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Abstract: We propose a simple technique of stopping light pulses using a 
slow-light device based on photonic crystal coupled waveguide (PCCW). 
Dynamically tuning the material index chirp in the PCCW adiabatically 
transforms slow-light pulses into stopped ones. We demonstrate this in 
finite-difference time-domain simulation assuming ideal and actual tuning 
of the index chirp. In the ideal case, the group velocity of the almost stopped 
pulse is reduced to 190 times smaller than that of simple slow light pulse. 
The smallest limit is affected by the timing error of the tuning between 
wavelengths. Re-ordering and stopping of a pulse train are possible by 
optimizing the device length and timing. As a practical tuning method, we 
discuss carrier effects induced by photo-excitation. Taking into account 
carrier distribution and free carrier absorption, the actual behaviors of 
stopped light are estimated. We define and evaluate an effective delay-
bandwidth product, which is affected by free carrier absorption. 
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1. Introduction 

The slowing and stopping of light pulses have been studied extensively for optical buffer 
memory and advanced time-domain signal processing in future photonic networks, 
interconnects, and instrumentations. Photonic nanostructures, which show large first-order 
dispersion dk/dω (k: wave number, ω: angular frequency), generate on-chip slow light with a 
group velocity υg of typically a hundred times smaller than the light velocity c in vacuum [1]. 
So far, coupled-resonator waveguides [2,3], all pass filters [2,4], photonic crystal (PC) 
waveguides [5–9], and metamaterials [10,11] have been exploited as device structures. Those 
except for metamaterials are made of transparent dielectric media and can be low loss devices. 
The delay-bandwidth product (DBP) is evaluated as an essential performance factor for these 
devices [1]. It indicates that large dk/dω is obtained only in a narrow frequency bandwidth, 
and it constrains the maximum buffering capacity, i.e. the number of pulses buffered in the 
device, when the pulses are not broadened by group velocity dispersion (GVD). We have 
succeeded in experimentally demonstrating a high DBP of 110 in PC coupled waveguide 
(PCCW) of 800 µm length [8]. However, it is difficult to further enhance the DBP without 
increasing the length. The stopping of light, obtained by dynamically tuning photonic 
nanostructures, relaxes this constraint [12–14]. Here, dk/dω is enhanced instantaneously by 
locally changing the material index of the device in the presence of light pulses. Then, the 
device and pulses simultaneously narrow their bandwidths, and consequently the pulses 
almost stop. Some studies experimentally demonstrated similar operation by controlling the Q 
factor in a single cavity or coupled cavities [15–18]. 

In this paper, we propose a simple dynamic tuning in chirped PCCW. In a uniform PCCW, 
the photonic band of a waveguide mode becomes flat at a single frequency and dk/dω diverges 
to infinity, resulting in zero υg [19]. When some structural parameters are gradually changed 
along the device (i.e. chirped structure), the flat band frequency is shifted so that the slow 
light effect is averaged over a finite bandwidth and slow light pulses can transmit with a 
moderate delay. The large DBP mentioned above is obtained in such a chirped PCCW. If the 
chirp range is changed instantaneously from an initial value to zero, slow light pulses with a 
wide spectrum are converted to stopped ones at a single frequency. Such dynamic tuning is 
possible by some practical methods. In comparison with other methods, it downsizes the 
device footprint because incident pulses are pre-compressed in space by the slow light effect 
before the tuning. Also, it allows subsequent pulses to pass through and stop in the device, 
which enable the re-ordering and stopping of a pulse train, respectively. 

This paper first explains the principle of the tuning process in detail in Section 2. Then, the 
stopping of a single pulse is demonstrated in finite-difference time-domain (FDTD) 
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simulation in Section 3, assuming ideal tuning of material index. Here, we discuss some 
fundamental properties and limiting factors. In Sections 4 and 5, the re-ordering and stopping 
of a pulse train are demonstrated, respectively. Finally in Section 6, a real operation is 
discussed, assuming photo-excited carriers to change the chirp in a semiconductor device. 
Here, we take into account nonlinear carrier distribution, carrier plasma and band filling 
effects, and free carrier absorption (FCA), and discuss an effective DBP restricted by the 
FCA. 

