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Polarized virtual photon structure function g2
g and twist-3 effects in QCD
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We investigate twist-3 effects in the polarized virtual photon structure. The structure functionsg1
g andg2

g of
a polarized photon could be experimentally studied in future polarizedep or e1e2 colliders. The leading
contributions tog1

g are twist-2 effects, while another structure functiong2
g , which exists only for the virtual

photon target, receives not only twist-2 but also twist-3 contributions. We first show that twist-3 effects actually
exist in the box-diagram contributions and we extract the twist-3 part, which can also be reproduced by the
pure QED operator product expansion. We then calculate the nontrivial lowest moment (n53) of the twist-3
contribution tog2

g in QCD. For largeNc ~the number of colors!, the QCD analysis of twist-3 effects in the
flavor nonsinglet part ofg2

g becomes tractable and we can obtain its moments in a compact form for alln.
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I. INTRODUCTION

In recent years, there has been growing interest in
study of the spin structure of the photon. In particular,
first moment of the polarized photon structure functiong1

g

has attracted much attention in the literature@1–5# in con-
nection with the axial anomaly, which is also relevant to t
analysis of the nucleon spin structure functiong1

nucl. The
polarized photon structure functions may be extracted fr
the resolved photon process in the polarized version of
DESY ep collider HERA @6,7#. More directly, they can be
measured by polarizede1e2 collision experiments in future
linear colliders ~Fig. 1!, where 2Q2 (2P2) is the mass
squared of the probe~target! photon.

For a real photon (P250) target, there exists only on
spin-dependent structure functiong1

g(x,Q2), which is
equivalent to the structure functionW4

g(x,Q2) (g1
g[2W4

g)
discussed some time ago in@8,9#. The leading order~LO!
QCD corrections tog1

g for a real photon target were firs
calculated by one of the authors in@10# and later in@11,2#,
while the next-to-leading order~NLO! QCD analysis was
performed in@12,13#.

In the case of a virtual photon target (P2Þ0), and espe-
cially when we deal with the kinematical regionL2!P2

!Q2, whereL is the QCD scale parameter, we can calcul
all the structure functions up to NLO in QCD by the pertu
bative method, in contrast to the case of the real pho
target where in NLO there exist nonperturbative piec
@14,15#. In this context, the spin-independent structure fu
tions F2

g(x,Q2,P2) and FL
g(x,Q2,P2) as well as the parton

*Email address: baba@phys.h.kyoto-u.ac.jp
†Email address: sasaki@phys.ynu.ac.jp
‡Email address: uematsu@phys.h.kyoto-u.ac.jp
0556-2821/2002/65~11!/114018~13!/$20.00 65 1140
e
e

e

e

e

n
s
-

content of the unpolarized virtual photon have been stud
in the above kinematical region in LO@16# and in NLO
@17–22#. The target mass effects on both the unpolarized
polarized virtual photon structure functions have been d
cussed in LO@23#. More recently, the spin-dependent stru
ture functiong1

g(x,Q2,P2) of the virtual photon has bee
investigated up to NLO by the present authors in@24#, and
also in the second paper of@13#.

Generally, for the virtual photon target, there exists a
other structure functiong2

g(x,Q2,P2), which is the analogue
of the spin-dependent nucleon structure functiong2

nucl. In the
language of operator product expansion~OPE!, it is well
known that both twist-2 and twist-3 operators contribute
g2

nucl in the leading order of 1/Q2. The same is also true fo
g2

g . In this paper, we shall investigate the twist-3 contrib
tion to g2

g in the leading order in QCD, and show that the

FIG. 1. Deep inelastic scattering on a polarized virtual photon
polarizede1e2 collision, e1e2→e1e21hadrons~quarks and glu-
ons!. The arrows indicate the polarizations of thee1 ande2. The
mass squared of the probe~target! photon is 2Q2 (2P2) (L2

!P2!Q2).
©2002 The American Physical Society18-1
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are sizable in contrast to the nucleon case, where the ex
mental data show that the twist-3 contribution appears to
small @25,26#.

In the next section we discuss the two structure functi
g1

g andg2
g , which describe the deep inelastic scattering of

polarized virtual photon target.~How the information ong1
g

and g2
g can be extracted from the spin-dependent exp

ments ofe1e2→e1e21hadrons is shown in Appendix A.!
They are related to thes-channel helicity amplitudes which
appear in the forward virtual photon-photon scattering.
examine the box diagrams for the photon-photon scatte
to obtain the parton model predictions forg1

g and g2
g . We

then extract a piece which is a deviation from the Wandzu
Wilczek relation@27#. In Sec. III we show in the framework
of the pure QED operator product expansion that the
tracted piece actually arises from the twist-3 effects. In S
IV, we examine the QCD twist-3 effects ing2

g in LO. We
calculate the nontrivial lowest moment (n53) of the twist-3
contribution tog2

g . For largeNc , the QCD analysis of the
twist-3 effects in the flavor nonsinglet part ofg2

g becomes
simple and we can obtain its moments in a compact form
all n. The final section is devoted to the conclusion and d
cussion.

II. g2
g
„x,Q2,P2

… AND BOX-DIAGRAM CALCULATION

Let us consider the virtual photon-photon forward scatt
ing for g(q)1g(p)→g(q)1g(p) illustrated in Fig. 2:

Tmnrt~p,q!5 i E d4x d4y d4z eiq•xeip•~y2z!

3^0uT„Jm~x!Jn~0!Jr~y!Jt~z!…u0&,

~2.1!

whereJ is the electromagnetic current, andq and p are the
four-momenta of the probe and target photons, respectiv
Its absorptive part is related to the structure ten
Wmnrt(p,q) for the photon with mass squaredp252P2

probed by the photon withq252Q2:

FIG. 2. Forward scattering of a virtual photon with momentumq
and another virtual photon with momentump. The Lorentz indices
are denoted bym, n, r, t.
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Wmnrt~p,q!5
1

p
Im Tmnrt~p,q!. ~2.2!

The antisymmetric partWmnrt
A under the interchangem↔n

andr↔t can be written in terms of the two spin-depende
structure functionsg1

g andg2
g as @24#

Wmnrt
A 5

1

~p•q!2 @~ I 2!mnrtg1
g2~J2!mnrtg2

g#, ~2.3!

where the two tensorsI 2 andJ2 are explicitly given by

~ I 2!mnrt[p•qemnlsert
sbqlpb , ~2.4!

~J2!mnrt[emnlsertabqlpsqapb

2p•qemnlsert
sbqlpb . ~2.5!

