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Polarized virtual photon structure function g and twist-3 effects in QCD
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We investigate twist-3 effects in the polarized virtual photon structure. The structure fungliamsig] of

a polarized photon could be experimentally studied in future polarggedr e” e~ colliders. The leading
contributions tog] are twist-2 effects, while another structure functigph, which exists only for the virtual
photon target, receives not only twist-2 but also twist-3 contributions. We first show that twist-3 effects actually
exist in the box-diagram contributions and we extract the twist-3 part, which can also be reproduced by the
pure QED operator product expansion. We then calculate the nontrivial lowest momye8) (©f the twist-3
contribution tog} in QCD. For largeN. (the number of colops the QCD analysis of twist-3 effects in the
flavor nonsinglet part o} becomes tractable and we can obtain its moments in a compact form for all
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[. INTRODUCTION content of the unpolarized virtual photon have been studied
in the above kinematical region in LOL6] and in NLO
In recent years, there has been growing interest in th€l7—22. The target mass effects on both the unpolarized and
study of the spin structure of the photon. In particular, thepolarized virtual photon structure functions have been dis-
first moment of the polarized photon structure functgh ~ cussed in LO[23]. More recently, the spin-dependent struc-
has attracted much attention in the literat{ite-5] in con-  ture functiongi(x,Q?P?) of the virtual photon has been
nection with the axial anomaly, which is also relevant to thelnvestigated up to NLO by the present author42d], and

analysis of the nucleon spin structure functigft®. The alsgin the“se;:ondhpaper bF)].h H .
polarized photon structure functions may be extracted from h enerally, C}I’ t € wrytua pz gtzon t?]r_gﬁt_, tr? re eXI'StS an-
the resolved photon process in the polarized version of th8ter structure functiogZ(x,Q,P<), which is the analogue
DESY ep collider HERA[6,7]. More directly, they can be of the spin-dependent nucleon structure functgff'. In the

measured by polarizeeie~ collision experiments in future anguage of operator product expansi@PB, it is well

linear colliders(Fig. 1), where —Q? (—P?) is the mass kﬂfc‘,"f” :Eatl bog_l tWIStd'z ar;d t\zmsﬁ? operators Icon:rlbu';e to
squared of the probétarge} photon. g5"in the leading order of Q2. The same is also true for

For a real photon R2=0) target, there exists only one 9z In '[I’;IS paper, we shall mvgstlgate the twist-3 contribu
spin-dependent structure functiog}(x,Q?), which is tion to gJ in the leading order in QCD, and show that they

equivalent to the structure functioW}(x,Q?) (g7=2WyJ)
discussed some time ago [i8,9]. The leading ordefLO)
QCD corrections tag] for a real photon target were first
calculated by one of the authors [ih0] and later in[11,2],
while the next-to-leading ordefNLO) QCD analysis was
performed in[12,13.

In the case of a virtual photon targe®{#0), and espe-
cially when we deal with the kinematical regioh?< P?
<Q?, whereA is the QCD scale parameter, we can calculate
all the structure functions up to NLO in QCD by the pertur-
bative method, in contrast to the case of the real photon
target where in NLO there exist nonperturbative pieces
[14,15. In this context, the spin-independent structure func-
tions F}(x,Q2,P?) and F(x,Q? P?) as well as the parton

FIG. 1. Deep inelastic scattering on a polarized virtual photon in
polarizede e~ collision,e™e”—e*e™ +hadrongquarks and glu-

*Email address: baba@phys.h.kyoto-u.ac.jp ons. The arrows indicate the polarizations of thé ande™. The
"Email address: sasaki@phys.ynu.ac.jp mass squared of the proliearge) photon is —Q? (—P?) (A?
*Email address: uematsu@phys.h.kyoto-u.ac.jp <P?<Q?).
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1
W/,vaf(p!q):;ImT,quT(p1q)- (22)

The antisymmetric parWﬁVpT under the interchangg« v
andp« 7 can be written in terms of the two spin-dependent
structure functiong? andg’ as[24]

1
Wﬁypswm_>Wpng—(J_>ng], 2.3

where the two tensors. andJ_ are explicitly given by

. . . (I 7);1,1/;27'5p'qé,uv)\o'épfa—ﬁq)\pﬁu (24)
FIG. 2. Forward scattering of a virtual photon with momentym

and another virtual photon with momentymThe Lorentz indices — Ao @
are denoted by, v, i 7. " () urpr= €umnor€prapd P70 p
_p'qe,uv)urepfaﬁq)\pﬁ' (25)

are sizable in contrast to the nucleon case, where the experi-

mental data show that the twist-3 contribution appears to b# fact, we observe that_ andJ_ are related to those of

small[25,2§. eight independent kinematic-singularity-free tensors, intro-
In the next section we discuss the two structure functiongluced by Brown and Muzinicfsee Eqs(A3)—(A10) of Ref.

g7 andg}, which describe the deep inelastic scattering off al8]] to express the virtual photon-photon forward scattering

polarized virtual photon targetHow the information org} ~ a@mplitude, as follows: | _=I,—IzandJ_=I7—1g.

and g} can be extracted from the spin-dependent experi- 't May be useful here to see the relations between the

ments ofete”—e" e +hadrons is shown in Appendix A. structure f_unctlong? _(| =1,2) ands-channel helicity ampli-

They are related to the-channel helicity amplitudes which tudes, which are defined as

appear in the forward virtual photon-photon scattering. We

examine the box diagrams for the photon-photon scattering W(abla'b") =€, (a)e; (b)W"""7¢,(a")e(b"), (2.6)

to obtain the parton model predictions fg{ and g}. We o )

then extract a piece which is a deviation from the WandzuraWheree,(a) represents the photon polarization vector with

Wilczek relation[27]. In Sec. IIl we show in the framework Ne€licity a, anda,a’=0,+1, andb,b’=0,+1. They are re-

of the pure QED operator product expansion that the exlated as follows:

tracted piece actually arises from the twist-3 effects. In Sec.