2. Principle 

Figure 1(a) shows a schematic of the PCCW consisting of two line defects in a triangle lattice 
PC slab, with lattice constant a and background airhole diameter 2r. The diameter 2r' of the 
center row of airholes and the position of other airholes are modified. Figure 1(b) shows the 
corresponding photonic band calculated by two-dimensional (2D) FDTD method with the 
periodic and absorbing boundary condition. We assume an equivalent slab index neq of 2.917, 
normalized hole diameters 2r/a = 0.59, 2r'/a = 0.20, normalized shifts s1/a = 0.10 and s2/a = 
0.20, and a polarization parallel to the 2D plane. Two coupled modes appear, and the even 

mode exhibits the target flat band at a normalized frequency ωa/2πc ≡ a/λ = 0.257 (λ: 
wavelength in vacuum). Here we define the flat band as that sandwiched by two white dots in 
Fig. 1(b), which are separated by the spectral resolution in this calculation i.e. ∆ωresa/2πc = 

6.7 × 10
−5

. The band shifts to higher frequencies as neq decreases along the device. When a 
light pulse is incident on the device, each frequency component of the pulse reaches the slow 
light condition of the flat band at a different position. This means that, under the slow light 
condition, the pulse profile is transformed into a Fourier spectral distribution. Before and after 
passing through this condition, it passes GVD(1) and GVD(2) in Fig. 1(b), respectively. Thus, 
the total GVD is compensated and the profile of the incident pulse is recovered at the output 
end. The bandwidth of slow light is proportional to the chirp range. On the other hand, the 
effective length of slow light for each frequency component is inversely proportional to the 
chirp range. In consequence, the delay and bandwidth are constrained by the DBP [1,14]. 
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Fig. 1. Principle of stopping light pulse in chirped PCCW. (a) Structure of PCCW. Dashed 
lines show the original position of airholes in a triangular lattice. (b) Photonic band diagram. 
Thick black line shows the band of the even mode. Two white dots on this line indicate the 
range of flat band. Thick gray region indicate the range of shifted bands due to the initial, fixed 
chirp. (c) Schematic of dynamic tuning. Pump light is used to form the dynamic chirp. 

Now we propose the dynamic tuning, as shown in Fig. 1(c). Here, the initial, fixed chirp is 
formed so that neq decreases along the device. A control pulse is incident on the device behind 
the signal pulse with an appropriate delay and velocity. The control pulse chases the signal 
pulse, and successively catches up with each frequency component that is slowing down. By 
means of index change induced by the pump pulse, (such as carrier effects, optical Kerr 
effect), neq at this position is instantaneously reduced. The amount of index change ∆neq' 
slopes along the device because the control pulse decays due to some propagation losses. In 
the ideal case, such dynamic chirp ∆neq' cancels the initial fixed chirp ∆neq, and all frequency 
components of the situation when light at the flat-band frequency enters a chirp-less PCCW. 
Therefore, the delay is extended dramatically. In the reverse process, ∆neq' is removed from 
the input to output side, and the initial pulse profile is recovered. 

3. Simulation 

In this section, we demonstrate the stopping of light using 2D FDTD simulation. Here, the 
model in Fig. 1(a) is used, and neq decreasing linearly from 2.963 to 2.870 (∆neq = 0.093) is 
assumed as the initial fixed chirp for a device length L = 125a. This leads to a band shift of 

∆ωca/2πc = 8.3 × 10
−3

, depicted by the gray region in Fig. 1(b). The signal pulse is launched 
in the even mode, at the input end of two waveguides of the PCCW, by in-phase Gaussian 
excitation with ωpa/2πc centered at 0.263. Normalized time and spectral full widths at half 

maximum (FWHM) of the pulse are set at c∆tp/a = 290 and ∆ωpa/2πc = 1.53 × 10
−3

, 
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respectively. This spectral FWHM is sufficiently covered by the band shift. These values 
correspond to ∆tp = 0.39 ps and wavelength FWHM ∆λp = 8.7 nm for a = 0.40 µm and λp = 
1.53 µm, which are often seen in experiments. The square control pulse forming the ideal 
dynamic chirp is incident with a normalized delay c∆td/a = 720 and a velocity of c/3.25, 
which equals the modal group velocity at ∆ωa/2πc = 0.01 higher than the flat band in Fig. 
1(b). 