In fact, we observe thatI 2 and J2 are related to those o
eight independent kinematic-singularity-free tensors, int
duced by Brown and Muzinich@see Eqs.~A3!–~A10! of Ref.
@8## to express the virtual photon-photon forward scatter
amplitude, as follows: I 25I 22I 3 andJ25I 72I 8 .

It may be useful here to see the relations between
structure functionsgi

g ( i 51,2) ands-channel helicity ampli-
tudes, which are defined as

W~abua8b8!5em* ~a!er* ~b!Wmnrten~a8!et~b8!, ~2.6!

whereem(a) represents the photon polarization vector w
helicity a, anda,a850,61, andb,b850,61. They are re-
lated as follows:

g1
g5

1

2X F $W~11u11!2W~121u121!%

2
~p2q2!1/2

p•q
$W~11u00!1W~01u210!%G ,

g2
g5

21

2X F $W~11u11!2W~121u121!%

2
p•q

~p2q2!1/2$W~11u00!1W~01u210!%G , ~2.7!

whereX5(p•q)22p2q2.
The photon structure functionsg1

g and g2
g are just the

analogues of the nucleon counterpartsg1
nucl andg2

nucl, respec-
tively. But it is noted thatg2

g exists only for the off-shell or
virtual photon (P2Þ0) target.

Now let us calculateg1
g andg2

g in the simple parton mode
by evaluating the box diagrams depicted in Fig. 3. We int
duce two projectors (PI)

mnrt and (PJ)
mnrt:

~PI !
mnrt5

1

4X2 F S 11
p2q2

2~p•q!2D ~ I 2!mnrt1
3

2
~J2!mnrtG ,

~2.8!
8-2
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POLARIZED VIRTUAL PHOTON STRUCTURE . . . PHYSICAL REVIEW D 65 114018
~PJ!
mnrt5

1

4X2 F3

2
~ I 2!mnrt1S 11

~p•q!2

2p2q2 D ~J2!mnrtG ,
~2.9!

which satisfy

PI•~ I 2!51, PI•~J2!50,

PJ•~ I 2!50, PJ•~J2!51. ~2.10!

Theng1
g andg2

g are given by

g1
g5~p•q!2~PI !

mnrtWmnrt
A ,

g2
g52~p•q!2~PJ!

mnrtWmnrt
A . ~2.11!

Applying the projectorsPI andPJ to the box-diagram~mass-
less quark-loop! contributions, and ignoring the power co
rections ofP2/Q2, we obtain

g1
g~box!~x,Q2,P2!5

3a

p
Nf^e

4&F ~2x21!ln
Q2

P2

22~2x21!~ ln x11!G , ~2.12!

g2
g~box!~x,Q2,P2!5

3a

p
Nf^e

4&F2~2x21!ln
Q2

P2

12~2x21!ln x16x24G , ~2.13!

where x5Q2/(2p•q), a5e2/4p, the QED coupling con-
stant, and̂ e4&5( i 51

Nf ei
4/Nf , with Nf being the number of

active quark flavors. The above results are consistent w
those of Ref.@28#, where polarized gluon structure function
were considered. It is noted that the first moment ofg2

g(box)

vanishes, i.e.,g2
g(box) satisfies the Burkhardt-Cottingham

~BC! sum rule@29#:

E
0

1

dx g2
g~box!~x,Q2,P2!50. ~2.14!

We will see from the OPE analysis in the next section t
the BC sum rule forg2

g generally holds in the deep-inelast
regionQ2@P2. Also note that the sumg1

g(box)1g2
g(box) does

not have lnQ2/P2 behavior.

FIG. 3. The box diagrams contributing tog1
g andg2

g in the pure
QED interaction.
11401
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In the case of the nucleon, the spin-dependent struc
functiong2

nucl receives both twist-2 and twist-3 contribution

g2
nucl~x,Q2!5g2

nucl,tw-2~x,Q2!1g2
nucl,tw-3~x,Q2!,

~2.15!

and the twist-2 part ofg2
nucl is expressed in terms ofg1

nucl by
the so-called Wandzura-Wilczek~WW! relation @27#:

g2
nucl,tw-2~x,Q2!5g2

nucl,WW~x,Q2!

[2g1
nucl~x,Q2!1E

x

1 dy

y
g1

nucl~y,Q2!.

~2.16!

Thus the difference ḡ2
nucl5g2

nucl2g2
nucl,WW contains the

twist-3 contribution only. The experimental data so far o
tained show that the twist-3 contributions tog2

nucl appear to
be negligibly small@25,26#.

Now we may ask about the photon structure functiong2
g :

Does g2
g also receive twist-3 contributions? If so, are th

small as in the nucleon case, or sizable? Does the WW r
tion also hold forg2

g , in other words, is the twist-2 part ofg2
g

expressible in terms ofg1
g? These issues will be discussed

the next section.
Here let us apply the WW relation to the results of t

box-diagram calculationg1
g(box) and g2

g(box) in Eqs. ~2.12!,
~2.13!, and define

g2
gWW,~box!~x,Q2,P2![2g1

g~box!~x,Q2,P2!

1E
x

1 dy

y
g1

g~box!~y,Q2,P2!.

~2.17!

Then we find that the differenceḡ2
g(box)5g2

g(box)

2g2
gWW,(box) is given by

ḡ2
g~box!5

3a

p
Nf^e

4&F ~2x222 ln x!ln
Q2

P222~2x21!ln x

12~x21!1 ln2 xG . ~2.18!

Its nth momentḡ2,n
g(box)5*0

1dx xn21ḡ2
g(box)(x,Q2,P2) is

ḡ2,n
g~box!5

3a

p
Nf^e

4&
n21

n

3F2
1

n~n11!
ln

Q2

P2 1
2

~n11!22
2

n2G .
~2.19!

In Fig. 4, we have shown the box-diagram contributions
the structure functionsg1

g(box) , g2
g(box) as well as theḡ2

g(box)

given in Eq.~2.18! as functions ofx for Q2530 GeV2 and
P251 GeV2. We can see thatḡ2

g(box) is comparable in mag-
nitude withg2

g(box) for large regions ofx. Now it is expected
by analogy with the nucleon case thatḡ2

g(box) arises from the
8-3
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twist-3 effects. In the next section we will be convinced th
ḡ2

g(box) is indeed the twist-3 contribution.

III. OPE ANALYSIS AND PURE QED EFFECTS

Applying the OPE for the product of two electromagne
currents, we get for them-n antisymmetric part

i E d4x eiq•xT„Jm~x!Jn~0!…A

52 i emnlsql (
n51,3,...