IV, we examine the QCD twist-3 effects igJ in LO. We

calculate the nontrivial lowest momemi+£ 3) of the twist-3

contribution tog}. For largeN., the QCD analysis of the (p2q2) 2

twist-3 effects in the flavor nonsinglet part g§ becomes — —{W(11|OO)+W(01|—10)}},

simple and we can obtain its moments in a compact form for P-q

all n. The final section is devoted to the conclusion and dis-

07= 5| {W(111D)—W(1-1[1-1)}

. -1
cussion. gz“/=R[{W(11|11)—W(1—1|1—1)}
1. 97(x,Q%P?) AND BOX-DIAGRAM CALCULATION p-q
— — > m{W(1100)+W(01 - 10)}|, (2.7)
Let us consider the virtual photon-photon forward scatter- (p°a%)

ing for + — + illustrated in Fig. 2:
g for y(q) + ¥(p) — y(a) + ¥(p) g whereX = (p-q)— .

The photon structure functiong] and g} are just the

Tpvp(P,Q) =i f d*x d*y d*z 9 *elP- Y~ 2) analogues of the nucleon counterp@}¥” andg)"®, respec-
tively. But it is noted thag} exists only for the off-shell or
X (0| T(J,(x)3,(0)J,(y)I.(2))]0), virtual photon P?#0) target.

Now let us calculatg; andgJ in the simple parton model
by evaluating the box diagrams depicted in Fig. 3. We intro-
duce two projectorsK,)*”?™ and (Pj)*"*":

(2.9

whereJ is the electromagnetic current, agdandp are the

four-momenta of the probe and target photons, respectively. 1 p2q? 3

Its absorptive part is related to the structure tensor (P,)*"P7= e <1+ ﬁ)(l)“”)”r E(J,)“VPT ,
W,,,,.(p.,q) for the photon with mass squargef=—P? (p-9)

probed by the photon with?=—Q?: (2.9
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In the case of the nucleon, the spin-dependent structure
functiong)"® receives both twist-2 and twist-3 contributions,

nucl(x Q ) gnucl tw- 2(X,Q2)+QSUCI'M-3(X,Q2),
(2.195

and the twist-2 part ofy"” is expressed in terms of}"“ by
the so-called Wandzura-WilczékVW) relation[27]:

nucl tw- 2(X Q ) gnucl WW(X Q )

FIG. 3. The box diagrams contributing ¢4 andgj in the pure
QED interaction.

1dy
=—g"(x.Q%)+ f 97"y, Q.

x Y

(P
2p“q

P ,uvmzi E | AT | 1+ q) J_)mvet
( J) 4X2 2( ) 5242 ( )

(2.16
Thus the differenceg) “=gh"“—gj contains the
twist-3 contribution only. The experimental data so far ob-
tained show that the twist-3 contributions 48 appear to
be negligibly small25,26.

Now we may ask about the photon structure functign
DoesgJ also receive twist-3 contributions? If so, are they
small as in the nucleon case, or sizable? Does the WW rela-
tion also hold forgJ, in other words, is the twist-2 part g
expressible in terms af]? These issues will be discussed in
the next section.

Here let us apply the WW relation to the results of the
box-diagram calculatiory?®®® and g3 in Egs. (2.12,
(2.13, and define

nucl, WW
(2.9

which satisfy

P-(1-)=1, P;-(3-)=0,

Py-(1_)=0, P,-(J_)=1. (2.10

Theng? andgJ are given by

9= (p-a)%(P)*"*"W,

vpT?

—(p-q)2(Py) P W (2.11)

Applying the projector®, andP; to the box-diagranimass-
less quark-loop contributions, and ignoring the power cor-
rections ofP?/Q?, we obtain

/.LVpT
g7 (x, Q2% P?)=— 91" (x,Q% P?)

td
+ f 7ygz<b°x><y,Q2,P2).
X
(2.17

3a 2
— N¢(eh| (2x— 1)InQ—

g:I}-/(bOX)(X,QZ, PZ) —

—2(2x=1)(Inx+1)|, (212 Then we find that the differenceg}(®®=g3(®>
— g is given by
3a Q? 2
(box) 2 p2y_ _ 4
93" (x.Q%P%) = ——N¢(e") —(2x=1)In 57 g3 = N (%] (2x—2-Inx)In 57— 2(2x~1)inx
+2(2x—1)Inx+6x—4|, (2.13 Fo(x—1)+Inx|. (2.18

where x=Q?%/(2p-q), a=e?/4w, the QED coupling con-
stant, and(e*)= ENf e“/Nf, with N being the number of
active quark fIavors The above results are consistent with
those of Ref[28], where polarized gluon structure functions
were considered. It is noted that the first momeng¥f®
vanishes, i.e.,gJ®™ satisfies the Burkhardt-Cottingham
(BC) sum rule[29]:

Its nth momentg3 "= [idx X"~ 1g3°(x,Q?,P?) is

n—1

~y(box) _ ; < e4>

2n
| Q? 2 2
nnt 1) P2 nr2 n2|’
(2.19

In Fig. 4, we have shown the box-diagram contributions to
the structure functiong?®, g3(*™ as well as the}*>

We will see from the OPE analysis in the next section thagiven in Eq.(2.18 as functions o for Q?=30 GeV* and
the BC sum rule fog) generally holds in the deep-inelastic P?=1 Ge\?. We can see tha} "™ is comparable in mag-

X_

f dx g3 (x,Q?,P?) (2.14

region Q%> P2. Also note that the surg](®®+g2*® does
not have IQ%P? behavior.

nitude withg(®® for large regions ok. Now it is expected
by analogy with the nucleon case tig{"* arises from the
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Q@-30GeV?  PZ1GeV (o 1,
o epra p/il. . .p/-Ln—l — ﬁ epTap#l. . .p/-’«n—]_
A ol
NQ_ n—-1
™ K pM1...00. . .okn—
. o "R BT
sl B il
& 0 e (3.9
Vv—
Z .
= 0o (Twist-3) n—
NE ep'ra[o-' p{Ml]. . .pl’vn—l}: eg’rap’ul- . .p#n—l
o~ 2
(@)
>?>'<;_ __E E'U“J M. . .pMn-1
> L = 1 h.p pro-t,
X (3.9

FIG. 4. The box-diagram contributions ¢g(x,Q?,P?) (dashed
line), g3(x,Q%P?) (solid line), and g}(x,Q% P?) (dash-double-
dotted ling for Q=30 Ge\? andP?=1 Ge\? for N;=3. The X
—1 line shows the leading logarithmic term @f .