Figures 2(a)-(d) compare the propagation of slow light pulse without and with the dynamic 
tuning. ((i)-(l) are their animations, respectively.) Without tuning (a), the pulse enters the slow 
light region and pauses at ct/a = 300, and exit at 1200. With the tuning at the best timing (c), 
the slow light pulse transforms into a stopped pulse, almost maintaining its profile at least 
until ct/a = 3000. We notice through careful observation that a small amount of light escapes 
from the stopped pulse in the forward direction. This is dues to slight timing error of the 
tuning between different wavelengths against the constant tuning velocity. When the tuning is 
early (b), the pulse propagates without pause because the tuning takes place before the light 
(particularly high frequency components) reaches the slow light condition. With late tuning 
(d), the pulse propagates with dispersion before the dispersion compensation of GVD(1) and 
GVD(2) is completed. 

To clarify the best timing quantitatively, we estimated the motion of the pulse from the 
band curve. In a linearly chirped structure, the band shift with position z can be considered as 
the frequency shift along a fixed band [19]. Then, z and ω are related as 

 
s c s

( ) / ( ) /z z Lω ω ω− ∆ = −   (1) 

where the subscript ‘s’ denotes the slow light condition. The time t is expressed with respect 
to z as 

 [ ]s c
0

g c

( ) ( ) ( / 2)
( )

z dz L
t z k k

z
ω ω ω

υ ω
= = − + ∆

∆∫   (2) 

Since k(ω) is equivalent to the photonic band, we can derive the light propagation by applying 
Fig. 1(b) and Eq. (1) to (2). The result is shown in Fig. 2(e)-(h). Here, colors represent 
different frequency components overlapping with each other at the input end to form the 
signal pulse. Light outside of the pulse duration is neglected as they cancel with each other by 
interference. In (e), different frequencies branch, and the earliest and latest parts of each 
frequency reach the slow light condition on upper dotted and dashed lines, and exit on lower 
dotted and dashed lines, respectively. Finally, the different colors overlap again to form the 
output pulse. Thus the light propagation in (a) is well explained by (e). The gray region shows 
the timing window, in which all the frequency components are lying under the slow light 
condition. If the thick blue line indicating the motion of the tuning overlaps with the gray 
region, velocities of all the frequencies are fixed by the tuning. If the dynamic chirp 
completely cancels the initial chirp under this condition, all the frequencies are blue-shifted to 
the same final frequency and the velocities become almost zero. Figure 2(g) shows a case 
close to the ideal one, but small errors occur at edge frequencies, which are caused by the 
mismatch between slopes of the blue line and gray region. This is the reason that light partly 
escapes from the stopped pulse in (c). At off-timing (f, h), velocities fixed after the tuning are 
disrupted, resulting in large dispersion of the pulse. 
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Fig. 2. FDTD simulation of dispersion-compensated slow light (a) without and (b)-(d) with 
dynamic tuning. Here, c∆td/a = (b) 420, (c) 720, and (d) 1020. Chirped structure is lying at z = 

0 − 125a and neq is constant outside of this area. (e)-(h) Corresponding light propagation of 
each frequency component estimated from photonic band in Fig. 1(b). Colors indicate different 
frequencies. Gray region indicates the slow light condition. (i)-(l) Animations corresponding to 
(a)-(d), respectively. (Media 1) (Media 2) (Media 3) (Media 4) 

From (2), the delay due to slow light, ∆ts, is given as 

 
s c

( /ω )t L k∆ = ∆   (3) 

where ∆ks is the shift of k at the flat band (distance between white dots in Fig. 1(b)). To 
achieve the stopping of light, the gray region must be opened by the condition ∆ts – ∆tp > 0. 
For a Gaussian pulse satisfying ∆tp(∆ωp/2π) = 0.44, this condition is rewritten as 

 
p c s

( ω / ω )( / 2 ) 0.44k Lπ∆ ∆ ∆ >   (4) 

From Fig. 1(b) and parameters assumed above, ∆ωp/∆ωc = 0.18, ∆ks/2π = 0.028/a and L = 
125a, which lead to (∆ωp/∆ωc)(∆ks/2π)L = 0.63 > 0.44. Here, the spectral efficiency ∆ωp/∆ωc 
will be enhanced up to 0.5 by narrowing the signal pulse and/or the chirp range. ∆ks increases 
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slightly when the structure is optimized; the maximum ∆ks/2π would be limited to around 
0.04/a [19]. Then, the shortest L satisfying (4) is derived as 22a, which is 9 µm for a = 0.40 
µm. 