S 2

Q2D n

qm1
¯qmn21

3H(
i

E~2!i
n R

~2!i
sm1¯mn211(

i
E~3!i

n R
~3!i
sm1¯mn21J ,

~3.1!

whereR(2)i
n and R(3)i

n are the twist-2 and twist-3 operator
respectively, andE(2)i

n and E(3)i
n are corresponding coeffi

cient functions. The twist-2 operatorsR(2)i
n have totally sym-

metric Lorentz indicessm1¯mn21 , while the indices of
twist-3 operators R(3)i

n are totally symmetric among
m1¯mn21 but antisymmetric unders↔m i . Thus the ‘‘ma-
trix elements’’ of operatorsR(2)i

n and R(3)i
n sandwiched by

two photon states with momentump have the following
forms:

^0uT„Ar~2p!R
~2!i
sm1¯mn21At~p!…u0&amp

52 ia ~2!i
n erta

$spm1
¯pmn21%pa2~ traces!, ~3.2!

^0uT„Ar~2p!R
~3!i
sm1¯mn21At~p!…u0&amp

52 ia ~3!i
n erta

[s,p$m1]
¯pmn21%pa2~ traces!, ~3.3!

where subscript ‘‘amp’’ stands for the amputation of the e
ternal photon lines and

FIG. 4. The box-diagram contributions tog1
g(x,Q2,P2) ~dashed

line!, g2
g(x,Q2,P2) ~solid line!, and ḡ2

g(x,Q2,P2) ~dash-double-
dotted line! for Q2530 GeV2 and P251 GeV2 for Nf53. The 2x
21 line shows the leading logarithmic term ofg1

g .
11401
t
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erta
$spm1

¯pmn21%5
1

n F erta
s pm1

¯pmn21

1 (
j 51

n21

erta
m j pm1

¯ps
¯pmn21G ,

~3.4!

erta
[s, p$m1]

¯pmn21%5
n21

n
erta

s pm1
¯pmn21

2
1

n (
j 51

n21

erta
m j pm1

¯ps
¯pmn21.

~3.5!

Using Eqs.~3.2!–~3.5!, we can write down the moment sum
rules forg1

g andg2
g as

E
0

1

dx xn21g1
g~x,Q2,P2!5(

i
a~2!i

n E~2!i
n ~Q2!, ~3.6!

E
0

1

dx xn21g2
g~x,Q2,P2!5

n21

n F2(
i

a~2!i
n E~2!i

n ~Q2!

1(
i

a~3!i
n E~3!i

n ~Q2!G , ~3.7!

From this general OPE analysis we conclude the follo
ing.

~i! The BC sum rule@29# holds forg2
g :

E
0

1

dx g2
g~x,Q2,P2!50. ~3.8!

~ii ! The twist-2 contribution tog2
g is expressed by the

WW relation

2
n21

n (
i

a~2!i
n E~2!i

n ~Q2!5E
0

1

dx xn21g2
gWW~x,Q2,P2!,

~3.9!

with

g2
gWW~x,Q2,P2![2g1

g~x,Q2,P2!1E
x

1 dy

y
g1

g~y,Q2,P2!.

~3.10!

~iii ! The difference ḡ2
g5g2

g2g2
gWW contains only the

twist-3 contribution

E
0

1

dx xn21ḡ2
g~x,Q2,P2!5

n21

n F(
i

a~3!i
n E~3!i

n ~Q2!G .
~3.11!

Let us now analyze the twist-3 part ofg2
g in pure QED,

i.e., switching off the quark-gluon coupling, in the fram
work of OPE and the renormalization group~RG! method. In
8-4
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this case the relevant twist-3 operators are the quark
photon operators, which are given, respectively, by

R
~3!q
sm1¯mn215 i n21eq

2c̄g5g [s,D $m1]
¯Dmn21%c2~ traces!,

~3.12!

R
~3!g
sm1¯mn215

1

4
i n21eabg

[s,Fa$m1]]m2
¯]mn21%Fbg

2~ traces!, ~3.13!

whereeq is the quark charge,Dm5]m1 ieAm is the covariant
derivative and$ % means complete symmetrization over t
indices, while@s,m j # denotes antisymmetrization onsm j .
With the above photon operatorR(3)g

n , we havea(3)g
n 51.

The coefficient functions corresponding to operatorsR(3)q
n

andR(3)g
n

EW ~3!
n S Q2

m2 ,a D5S E~3!q
n S Q2

m2 ,a D
E~3!g

n S Q2

m2 ,a D D ~3.14!

satisfy the following RG equation to lowest order ina:

m
]

]m
EW ~3!

n S Q2

m2 ,a D5gn
QED~a!EW ~3!

n S Q2

m2 ,a D , ~3.15!

wheregn
QED(a) is the anomalous-dimension matrix. To low

est order ina, this matrix has the form1

gn
QED~a!5S 0 0

2
a

4p
K ~3!q

n 0D . ~3.16!

HereK (3)q
n represents the mixing between the photon ope

tor R(3)g
n and the quark operatorR(3)q

n . Evaluating the trian-
gular diagrams given in Fig. 5 and taking into account
color degrees of freedom in the quark loop, we find

1We follow the convention used by Bardeen and Buras@14# to
write the mixing anomalous dimensions between the photon
other operators.

FIG. 5. Triangle diagrams that contribute to the anomalous
mension describing the mixing between the twist-3 quark-bilin
operatorR(3)q

n and the photonic operatorR(3)g
n .
11401
nd

-

e

K ~3!q
n 5224eq

4 1

n~n11!
. ~3.17!

The solution of Eq.~3.15! is

EW ~3!
n S Q2

m2 ,a D5expF2
1

2
gn

QED~a!ln
Q2

m2GEW ~3!
n ~1,a!.

~3.18!

To lowest order ina, the exponential and the coefficien
functionsEW (3)

n (1,a) are written, respectively, as

expF2
1

2
gn

QED~a!ln
Q2

m2G5S 1 0

a

8p
K ~3!q

n ln
Q2

m2 1D ,

~3.19!

E~3!q
n ~1,a!511O~a!,

E~3!g~1,a!5
a

4p
3eq

4B~3!g
n . ~3.20!

The ‘‘matrix element’’a(3)q
n of the quark operatorR(3)q

n be-
tween the photon states is obtained by evaluating again
triangular diagrams in Fig. 5 and expressed as

a~3!q
n 5

a

4p S 2
1

2
K ~3!q

n ln
P2

m2 13eq
4A~3!q

n D . ~3.21!

Inserting Eqs.~3.17!–~3.21! into Eq.~3.11! and remembering
a(3)g

n 51, we obtain for thenth moment ofḡ2
g in pure QED,

ḡ2
g,nuQED5

n21

n

a

4p
3eq

4H 2
4

n~n11!
ln

Q2

P2

1A~3!q
n 1B~3!g

n J . ~3.22!