Using Eqgs.(3.2—(3.5), we can write down the moment sum
rules forg] andgj as

1
dxxnil y(X!QZ!PZ): an 'En '(QZ)! (36)
twist-3 effects. In the next section we will be convinced that fo 91 Z 2=

92" is indeed the twist-3 contribution.

deX” '93(x,Q% P { E a5)iE(2i(Q%)

Ill. OPE ANALYSIS AND PURE QED EFFECTS

Applying the OPE for the product of two electromagnetic

currents, we get for thg--v antisymmetric part
i f d*x €9XT(J,,(x)J,(0)*
2 n

{3

-l E,U,V)\O'q

Opy -1

O';L % n
o 1+zi Ea)iR )i

(2)i

(3.1

whereR(,); and R; are the twist-2 and twist-3 operators,
respectively, ancE(,); and E(3y; are corresponding coeffi-
cient functions. The twist-2 operatoRy,), have totally sym-
‘Un—1, While the indices of

metric Lorentz indiceso w4

+Z a?3)iE?3)i(Q2)}’ (3.7)

From this general OPE analysis we conclude the follow-
ing.
(i) The BC sum ruld29] holds forgj:

Joldx % (x,Q2,P?)=0. (3.8

(i) The twist-2 contribution tog} is expressed by the
WW relation

-1 1
TZ aPZ)iE?Z)i(QZ):JO dx x"~1g3""(x,Q% P?),
(3.9

twist-3 operators R?g)i are totally symmetric among with

My un— 1 but antisymmetric undes <« u; .

forms:

<O|T(Ap( - p)RETZIL;l i 1Ar( p))|o>amp

Thus the “ma-
trix elements” of operatorR,, and Rl3y; sandwiched by
two photon states with momentum have the following

93""(x,Q?,P?)= (y,Q%P?).
(3.10

—g3"W contains only the

1d
— gl(x,Q%P?) + f gy
x Y

(iii) The differencegl=gJ
twist-3 contribution

= ia?Z)iepTa rrp,ul_ : .p#nil}pa_ (traces' (32)
S f dx X"~ 1§Z(X Q?,P?)= E a(a)uE(s)l(Q )|
<0|T(Ap( p)R 1 " 1A7(p))|o>amp (3.11
3.1
= —ialy); €7l plHt) - pra-Up—(trace3, (3.3

Let us now analyze the twist-3 part gf in pure QED,

where subscript “amp” stands for the amputation of the ex-i.e., switching off the quark-gluon coupling, in the frame-

ternal photon lines and

work of OPE and the renormalization gro(RG) method. In
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Ri3yg Ri3g n . 1
Klsq=~24efe 7y (3.17

The solution of Eq(3.15 is
+
. [ Q? 1 Q%
(3.18

To lowest order ina, the exponential and the coefficient

FIG. 5. Triangle diagrams that contribute to the anomalous di_functionsé” (1) are written, respectively, as
mension describing the mixing between the twist-3 quark-bilinear Et ! P Y

operatorR(y), and the photonic operatt,., . 1 0

=l @ Q2 e
P n—
8r (7 4

1 2
this case the relevant twist-3 operators are the quark and exp{— EYnQED(a)mF
photon operators, which are given, respectively, by

— (3.19
Rg;é Mnflzin*leélp,ys,y[U,D{Ml]...D/“n—l}w_(trace$, ]
(3.12 E(3)q(l,a)=l+(9(a'),
oprmn-i_ Lin1 (ol eB Y aetgn
R = 71" teupy Eedud gro. .. grn-ttEBY E@)y(la)= E?;qu(g)y. (3.20
—(traces, (313 The “matrix element’afy), of the quark operatoR(y, be-

tween the photon states is obtained by evaluating again the

wheree, is the quark chargd) ,=d, +ieA, is the covariant  iangular diagrams in Fig. 5 and expressed as

derivative and{} means complete symmetrization over the

indices, while[ o, ;] denotes antisymmetrization anu; . . a 1. p2 o
With the above photon operat®(s,, we haveafs),= 1. a(g)fﬂ( _EK(3)q|nF+3qu(3)q . (321
The coefficient functions corresponding to operatﬁ{’g.)q
and R?g)y Inserting Eqs(3.17—(3.2]) into Eq.(3.11) and remembering
o? a?g)yzl, we obtain for thenth moment ofg} in pure QED,
2 ?m(—z'“) n-1 a 4 Q?
SR @14 T
M h [Q
E3)y ?'“)
+Al)qt+ B?sw} . (3.22

satisfy the following RG equation to lowest orderdn

J . Q2 . Q2
—E] (—,a)Z QED( o) EN (—,a
Mﬁﬂ (3) MZ Yn (3) ,U«Z

The dependence on the renormalization peindisappears.
. (315 Andwe note that, although(s, andB(3,, are individually

renormalization-scheme dependent, the sAflyy,+ B(s), is

not [30]. The calculation of box diagrams in Fig. 3 gives

where ynQED(a) is the anomalous-dimension matrix. To low-

est order ina, this matrix has the forfn ) ) 1 1 ]
AV +BY =8 —— s i (3.23
(3)q (3) 2 2
0 0 Y (n+1)c n
Y () = @ n ol (3.16  Now, adding all the quark contributions of active flavors and
~ 7. K3 replacing 2 in Eq. (3.22 by 3Ng(e*), we find that the

result is nothing bu@3P™ given in Eg.(2.19 which is

HereK[‘3)q represents the mixing between the photon operaderived from the box-diagram calculation. Thus it is now
tor Ry, and the quark operatdR(y,,. Evaluating the trian- ~clear thaigy* is indeed the twist-3 contribution.

