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We investigate the heavy-quark mass effects on the parton distribution functions in the unpolarized

virtual photon up to the next-to-leading order in QCD. Our formalism is based on the QCD-improved

parton model described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equation as well as

on the operator product expansion supplemented by the mass-independent renormalization group method.

We evaluate the various components of the parton distributions inside the virtual photon with the massive

quark effects, which are included through the initial condition for the heavy-quark distributions, or

equivalently from the matrix element of the heavy-quark operators. We discuss some features of our

results for the heavy-quark effects and their factorization-scheme dependence.
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I. INTRODUCTION

The CERN Large Hadron Collider (LHC) has restarted
[1], and discoveries of signals for the new physics beyond
the standard model (SM) are much anticipated. In order to
fully complement the discoveries at LHC, we need more
precise measurements, which will be provided by the
International Linear Collider (ILC), a proposed eþe� col-
lider machine [2]. In analyzing the signals for the new
physics, it is still important for us to have a detailed knowl-
edge of the SM predictions at high energies based on QCD.

In eþe� collision experiments at high energies, the cross
section of the two-photon processes eþe� ! eþe� þ
hadrons dominates over other processes such as the anni-
hilation processes eþe� ! �� ! hadrons. The two-
photon processes provide a suitable testing ground for
studying the QCD predictions at high energies. We con-
sider here the two-photon processes in the double-tag
events, where both the outgoing eþ and e� are detected.
In particular, we investigate the case in which one of the
virtual photons is far off-shell (largeQ2 � �q2), while the
other is close to the mass shell (small P2 ¼ �p2). Then the
process can be viewed as a deep-inelastic scattering where
the target is a photon rather than a nucleon [3] (see Fig. 1).
In this deep-inelastic scattering off photon targets, we can

investigate the photon structure functions, which are the
analogues of the nucleon structure functions. The study of
the photon structure functions has long been an active field
of research both theoretically and experimentally [4].
A unique and interesting feature of the photon structure

functions is that, in contrast with the nucleon case, the
target mass squared P2 is not fixed but can take various
values and that the structure functions show different be-
haviors depending on the values of P2.
The unpolarized (spin-averaged) photon structure func-

tions F�
2 ðx;Q2Þ and F�

Lðx; Q2Þ of the real photon (P2 ¼ 0)
were studied in the parton model [5], in perturbative QCD
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FIG. 1. Deep-inelastic scattering on a virtual photon in the
eþe� collider experiments.
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(pQCD) by using the operator product expansion (OPE) [6]
supplemented by the renormalization group (RG) method
[7,8] and also by using the QCD-improved parton model
(PM) [9] powered by the parton evolution equation [10–
13]. The polarized photon structure function g�1 ðx;Q2Þ of
the real photon was analyzed in pQCD [14–16]. The QCD
analysis has been made for F�

2 ðx;Q2Þ up to the next-to-

next-to-leading order (NNLO) [12] and for g�1 ðx;Q2Þ up to
the next-to-leading order (NLO) [15,16].

For a virtual photon target (P2 � 0), we obtain the
virtual photon structure functions F�

2 ðx;Q2; P2Þ and

F�
Lðx; Q2; P2Þ. In fact, these structure functions were ana-

lyzed in pQCD for the kinematical region,

�2 � P2 � Q2; (1)

where � is the QCD scale parameter [17–21]. The advan-
tage of studying a virtual photon target in this kinematical
region (1) is that we can calculate the whole structure
function, its shape and magnitude, by the perturbative
method. This is contrasted with the case of the real photon
target where in the NLO and beyond there appear non-
perturbative pieces. With the recently calculated results of
the three-loop anomalous dimensions of quark and gluon
operators [22,23] and also of the three-loop photon-quark
and photon-gluon splitting functions [13] the virtual pho-
ton structure function F�

2 (F�
L) was investigated up to the

NNLO (to the NLO) in pQCD [24,25]. In the same kine-
matical region (1), the polarized virtual photon structure
function g�1 ðx;Q2; P2Þ was studied in pQCD [16,26–28].

In the parton picture, structure functions are expressed
as convolutions of coefficient functions and parton distri-
bution functions (PDFs) in the target. The knowledge of
these parton distributions is important since they will be
used for predicting the cross sections of other inclusive
processes. When the target is a virtual photon with P2

being in the kinematical region (1), then a definite predic-
tion can be made for its parton distributions in pQCD. The
parton contents of the unpolarized and polarized virtual
photon for this case were studied in Refs. [19,29–32].
Recently the QCD analysis of the parton distributions in
the unpolarized virtual photon target was performed up to
the NNLO [33].

Although the photon structure functions and photonic
parton distributions were studied in pQCD up to the NNLO
[12,24,33], in these analyses all the contributing quarks
were assumed to be massless. The production channel of a
heavy flavor (with mass m) opens when ðpþ qÞ2 � 4m2,
and its mass effects should be taken into account unless
Q2 � m2. In fact, the study of heavy-quark mass effects
for the two-photon processes and photon structure func-
tions has appeared in the literature [11,16,30,31,34–39].
Quite recently the present authors analyzed the heavy-
quark mass effects on F�

2 for the kinematical region (1)
up to the NLO [40] using a different approach from the

ones before. The analysis was made in the framework
based on the QCD-improved PM and the mass-
independent RG equations, in which the RG equation
parameters, i.e., � and � functions, are the same as those
for the massless quark case.
In this paper we examine the heavy-quark mass effects

on the parton distribution functions in the unpolarized
virtual photon up to the NLO in pQCD. We use the same
framework as the one in Ref. [40], the QCD-improved PM
combined with the mass-independent RG equations. We
consider the system that consists of nf � 1 light (i.e.,

massless) quarks and one heavy quark together with gluons
and photons. Then, the heavy-quark mass effects are in-
cluded in the RG equation inputs: the coefficient functions
and the operator matrix elements. In the case of the nucleon
target, the heavy-quark mass effects were studied by a
method based on the OPE in Ref. [41], where the heavy
quark was treated such that it was radiatively generated and
absent in the intrinsic quark components of the nucleon.
This picture does not hold for the case of the photon, since
the heavy quark is also generated from the photon target
together with light quarks at high energies. We should
consider both the heavy and light quarks equally as the
partonic components inside the virtual photon.
In the next section, we derive the evolution equations for

the parton distribution functions for the case where nf � 1

light quarks and one heavy quark are present. Then solving
these equations, we give the explicit expressions up to the
NLO for the moments of the light flavor-singlet (nonsing-
let) quark, heavy-quark, and gluon distributions. The par-
ton distributions are dependent on the scheme that is
employed to factorize structure functions into coefficient
functions and parton distributions. We investigate the pho-
tonic parton distributions in two factorization schemes,

namely, the MS [42] and DIS� [43] schemes. In Sec. III,

we enumerate all the necessary QCD parameters to evalu-
ate the photonic parton distributions up to the NLO in the

MS scheme. The parton distributions in the DIS� scheme

are considered in Sec. IV. The numerical analysis of the

parton distributions predicted by the MS and DIS�
schemes will be given in Sec. V. The final section is
devoted to the conclusions. In the Appendix we consider
the parton distributions in the virtual photon for the case
when all nf quarks are light.