The dependence on the renormalization pointm disappears.
And we note that, althoughA(3)q

n andB(3)g
n are individually

renormalization-scheme dependent, the sumA(3)q
n 1B(3)g

n is
not @30#. The calculation of box diagrams in Fig. 3 gives

A~3!q
n 1B~3!g

n 58H 1

~n11!22
1

n2J . ~3.23!

Now, adding all the quark contributions of active flavors a
replacing 3eq

4 in Eq. ~3.22! by 3Nf^e
4&, we find that the

result is nothing butḡ2,n
g(box) given in Eq. ~2.19! which is

derived from the box-diagram calculation. Thus it is no
clear thatḡ2,n

g(box) is indeed the twist-3 contribution.

IV. QCD EFFECTS

We now switch on the quark-gluon coupling and consid
the QCD, effects onḡ2

g , the twist-3 part ofg2
g . In the case of

the nucleon, the analysis ofḡ2
nucl, the twist-3 part of the

structure functiong2
nucl, turns out to be very complicate

d

i-
r
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@31–43#. This is due to the fact that the number of partic
pating twist-3 operators grows with the spin~moment of
ḡ2

nucl! and that these operators mix among themsel
through renormalization. Therefore, theQ2 evolution equa-
tion for the moments ofḡ2

nucl cannot be written in a simple
form, but as a sum of terms, the number of which increa
with spin. The same is true forḡ2

g .
Writing down the coefficient functions

E(3)i
n (Q2/m2,g2,a) that correspond to the relevant twist

operators R(3)i
n contributing to ḡ2

g in a column vector

EW (3)
n (Q2/m2,g2,a), the RG equation forEW (3)

n can be written
to lowest order ina as @14#

S m
]

]m
1b~g!

]

]gDEW ~3!
n S Q2

m2 ,g2,a D
5gn~g2,a!EW ~3!

n S Q2

m2 ,g2,a D , ~4.1!

whereb(g) is the QCDb function andgn is the anomalous-
dimension matrix. The solution is given by

EW ~3!
n S Q2

m2 ,g2,a D5S T expF E
ḡ~Q2!

g

dg8
gn~g82,a!

b~g8! G D
3EW ~3!

n ~1,ḡ2,a!. ~4.2!

The twist-3 photon operatorR(3)g
n is again given by Eq.

~3.13!. In the convention we use now, where the photon
efficient functionE(3)g

n is set at the bottom of the colum

vectorEW (3)
n , the matrixgn to lowest order ina has the form

gn5S ĝn~g2! 0

KW n~g2,a! 0D , ~4.3!

whereĝn represents the mixing among hadronic~quark and
gluon! operators and the row vectorKW n describes the mixing
between the photon operatorR(3)g

n and other hadronic opera
tors. Then the evolution factor is given by@14#

T expF E
ḡ

g

dg8
gn~g82!

b~g8! G5S Mn 0

XW n 1D , ~4.4!

with

Mn5T expE
ḡ

g

dg8
ĝn~g82!

b~g8!
,

XW n5E
ḡ

g

dg8
KW n~g82,a!

b~g8!
T expF E

ḡ

g8
dg9

ĝn~g92!

b~g9! G .
~4.5!

ExpandingKW n(g2,a), b(g), andĝn(g2) in powers ofg,

KW n~g2,a!52
a

4p
KW n

~0!1O~ag2!, ~4.6!
11401
s

s

-

b~g!52
g3

16p2 b01O~g5!,

b05
11

3
Nc2

2

3
Nf , ~4.7!

ĝn~g2!5
g2

16p2 ĝn
~0!1O~g4!, ~4.8!

we see that the dominant contributions, which behave
ln Q2, are coming fromXW n , in other words, from the photon
coefficient functionE(3)g

n (Q2/m2,g2,a). Inserting the solu-
tion E(3)g

n anda(3)g
n 51 into Eq.~3.11!, we obtain the follow-

ing formula for thenth moment ofḡ2
g in LO:

E
0

1

dx xn21ḡ2
g~x,Q2,P2!

5
n21

n

2pa

b0
@Kn

~0!# iF E
ḡ2

g2 dg82

~g82!2

3expS ĝn
~0!

2b0
ln

ḡ2

g82D G
i j

@E~3!
n ~1,0!# j , ~4.9!

wherei and j run over the hadronic~quark and gluon! sector
only.

The evaluation of thenth moment ofḡ2
g is feasible when

n is a small number. But asn gets larger, it becomes a mor
and more difficult task due to the increase of the numbe
participating operators and the mixing among these op
tors. However, we will see that in a certain limit the analy
of the moments becomes tractable. In the following subs
tions we consider two cases:~1! the nontrivial lowest mo-
ment (n53) of ḡ2

g ; and ~2! the flavor nonsinglet part ofḡ2
g

for largeNc . In case~1! the number of participating opera
tors is limited, and we can get all the information on t
necessary anomalous dimensions. Thus we obtain the
QCD prediction for the third moment ofḡ2

g . In the QCD
analysis of photon structure functions, the contributions
divided into two parts, the flavor singlet and nonsinglet pa
In case~2!, we show that in the approximation of neglectin
terms of orderO(1/Nc

2), we can evade the problem of op
erator mixing forḡ2

g(NS) , the flavor nonsinglet part ofḡ2
g ,

and obtain the moments ofḡ2
g(NS) in a compact form for all

n.

A. The third „nÄ3… moment of ḡ2
g

Let us start with the analysis of the flavor nonsinglet pa
In addition to the photon operatorR(3)g

n given by Eq.~3.13!,
the following four types of twist-3 operator contribute
ḡ2

g(NS) :

R
~3!F
sm1¯mn215 i n21S8c̄g5gsDm1

¯Dmn21Qchc2~ traces!,
~4.10!
8-6
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R
~3!l
sm1¯mn215

1

2n
$~Vl2Vn212 l1Ul1Un212 l !

1~Ṽl2Ṽn212 l1Ũ l1Ũn212 l !%

~ l 51,...,n22!, ~4.11!

R
~3!m
sm1¯mn215 i n22mS8c̄g5gsDm1

¯Dmn22

3gmn21Qchc2~ traces!, ~4.12!