Figure 3 summarizes velocities at three different parts of the pulse. White circles show the 
velocity at the weighted center, which is equivalent to υg. Blue and red circles show those at 
front and back ends whose intensity is 10% of the pulse peak. Dispersion can be evaluated 

from their difference. For example, dispersion is minimum and υg = 4.2 × 10
−4

c (group index 

ng ≡ c/υg = 2400) at c∆td/a = 720 when the pulse looks to be almost stopped in Fig. 2(c). From 
this value, the normalized DBP, defined as ng(∆ωp/ωp) [1], is evaluated to be 14. For slow 
light without tuning, it is evaluated from the delay inside the device in Fig. 2(a) and the 
spectral FWHM ∆ωp to be 0.075. Thus, the tuning provides 190-fold enhancement. Since the 
spectral FWHM ∆ωp is 5.4 times narrower than the slow light band ∆ωc in this simulation, the 
normalized DBP without tuning can be enhanced by expanding ∆ωp and/or narrowing ∆ωc. 
The spectra should be optimized similarly for the stopped pulse to maintain its advantage. 
However, if ∆ωp is comparable to ∆ωc, the timing error at low frequencies increases and the 
stopped pulse is dispersed more severely. If the tuning velocity is not constant but changes 
along the device so that the blue line in Fig. 2(e)-(h) is always included inside the gray region, 
the error will be neglected and υg will be minimized closer to zero. 
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Fig. 3. Velocities at three different parts of slow light pulse after dynamic tuning, which is 
calculated with normalized delay of the tuning against signal light. 

4. Re-ordering of pulses 

If the dynamic tuning is performed with cavities, the transmission is limited inside the 
resonant spectrum. Therefore, when multiple pulses with the same spectrum are incident on 
the device, subsequent pulses cannot pass through the device after an earlier pulse is stopped 
by the tuning. In contrast, our method maintains continuous pass-bands around the frequency 
of stopped light, and so subsequent pulses can pass while earlier pulses are stopped. The order 
of pulses can be changed by releasing the earlier pulse after the subsequent pulses pass by, as 
demonstrated in Fig. 4. Here, four Gaussian pulses of c∆tp/a = 290 are successively launched 
with a peak-to-peak interval of c∆ti/a = 960. The tuning is performed for the second pulse 
with c∆td/a = 720 and a duration equal to the interval. (b) shows a complicated light intensity 
profile due to overlap of pulses, but the corresponding animation (d) displays counterchange 
of the second and third pulses. The third pulse incident during the tuning propagates with a 
constant υg. As observed in (c), the slow light pulses (first, last), the stopped pulse (second), 
and the non-stop pulse (third) almost maintain their initial shape at the output end. Such pulse 
re-ordering will be meaningful for some signal processing if each pulse has its own intensity, 
phase, quantum information, etc. 
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Fig. 4. Re-ordering of pulses demonstrated in FDTD simulation. (a) Profile of input pulses. (b) 
Time evolution of pulse intensity distribution. (c) Profile of output pulses. (d) (Media 5) 
Animation corresponding to (b). 

5. Stopping of pulse train 

For optical buffering, it is particularly important to stop an entire pulse train simultaneously. 
When cavities are used for stopping pulses, it requires many cavities each assigned to one 
pulse, and complicated tuning process. Here, we show two different approaches to achieve 
this using our simple tuning process. 