gular diagrams given in Fig. 5 and taking into account the

color degrees of freedom in the quark loop, we find IV. QCD EFFECTS

We now switch on the quark-gluon coupling and consider

we follow the convention used by Bardeen and Buieg] to  the QCD, effects 0Q3, th_e tWiSJ;? part Ogg- In the case of
write the mixing anomalous dimensions between the photon anéhe nucleon, the analysis @', the twist-3 part of the

other operators. structure functiongh"®, turns out to be very complicated
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[31-43. This is due to the fact that the number of partici- g°
pating twist-3 operators grows with the spimoment of B(Q)Z—Wﬁﬁ 0(g°),

95" and that these operators mix among themselves
through renormalization. Therefore, ti@¥ evolution equa-

tion for the moments o 2”°' cannot be written in a simple Bo= 1_1 _ 2 . 4.7
form, but as a sum of terms, the number of which increases 3 ¢ 3"
with spin. The same is true f@y} .
Writing down the coefficient functions o 2 - .
Ef3)(Q%u?,g a) that correspond to the relevant twist-3 (9= 127 T O, (4.9

operators R(3)| contributing to g} in a column vector
Efs)(Q%u?,0% @), the RG equation foE(y) can be written  we see that the dominant contributions, which behave as

to lowest order inx as[14] In Q?, are coming fronX,,, in other words, from the photon
P P Q? coefficient funct|onE(3) (Q? u?,g2%, ). Inserting the solu-
(’uﬁ +B(9) @) *?3)<F,gz,a) tion E(3), andags), =1 into Eq.(3.11), we obtain the follow-

ing formula for thenth moment ofg} in LO:

. [Q?
:’y{“l(gzi )En (_lgzy )1 (4.1)
a@)E(3) MZ a fldxxﬂ—lgg(X'QZ'pZ)
0

whereB(g) is the QCDg function andy, is the anomalous-

dimension matrix. The solution is given by n—12ra ) [ g2 dg'?
) - n :8 n _2 (g/2)2
E (Qz g a) Texr{fg dg’ (9" ,) ) 0o)
2> — L, U9 T N A o2
M 9(Q%) B(9") Xex[{gﬂ g ” [E (101, (49
X E( (182 a). 4.2

The twist-3 photon OperatoFe?g)7 is again given by Eq. Wherei andj run over the hadronitquark and gluonsector

(3.13. In the convention we use now, where the photon co®MY: _ _ _
efficient functionEg,, is set at the bottom of the column ‘The evaluation of theth moment ofg is feasible when
nis a small number. But as gets larger, it becomes a more

and more difficult task due to the increase of the number of
) participating operators and the mixing among these opera-

vectorl??3), the matrixvy, to lowest order inx has the form

.
(@) 0 4.3 tors. However, we will see that in a certain limit the analysis
Ky(g%a) 0] ' of the moments becomes tractable. In the following subsec-
tions we consider two caseét) the nontrivial lowest mo-
wherey, represents the mixing among hadrofiuiark and  ment (1=3) of gJ; and(2) the flavor nonsinglet part af}
gluon) operators and the row vects, describes the mixing for largeN.. In case(1) the number of participating opera-
between the photon operatRf;,., and other hadronic opera- tors is limited, and we can get all the information on the

Yn=

tors. Then the evolution factor is given py4] necessary anomalous dimensions. Thus we obtain the LO
QCD prediction for the third moment af}. In the QCD
'2) M, O analysis of photon structure functions, the contributions are
Tex F{f dg’ % 1) (4.4 divided into two parts, the flavor singlet and nonsinglet parts.
n

In case(2), we show that in the approximation of neglecting
terms of orderO(l/Nﬁ), we can evade the problem of op-

with - A )
erator mixing for@( ), the flavor nonsinglet part o},
- fgd Ya(g'?) and obtain the moments g™ in a compact form for all
=Tex —,
RS PR VTD n
n(g ) 9’ Yn(9"?) A. The third (n=3) moment of g%
f dg B(g ’) fg d B9") Let us start with the analysis of the flavor nonsinglet part.

(4.5 In addition to the photon operatﬁa'(‘3)y given by Eq.(3.13),
the following four types of twist-3 operator contribute to

ExpandingK (g% @), B(g), and ¥,(g?) in powers ofg, NS,
(o) = — RO 2 RIgE 0 71=i""1S gy DH1 - DAn-1Qy — (traces,
Kn(9% @)=~ 7— K"+ O(ag), (4.6) 210
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N WhereAZ and A, are the gluon and photon fields, respec-
R(S)I = Z{(VI_anH’LUI*‘ Un-1-1) tively, andT? is the color matrix. Then the commutator
+ (V=Y +0+0, 4 )} [D,,D,]=—igG] T?+ieF,, (4.20
(1=1....n-2), (417 leads to the appearance\¢f, U,, V,, andU, terms. As far
B u as the mixing anomalous dimensions among the hadronic
Riam =i"""mS §ysy’DH1---DHn=2 operators, i.e., those given in Eq€.10—(4.13, are con-
X yin-1QMy— (traces (412  cemned, the term¥, andU, are irrelevant. But they are in-
dispensable to the correct evaluation of the mixing anoma-
lous dimension,,, between the hadronic operat&,