R
~3!E
sm1¯mn215 i n22

n21

2n
S8@c̄g5gsDm1

¯Dmn22

3gmn21~ iD” 2m!Qchc

1c̄~ iD” 2m!g5gsDm1
¯Dmn22

3gmn21Qchc#2~ traces!, ~4.13!

with

Qch5Q22^e2&1, ~4.14!

where Q is the Nf3Nf quark-charge matrix, ^e2&
5S i 51

Nf ei
2/Nf ,1 is anNf3Nf unit matrix with Nf being the

number of active flavors, andm represents the quark mas
The symbol S8 denotes symmetrization on the indic
m1m2¯mn21 and antisymmetrization onsm i . The opera-
tors in Eq.~4.11! contain the gluon and photon field streng
Gmn andFmn , and their dual tensorsG̃mn5 1

2 emnabGab and
F̃mn5 1

2 emnabFab. Explicitly, they are given by

Vl51 i ngS8c̄g5Dm1
¯Gsm1

¯Dmn22

3gmn21Qchc2~ traces!, ~4.15!

Ul52 i n21gS8c̄Dm1
¯G̃sm l

¯Dmn22

3gmn21Qchc2~ traces!, ~4.16!

Ṽl52 i neS8c̄g5Dm1
¯Fsm l

¯Dmn22

3gmn21Qchc2~ traces!, ~4.17!

Ũ l51 i n21eS8c̄Dm1
¯F̃sm l

¯Dmn22

3gmn21Qchc2~ traces!, ~4.18!

where g and e are the QCD and QED coupling constan
respectively. The operatorRE

n in Eq. ~4.13! is proportional to
the equation of motion~EOM! operator@39,40#.

We emphasize thatṼl and Ũ l ~regardless of the quark
charge factorQch!, which are not present in the twist-3 con
tribution to the nucleon structure functiong2

nucl, must be in-
cluded in the analysis ofḡ2

g . The reason is that we are he
considering not only QCD but also QED, and thus the co
riant derivativeDm should read as

Dm5]m2 igAm
a Ta1 ieAm , ~4.19!
11401
,

-

whereAm
a and Am are the gluon and photon fields, respe

tively, andTa is the color matrix. Then the commutator

@Dm ,Dn#52 igGmn
a Ta1 ieFmn ~4.20!

leads to the appearance ofVl , Ul , Ṽl , andŨ l terms. As far
as the mixing anomalous dimensions among the hadro
operators, i.e., those given in Eqs.~4.10!–~4.13!, are con-
cerned, the termsṼl and Ũ l are irrelevant. But they are in
dispensable to the correct evaluation of the mixing anom
lous dimensionsKn,l between the hadronic operatorR(3)l

n

and photon operatorR(3)g
n . We need to haveKn,l of order

O~a! in the leading logarithm approximation, butR(3)l
n with-

out Ṽl and Ũ l terms givesKn,l;O(g2a), since theVl and
Ul terms already have the QCD coupling constantg. In Ap-
pendix B we calculate the mixing anomalous dimensio
Kn,l

(0) of orderO(a) for arbitraryn and show that theŨ l term

~but notṼl! indeed plays an essential role. Another importa
consequence of introducingieAm into the covariant deriva-
tive Dm is that with this new term we can show that th
photon matrix element of the EOM operatorRE

n @more pre-
cisely, ^0uT„Ar(2p)R(3)E

sm1¯mn21At(p)…u0&amp# actually van-
ishes atO(a).

The twist-3 hadronic operators given in Eqs.~4.10!–
~4.13! satisfy the following relation@32,37,39,40#:

R
~3!F
sm1¯mn215

n21

n
R

~3!m
m1¯mn211 (

l 51

n22

~n212 l !R
~3!l
sm1¯mn21

1R
~3!

sm1¯mn21. ~4.21!

Hence, including the photon operator, there are, in totan
11 independent operators that contribute to thenth moment
of ḡ2

g(NS) . We have freedom in choosing the hadronic ope
tors as independent bases. But we should keep in mind
following: due to the constraint Eq.~4.21!, a different choice
of operator bases assigns different values to the coeffic
functions at the tree level, which was first pointed out
Kodaira, Yasui, and one of the authors@39#. In the basis of
independent operators that includesR(3)F

n but notR(3)m
n , the

tree level coefficient functions are given by

E~3!F
n ~ tree!51, E~3!l

n ~ tree!50. ~4.22!

On the other hand, if we eliminateR(3)F
n , we have

E~3!m
n ~ tree!5

n21

n
, E~3!l

n ~ tree!5n212 l . ~4.23!

We always haveE(3)E
n (tree)50. So a different choice of the

operator bases leads to different forms for the anomalo
dimension matrix and the coefficient functions but the fin
result for thenth moment ofḡ2

g should be the same~see
Appendix C!.

Now we taken53 and evaluate the third moment o
ḡ2

g(NS) . From now on we omit the superscriptsn53. The
relevant hadronic operators are four:R(3)F , R(3)1, R(3)m ,
8-7
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andR(3)E . Let us takeR(3)1, R(3)m , andR(3)E as indepen-
dent operators. In these operator bases, the tree level co
cient functions are given by

E~3!m~1,0!5 2
3 , E~3!1~1,0!51. ~4.24!

The 333 anomalous-dimension matrixĝ (0) for hadronic op-
erators has the form

ĝ~0!5S ĝ11
~0! 0 0

ĝm1
~0! ĝmm

~0! 0

ĝE1
~0! 0 ĝEE

~0!
D , ~4.25!

with @40#

ĝ11
~0!56CG2 2

3 CF , ĝmm
~0! 512CF ,

ĝm1
~0!52 4

9 CF , ĝE1
~0!52 1

3 CF . ~4.26!

Note that we follow the convention of Bardeen and Bu
@14# in defining the anomalous-dimension matrix. The mat
ĝ (0) is triangular and, therefore, its eigenvalues areĝ11

(0) ,
ĝmm

(0) , andĝEE
(0) . In fact we only need the information on th

upper left 232 submatrix for the analysis, which is decom
posed as

g̃~0!u~232!5ĝ11
~0!P11ĝmm

~0! P2 , ~4.27!

whereP1 andP2 are projection operators and given by

P15S 1 0

a 0D , P25S 0 0

2a 1D , ~4.28!

with

a5
ĝm1

~0!

ĝ11
~0!2ĝmm

~0! 5
22CF

3~9CG219CF!
. ~4.29!

The anomalous dimensionKn,m
(0) is found to be null for alln.

So we haveKm
(0)50.

Inserting this information into the moment formula forḡ2
g

in Eq. ~4.9!, we find for the third moment of the nonsingle
part ḡ2

g(NS)

ḡ2,n53
g~NS!5E

0

1

dx x2ḡ2
g~NS!~x,Q2,P2!