II. PARTON DISTRIBUTIONS IN THE VIRTUAL
PHOTON WITH A HEAVY-QUARK FLAVOR

We investigate the parton distributions in the virtual
photon for the case when one heavy flavor quark appears
together with nf � 1 light (i.e., massless) quarks. The

analysis is made in the framework of the QCD-improved
parton model [9] powered by the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) parton evolution equa-
tions. A part of the analysis was reported in Ref. [40]. Let
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qiLðx;Q2; P2Þ; q�Hðx;Q2; P2Þ;
G�ðx;Q2; P2Þ; ��ðx;Q2; P2Þ;

(2)

be light quark (with i flavor and i ¼ 1; . . . ; nf � 1), heavy-

quark, gluon, and photon distribution functions in the
virtual photon with mass �P2. Since the parton distribu-
tions in the photon are defined in the lowest order of the
electromagnetic coupling constant, � ¼ e2=4�, �� does
not evolve with Q2 and is set to be ��ðx;Q2; P2Þ ¼ �ð1�
xÞ. In the light quark sector, it is more advantageous to
treat, instead of using qiL, the ‘‘flavor-singlet’’ and ‘‘non-
singlet’’ combinations q�Ls and q�Lns defined as follows:

q�Ls �
Xnf�1

i¼1

qiL; q�Lns �
Xnf�1

i¼1

e2i

�
qiL � 1

nf � 1
q�Ls

�
;

(3)

where ei is the electromagnetic charge of the i-flavor quark
in the unit of proton charge.

Now introducing a row vector

q � ¼ ðq�Ls; q�H;G�; q�LnsÞ; (4)

the parton distributions q�ðx;Q2; P2Þ in the virtual photon
satisfy the inhomogeneous DGLAP evolution equation
[10–12]

dq�ðx; Q2; P2Þ
d lnQ2

¼ kðx; Q2Þ

þ
Z 1

x

dy

y
q�ðy;Q2; P2ÞP̂

�
x

y
;Q2

�
; (5)

where the elements of a row vector k ¼ ðkLs; kH; kG; kLnsÞ
refer to the splitting functions of � to the light flavor-
singlet quark combination, to heavy quark, to gluon, and
to light flavor-nonsinglet combination, respectively. The

4� 4 matrix P̂ðz;Q2Þ is expressed as

P̂ðz; Q2Þ ¼
PS
LLðz;Q2Þ PHLðz;Q2Þ PGLðz;Q2Þ 0

PLHðz;Q2Þ PHHðz;Q2Þ PGHðz;Q2Þ 0
PLGðz; Q2Þ PHGðz; Q2Þ PGGðz; Q2Þ 0

0 0 0 PNS
LLðz; Q2Þ

0
BBB@

1
CCCA; (6)

where PAB is a splitting function of B parton to A parton.
The method to solve the above inhomogeneous DGLAP

Eq. (5) is well known [11]. We sketch out the procedures.
First we take the Mellin moments,

dq�ðn;Q2; P2Þ
d lnQ2

¼ kðn;Q2Þ þ q�ðn;Q2; P2ÞP̂ðn;Q2Þ; (7)

where we have defined the moments of an arbitrary func-
tion fðxÞ as fðnÞ � R

1
0 dxx

n�1fðxÞ. Hereafter we omit the

obvious n dependence for simplicity. Then expansions are

made for the splitting functions kðQ2Þ and P̂ðQ2Þ in powers
of the QCD and QED coupling constants as

k ðQ2Þ ¼ �

2�
kð0Þ þ ��sðQ2Þ

ð2�Þ2 kð1Þ þ � � � ; (8)

P̂ðQ2Þ ¼ �sðQ2Þ
2�

P̂ð0Þ þ
�
�sðQ2Þ
2�

�
2
P̂ð1Þ þ � � � ; (9)

and a new variable t is introduced as the evolution variable
instead of Q2 [44],

t � 2

�0

ln
�sðP2Þ
�sðQ2Þ : (10)

The solution q�ðtÞð¼ q�ðn;Q2; P2ÞÞ of (7) is decom-
posed in the following form:

q �ðtÞ ¼ q�ð0ÞðtÞ þ q�ð1ÞðtÞ; (11)

where the first and second terms represent the solution in
the LO and NLO, respectively. Then they satisfy the fol-
lowing two differential equations:

dq�ð0ÞðtÞ
dt

¼ �

�sðtÞk
ð0Þ þ q�ð0ÞðtÞPð0Þ; (12)

dq�ð1ÞðtÞ
dt

¼ �

2�

�
kð1Þ � �1

2�0

kð0Þ
�

þ �sðtÞ
2�

q�ð0ÞðtÞ
�
Pð1Þ � �1

2�0

Pð0Þ
�

þ q�ð1ÞðtÞPð0Þ; (13)

where we have used the fact the QCD effective coupling
constant �sðQ2Þ satisfies

d�sðQ2Þ
d lnQ2

¼ ��0

�sðQ2Þ2
4�

� �1

�sðQ2Þ3
ð4�Þ2 þ � � � ; (14)

with �0 ¼ ð11� 2
3nfÞ and �1 ¼ ð102� 38

3 nfÞ. Note that

the P2 dependence of q� solely comes from the initial
condition (or boundary condition) as we will see below.