P N1 _ —
R " i=i" ZWS [#ysy’D#1---D¥n-2 and photon operatoR(y,,. We need to hav,,; of order
_ ) O(a) in the leading logarithm approximation, Uaf'g), with-
X =11 —m) QM out V, andU, terms givesK,, ;~O(g?«), since theV, and

U, terms already have the QCD coupling constgnin Ap-
pendix B we calculate the mixing anomalous dimensions

X ytn-1Q%Ny] — (traces, 413  K{) of orderO(e) for arbitraryn and show that th&), term
ith (but notV,) indeed plays an essential role. Another important
wit consequence of introducingA,, into the covariant deriva-
Qo= Q2—<ez)1, 4.14 tive D, is that with this new term we can show that the
photon matrix element of the EOM operatef [more pre-

where Q is the N{XN; quark-charge matrix,(e?)  cisely, (O|T(A,(=P)RGt “"*A(p))|0)ampl actually van-

=3 N e?/N;,1is anN;x N; unit matrix with N; being the  ishes atO(a).

i A . . .
number of active flavors, anch represents the quark mass.  1he twist-3 hadronic operators given in Eqg.10—

The symbol S' denotes symmetrization on the indices (4-13 satisfy the following relatiori32,37,39,4Q

+(iD — m) y5y?D#1- - -D#n-2

Mo pmn—q and antisymmetrization ooru;. The opera- n—2
tors in Eq.(4.11) contain the gluon and photon field strength  ouy oy 1 N7 L RAL Hn-1y E (N—1—)R7M #n-1
G : = _1 ap (3)F T n ©m < (3
Gy andF,,, and their dual tensoiG ,,= 5 €,,,5G*" and =1
F .= 3 €,,05F “P. Explicitly, they are given by " Rfs’;l"'“"‘l. 4.21)
f in ,_ LI g TS —
Vi=+i"gS yysD#1---G7H1---DHn-2 Hence, including the photon operator, there are, in total,
X yHn-1Q%Ny— (traces, (4.15  *1independent operators that contribute tortte moment
of @(NS). We have freedom in choosing the hadronic opera-
U= _inflgSrZD,ul...éam,,_D#n_z tors as independent bases. But we should keep in mind the
following: due to the constraint E¢4.21), a different choice
X yHn-1Q%Ny — (traces, (4.16 of operator bases assigns different values to the coefficient
functions at the tree level, which was first pointed out by
V)= —i"eS yrysDH1- - -FoHI. ..D#n-2 Kodaira, Yasui, and one of the authd®&9]. In the basis of
) independent operators that include,- but notRsy,, the
X ytn-1Q%y— (traces, (417 tree level coefficient functions are given by
Ulz +in_1eS’ZDM1...ifo'l’vl...DMn—z E?3)F(tree)=1, E?3)|(tree)=0. (4.22
X ykn-1Q%y— (traces, (4.189  On the other hand, if we eliminafy): , we have
whereg and e are the QCD and QED coupling constants, . n—-1 .
respectively. The operat®? in Eq. (4.13 is proportional to Egm(tred=——, Eg)(treg=n—1-1. (4.23

the equation of motiotEOM) operator{39,40.

We emphasize tha¥, and U, (regardless of the quark- We always haveE(y (tree)=0. So a different choice of the
charge factoQ®"), which are not present in the twist-3 con- operator bases leads to different forms for the anomalous-
tribution to the nucleon structure functig"”, must be in-  dimension matrix and the coefficient functions but the final
cluded in the analysis a3 . The reason is that we are here result for thenth moment ofg} should be the samésee
considering not only QCD but also QED, and thus the covaAppendix Q.

riant derivativeD , should read as Now we taken=3 and evaluate the third moment of
N 92™9_ From now on we omit the superscripts=3. The
D,=d,—1gA, T +ieA,, (419 relevant hadronic operators are foulR e, Ria)1, Raym,

114018-7
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andR(3)e . Let us takeR(s);, Rezm, andRs)e as indepen-  The above result fog}{) is indifferent to the choice of the

dent operators. In these operator bases, the tree level coeffirdependent set of operators. In Appendix C we tRkgr,

cient functions are given by Re)1, Res)e as independent operators, ree\llgcm@)m with

) R(s)r» and show that we obtain the samg
Eom(1.0=3, E@1(10=1 (4.24 ( Iiet us move to the third moment of the smglet eyt .

The 3x 3 anomalous-dimension matri¥® for hadronic op- Forn=3, there are five independent hadronic operators con-

erators has the form tributing tog3®, apart from the photon operatfy,, . Fol-
Iowmg the work of Kodairaet al. [44], we take R(g)l,

W o 0 R(3)m, R(3)E, T(3)s, andT3ye for an independent set. The
0 = 59 30 o | (4.25 first t_hree are the analogues R3)1: Raym: R in the

~(0) ~(0) nonsinglet case, obtained by replacing the quark charge fac-

Y1 O EE tor Q" with an Nyx N; unit matrix 1. The rest are the

Becchi-Rouet-Stora-Tyutin(BRST) exact and the gluon
EOM operators, respectively, whose explicit expressions are
given in Ref.[44].