5
2

3

a

4p

2p

b0as~Q2!
K1

~0!NS 1

11ĝ11
~0!NS/2b0

3H 12S as~Q2!

as~P2! D
ĝ

11
~0!NS/2b011J , ~4.30!

where we have revived the superscript ‘‘NS’’ andK1
(0)NS is

obtained from Eq.~B8! in Appendix B as

K1
~0!NS5224Nf~^e

4&2^e2&2!
1

334
. ~4.31!
11401
ffi-

s

The above result forḡ2,n53
g(NS) is indifferent to the choice of the

independent set of operators. In Appendix C we takeR(3)F ,
R(3)1, R(3)E as independent operators, replacingR(3)m with
R(3)F , and show that we obtain the sameḡ2,n53

g(NS) .
Let us move to the third moment of the singlet partḡ2

g(S) .
For n53, there are five independent hadronic operators c
tributing to ḡ2

g(S) , apart from the photon operatorR(3)g
n . Fol-

lowing the work of Kodairaet al. @44#, we take R(3)1
S ,

R(3)m
S , R(3)E

S , T(3)B , andT(3)E for an independent set. Th
first three are the analogues toR(3)1, R(3)m , R(3)E in the
nonsinglet case, obtained by replacing the quark charge
tor Qch with an Nf3Nf unit matrix 1. The rest are the
Becchi-Rouet-Stora-Tyutin~BRST! exact and the gluon
EOM operators, respectively, whose explicit expressions
given in Ref.@44#.

The tree level coefficient functions corresponding to the
operators are

E~3!1
S ~1,0!51, E~3!m

S ~1,0!5 2
3 , ~4.32!

and the others are zero. The mixing anomalous dimens
among these operators have been calculated and for
535 matrix. The physically relevant part is the followin
232 submatrix:

ĝ~0!S5S ĝ11
~0!S ĝ1m

~0!S

ĝm1
~0!S ĝmm

~0!SD , ~4.33!

with @32,33,44#

ĝ11
~0!S56CG2 2

3 CF1 4
3 Nf , ĝ1m

~0!S50,

ĝm1
~0!S52 4

9 CF , ĝmm
~0!S512CF . ~4.34!

The matrix ĝ (0)S is triangular and, therefore, the same pr
cedures as the nonsinglet case can be applied here. We o
for the third moment of the singlet partḡ2

g(S)

ḡ2,n53
g~S! 5E

0

1

dx x2ḡ2
g~S!~x,Q2,P2!

5
2

3

a

4p

2p

b0as~Q2!
K1

~0!S ^e2&

11ĝ11
~0!S/2b0

3H 12S as~Q2!

as~P2! D
ĝ11

~0!S/2b011J , ~4.35!

with

K1
~0!S5224Nf^e

2&
1

334
. ~4.36!

In Fig. 6, we have plotted theQ2 evolution of the flavor
singlet and nonsinglet components as well as the total of
third moment of ḡ2

g(x,Q2,P2) in units of a/p for P2

51 GeV2 with Nf53. The flavor singlet and nonsingle
8-8
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components show somewhat different types ofQ2 depen-
dence, and the singlet component gives a larger contribu
due to the charge factor.

B. Flavor nonsinglet part of ḡ2
g for large Nc

For the case of the flavor nonsinglet nucleon struct
function g2

nucl(NS), it has been observed by Ali, Braun, an
Hiller ~ABH! @45# that in the largeNc limit the twist-3 part
ḡ2

nucl(NS) obeys a simple Dokshitzer-Gribov-Lipatov
Altarelli-Parisi ~DGLAP! equation@46#. In their formalism
of working directly with the nonlocal operator contributin
to the twist-3 part ofḡ2

nucl(NS), they showed that local opera
tors involving gluons effectively decouple from the evolutio
equation for largeNc , which is the number of colors. Late
the ABH result forḡ2

nucl(NS) was reproduced by one of th
authors@47# in the framework of the standard OPE and R
method. At largeNc , the operators involving gluon field
strength Gmn decouple from the evolution equation o
ḡ2

nucl(NS), and the whole contribution in LO is represented
one type of operator. The same is true for the flavor no
inglet part ofḡ2

g .
Let us takeR(3)F

n , R(3)l
n , R(3)E

n as independent hadroni
operators, eliminatingR(3)m

n . The advantage of this choice o
operator basis is that from Eq.~4.22! the hadronic coefficien
functions take simple forms at the tree level@39#:

E~3!F
n ~1,0!51, E~3!l

n ~1,0!50

for l 51,...,n22. ~4.37!

The mixing anomalous dimensions for these operators
very complicated. However, it was found in Ref.@47# that, in
the approximation of neglecting terms of orderO(1/Nc

2) and
thus putting 2CF5CG , the ~F, F! and ~l, F! elements are
reduced to the simple expressions

FIG. 6. The third (n53) moment ofḡ2
g(x,Q2,P2) in units of

a/p as a function ofQ2 for P251 GeV2 with Nf53. The dash-
dotted ~dashed! line corresponds to the flavor nonsinglet~singlet!
component. The solid line represents the sum of the two com
nents, the totalḡ2,n53

g /(a/p).
11401
n

e

s-

re

ĝn,FF
~0! 58CFS Sn2

1

4
2

1

2nD with Sn5(
j 51

n
1

j
,

~4.38!

ĝn,lF
~0! 50 for l 51,...,n22. ~4.39!

Note that the corrections are ofO(1/Nc
2), about 10% for

QCD (Nc53).
Inserting the above results~4.37!–~4.39! into Eq. ~4.9!,

we find that, for largeNc , thenth moment ofḡ2
g(NS) is given

by

E
0

1

dx xn21ḡ2
g~NS!~x,Q2,P2!

5
n21

n

a

4p

2p

b0as~Q2!
Kn,F

~0!
1

11ĝn,FF
~0! /2b0

3H 12S as~Q2!

as~P2! D
ĝn,FF

~0! /2b011J , ~4.40!

with

Kn,F
~0! 5224Nf~^e

4&2^e2&2!
1

n~n11!
. ~4.41!

We now perform the Mellin transform of Eq.~4.40! to get
ḡ2

g(NS)(x,Q2,P2) as a function ofx. The result is plotted in
Fig. 7. Compared with the pure QED box-graph contributio
we find that the LO QCD effects are sizable and tend
suppress the structure functionḡ2

g(NS) in both the largex and
small x regions, so that the vanishingn51 moment of
ḡ2

g(NS) , i.e., the BC sum rule, is preserved.
As for ḡ2

g(S) , the flavor singlet part ofḡ2
g , it is expected

that a similar simplification may occur for largeNc and its

o-

FIG. 7. The box-diagram~dashed line! and the QCD LO~solid
line! contributions for largeNc to the flavor nonsinglet photon
structure function ḡ2

g(NS)(x,Q2,P2) for Q2530 GeV2 and P2

51 GeV2 for Nf53.
8-9
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moments may be written in a compact form for alln as in the
case ofḡ2

g(NS) . At the moment we do not know how to solv
the mixing problem in the flavor singlet sector to get
analytically simple formula for the moments ofḡ2

g(S) for
largeNc . This is an interesting subject which should be p
sued.