The initial conditions for q�ð0Þ and q�ð1Þ are obtained as
follows: for �p2 ¼ P2 � �2 the photon matrix elements
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of the hadronic operators On
i (i ¼ qL, H, G, Lns) can be

calculated perturbatively. Renormalizing at �2 ¼ P2, we
obtain at one-loop level

h�ðpÞ j On
i ð�Þ j �ðpÞij�2¼P2 ¼ �

4�
~Aið1Þ
n ;

i ¼ qL;H;G; Lns:
(15)

The ~Aið1Þ
n terms represent the operator mixing between the

hadronic operators and photon operators in the NLO, and
the operator mixing implies that there exist parton distri-
butions in the photon. Thus we have, at �2 ¼ P2 (or at t ¼
0),

q �ð0Þð0Þ ¼ 0; q�ð1Þð0Þ ¼ �

4�
~Að1Þ
n ; (16)

with

~A ð1Þ
n ¼ ð ~AqLð1Þ

n ; ~AHð1Þ
n ; 0; ~ALnsð1Þ

n Þ; (17)

which state that the initial quark distributions emerge not in
the LO (the order �=�s) but in the NLO (the order �), and
initial gluon distribution starts to emerge in the NNLO (the

order ��s). Despite the initial condition q�ð0Þð0Þ ¼ 0, the
LO quark distributions, both light and heavy, are generated
from the photon distribution ��ðx;Q2; P2Þ ¼ �ð1� xÞ [see
Eq. (2)] through the pointlike coupling of the photon to
quarks. The heavy-quark parton appears in the LO as a
massless quark, while, as we see in Sec. III B, the heavy-

quark mass effects arise from the initial condition q�ð1Þð0Þ
[more closely, ~AHð1Þ

n in Eq. (17)] in the NLO.

With these initial conditions (16), the solutions q�ð0ÞðtÞ
and q�ð1ÞðtÞ are given by

q �ð0ÞðtÞ ¼ 4�

�sðtÞa
�
1�

�
�sðtÞ
�sð0Þ

�
1�ðð2Pð0ÞÞ=�0Þ�

; (18)

q�ð1ÞðtÞ ¼ �2a

�Z t

0
d�eðPð0Þ�ð�0=2ÞÞ�

�
Pð1Þ � �1

2�0

Pð0Þ
�
e�Pð0Þ�

�
eP

ð0Þt þ b

�
1�

�
�sðtÞ
�sð0Þ

��ð2Pð0Þ=�0Þ�

þ q�ð1Þð0Þ
�
�sðtÞ
�sð0Þ

��ðð2Pð0ÞÞ=�0Þ
; (19)

where

a ¼ �

2��0

kð0Þ 1

1� 2Pð0Þ
�0

; (20)

b ¼
�
�

2�

�
kð1Þ � �1

2�0

kð0Þ
�
þ 2a

�
Pð1Þ � �1

2�0

Pð0Þ
�� �1

Pð0Þ :

(21)

The moments of the splitting functions are related to the
anomalous dimensions of operators as follows:

Pð0Þ ¼ �1
4�̂

ð0Þ
n ; Pð1Þ ¼ �1

8�̂
ð1Þ
n ; (22)

k ð0Þ ¼ 1
4K

ð0Þ
n ; kð1Þ ¼ 1

8K
ð1Þ
n ; (23)

where �̂ð0Þ
n and �̂ð1Þ

n are the 4� 4 one-loop and two-loop
anomalous dimension matrices in the hadronic sector,

respectively, and Kð0Þ
n and Kð1Þ

n are the four-component

row vectors that represent the mixing in one-loop and
two-loop levels, respectively, between the photon operator
and the four hadronic operators. The details are explained
in the next section.

The evaluation of q�ð0ÞðtÞ and q�ð1ÞðtÞ in Eqs. (18) and
(19) can easily be done by introducing the projection
operators Pn

i such as

Pð0Þ ¼ � 1

4
�̂0
n ¼ � 1

4

X
i¼c ;þ;�;Lns

�n
i P

n
i ;

i ¼ c ;þ;�; Lns; (24)

Pn
i P

n
j ¼

�
0 i � j
Pn
i i ¼ j;

X
i¼c ;þ;�;Lns

Pn
i ¼ 1; (25)

where �n
i are the four eigenvalues of the matrix �̂0

n. Then,
rewriting �sð0Þ and �sðtÞ as �sðP2Þ and �sðQ2Þ, respec-
tively, we obtain

q �ð0ÞðtÞ
��

�

8��0

�
¼ 4�

�sðQ2ÞK
ð0Þ
n

X
i

Pn
i

1

1þ dni

�
1�

�
�sðQ2Þ
�sðP2Þ

�
1þdni

�
; (26)
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q�ð1ÞðtÞ
��

�

8��0

�
¼

�
Kð1Þ

n

X
i

Pn
i

1

dni
þ �1

�0

Kð0Þ
n

X
i

Pn
i

�
1� 1

dni

�
�Kð0Þ

n

X
j;i

Pn
j �̂

ð1Þ
n Pn

i

2�0 þ �n
j � �n

i

1

dni
� 2�0

~Að1Þ
n

X
i

Pn
i

�

�
�
1�

�
�sðQ2Þ
�sðP2Þ

�
dni
�
þ

�
Kð0Þ

n

X
i;j

Pn
i �̂

ð1Þ
n Pn

j

2�0 þ �n
i � �n

j

1

1þ dni
� �1

�0

Kð0Þ
n

X
i

Pn
i

dni
1þ dni

�

�
�
1�

�
�sðQ2Þ
�sðP2Þ

�
1þdni

�
þ 2�0

~Að1Þ
n ; (27)

where dni � �n
i

2�0
and i; j ¼ c ;þ;�; Lns.