As noted in Section 2, the pulse incident on chirped PCCW is expanded into a Fourier 
spectral distribution due to GVD(1). When a pulse train is incident, pulses do not pause 
separately but their spectral distributions overlap and slow down, keeping their initial time 
differences. If timing of the tuning is optimized for one pulse, the timing error occurs for other 
pulses, resulting in severe dispersion. The key is the blue line of the tuning overlapping with 
the gray region ∆ts – ∆tp. In Fig. 2(e)-(h), the gray region is opened for the FWHM of one 

pulse. For densely-packed return-to-zero pattern of M pulses, ∆tp is extended to (2M−1)∆tp. 
Therefore, ∆ts must be extended similarly to keep the gray region still opening. Such a 

situation is obtainable by elongating the device (2M−1) times without changing the chirp 
range ∆neq, so that the pulses decelerate and accelerate more slowly. For example, let us 
consider two pulses and a three-fold longer device, i.e. L = 375a. The second pulse is incident 
with an interval of c∆ti/a = 720. Then, the optimum delay of the tuning becomes c∆td/a = 
2520. Figure 5 shows the FDTD simulation of stopping two pulses. Incident pulses overlap 
and exhibit a complex interference pattern under the slow light condition, which is almost 
fixed and stopped after the tuning. It goes into action but does not separate into two pulses 
again after the tuning is removed. This is due to the incomplete dispersion compensation of 
the first structure. When the interval is slightly extended to c∆ti/a = 720, clear separation was 
confirmed in the same simulation. In Section 3, we discussed the shortest length of the device 
required for stopping one pulse with ideal parameters to be 22a. Therefore, M (>>1) pulses 
can be buffered in the device of approximately 44aM length, e.g. 1.8 mm with a = 0.4 µm for 
100 pulses if the incomplete dispersion compensation is improved. 
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Fig. 5. FDTD simulation of stopping two pulses in three-fold longer PCCW. (a) Light intensity 
profile. (b) Light propagation of each frequency component estimated from photonic band. (c) 
(Media 6) Animation corresponding to (a). 

The other method for stopping a pulse train is to divide areas, each of which stop one 
pulse. Figure 6 shows the case of stopping two pulses in a double-step chirped structure. Here, 
two chirped PCCWs are simply connected in series. Without tuning, pulses repeat slowing 
and moving in the PCCWs. If a moderate interval is set between the pulses, they slow 
simultaneously. If the tuning is performed at this moment, the pulses are equally stopped. 
Ideally, the tuning should cancel ∆neq in each PCCW. But it is difficult to form a multi-step 
dynamic chirp. Here we use the single-step dynamic chirp with twice larger ∆neq', i.e. 0.186. 
Then, the index slope of each chirp is flattened although their indices after the tuning are not 
the same. In the FDTD simulation, delays of the second pulse and tuning are set to be c∆td/a = 
1440 and 2580, respectively. Figure 7(a) shows the light propagation in a two-step chirped 
structure with ∆neq = 0.093. The tuning at the first chirping does not operate as expected; 
strong reflection occurs at the boundary with the index discontinuity. To confirm the expected 
operation, the same simulation was performed for a smaller ∆neq of 0.0093, as shown in Fig. 
7(b). Here, two pulses stop simultaneously although weak reflection still remains. After 
removing ∆neq', the two pulses appear at the output end. This approach can be applied to M 
pulses using M-step chirp. Two drawbacks are the reflection at the boundary particularly for 
pulses with a short interval and N-fold ∆neq' required. 
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Fig. 6. Schematic of dynamic tuning against two pulses in a two-step chirped structure 
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Fig. 7. FDTD simulation of stopped two pulses in two-step chirped PCCW. (a) Light intensity 
profile for ∆neq = 0.093 and (b) 0.0093. 

6. Practical dynamic tuning using photo-excited carriers 

So far, we presented the dynamic tuning with an ideal index change. To realize such index 
change, let us discuss carrier effects induced by photo-excitation, i.e. carrier plasma 
dispersion and band filling effects. As discussed in Section 2, pump light is incident on the 
device in the same manner as signal pulse. We can consider linear inter-band absorption and 
nonlinear two-photon absorption [20] of pump light at frequencies higher and lower than the 
bandgap frequency of the slab material, respectively. Let us discuss the linear absorption as it 
generates a carrier slope closer to a linear one, which is suitable for canceling the initial linear 
chirp. It should be noted that FCA cannot be neglected to estimate the real propagation of 
signal pulse in this approach. 