V. CONCLUSION

In the OPE of two electromagnetic currents, we expect
presence of the twist-3 operators in addition to the us
twist-2 operators. From a study of the lepton-nucleon po
ized deep inelastic scattering, we have learned that
twist-3 contribution does not show up as a sizable effe
since the nucleon matrix elements of the twist-3 opera
are found to be small in experiments.

In this paper, we investigated the twist-3 effects ing2
g for

a virtual photon target, in the pure QED interaction as wel
in LO QCD. We found that the twist-3 contribution is appr
ciable for the photon case in contrast to the nucleon case
this sense, the virtual photon structure functiong2

g provides
us with a good testing ground for studying the twist-3
fects. We expect that the future polarized versions of theep
or e1e2 colliders may bring us important information on th
polarized photon structure. More thorough QCD analysis
cluding the flavor-singlet part is now under way.
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APPENDIX A: TWO-PHOTON PROCESS
e¿eÀ\e¿eÀ¿HADRONS

The information on the polarized structure functionsg1
g

andg2
g can be extracted from experiments on the two-pho

annhilation process with polarizede1e2 beams as shown in
Fig. 1:

e6~ l 1!e7~ l 2!→e6~ l 18!e7~ l 28!g~q!g~p!

→e6~ l 18!e7~ l 28!1hadrons, ~A1!

with the virtual photon momentaq5 l 12 l 18 and p5 l 22 l 28 .
The cross section for this process is written as@48#

dsP5
~4pa!2

p2q2 r1~pol!
mn r2~pol!

rt Mmr* M nt

3
~2p!4d~p1q2PX!dG

4@~ l 1• l 2!22m4#1/2

3
d3l 18d

3l 28

2E182E28~2p!6 , ~A2!

where m is the electron mass,E1,28 are scattered electro
~positron! energies,PX5S i pi , and dG5) id

3pi /2pi0(2p)3

are the total momentum and the phase-space volume, res
11401
-

e
al
r-
e

t,
rs

s

In

-

-

rk

n

ec-

tively, of the hadron system produced, andM nt is the tran-
sition amplitude for gg→hadrons. For polarizede1e2

beams, the photon density matricesr1(pol)
mn and r2(pol)

rt are
given by

r1~pol!
mn 5

1

2q2 TrFg5s”1

2
~ ł 11m!gm~ ł 181m!gnG

52imemnabs1aqb /~2q2!, ~A3!

r2~pol!
rt 52imertabs2apb /~2p2!, ~A4!

wheres1,2 are the initiale1 (e2) polarization vectors. When
the incident beams are longitudinally polarized and at h
energies, the polarization vectors are expressed as

si
m5hi

l i
m

m
~ i 51,2!, ~A5!

with hi561 representing the helicity states of the beams
The absorptive part of thegg forward scattering ampli-

tudeWmnrt in Eq. ~2.2! is related to the following integrated
quantity over the phase-space volume of the produced h
ron system:2

~4pa!Wmnrt~p,q!5
1

2p E Mmr* M nt~2p!4

3d~p1q2PX!dG. ~A6!

Applying r1(pol)
mn and r2(pol)

rt to Wmnrt @actually toWmnrt
A in

Eq. ~2.3!#, we find for the longitudinally polarized beams

r1~pol!
mn r2~pol!

rt Wmnrt54h1h2F H 4l 1• l 2

p•q
112

2

y
2

2

r J g1
g

14H l 1• l 2

p•q
2

1

yrJ g2
gG , ~A7!

where we have introduced the variables

y[
p•q

l 1•p
, r[

p•q

l 2•q
. ~A8!

Hence the difference between the cross sections for the
photon annihilation process withe1e2 beams polarized par
allel and antiparallel to each other is given by

2Our definition ofWmnrt and, therefore,g1
g andg2

g , is such that
they are proportional toe2(54pa), and not toe4 in conformity to
the nucleon case.
8-10
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ds↑↑2ds↑↓5
d3l 18d

3l 28

E18E28

a3

p2~ l 1• l 2!p2q2

3F H 4l 1• l 2

p•q
112

2

y
2

2

r J g1
g

14H l 1• l 2

p•q
2

1

yrJ g2
gG . ~A9!

In particular for colliding beams, the laboratory is cons
ered to be the c.m. reference frame. We have

l 15~E,0,0,E!, l 25~E,0,0,2E!,

l 185~E18 ,E18 sinu1 cosf1 ,E18 sinu1 sinf1 ,E18 cosu1!,
~A10!

l 285~E28 ,E28 sinu2 cosf2 ,E28 sinu2 sinf2 ,2E28 cosu2!,

whereu1 , f1 , andp2u2 , f2 are the polar and azimutha
angles for the final leptonsl 18 and l 28 , respectively. Then we
obtain

ds↑↑2ds↑↓5
E18E28dE18dE28d cosu1d cosu2df

pE2

3
a3

p2q2~p•q! F $~E1E18!~E1E28!

1~E1E18 cosu1!~E1E28 cosu2!

2E18E28 sinu1 sinu2 cosf%g1
g

1
4

p•q
E2E18E28$~12cosu1!~12cosu2!

22 sinu1 sinu2 cosf%g2
gG , ~A11!

wheref5f12f2 , and

q2522EE18~12cosu1!,

p2522EE28~12cosu2!, ~A12!

p•q5~E2E18!~E2E28!

1~E2E18 cosu1!~E2E28 cosu2!

2E18E28 sinu1 sinu2 cosf.

APPENDIX B: CALCULATION OF Kn,l
„0…

In this appendix we present details of the calculation
Kn,l

(0) , the mixing anomalous dimension between the hadro
and photon operatorsR(3)l

n and R(3)g
n , for arbitrary n. The

expressions for the operatorsR(3)l
n and R(3)g

n are given in
Eqs.~4.11! and~3.13!, respectively~we put aside the charg
factorQch!. As a standard procedure, we introduce a lightl
vectorDm (D250) to symmetrize the Lorentz indices and
11401
-

f
ic

eliminate the trace terms, and we define

R~3!l
n

•D[R
~3!l
sm1¯mn21Dm1

¯Dmn21
,

R~3!g
n

•D[R
~3!g
sm1¯mn21Dm1

¯Dmn21
. ~B1!