Finally, since q�ðtÞ ¼ q�ð0ÞðtÞ þ q�ð1ÞðtÞ, and from (4),
the moments for the parton distributions of the flavor-
singlet light quark, heavy quark, gluon, and flavor-
nonsinglet light quark are given, respectively, by

q�Lsðn;Q2;P2Þ ¼ ð1;1Þ component of the row vector q�ðtÞ;
(28)

q�Hðn;Q2;P2Þ ¼ ð1;2Þ component of the row vector q�ðtÞ;
(29)

G�ðn;Q2;P2Þ ¼ ð1;3Þ component of the row vector q�ðtÞ;
(30)

q�Lnsðn;Q2;P2Þ ¼ ð1;4Þ component of the row vector q�ðtÞ:
(31)

III. PARAMETERS IN q�ð0ÞðtÞ AND q�ð1ÞðtÞ
We give here the information on the parameters that

appear in q�ð0ÞðtÞ and q�ð1ÞðtÞ in (26) and (27). They are

calculated in the MS scheme [42]. We introduce the fol-
lowing quark-charge factors in the massless quark sector:

he2iL � 1

nf � 1

Xnf�1

i¼1

e2i ; he4iL � 1

nf � 1

Xnf�1

i¼1

e4i :

(32)

A. Anomalous dimensions

Corresponding to the splitting functions given in Eq. (6),
the anomalous dimensions in the hadronic sector are ex-
pressed in the form of a 4� 4 matrix as

�̂ nðgÞ ¼
�n
qLqLðgÞ �n

HqL
ðgÞ �n

GqL
ðgÞ 0

�n
qLH

ðgÞ �n
HHðgÞ �n

GHðgÞ 0

�n
qLG

ðgÞ �n
HGðgÞ �n

GGðgÞ 0

0 0 0 �n
LnsðgÞ

0
BBB@

1
CCCA:

(33)

The four-component row vector

K nðg;�Þ ¼ ðKn
qLðg; �Þ; Kn

Hðg;�Þ; Kn
Gðg; �Þ; Kn

Lnsðg; �ÞÞ
(34)

represents the mixing between photon and four hadronic
operators. Here the importance of inclusion of the heavy-
quark operator should be stressed. We treat the heavy quark
in the same way as the light quarks and assume that both
heavy and light quarks are radiatively generated from the
photon target. In contrast, in the case of the nucleon target,
heavy quarks are treated as radiatively generated from the
gluon and light quarks.
Since the elements �n

qLH
and �n

HqL
start at the order of �2

s

and �n
qLG

has a factor (nf � 1), the one-loop anomalous

dimension matrix �̂ð0Þ
n is expressed as

�̂ ð0Þ
n ¼

�ð0Þ;n
c c 0 �ð0Þ;n

Gc 0

0 �ð0Þ;n
c c �ð0Þ;n

Gc 0
nf�1

nf
�ð0Þ;n
cG

1
nf
�ð0Þ;n
cG �ð0Þ;n

GG 0

0 0 0 �ð0Þ;n
c c

0
BBBBBB@

1
CCCCCCA
; (35)

where �ð0Þ;n
c c , �ð0Þ;n

cG , �ð0Þ;n
Gc , and �ð0Þ;n

GG are well-known one-

loop anomalous dimensions for the hadronic sector that
appear when all nf flavor quarks are massless and are

given, for example, in Eqs. (4.1), (4.2), (4.3), and (4.4) of

Ref. [8]. The four eigenvalues of �̂ð0Þ
n are

�n
c ¼ �ð0Þ;n

c c ; (36)

�n	 ¼ 1

2
f�ð0Þ;n

c c þ �ð0Þ;n
GG

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ð0Þ;n

c c � �ð0Þ;n
GG Þ2 þ 4�ð0Þ;n

cG �ð0Þ;n
Gc

q
g; (37)

�n
Lns ¼ �ð0Þ;n

c c : (38)

The one-loop anomalous dimension matrix �̂ð0Þ
n can be

expressed in terms of its eigenvalues �n
i ði ¼

c ;þ;�; LnsÞ and corresponding projection operators as

�̂ ð0Þ
n ¼ X

i¼c ;þ;�;Lns

�n
i P

n
i ; (39)

with

Pn
c ¼

1
nf

� 1
nf

0 0

� nf�1

nf

nf�1

nf
0 0

0 0 0 0
0 0 0 0

0
BBBB@

1
CCCCA; (40)
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Pn	 ¼ 1

�n	 � �n


nf�1

nf
ð�ð0Þ;n

c c � �n
Þ 1
nf
ð�ð0Þ;n

c c � �n
Þ �ð0Þ;n
Gc 0

nf�1

nf
ð�ð0Þ;n

c c � �n
Þ 1
nf
ð�ð0Þ;n

c c � �n
Þ �ð0Þ;n
Gc 0

nf�1

nf
�ð0Þ;n
cG

1
nf
�ð0Þ;n
cG �ð0Þ;n

GG � �n
 0

0 0 0 0

0
BBBBBB@

1
CCCCCCA
; (41)

Pn
Lns ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0
BBB@

1
CCCA: (42)

The elements of the one-loop anomalous dimension row

vector Kð0Þ
n ¼ ðKð0Þ;n

qL ; Kð0Þ;n
H ; Kð0Þ;n

G ; Kð0Þ;n
Lns Þ are given by

Kð0Þ;n
qL ¼ 24ðnf � 1Þhe2iLk0n; (43)

Kð0Þ;n
H ¼ 24e2Hk

0
n; (44)

Kð0Þ;n
G ¼ 0; (45)

Kð0Þ;n
Lns ¼ 24ðnf � 1Þðhe4iL � ðhe2iLÞ2Þk0n; (46)

with

k0n ¼ n2 þ nþ 2

nðnþ 1Þðnþ 2Þ : (47)

The two-loop anomalous dimensions for the hadronic
sector with a heavy quark are inferred from those for the
case when all nf-flavor quarks are massless [45]. Minor

changes of group factors arise from quark loops:

�ð1Þ;n
Lns ¼ �ð1Þ;n

NS ; (48)

�ð1Þ;n
qLqL ¼ �ð1Þ;n

NS þ CF

�
nf � 1

2

�
Dn

PS;c c ; (49)

�ð1Þ;n
qLH

¼ CF

�
nf � 1

2

�
Dn

PS;c c ; (50)

�ð1Þ;n
qLG

¼ 8CF

�
nf � 1

2

�
Dn

cG þ 8CA

�
nf � 1

2

�
En
cG; (51)

�ð1Þ;n
HqL

¼ CFð12ÞDn
PS;c c ; (52)

�ð1Þ;n
HH ¼ �ð1Þ;n

NS þ CFð12ÞDn
PS;c c ; (53)

�ð1Þ;n
HG ¼ 8CFð12ÞDn

cG þ 8CAð12ÞEn
cG; (54)

�ð1Þ;n
GqL

¼ �ð1Þ;n
Gc ; (55)