The totally absorbed power in a distance from 0 to z, Pab(z), is given by 

 ab

ab ex
( ) (1 )

z
P z P e

α−Γ= −   (5) 

where Pex is the pump power launched on the device, and Γ and αab are the optical 
confinement factor and absorption coefficient of pump light in the slab, respectively. The 
carrier density distribution N(z) is then 

 c ab

ex

( ) /
( )

dP z dz
N z

S

τ
ω

=
ℏ

  (6) 

where τc is the carrier lifetime, and ωex and S are the angular frequency and modal cross-
section of pump light. The change of material index due to carrier plasma dispersion, ∆nCPD, is 

#129879 - $15.00 USD Received 9 Jun 2010; revised 22 Jul 2010; accepted 22 Jul 2010; published 28 Jul 2010
(C) 2010 OSA 2 August 2010 / Vol. 18,  No. 16 / OPTICS EXPRESS  17150



not sensitive to the signal pulse frequency ωp. According to the Drude’s model, ∆nCPD and 
FCA coefficient αFCA are 

 
2 3

CPD FCA2 * * 2 *2 *2

0 p e h 0 p e e h h

( ) 1 1 ( ) 1 1
( ) , ( )

2

e N z e N z
n z z

n m m n c m m
α

ε ω ε ω µ µ
   

∆ = − + = +   
   

        (7) 

where e is the electron charge, n is the initial index of the slab without free carriers, ε0 is the 
dielectric constant in vacuum, me* and mh* are the effective masses of electron and hole, and 
µe and µh are their mobilities, respectively. On the other hand, the band filling effect is 
sensitive to ωp. When ωp is close to bandgap frequency of the slab material, it becomes larger 
than ∆nCPD, as has been studied for GaInAsP semiconductors. Since it depends on N almost 
linearly, we roughly express the total index change ∆n as γ∆nCPD, where γ denotes the 
enhancement by the band filling effect. The dynamic chirp ∆neq' is then expressed as 

 
eq eq eq eq

( )
( ) (1 ) ( ) /

n n z
n ' z n n n z n n

n

+ ∆ ∆ ≡ Γ + − Γ − = Γ∆  
 

 
ex2 2

c eq ex ex

2 2 * *

0 ex p e h

1 1

2

z
e n e P

n S m m

ατ α
γ

ε ω ω

−ΓΓ  
= − + 

 ℏ
  (8) 

The equivalent FCA coefficient αeq(z) is 

 
ex3 2

c ex ex
eq FCA 2 *2 *2

0 ab p e e h h

1 1
( ) ( )

z
e e P

z z
n c S m m

ατ α
α α

ε ω ω µ µ

−Γ  Γ
= Γ = + 

 ℏ
  (9) 

Now, let us consider a GaInAsP PC slab with me* = 0.045m0, mh* = 0.47m0, µe = 1100 
cm

2
/Vs, µh = 70 cm

2
/Vs [21,22], τc = 100 ps [23], γ = 3 [22], n = 3.45, Γ = 0.89, S = 0.3 µm

2
 

(typical values for GaInAsP and PCCW at λ ~1.55 µm), ∆neq = 0.0093, a = 0.4 µm and L = 
500 µm ( = 1250a). We can consider αex and Pex as externally controllable parameters; αex can 
be controlled by changing the composition of GaInAsP and/or pump frequency near the 
bandgap. These parameters are chosen so that the dynamic chirp cancels the initial chirp, i.e. 
∆neq'(0) – ∆neq'(L) = 0.0093. We ignored the scattering loss caused by the disordering in 
actual devices to investigate the influence of FCA. Fig. 8 shows the calculated distributions of 
N(z), ∆neq'(z) and αeq(z). When αex is small, a high Pex is needed to generate the above 
difference in ∆neq', while a linear distribution is easily formed. But in this case, the carrier 
density becomes higher, resulting in large FCA. When αex is large, a small Pex is sufficient to 
obtain the difference, and so the FCA is small. However, the distribution becomes nonlinear. 
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Fig. 8. Distributions of photo-excited carrier density, index change by carrier effects, and FCA. 
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Fig. 9. FDTD simulation of stopped pulse assuming photo-excited carriers in GaInAsP PCCW. 

