of the operator’s 

decision should be one belonging to original sampling space. Particularly, 
 means that no more than one job waits in the buffer at any time 

hence the operator has no choice but select the only one. 
DΩ=

[Property 2]  if .  0)( >X |(Xp
It can be induced from property 1 and can be regarded as another 

description of property 1. 
Based on property 2, we can revise formula (8) as  

Ω
− XDXDF |][]|[|(                     (9) 

Dwhose definition always exists. 
[Property 3]  let DR Ω−Ω=∆Ω , we have  

(Xp  and  for )|( =DXp ∆Ω∈∀ . 
 It can be concluded from property 2 and the definition of valid sampling 
space. The domain  is also referred to as deterministic decision space, 
implying that a sampling point in ∆Ω , which is also referred to as 
deterministic decision point, will be surely recognized because zero is the 
smallest value. Generally the larger the domain 

∆Ω

 is, the stronger the 
decision mechanism is. 

4. NON-PARAMETRIC DISTRIBUTION 

The simplest way to describe distribution of η  is utilization of 
parametric model such as normal distribution, beta distribution etc, where 
the distribution can be completely represented by some parameters such as 
average value, variance, etc. However the distribution type should be known 
before we employ parametric model. Thus to obtain general description of 

)| D , non-parametric model is usually a possible choice.  
A non-parametric distribution model is generally described by dividing 

sampling space into many tiny domains, where distribution density  is 
almost constant. Let a domain be S , corresponding volume be V . The 
probability of feature vector in S  can be calculated by p S )( . 
According to Monte Carlo simulation [5], given m  sampling data, if among 
them  data fall in the domain S , the probability of feature vector in S  can 
be obtained by . Thus the distribution density in domain  can be 
determined by  

k
mkSp /)( =

mVkXp /)( = .                  (10) 
The basic two methods for modeling non-parametric distribution are 

kernel density method [6][7] and k-nearest neighbors method [8]. For kernel 
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density method, the probability density of a domain can be calculated by 
fixing the volume of the domain, counting the data that fall in it. For k-
nearest neighbor method, the probability density of a domain can be 
calculated by fixing the number of data that fall in the domain, changing the 
volume of the domain. A main drawback of kernel density method is that a 
large domain division might result in low smooth while a small domain 
division might result in low reliability due to limited history data. Moreover, 
sometimes its implementation is almost infeasible. K-nearest neighbors 
method emphasizes that the volume of domain is changeable, fixing the 
counts of data that fall in the domain. But it is often hard to get such a 
domain. In fact, no matter what kind of method, the fundamental problem is 
the division of sampling space.  In next section, a binary division method is 
proposed to provide such a solution, where both the volume and counts are 
changeable. 

5. BINARY DIVISION METHODOLOGY  

Noticed that an effective decision means that decision distribution 
 is not a uniform distribution. The larger difference among domains 

generally implies the more effective decision. So we should emphasize the 
feature with less variance and consider how to divide it firstly. Here a binary 
division method is one of possible choices. 

)|( XDp

Let Ω  be the sampling space, X  be a feature vector. At 
first, a binary division is done along each feature x

][ 21 kxxx L=
(ii ),,2,1 kL= , so we get a 

group of bi-subspaces, i.e., domains, denoted by ),,( ΩLxiS  and ),,( ΩRxS i , 
where L  stands for the left domain, R  for right domain, respectively. As 
described previously, instead of computing probability density p , )|( XD

)D|(Xη  is applied to describe recognition distribution therefore we define 
)D|,Ω,( Lxiη  standing for density distribution of ),,( ΩL (xixiS , )|, DR, Ωη  for 

density distribution of S . Among k divisions only one along the 
feature  (  is really selected to be executed, which is such that 

),,( ΩRxi

})* *iix ,,2,1{ kL∈
),(max),( * Ω∆=Ω∆ iii xx ηη                 (11) 

where  ∆ |)|,,()|,,(|),( DRxDLxx iii Ω−Ω=Ω ηηη .                            (12) 
Similarly for each subspace uS ,  ∈ ),,({ * ΩLxS i ,( *ixS )},ΩR  we can obtain its 
furthermore divided subspaces ui  and uiS  by binary divisions. 
And the really executed division along the feature x  (

),, SLx(S ), S
*i *i

,( Rx
}),,2,1{ kL∈  at this 

step is also such that 
),(max),( * uiiui SxSx ηη ∆=∆ ,                            (13) 

where |)|,,()|,,(|),( DSRxDSLxSx uiuiui ηηη −=∆ .                          (14) 
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  Apparently such a division might be carried out infinitely, producing 
countless domains therefore a termination condition should be added. 
Hereby, we introduce two thresholds: an integer )0(≥σ  standing for a 
threshold of sampling points for a subspace  and a real numberuS )0(≥δ  for a 
threshold of the difference of density distribution between two subspaces of 
the subspace S . The binary division process will be stopped if u

δησ ≤∆≤ ),(||)( * uiu SxSC                                 (15) 
where u is the sampling points of the subspace S  and symbol || 
represents ‘OR’ Boolean operator. 