�ð1Þ;n
GH ¼ �ð1Þ;n

Gc ; (56)

where CA ¼ 3 and CF ¼ 4
3 in QCD. The anomalous di-

mensions �ð1Þ;n
NS and �ð1Þ;n

Gc for the case of nf massless quarks

are given, for example, in Eq. (3.5) of Ref. [22] and
Eq. (3.8) of Ref. [23], respectively (see also Ref. [24]).
The expression of the ‘‘pure singlet’’ contribution Dn

PS;c c

and those of Dn
cG and En

cG (which appear in the two-loop

anomalous dimension �ð1Þ;n
cG in the case of nf massless

quarks) are given in Eqs. (3.6) and (3.7) of Ref. [23],

respectively. The anomalous dimension �ð1Þ;n
GG for the case

with a heavy quark is the same with the case of nf massless

quarks and is given in (3.9) of Ref. [23].
The elements of the two-loop anomalous dimension row

vector Kð1Þ
n ¼ ðKð1Þ;n

qL ; Kð1Þ;n
H ; Kð1Þ;n

G ; Kð1Þ;n
Lns Þ are given by

Kð1Þ;n
qL ¼ �3ðnf � 1Þhe2iLCF8D

n
cG; (57)

Kð1Þ;n
H ¼ �3e2HCF8D

n
cG; (58)

Kð1Þ;n
G ¼ �3ððnf � 1Þhe2iL þ e2HÞCF8ðDn

GG � 1Þ; (59)

Kð1Þ;n
Lns ¼ �3ðnf � 1Þðhe4iL � ðhe2iLÞ2ÞCF8D

n
cG; (60)

where Dn
GG is obtained from �ð1Þ;n

GG by replacing CA ! 0
and CFnf ! 1

4 .

B. The one-loop photon matrix elements

The elements of the row vector ~Að1Þ
n in Eq. (17) are given

by

~A
qLð1Þ
n ¼ 3ðnf � 1Þhe2iLHð1Þ

q ðnÞ; (61)

~AHð1Þ
n � 3e2HH

ð1Þ
q ðnÞ þ �~An

H; (62)

~A Lnsð1Þ
n ¼ 3ðnf � 1Þðhe4iL � ðhe2iLÞ2ÞHð1Þ

q ðnÞ; (63)

where

Hð1Þ
q ðnÞ ¼ 4

�
n2 þ nþ 2

nðnþ 1Þðnþ 2ÞS1ðnÞ þ
4

ðnþ 2Þ2

� 4

ðnþ 1Þ2 þ
1

n2
� 1

n

�
; (64)
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�~An
H ¼ 3e2H � 4

�
� n2 þ nþ 2

nðnþ 1Þðnþ 2Þ ln
m2

P2
þ 1

n
� 1

n2

þ 4

ðnþ 1Þ2 �
4

ðnþ 2Þ2

� n2 þ nþ 2

nðnþ 1Þðnþ 2ÞS1ðnÞ
�
; (65)

with S1ðnÞ ¼
P

n
j¼1

1
j , and

~AHð1Þ
n is obtained by evaluating

the diagrams in Fig. 2 in the limit �2 � P2 � m2. The

heavy-quark mass effects reside in the term �~An
H.

IV. THE NLO PDFS IN THE DIS� SCHEME

The structure functions of the photon (nucleon) are ex-
pressed as convolutions of coefficient functions and parton
distributions of the target photon (nucleon). But it is well
known that these coefficient functions and parton distribu-
tions are by themselves factorization-scheme dependent.
The relevant quantities given in Sec. III were calculated in

the MS scheme. When we insert them into the formulas
given by (26) and (27), we obtain the parton distributions

predicted by the MS scheme. Meanwhile, an interesting
and also useful factorization scheme called DIS� was

introduced in the analysis of the photon structure function
F�
2 [43]. In this scheme, the photonic coefficient function

C�
2 , i.e., the direct photon contribution to F�

2 , is absorbed

into the photonic quark distributions.
The Mellin moments of the virtual photon structure

function 1
x F

�
2 ðx;Q2; P2Þ is expressed as

Z 1

0
dxxn�1 1

x
F�
2 ðx;Q2; P2Þ � F�

2 ðn;Q2; P2Þ
¼ q�ðn;Q2; P2Þ � C2ðn;Q2Þ

þ C�
2 ðn;Q2Þ; (66)

where q�ðn;Q2; P2Þ is the four-component row vector
given in (4). The column vector C2ðn;Q2Þ is made up of
four hadronic coefficient functions,

C2ðn;Q2Þ � ðCLs
2 ðn;Q2Þ; CH

2 ðn;Q2Þ; CG
2 ðn;Q2Þ;

CLns
2 ðn;Q2ÞÞT; (67)

where CLs
2 , CH

2 , C
G
2 , and CLns

2 are coefficient functions

corresponding to the light flavor-singlet quark, heavy
quark, gluon, and light flavor-nonsinglet quark, respec-
tively. The last term C�

2 ðn;Q2Þ in (66) is the photonic

coefficient function. The moments of the parton distribu-
tions in the DIS� scheme are obtained as follows [12,43].

In this scheme, the hadronic coefficient functions are the

same as their counterparts in the MS scheme, but the
photonic coefficient function is absorbed into the quark
distributions and thus set to zero,

C 2ðn;Q2ÞjDIS� ¼ C2ðn;Q2ÞjMS; C�
2 ðn;Q2ÞjDIS� ¼ 0:

(68)

Then Eq. (66) gives

F�
2 ðn;Q2; P2Þ ¼ q�ðn;Q2; P2ÞjDIS� � C2ðn;Q2ÞjDIS�

¼ q�ðn;Q2; P2ÞjDIS� � C2ðn;Q2ÞjMS: (69)

On the other hand, F�
2 ðn;Q2; P2Þ is expressed in the MS

scheme as

F�
2 ðn;Q2; P2Þ ¼ q�ðn;Q2; P2ÞjMS � C2ðn;Q2ÞjMS

þ C�
2 ðn;Q2ÞjMS: (70)

We expand q�ðn;Q2; P2ÞjDIS� in terms of the LO and

NLO distributions and C2ðn;Q2ÞjMS in powers of �sðQ2Þ
up to the NLO as follows:

q �ðn;Q2; P2ÞjDIS� ¼ q�ð0Þn þ q�ð1Þn jDIS� þ � � � ; (71)