(a) αex = 25, (b) 50, and (c) 100 cm−1. 

The FDTD simulation is performed, assuming ∆tp = 3.9 ps and λp = 1.521 µm. For the 
long device of L = 500 µm, however, a long computation time is necessary even in 2D. To 
reduce this load, actual calculation is done by scaling L and t to 1/10 times and αex, αeq, ∆neq, 
and ∆neq' to 10 times. The results are summarized after scaling back, as shown in Fig. 9. At 

αex = 50 cm
−1

, the pulse stops without dispersion because almost linear distribution in ∆neq' is 
formed. However, the pulse severely decays due to the large FCA; the photon lifetime τph after 

the tuning is as short as 36 ps. At αex = 100 cm
−1

, the pulse dispersed due to nonlinear 
distribution while propagation extends due to the small FCA. A solution for suppressing both 
dispersion and FCA is to modify αex with z so that a linear distribution is formed even for 
minimal carrier excitation. Such αex is obtainable when using the selective-area growth of 
GaInAsP in metal-organic vapor-phase epitaxy [24]; a sloped bandgap frequency is formed by 

shaping the growth mask. If dispersion disappear for αex = 50 cm
−1

, τph will double. To extend 
τph drastically, the initial chirp ∆neq must be much smaller than the assumed value. As noted in 

Section 2, ∆neq determines the slow light band before the tuning; ∆neq = 9.3 × 10
−3

 
corresponds to a bandwidth of 760 GHz for the assumed parameters. If a narrower bandwidth 

such as 76 GHz is sufficient for one’s purpose, ∆neq can be reduced to 9.3 × 10
−4

. In 
proportion to this, the FCA is suppressed and τph will extend by 10 times. This discussion 
suggests that the product between the bandwidth limited by ∆neq and the photon lifetime 
limited by the FCA can be defined as an effective DBP for stopping light using carrier effects. 
It is calculated to be 27 for the above values. Let us consider a situation that some amount of 
loss in the device can be compensated by integrated or external amplifiers. These days, 
standard erbium-doped optical fiber amplifiers used for pre-amplification provide a 25 dB 

gain. If a −25 dB decay of stopped light is recoverable by such amplification, τph extends to 
0.2 ns and the effective DBP will be 152. In the case without tuning, the maximum DBP in 
experiments is 110 for 800-µm long PCCW, suggesting that it will be 69 for 500-µm long 
device from the linear dependence on L. Therefore, the effective DBP for stopping light can 
be larger than simple slow light if such decay is acceptable. 

7. Conclusion 

We proposed and theoretically demonstrated a method of stopping slow light pulse by 
dynamically cancelling the index chirp in photonic crystal coupled waveguide. In the FDTD 
simulation, the group velocity of subpicosecond optical pulse is drastically reduced to at least 
190 times lower than that of simple slow light when the tuning is performed with the best 
timing. The complete stopping will be possible by optimizing the velocity of the pump pulse. 
It was also shown that this method allows the stopping of two continuous pulses by elongating 

the device to three times. This discussion can be extended to stopping M pulses in (2M−1) 
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times longer device. Therefore, it has a potential of buffering arbitrary optical signals. Finally, 
carrier plasma and band filling effects induced by photo-excited carriers were considered for 
real tuning. The stopping of light is observed for real parameters of GaInAsP device. Here, the 
nonlinear distribution of carriers and free carrier absorption enhance the dispersion and loss, 
respectively. From their exclusive relation, the effective delay-bandwidth product was defined 
and estimated to be 27 (or 152 if a recoverable loss is acceptable). This value is comparable or 
slightly larger than that of simple slow light. To improve this value essentially, investigation 
of some other tuning mechanisms such as nonlinear optical Kerr effect and electro-optic 
effect, which do not use carrier excitation, will be necessary. 

This work was partly supported by The FIRST Program “Innovative technology for 
Photonics- Electronics integrated systems”. 
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