The tree level coefficient functions corresponding to these
operators are

with [40]
%7=6Cc—5Cr, Hmm=12Ck,

Ym=—%Cr, ¥=—3C¢. (4.26
s _ 2
Note that we follow the convention of Bardeen and Buras E31(1,0=1, E<3>m(1 0=3, (4.32
[14] in defining the anomalous-dimension matrix. The matrix
%9 is triangular and, therefore, its eigenvalues 448,

59 and%L). In fact we only need the information on the

and the others are zero. The mixing anomalous dimensions
among these operators have been calculated and form a
5X5 matrix. The physically relevant part is the following

upper left 22 submatrix for the analysis, which is decom- 2% 2 submatrix:
posed as
~ -~ -~ ~(0)S 2(0)S
7’(0)|(2>< 2)= 7(101)P1+ yﬁr?r)nPZa (4.27) ~(0)S_ Yo Yim
Y= s0)s 35/ (4.33
whereP, andP, are projection operators and given by mt mm
P.= >, P2:( : (4.28
a0 et WYS=6Ce—5Ce+4N;,  Hp®=0,
with
) YS=—4Ce, ¥ o=12C. (4.34
_ 7’m1 —2C¢
a= 39— 3,(0> 3(9Cg—19Cp) (429 The matrix 3(®% is triangular and, therefore, the same pro-
mm

cedures as the nonsinglet case can be applied here. We obtain

The anomalous dimensid¢(’), is found to be null for aln.  for the third moment of the singlet pagg®
So we havek(9=0.

. .. . . 1
. Inserting this |'nformat|on |n.to the moment formula ij)} §an313=f dx X@(S)(X,Qz,Pz)
in Eq. (4.9), we find for the third moment of the nonsinglet 0
partgy(N®

2
2 (0)3 (e%)

o
47 Boas(Q?) "t 1+519%28,
[ (Q ) 711 /2B0+1}

2
NS NS 3
—7( )_f dx XZ_V( )(X Q2 2)

20 21 ons ! (4.39
347 Boas(Q? ) 1+ %9N%28,
with
N (Q ) :V(li NS/28,+1
1- S( )) , (4.30 ,
Us K{9S=—24N(e ) 3%7 (4.36
where we have revived the superscript “NS” akd”"S is
obtained from Eq(B8) in Appendix B as In Fig. 6, we have plotted th®? evolution of the flavor
singlet and nonsinglet components as well as the total of the
(ONS_ _ 4 o2 third moment of gJ(x,Q? P?) in units of a/m for P?
Kl 24N¢((eD)—(e%) )3><4 (4.39 =1Ge\? with N;=3. The flavor singlet and nonsinglet
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T o
I | o
5 P?=1 GeV? | NS -
e 2 2
= - | c of — Q°=30 GeV" |
o NS)T 5 5 o 2 2
[a 3e g, (x5,Q%P9) P°=1 GeV
- —0.04} ] As
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O F 1 g
. v
@ - 1 i
€ L i <N
> o ()]
o | | <
= 0
—0.09r 4 %
=
L 4 o
| | o -
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0 10 50 100 =3
}:\v
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FIG. 6. The third (=3) moment ofg}(x,Q?,P?) in units of X

; 2 2_ i - -
gézeacis(jla;?lgginlci):eoggrr(:g roFr:ds 1toGt?1\é2 f\llg\t/rc])rNr:onz}nTr[];nd?s;] FIG. 7. The box-diagramdashed linpand the QCD LQsolid
P gising line) contributions for largeN. to the flavor nonsinglet photon

component. The solid line represents the sum of the two compo- —(NS) 2 p2 2 2
nents, the totafy,,_/(a/). structure functiongl™¥(x,Q2,P?) for Q2=30Ge\? and P

=1 Ge\? for Ny=3.

components show somewhat different typesQ@f depen-

n
dence, and the singlet component gives a larger contribution 50 _gco ( 1 ) _ 1
= ————| with S;=2, —
due to the charge factor. InFF F 4 2 Z i’
(4.38
I anY
B. Flavor nonsinglet part of g for large N, %?I)FZO for I=1...n—2. (4.39

For the case of the flavor nonsinglet nucleon structure
function g3“®™ it has been observed by Ali, Braun, and Note that the corrections are @(1/N?), about 10% for
Hiller (ABH) [45] that in the largeN, limit the twist-3 part QCD (N.=3).
opudNS) - oheys a simple Dokshitzer-Gribov-Lipatov-  Inserting the above resulig.37)—(4.39 into Eq. (4.9,
Altarelli-Parisi (DGLAP) equation[46]. In their formalism  we find that, for large\., thenth moment ofg}("® is given
of working directly with the nonlocal operator contributing by
to the twist-3 part 0§5"“(NS) they showed that local opera-
tors involving gluons effectively decouple from the evolution fldx X~ 1gyN (x,Q2,P2)
equation for largeN., which is the number of colors. Later, 0 2 T
the ABH result forgi"“™S was reproduced by one of the

authors[47] in the framework of the standard OPE and RG Nl 2w 1
method. At largeN., the operators involving gluon field N 47 Boas(Q?) <, F1+ VL1280
strength G, decouple from the evolution equation of o 0 s i1
ghuclNS), and the whole contribution in LO is represented by x[ _(as(Q )) Tn.FF/2P0 ] (4.40
one type of operator. The same is true for the flavor nons- ay(P?) ' '
inglet part ofgJ . )
Let us takeRfy)r, Rf3y . Rl as independent hadronic with
operators, eIiminatinﬁe?3)m. The advantage of this choice of
operator basis is that from E@.22) the hadronic coefficient K (0 = — 24N ((eM—(e2)?) ———. (4.4
functions take simple forms at the tree leya9]: n(n+1)
n _ n _ We now perform the Mellin transform of E.40 to get
E@r(1.0=1 Eq(1.0=0 97MS)(x,Q2,P?) as a function ofx. The result is plotted in
for 1I=1,.n—-2. (4.37 Fig. 7. Compared with the pure QED box-graph contribution,

we find that the LO QCD effects are sizable and tend to
The mixing anomalous dimensions for these operators arguppress the structure functigg™® in both the largex and
very complicated. However, it was found in REf7] that, in ~ small x regions, so that the vanishing=1 moment of
the approximation of neglecting terms of ord@¢1/NZ) and 939 i.e., the BC sum rule, is preserved.
thus putting Z=Cg, the (F, F) and(l, F) elements are As for @(S), the flavor singlet part 0§}, it is expected
reduced to the simple expressions that a similar simplification may occur for largé, and its
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moments may be written in a compact form forrals in the  tively, of the hadron system produced, a¥d,, is the tran-
case o@/(NS’. At the moment we do not know how to solve sition amplitude for yy— hadrons. For polarizece™e”