C 2ðn;Q2ÞjMS ¼ Cð0Þ
2;n þ

�sðQ2Þ
4�

Cð1Þ
2;njMS þ � � � ; (72)

where the LO q�ð0Þn and Cð0Þ
2;n are both factorization-scheme

independent. Denoting the difference of q�ð1Þn jDIS� from the

MS scheme prediction as �q�ð1Þn jDIS� , we write
q �ð1Þ
n jDIS� � q�ð1Þn jMS þ �q�ð1Þn jDIS� : (73)

Putting (71)–(73) into the right-hand side (r.h.s.) of (69)
and comparing the result with (70), we find

C�
2 ðn;Q2ÞjMS ¼ �q�ð1Þn jDIS� � Cð0Þ

2;n þ � � � : (74)

Since

C ð0Þ
2;n ¼ ðhe2iL; e2H; 0; 1ÞT; (75)

the r.h.s. of Eq. (74) is rewritten as

p
p

(a) (b)

p

(d)

p

(c)

p

p

p
p

FIG. 2. The diagrams for ~AHð1Þ
n . The double lines express the

heavy quark.
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�q�ð1Þn jDIS� � Cð0Þ
2;n ¼ he2iL�q�ð1ÞLs;njDIS� þ e2H�q

�ð1Þ
H;n jDIS�

þ �q�ð1ÞLns;njDIS� : (76)

The moment of the photonic coefficient function
C�
2 ðn;Q2ÞjMS is written up to the one-loop level as

C�
2 ðn;Q2ÞjMS ¼ �

4�
3fðnf � 1Þhe4iLBL;n

� þ e4HB
H;n
� g

þ � � � : (77)

Now dividing the light quark-charge factor he4iL into two
parts, the light flavor-singlet and nonsinglet parts, as

he4iL ¼ he2iLhe2iL þ ðhe4iL � ðhe2iLÞ2Þ; (78)

and from Eqs. (76) and (77) we find at the NLO

�q�ð1ÞLs;njDIS� ¼ �

4�
3ðnf � 1Þhe2iLBL;n

� ; (79)

�q�ð1ÞH;n jDIS� ¼ �

4�
3e2HB

H;n
� ; (80)

�q�ð1ÞLns;njDIS� ¼ �

4�
3ðnf � 1Þðhe4iL � ðhe2iLÞ2ÞBL;n

� : (81)

The coefficient BL;n
� is related to the one-loop gluon coef-

ficient �Bn
G by BL;n

� ¼ 2
nf

�Bn
G [8], and given by

BL;n
� ¼ 4

�
� n2 þ nþ 2

nðnþ 1Þðnþ 2Þ ð1þ S1ðnÞÞ þ 4

ðnþ 1Þ
� 4

ðnþ 2Þ þ
1

n2

�
; (82)

while BH;n
� is calculated in the heavy-quark mass limit

(�2 � P2 � m2) and we find

BH;n
� ¼ BL;n

� : (83)

Finally in the DIS� scheme we set in all orders

G�ðn;Q2; P2ÞjDIS� ¼ G�ðn;Q2; P2ÞjMS: (84)

V. NUMERICAL ANALYSIS FOR PDFS WITH
HEAVY-QUARK EFFECTS

The parton distributions are recovered from their mo-
ments by the inverse Mellin transformation. Using the

formulas given in Eqs. (26)–(31) and parameters enumer-
ated in Sec. III, we obtain the parton distribution functions

in the virtual photon in the MS scheme up to the NLO. We
have considered the following two cases:
(i) Q2 ¼ 5 GeV2 and P2 ¼ 0:35 GeV2,
(ii) Q2 ¼ 30 GeV2 and P2 ¼ 0:35 GeV2.

In both cases we take nf ¼ 4, and choose c as a heavy

quark and assume that the other u, d, and s quarks are
massless. We takemc ¼ 1:3 GeV as an input for the charm
quark mass and put � ¼ 0:2 GeV for the QCD scale
parameter.
The values of Q2 and P2 for case (i) correspond to those

of the PLUTO experiment [46]. We plot the parton distri-

bution functions in theMS scheme in Fig. 3 for case (i) and
in Fig. 4 for case (ii): (a) the light flavor-singlet quark
distribution xq�Lsðx;Q2; P2ÞjMS, (b) the heavy (charm)

quark distribution xq�Hðx;Q2; P2ÞjMS, (c) the gluon distri-

bution xG�ðx;Q2; P2ÞjMS, and (d) the light flavor-

nonsinglet quark distribution xq�Lnsðx;Q2; P2ÞjMS. In order

to see the heavy-quark effects, we plot, in addition, the
parton distributions xq�Lsjlight;MS, xq�Hjlight;MS, and

xG�jlight;MS, which are obtained when the c quark is also

set to be massless. Actually, we get these distributions by

setting �~An
H ! 0 in Eq. (62) and by inserting the ‘‘new’’

row vector ~Að1Þ
n into the expression of Eq. (27). See also the

Appendix. Since the light ‘‘flavor-nonsinglet’’ quark de-
couples to the other partons, we have xq�Lnsjlight ¼ xq�Lns.

We observe from Figs. 3(a)–3(c) and 4(a)–4(c) that the
c-quark mass has rather large effects on the c-quark distri-
bution xq�HjMS and the gluon distribution xG�jMS, while it

has negligible effects on the light flavor-singlet quark
distribution xq�LsjMS. The difference between xq�LsjMS and

xq�Lsjlight;MS (and also between xq
�
HjMS and xq

�
Hjlight;MS and

between xG�jMS and xG�jlight;MS) is due to the appearance

of �~An
H in Eq. (62), which is negative and larger in magni-

tude for smaller n. The negative�~An
H means that once the c

quark has mass, the c partons are less produced from the
target photon. Actually it has the same effect as reducing
the evolution of c-quark distribution to the range of m2 to
Q2 instead of P2 to Q2. Indeed, we find from Eq. (27),

ðq�Ls;n � q�Ls;njlightÞ
��

�

8��0

�
¼

�
1� 1

nf

�
2�0� ~An

H

�
�ðrÞdnc þ �ð0Þ;n

c c � �n�
�nþ � �n�

ðrÞdnþ þ �ð0Þ;n
c c � �nþ
�n� � �nþ

ðrÞdn�
�
; (85)