)(SC u

The domain division for non-parametric distribution is equivalent to 
sampling problem in signal processing. An effective technique is that the 
higher density makes more divisions, vice versa. It is the threshold σ  that 
determines how small a domain should be. 

Furthermore, as we consider the problem of division of sampling space, 
distinguishing relevant and irrelevant features should be also taken in 
account. Clearly the model will become redundant if an irrelevant feature is 
involved. Therefore is it possible that irrelevant features can be kicked out 
when domains are divided? 

It is clear that the times of binary division along the each feature ix , 
denoted by i )(xκ , might be different. And it can be applied to deal with the 
problem of elimination of irrelevant features. Before some conclusions are 
induced, the definitions of irrelevant feature are discussed as follows. 
 [Definition 1]  Irrelevant feature in strong sense:  A feature x  is an 
irrelevant feature if decision distribution p  is a uniform distribution 
and independent of other features. 

r

)|( rxD

Using above definition and the sampling division method, we obtain the 
following theorem. 
[Theorem]  The times of binary division along a feature x  is denoted by r

)( rxκ . 0)( =rxκ  if the feature  is irrelevant to operator’s decision in strong 
sense. 

rx

[Proof] 
 Based on equations (3), (4), we get 
         )(/)|()(/)|()|( DpXDpXpDXpDX ==η .             (16) 
 For the feature , we have rx

)(/)|()|( DpxDpDx rr =η .                         (17) 
The distribution )|( Dxrη  should be uniform because and  are 

uniform distributions, according to definition and assumption. 
)|( rxDp )(Dp

 The uniform property is kept for all domains if a feature is independent of 
others, therefore the binary division on x  for any subspace S  is always 
such that  

r u

0),( =∆ ur Sxη .                                      (18) 
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But according to binary division method, only the binary division such 

that 0),( >∆ ui Sxη  is possibly selected and really executed. Thus the binary 
division will be never really executed on , i.e.,  rx

0)( =rxκ .                                           (19) 
[End] 

However we cannot induce that a feature is irrelevant one in strong sense 
even if 0)( =rxκ  using proposed binary division. Therefore we introduce the 
definition of irrelevant feature in weak sense as follows. 
[Definition 2]  Irrelevant feature in weak sense:  A feature  is an irrelevant 
one if 

rx
0)( =rxκ .  

That is, we can eliminate irrelevant features in weak sense using binary 
division method. 

6. AN EXAMPLE 

 Given a set of jobs J {1,2,3,4,5,6,7,8,9,10}, waiting in a buffer to be 
processed on a machine, its corresponding processing time and parts size are 
represented by 

=

== ({ jh 10)}H {12,24,30,28,48,51,61,60,70,66} and == 10)}({ js

→
Txx ][ 21=

S  
{20,10,10,20,30,30,30,20,20,10} respectively. Let the parts size of the job before 
job 1  be 20. Suppose that jobs are mounted according to sequence 1  
2 3 4 5 6 7 8 9 10. Define feature vector X  
where  
→ → → → → → → →

)(min)(1 jhihx
j

−=    (Job i  is the next one to be mounted, J∈ ij ≠ )             (20) 

)()(
)()(

1
0

2 isos
isos

x
≠
=





=  (Job o  is the one that just has been processed).     (21) J∈

To simplify our example, we suppose that p  is approximately a 
uniform distribution. Therefore 

)(X
)|( DXη  is determined by p . 

According to above processing sequence, we obtain a set of sampling data  
)|( DX

}
0
4

,
1
6

,
0
1

,
0
9

,
1
3

,
1
24

,
0
2

,
1
4

,
0
12

{
−−−−−− , 

where we needn’t make a decision for the last job thus only 9 data are 
generated. Let 0,1 == δσ . The result of binary division along X  
is shown in Fig.1 and obtained histogram is shown in Fig.2. 

Txx ][ 21=

Fig.1 indicates that both of x  and  might be related to operators’ 
decision because division times along them, 7 and 4 respectively, are larger 
than 0. Fig.2 illustrates the recognition information for operator decision, 
which is equivalent to 

1

)

2x

|( DXη  due to our assumption that p  is 
approximately a uniform distribution. It shows that an operator will select a 
job to be mounted using minimum processing time rule mixed with identical 
parts size preference. Some domains in Fig.2, whose distribution density 

)(X
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equals 0, are invalid because of insufficient data. Therefore generally more 
past data should be provided if we want to obtain a perfect result. 
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7. CONCLUSIONS 
To recognize operators’ decision for a
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parametric distribution model to address
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