the mixing problem in the flavor singlet sector to get anbeams, the photon density matrice$,., and p5(,,, are
analytically simple formula for the moments @&® for  given by

largeN. . This is an interesting subject which should be pur-

sued.
v 1 Y561 wpt Y
Pipoh= —2 I T(*ﬁ‘ m) y*(t;+m)y
V. CONCLUSION q
. =2 B —q?
In the OPE of two electromagnetic currents, we expect the 2ime*"*Psy,05/(—q°), (A3)
presence of the twist-3 operators in addition to the usual
twist-2 operators. From a study of the lepton-nucleon polar- pgz’pOI):Zimepraﬁszap'BI(_ p?), (A%)

ized deep inelastic scattering, we have learned that the

twist-3 contribution does not show up as a sizable effect,

since the nucleon matrix elements of the twist-3 operatorsvheres, , are the initiale™ (e~) polarization vectors. When

are found to be small in experiments. the incident beams are longitudinally polarized and at high
In this paper, we investigated the twist-3 effectgihfor ~ energies, the polarization vectors are expressed as

a virtual photon target, in the pure QED interaction as well as

in LO QCD. We found that the twist-3 contribution is appre- |

ciable for the photon case in contrast to the nucleon case. In st=h— (i=1,2), (A5)

this sense, the virtual photon structure functghprovides m

us with a good testing ground for studying the twist-3 ef-

fects. We expect that the future polarized versions ofepe \yith h.=+1 representing the helicity states of the beams.
ore’e” colliders may bring us important information on the  The absorptive part of thery forward scattering ampli-
polarized photon structure. More thorough QCD analysis i”'tudewwpr in Eq. (2.2 is related to the following integrated
cluding the flavor-singlet part is now under way. quantity over the phase-space volume of the produced had-

ron systent
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X 8(p+q—Py)dI. (AB6)
APPENDIX A: TWO-PHOTON PROCESS

ete"—ete +HADRONS . A
Applying pf(pony @nd p5pey 10 Wy, [actually toW,,,, in

The information on the polarized structure functiaggg ~ EQ. (2.3)], we find for the longitudinally polarized beams
andg} can be extracted from experiments on the two-photon

annhilation process with polarizel e~ beams as shown in 4,1, 2 2
Fig. 1: P (poP2(poh Wiurpr = 4h1h2“ p-q +1- y F]g{
e (Ie"(I)—e (Ipe" (1) v(a) ¥(p) 1, 1
PR +4[—— —} 4, (A7)
—e~(1)e*(13)+hadrons, (A1) p-q yr

with the virtual photon momentg=1,—1; andp=1,—1;.
The cross section for this process is written 48|

d P_(47Ta/)2 mv pT M* M .
T T p2gZ PaponP2(poh M upMlvr y=—0—1j r=—. (A8)

(2m)*8(p+q—Py)dl’
A[(I1-1,)2—m*]12 Hence the difference between the cross sections for the two-

30 37 photon annihilation process with e~ beams polarized par-
% d*l;d°1, (A2) allel and antiparallel to each other is given by
2E;2E5(2m)°’

where m is the electron masst; , are scattered electron  20ur definition ofW,,,,,, and, thereforeg andg}, is such that
(positron energiesPx=3ip;, anddl'=11;d3p;/2p;o(27)3  they are proportional te?(=4m«), and not toe in conformity to

are the total momentum and the phase-space volume, respeise nucleon case.
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d31/d31! ad
Mol 1~ 2
A e UUPT <
4,1, 2 2]
X - Y
H p-q y )9
-1, 1]
+4 - —193] A9
{p-q yr| % (A9

In particular for colliding beams, the laboratory is consid-
ered to be the c.m. reference frame. We have

l,=(E,0,0E), |,=(E0,0~E),

I1=(E1,E;siné, cos¢,,E; sinb, sing,,E; cosd,),
(A10)

|,=(E},E}sinf,cose,,E, sind, sing,, —E, cosh,),

whered,, ¢, and7— 6,, ¢, are the polar and azimuthal
angles for the final leptonls andl;, respectively. Then we
obtain

E;E,dE;dE,d cosf,d cosb,d ¢

do!'T—doll= —E?

3

64
pP°a°(p-q)

+(E+E; cosf,)(E+E; cosés,)

X {(E+E})(E+E))

—E;E;sin 6, sin#, cos¢}gy

4
+ bq E?E;E5{(1—cos6,)(1—cosb,)

—2in#, sin 6, cos¢}gl|, (A11)
wherep=¢,— ¢,, and
q%=—2EE;(1—cosb,),
p?=—2EE)(1—cosb,), (A12)

p-q=(E-E)(E-Ep)
+(E—E; cosf;)(E—Ej} cosb,)

—E;E}sin6, sin#, cosg.