ðq�H;n � q�H;njlightÞ
��

�

8��0

�
¼ 2�0� ~An

H

��
1� 1

nf

�
ðrÞdnc þ 1

nf

�ð0Þ;n
c c � �n�
�nþ � �n�

ðrÞdnþ þ 1

nf

�ð0Þ;n
c c � �nþ
�n� � �nþ

ðrÞdn�
�
; (86)
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where r ¼ �sðQ2Þ
�sðP2Þ . Unless n is a small integer, we see

�ð0Þ;n
c c � �n� and dnc � dn�. Therefore the sum in the curly

brackets of Eq. (85) diminishes, which means that the
effects of heavy quark on xq�Ls are extremely small. See
Figs. 3(a) and 4(a). On the other hand, the sum in the curly
brackets of Eq. (86) is expressed approximately as ðrÞdnc for
n not being a small integer. The ratio of ðq�H;n � q�H;njlightÞ
to the leading order q�ð0ÞH;n is proportional to the product of
�sðQ2Þ and ðrÞdnc . The values of r and �sðQ2Þ are 0.463 and
0.237, respectively, for case (i) and 0.351 and 0.180 for
case (ii). The ratio is not small and Figs. 3(b) and 4(b) show
the large reduction of xq�HjMS from xq�Hjlight;MS, especially,
for case (i).

The gluons do not couple to the photon directly and they
are produced from the target photon through quarks.
Therefore, the leading contribution to the gluon distribu-
tion xG�jMS is essentially of order �, and it is very small in

absolute value except in the small x region. The c-quark
mass effects appear in xG�jMS in the NLO (the order �)
and are enhanced by the charge factor eH ¼ 2=3 [see
Figs. 3(c) and 4(c)]. The departure of xq�LsjMS from

xq�Lsjlight;MS at small x is related to the behaviors of the

gluon distributions xG�jMS and xG�jlight;MS. As x ! 0,

both gluon distributions grow while their difference be-
comes larger.
Figures 3(d) and 4(d) show the light ‘‘flavor-nonsinglet’’

quark distribution xq�LnsjMS. Comparing with the graphs of

xq�LsjMS, it is very small in absolute value. This is due to the

fact that xq�LnsjMS has the charge factor ðhe4iL � ðhe2iLÞ2Þ,
which is a very small number (2=81 for nf ¼ 4). An

examination of Figs. 3(b), 3(c), 4(b), and 4(c) shows that
with larger Q2, the c-quark mass effects become smaller.
When Q2 gets still larger, we may need to consider the
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FIG. 3 (color online). Parton distributions in the photon in the MS scheme for nf ¼ 4, Q2 ¼ 5 GeV2, P2 ¼ 0:35 GeV2 with mc ¼
1:3 GeV and � ¼ 0:2 GeV: (a) xq�Lsðx; Q2; P2ÞjMS and xq�Lsðx;Q2; P2Þjlight;MS; (b) xq�Hðx;Q2; P2ÞjMS and xq�Hðx;Q2; P2Þjlight;MS;

(c) xG�ðx; Q2; P2ÞjMS and xG�ðx;Q2; P2Þjlight;MS; (d) xq
�
Lnsðx;Q2; P2ÞjMS.
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b-quark mass effects with taking nf ¼ 5, but the b quark

has milder effects than the c quark because of its charge
factor.

We see from Figs. 3(a), 3(b), 3(d), 4(a), 4(b), and 4(d)
that the quark distributions xq�LsjMS, xq

�
HjMS, and xq

�
LnsjMS

diverge as x ! 1. This is due to the NLO contributions to

the quark parton distributions in the MS scheme. The
behaviors of parton distributions near x ¼ 1 are governed
by the large-n limit of those moments. In the leading order,
parton distributions are factorization-scheme independent.
For large n, the moments of the LO quark distributions,

q�ð0ÞLs , q�ð0ÞH , and q�ð0ÞLns , behave as 1=ðn lnnÞ. Thus, in x space,
these LO quark distributions vanish for x ! 1 as
½�1= lnð1� xÞ�. On the other hand, the moments of the

NLO quark distributions in the MS scheme, q�ð1ÞLs jMS,

q�ð1ÞH jMS, and q�ð1ÞLns jMS, behave in the large-n limit as

ðlnnÞ=n. Therefore, in x space, the (LOþ NLO) quark

distributions in the MS scheme positively diverge as
½� lnð1� xÞ� for x ! 1. The moments of the LO and

NLO gluon distributions, G�ð0Þ
n and G�ð1Þ

n , behave for large
n as 1=ðn lnnÞ2 and 1=n2, respectively, and thus, in x space,
the (LOþ NLO) curve of the gluon distribution (both
G�jMS and G�jlight;MS) vanishes as ð� lnxÞ for x ! 1.

In the DIS� scheme the photonic coefficient C�
2 is ab-

sorbed into the quark distributions. In consequence, the
(LOþ NLO) quark distributions show different behaviors

at large x from those in the MS scheme. Since

BL;n
� ð¼ BH;n

� Þ in Eq. (77) behaves as ð�4 lnnÞ=n for large
n, the (LOþ NLO) curves in x space for q�LsjDIS� , q�HjDIS� ,
and q�LnsjDIS� negatively diverge as lnð1� xÞ for x ! 1. In

fact, using Eqs. (79)–(84) and inverting the moments, we
obtain parton distributions in the DIS� scheme up to the

NLO, which are plotted in Fig. 5 and 6. Again we
have considered the two cases: (i) Q2 ¼ 5 GeV2,
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FIG. 4 (color online). Parton distributions in the photon in the MS scheme for Q2 ¼ 30 GeV2. The other parameters are the same as
in Fig. 3.
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P2 ¼ 0:35 GeV2, and (ii) Q2 ¼ 30 GeV2, P2 ¼
0:35 GeV2. The other parameters are the same as
before, and the c quark is taken to be heavy. We see from
Figs. 5(a)–5(c) and 6(a)–6(c) that the quark distributions
xq�LsjDIS� , xq�HjDIS� , and xq�LnsjDIS� become negative at

large x. We observe again that the mass of the c quark
has negligible effects on the light flavor-singlet quark
distribution xq�LsjDIS� but large effects on the c-quark

distribution xq�HjDIS� . When Q2 gets larger, the heavy-

quark mass effects become smaller. It is noted that if we
take into account the charge factors, the following
three ‘‘renormalized’’ distributions, x~q�Lsjlight;DIS� �
xq�Lsjlight;DIS�=he2iL, x~q�Hjlight;DIS� � xq�Hjlight;DIS�=e2H, and
x~q�LnsjDIS� � xq�LnsjDIS�=ðhe4iL � ðhe2iLÞ2Þ overlap for al-

most the whole x region except near x ¼ 0 [see Figs. 5(a)–
5(c) and 6(a)–6(c)].