Our first task is to evaluate the amputated two-point fu
tion with R(3)g

n
•D embedded between two photon fields

O~1!. We find

^guR~3!g
n

•Dug&[^0uT„Ar~2p!R~3!g
n

•DAt~p!…u0&amp

5 i
n21

n
$ert

sbpb~p•D!n21

2ert
abDapbps~p•D!n22%. ~B2!

Next we calculate the one-loop diagram for the two-po
function with R(3)l

n
•D sandwiched by two photon fields,

^guR~3!l
n

•Dug&[^0uT„Ar~2p!R~3!l
n

•DAt~p!…u0&amp,
~B3!

which should beO~a!. The operatorR(3)l
n is made up of four

terms,Vl , Ul , Ṽl , andŨ l , whose expressions are given
Eqs. ~4.15!–~4.18!. Since theVl andUl terms already have
the QCD coupling constantg, their contributions are
O(g2a). So we work with theṼl and Ũ l terms. The three-
point ‘‘basic’’ vertices ofṼl•D andŨ l•D depicted in Fig. 8
are given, respectively, by

Ṽl ,k5eg5~k•D! l 21@ksDk2~k•D!gs#

3@~k2p!•D#n222 lD” , ~B4!

Ũl ,k5 ie~k•D! l 21ek
sabDakb

3@~k2p!•D#n222 lD” . ~B5!

The O~a! contributions come from the two diagrams show
in Fig. 9. Inspecting the form ofṼl ,k we easily see that the
loop diagrams forṼl•D fail to produce a term that is propor
tional to ^guR(3)g

n
•Dug&. In fact, after the loop integral we

find that both theṼl and Ṽn212 l terms give a null result.

FIG. 8. The tree-level three-point vertices ofṼl andŨ l .
8-11
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On the other hand, the one-loop diagrams forŨ l and
Ũn212 l give terms proportional tôguR(3)g

n
•Dug&. The loga-

rithmically divergent part of theŨ l contribution, for ex-
ample, has the following form:

1

2n
^guŨ l•Dug&5

a

4p

12

n21
~21!n2 lB~ l 12,n2 l !

3^guR~3!g
n

•Dug& ln L2, ~B6!

where the Beta functionB( l 12,n2 l ) has appeared from th
Feynman-parameter integral

E
0

1

dx xl 11~x21!n212 l5~21!n212 lB~ l 12,n2 l !.

~B7!

Hence, adding together theŨn212 l contribution, we find the
mixing anomalous dimension between theR(3)l

n and R(3)g
n

operators~apart from the quark-charge factor! as

Kn,l
~0!52

24

n21
@~21!n2 lB~ l 12,n2 l !

1~21! l 11B~n112 l ,l 11!#. ~B8!

In particular, for n53 and so l 51, we haveKn53,1
(0) 5

224@1/(334)# except for the quark-charge factor.
Now it is interesting to note the following identity:

(
l 51

n22

~n212 l !3
1

n21
@~21!n2 lB~ l 12,n2 l !

1~21! l 11B~n112 l ,l 11!#

5
1

n
2

1

n11
~ for odd integern!, ~B9!

which is a direct consequence of the relation~4.21! satisfied
by the twist-3 operators. We know thatKn,m

(0) 50 from the
null result for the mixing anomalous dimension between
mass operatorsR(3)m

n and R(3)g
n . Also we know thatKn,E

(0)

50 since the photon matrix element of the EOM opera
R(3)E

n vanishes. Thus we have the relation

FIG. 9. One-loop diagrams atO(a) contributing to the Green’s

functions ofṼl andŨ l with two photons as external lines.
11401
e

r

Kn,F
~0! 5 (

l 51

n22

~n212 l !Kn,l
~0! . ~B10!

The identity~B9! ensures that the relation indeed holds tru
For n53 we haveKn53,F

(0) 5Kn53,1
(0) .

APPENDIX C: REANALYSIS OF ḡ2,nÄ3
g„NS…

In this appendix we reanalyzeḡ2,n53
g(NS) , the third moment

of ḡ2
g(NS) . ~The superscriptsn53 and ‘‘NS’’ are omitted.!

We chooseR(3)F , R(3)1, R(3)E as independent operators, r
placing R(3)m with R(3)F . In these operator bases, the tr
level coefficient functions are given by

E~3!F~1,0!51, E~3!1~1,0!50. ~C1!

The relevant 232 anomalous-dimension matrixg̃ (0) has the
form

g̃~0!5S g̃FF
~0! g̃F1

~0!

g̃1F
~0! g̃11

~0!D , ~C2!

with

g̃FF
~0!5 34

3 CF , g̃F1
~0!52 2

3 CF ,

g̃1F
~0!56CG212CF , g̃11

~0!56CG ,
~C3!

which are obtained from Eqs.~33!–~38 ! of Ref. @47#. ~Note
that we follow the convention of Bardeen and Buras in d
fining the anomalous-dimension matrix which is thetrans-
posedone as given in Ref.@47#.! Then the eigenvalues o
g̃ (0) and the corresponding projection operators, such
g̃ (0)5l1P11l2P2 , are found to be

l1512CF , l256CG2
2

3
CF , ~C4!

P15
1

b11 S 1 2b

21 b D , P25
1

b11 S b b

1 1D ,

~C5!

with b5CF /@9(2CF2CG)#. Comparing the results in Eq
~4.26!, we note thatl15ĝmm

(0)NS and l25ĝ11
(0)NS. This is a

consequence of the fact that a different choice of the oper
bases leads to different forms for the anomalous-dimens
matrix but its eigenvalues remain the same. Now insert
theseE(3)i(1,0), l i , andPi for i 5F,1 into the moment for-
mula for ḡ2

g in Eq. ~4.9!, we find that
8-12
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ḡ2,n53
g~NS!}

KF
~0!

ḡ2~b11! F 1

11l1/2b0
H 12S ḡ2

g2D l1/2b011J
1

b

11l2/2b0
H 12S ḡ2

g2D l2/2b011J G
1

K1
~0!

ḡ2~b11! F 21

11l1/2b0
H 12S ḡ2

g2D l1/2b011J
1

1

11l2/2b0
H 12S ḡ2

g2D l2/2b011J G . ~C6!
7,

A

th

-

11401
From Appendix B, we observe thatKF
(0)5K1

(0) for n53.
Thus ḡ2,n53

g(NS) is reduced to

ḡ2,n53
g~NS!}

1

ḡ2

K1
~0!

11l2/2b0
H 12S ḡ2

g2D l2/2b011J , ~C7!

which coincides with the expression forḡ2,n53
g(NS) given in Eq.

~4.30! sincel25ĝ11
(0)NS.
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