APPENDIX B: CALCULATION OF K(

In this appendix we present details of the calculation of

KE{J,), the mixing anomalous dimension between the hadroni

and photon operatorR(y), and Ry, for arbitraryn. The
expressions for the operatoRy;, and R(3, are given in
Egs.(4.11) and(3.13, respectively(we put aside the charge

PHYSICAL REVIEW D 65 114018

V/ or U/

k-p

p, X

FIG. 8. The tree-level three-point vertices\@fandU, .
eliminate the trace terms, and we define

n — POML T Mn—1
R(s)l'A_R(a)l ! Aul Aunfl'

Opy Bn-1

n .
3y A=Rs),

A A (B1)

Hn-1"

Our first task is to evaluate the amputated two-point func-
tion with RPa)y'A embedded between two photon fields at
O(1). We find

(7l R?3)7'A|7>E<O|T(Ap(_p)R?3)y'AAT(p))|0>amp
n_
n
— €PN ,ppp7(p-A)" 2

Next we calculate the one-loop diagram for the two-point
function with R?3)|~A sandwiched by two photon fields,

1
{e7Ppp(p- M)t

(B2)

(7IRG)- Al7)=(0| T(A,(—P)RT) - AAL(P))[0) amp,
(B3)

which should be)(«). The operatoR[‘3), is made up of four

terms,V,, U, V,, andU,, whose expressions are given in
Egs.(4.19—(4.18. Since theV, andU, terms already have
the QCD coupling constang, their contributions are

O(g?a). So we work with theéV, andU, terms. The three-
point “basic” vertices ofV,-A andU,- A depicted in Fig. 8
are given, respectively, by

Vik=eys(k-A) kA, —(k-A)g]

X[(k—p)-A]" 274, (B4)
U =ie(k-A)'"el*PA kg
X[(k—p)-A]""27'A. (BS)

cl'he O(a) contributions come from the two diagrams shown

in Fig. 9. Inspecting the form o"f/h,( we easily see that the
loop diagrams foW, - A fail to produce a term that is propor-

factorQ®"). As a standard procedure, we introduce a lightliketional to (¥|R(s,-Al). In fact, after the loop integral we

vectorA , (A2=0) to symmetrize the Lorentz indices and to

find that both théV, andV,,_,_, terms give a null result.
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v, or ﬁ] v, or ﬁ[ n-2
® KO=> (n—1-HK. (B10)
Fo & ,
k k+p
4 * \ The identity(B9) ensures that the relation indeed holds true.
, . Forn=3 we haveK ¥, =K, ,
-1eYp -1eY,;
APPENDIX C: REANALYSIS OF g7\
p.p p.T PP p.T

In this appendix we reanalyzg}'¥, the third moment
FIG. 9. One-loop diagrams &(«) contributing to the Green’s  f §V(NS) (The superscript®i=3 and “NS” are omitted)
functions ofV, andU, with two photons as external lines. We chooseRs)r , R(3)1, R(3)e as independent operators, re-
5 placing Rizym With Rig)e. In these operator bases, the tree
On the other hand, the one-loop diagrams thr and  level coefficient functions are given by
Up-1- give terms proportional t¢y|R;),- Al y). The loga-
rithmically divergent part of theJ, contribution, for ex- E3r(1,0=1, Es)1(1,0=0. (C1)
ample, has the following form:

1 ~ 12 The relevant X 2 anomalous-dimension matfi® has the
%<7|U| Alyy= ypee H"'B(I+2n-1) form
n . 2 ~ ~
X(7IRz),- Al)In A%, (B6) o (y;og y<F01>> .
’y = ~ ~ 1
where the Beta functioB(l +2,n—1) has appeared from the 7(10F) 7(1(1)
Feynman-parameter integral
1 with
J dx X Fi(x—1)"" 1 =(—1)"" 1 IB(1+2n—1).
0 ~ ~
(B?) 'yg:OF): %CF ’ ygzol?: - %CF ’

Hence, adding together tté,_,_, contribution, we find the ~(0)_6CG 12C., 39=6Cq
mixing anomalous dimension between R, and Rf,, .+ 7i=6Ce, (C3)
operatorgapart from the quark-charge factas

4 which are obtained from Eq$33)—(38) of Ref.[47]. (Note
KE{),)= ) (-1)"'B(l+2n-1) that we follow the convention of Bardeen and Buras in de-
n fining the anomalous-dimension matrix which is tinans-
+(—1)'""B(n+1-1,1+1)]. (B8) posedone as given in Refl47].) Then the eigenvalues of
79 and the corresponding projection operators, such that
In particular, forn=3 and sol=1, we haveK(®,,=  #%=\;P1+\;P,, are found to be

—241/(3x4)] except for the quark-charge factor.
Now it is interesting to note the following identity:

2
N1=12C¢, N,=6Cg— = Ck, (C4
n—2 1 3
> (n—1-hHx——=[(-1)"'B(I+2n-1)
=1 n-1
1 /1 -b 1 (b b
_anl+1 _ =—F =
+(=1)""B(n+1-1,1+1)] Pi=p71l 21 b)’ Pa=pr1l1 1)'
1 1 : (©9
=—~— 77 (for odd integern), (B9)

with b=C/[9(2C—Cg)]. Comparing the results in Eq.

which is a direct consequence of the relatiéreD satisfied (4.26, we note thatn;= 7N and A, = 5ONS. This is a

by the twist-3 operators. We know tht),=0 from the  consequence of the fact that a different choice of the operator
null result for the mixing anomalous dimension between thepases leads to different forms for the anomalous-dimension
mass operatorﬁ%[‘3)m and R?3)7. Also we know thatKEf’% matrix but its eigenvalues remain the same. Now inserting
=0 since the photon matrix element of the EOM operatortheseE 3);(1,0), A, andP; for i=F,1 into the moment for-
R?g)E vanishes. Thus we have the relation mula forg} in Eq. (4.9), we find that
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KO 1 g2\ /2ot
SNCNETNNG
g°(b+1) [1+N4/2B¢ g
b 92 Mpl2Bo+1
+— —
1+N\5/2B, (52) ]
N K(lo) ~1 L §_2 N1/2Bg+1
92(b+1) | 1+\,/28, g’

1 g2\ M22Bo+ 1
11— = .
1+N\,/28, g

(C6)

PHYSICAL REVIEW D 65 114018

From Appendix B, we observe that®=K(» for n=3.
Thus gz is reduced to

(0)
T(NS) 1 K3

§2x2/250+1
Mg el ) ©

g

which coincides with the expression fgg{"%, given in Eq.

(4.30 since,= YN,
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