Finally the gluon distribution xG�jDIS� is the same as

xG�jMS.

VI. CONCLUSIONS

We have studied the heavy-quark mass effects on the
parton (light singlet, heavy quark, gluon, light nonsinglet)
distribution functions in the virtual photon up to the NLO
in perturbative QCD. Our calculation is based on the
DGLAP equation as well as on the OPE formalism within
the framework of the mass-independent renormalization
group. The heavy-quark effect is included through the
operator matrix element for the heavy-quark operator and
is evaluated by the heavy-quark mass limit (�2 � P2 �
m2). In the language of the parton picture, the heavy-quark
effects are arising from the initial condition for the heavy-
quark distribution. In fact, the leading-logarithimic term of
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FIG. 5 (color online). Parton distributions in the photon in the DIS� scheme for nf ¼ 4, Q2 ¼ 5 GeV2, P2 ¼ 0:35 GeV2 with mc ¼
1:3 GeV and � ¼ 0:2 GeV: (a) xq�Lsðx; Q2; P2ÞjDIS� and xq�Lsðx;Q2; P2Þjlight;DIS� ; (b) xq�Hðx;Q2; P2ÞjDIS� and xq�Hðx;Q2; P2Þjlight;DIS� ;
(c) xq�Lnsðx;Q2; P2ÞjDIS� .
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our initial condition (65) can be reproduced by solving the
boundary condition, q�Hðx;Q2 ¼ m2Þ ¼ 0 [31,35], in the
leading order approximation.

The heavy-quark mass effects tend to reduce the values
of parton distribution functions for the light-singlet, the
heavy-quark, and the gluon distributions except for the
light nonsinglet distribution. Especially the suppression
for the heavy parton distribution for the up-type quark is
enhanced by the dependence of the charge factor ei ¼ 2=3.
These behaviors are consistent with our previous work on
the virtual photon structure functions with the heavy-quark
mass effects [40]. These results could be explained by the
suppression of the evolution range due to the mass of the
heavy quark. We have also studied the factorization-
scheme dependence of our parton distributions with
heavy-quark mass effects, especially for two factorization

schemes, MS and DIS�.

In our formalism where we treat the contribution from
the twist-2 operators to the parton distributions, we have
not taken into account the kinematical threshold effects
that manifest as the presence of the maximal values of the
Bjorken variable. We need some improvement in which the
threshold effects are included. We should also investigate
the general kinematical region where P2 and m2 are of the
same order. We also note that the general-mass variable-
flavor-number scheme, which has now become a popular
framework for the global analyses of parton distributions,
should be implemented in the present analysis, which is
under investigation.
Such improvements would help us to predict the pho-

tonic parton distribution functions that could be measured
at the future linear collider ILC. Especially, the application
of our results to the up-type quark parton distribution
functions like the charm quark, the top quark in the un-
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FIG. 6 (color online). Parton distributions in the photon in the DIS� scheme for Q2 ¼ 30 GeV2. The other parameters are the same
as in Fig. 5.

KITADONO et al. PHYSICAL REVIEW D 81, 074029 (2010)

074029-12



polarized virtual photon will be important phenomenolog-
ically. The application of our formalism to the polarized
photonic parton distribution functions can be carried out
and would turn out to be relevant for the measurement of
the polarized photonic PDFs at ILC.

APPENDIX A: PDFS FOR THE CASE OF
MASSLESS QUARKS

In this paper we have considered the parton distributions
in the virtual photon for the case when the nfth flavor quark

is heavy and the rest of nf � 1 flavor quarks are light

(i.e., massless), and we have derived the formulas for the
moments of the parton distributions, q�Lsðn;Q2; P2Þ,
q�Hðn;Q2; P2Þ, G�ðn;Q2; P2Þ, and q�Lnsðn;Q2; P2Þ up to
NLO, which are given in Eqs. (28)–(31). If the nfth flavor

quark is also light, in other words, all the nf flavor quarks

are light, we obtain, instead, the parton distributions of
q�Lsðn;Q2; P2Þjlight, q�Hðn;Q2; P2Þjlight, G�ðn;Q2; P2Þjlight,
and q�Lnsðn;Q2; P2Þjlight. Here it is noted that since the light
flavor-nonsinglet quark does not couple to the heavy flavor,
we see q�Lnsðn;Q2; P2Þjlight ¼ q�Lnsðn;Q2; P2Þ. When all the

flavor quarks are light, we usually treat the quark sector
that consists of the flavor-singlet and nonsinglet combina-
tions defined as follows:

q�S � Xnf
i¼1

qi; q�NS �
Xnf
i¼1

e2i

�
qi � q�S

nf

�
: (A1)

Also we introduce the following quark-charge factors:

he2i ¼ 1

nf

Xnf
i¼1

e2i ; he4i ¼ 1

nf

Xnf
i¼1

e4i : (A2)

These parton distributions, q�S , q
�
NS, and G

�jlight, have been
investigated in Refs. [12,33,43]. The quark parton distri-
butions q�Lsjlight, q�Hjlight, and q�Lns are related to q�S and q�NS.

Indeed they are expressed in terms of q�S and q�NS as

follows:

q�Lsðn;Q2; P2Þjlight ¼ q�S ðn;Q2; P2Þ � q�Hðn;Q2; P2Þjlight;
(A3)

q�Hðn;Q2; P2Þjlight ¼ 1

nf

�
q�S ðn;Q2; P2Þ

þ e2H � he2i
he4i � he2i2 q

�
NSðn;Q2; P2Þ

�
;

(A4)

q�Lnsðn;Q2; P2Þ ¼ nf � 1

nf

he4iL � he2i2L
he4i � he2i2 q�NSðn;Q2; P2Þ;

(A5)

where the NLO expressions of q�S ðn;Q2; P2Þ and

q�NSðn;Q2; P2Þ are given in Eqs. (2.33), (2.35), and (2.37)

of Ref. [33]. The transformation rule for q�S and q�NS from

theMS scheme to theDIS� scheme are given in Eqs. (3.33)

and (3.34), respectively, of the same reference.
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