Spinning eggs—which end will rise?
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We examine the spinning behavior of egg-shaped axisymmetric bodies whose cross sections are
described by several oval curves similar to real eggs with thin and fat ends. We use the gyroscopic
balance condition of Moffatt and Shimomura and analyze the slip velocity of the bodies at the point
of contact as a function of, the angle between the axis of symmetry and the vertical axis, and find
the existence of the critical angg . When the bodies are spun with an initial ang|g;.> 6., 6

will increase tom, implying that the body will spin at the thin end. Alternatively i< 6., then

6 will decrease. For some oval curveswill reduce to 0 and the corresponding bodies will spin at

the fat end. For other oval curves, a fixed poin@ais predicted, where € 6;< 6. . Then the bodies

will spin not at the fat end, but at a new stable point with The empirical fact that eggs more often

spin at the fat than at the thin end is explained. 2@®4 American Association of Physics Teachers.

[DOI: 10.1119/1.1634966

[. INTRODUCTION of oval curves that we will study. In Sec. IV we analyze the
spinning behavior of axisymmetric bodies whose cross sec-

Spinning objects have historically been interesting subliOﬂS are described by these _oval CL_JrVGS. The final section is

jects to study. The spin reversal of the rattleDa@eltso called ~devoted to a summary and discussion.

a celt or wobblestoneand the behavior of the tippe topre

typical examples. Recently, the riddle of spinning eggs was

resolved by Moffatt and Shimomufawhen a hard-boiled Il. SPINNING EGG

egg is spun sufficiently rapidly on a table with its axis of

symmetry horizontal, the axis will rise from the horizontal to e follow the geometry and notation of Ref. 3 in their

the Vertica'.l.'They diS(EOVGI’ed that if an'aXisymmetriC body iSana|ysiS Of Spinning eggs as much as possib'e_ As iS Shown

spun sufficiently rapidly, a gyroscopic balance conditionin Fig. 1, an axisymmetric body spins on a horizontal table

holds. Given this condition a constant of the motion existsyith point of contactP. We will work in a rotating frame of

for the spinn'ing motion of an axisymmetric body. The CoN-referenceOXY Z where the center of mass is at the origin,
stant, which is known as the Jellett consthahgs been found 0. The symmetry axis of the bod@z, and the vertical axis,

previously for symmetric tops such as the tippe top. Usingoz, define a plandl, which precesses abo@Z with an-

these facts, they derived a first-order differential equation for . - . .
6, the angle between the axis of symmetry and the verticagtlar velocityQ(t)=(0,042). We choose the horizontal axis

axis. For a uniform spheroid as an example they showed thd&? X in the planell and thusOYY is vertical tolT and inward.
the axis of symmetry indeed rises from the horizontal to thel he angle of interest ig(t), the angle betwee®Z andOz.
vertical. In a rotating frame of referend@xyz whereOx is in the
The shape of an egg looks like a spheroid, but is not explane IT and perpendicular to the symmetry ax@z and
actly so. It has thin and fat ends. Which end of the spinningvhereOy coincides withOY, the body spins abou®z with
egg will rise? Empirically, we kn_ow. that either end can rse.the rate lﬂ BecauseQ is expressed ag)=—Q sin 6k
But we more often see eggs spinning at the fat end with the, ¢ 0,65 in the frameOxyz the angular velocity of the
thin end up rather than the other way round. In this paper w o P ~ A
investigate the spinning behavior of egg-shaped axisymme ody, o, S given byw=—0Q sinéx+y+nz Here.x, y, and
ric bodies whose cross sections are described by several ovaRre unit vectors alon@x, Oy, andOz, respectivelyn(t)
curves. We use the gyroscopic balance condition and analyde given byn={ cosé+, and the dot represents differen-
the slip velocity of the body at the point of contact as atiation with respect to time. Th®x and Oy axes are not
function of # and find the existence of the critical angle  body-fixed axes but are principal axes, so that the angular
for each model curve. When the bodies are spun with thénomentum,L, is expressed as=—AQ sin 6x+Ady+Cnz,
initial angle iy > 6., 6 will increase tom, which means  where (,A,C) are the principal moments of inertia @t
that the body will spin at the thin end. Alternatively, if  The coordinate syste®XY Zis obtained from the frame
Oinitiar< 0, then 6 will decrease. For some oval curved,  oxyzhy rotating the latter about th@y (OY) axis through

will decrease to 0 and the corresponding bodies will shift toy,o angled. Hence, in the rotating fram@®XYZ e andL
the stable spinning state at the fat end. For other oval CUrVeg e components ’

a fixed point atf; is predicted, where € 6;<6.. In this .
case the bodies will spin not at the fat end but at a new stable = ((n—£) cosé)siné,,() sir? 6+ n cosé), (N)
point with #;. We also explain why we observe more eggs . : .
spinning at the fat end than at the thin end. L=((Cn—AQ coso)sin§,A0,AQ sir? 6+Cncoso),

The paper is organized as follows: To explain our notation )
and the geometry, we review the work of Ref. 3 on spinningrespectively. The evolution df is governed by Euler’s equa-
eggs in Sec. Il. Then in Sec. Il we introduce several modelgion,
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Z which was recently obtained by Moffatt and Shimoniura
and was called by them the gyroscopic balance condition.
Under this condition, the Jellett constartiso exists for a
general axisymmetric body. With E@7), the angular mo-
mentum simplifies toL=(0,A0,AQ)), and the X- and
Z-components of Eq3) reduce, respectively, to

AQO=FZ,, (8a)
. AQ=FXp. (8h)
Equation(8), together with Eq(4), leads to
—L-Xp=AQh=J=constant, (9)
where the Jellett constadtis determined by the initial con-
ditions. From Eqgs(4), (9), and(8a), we obtain a first-order
differential equation for,
Fig. 1. An axisymmetric body with center of maSson a horizontal table J éz — Fh2( 0). (10

with point of contacP. Its axis of symmetryDz, and the vertical axi€QZ, e L.

define a plane Il, which precesses ab@iZ with angular velocity€(t) If we assume Coulomb frictior; is given by

=(0,002). OXY Zis a rotating frame of reference witX horizontal in the Vv

planell. The height ofO above the table i&(6) (from Ref. 3. F=—-uMg ﬁ, (11
P

andVp in Eq. (5), given the gyroscopic balance condition
IL (7), is expressed as a function 6éfas
— +OXL=XpX(R+F), 3) J
ot Vp=——
P AN(H)

A dh
(sin2 0+ Ecos.2 0)ﬁ
whereX5p is the position vector of the contact poiRtfrom
O, R is the normal reaction &, R=(0,0R), with R being
of orderMg, the weight, and- is the frictional force aP.
Because the poirR lies in the plandl, Xp has components

(Xp,0Z,), which are given by

. (12

A
+sing cos&(a— 1) h(0)

Hence, if we knowh(#) from geometrical considerations,
we may solve Eq(10) and determine the time dependence of

Zpo=—h(#), (49 0 Moffatt and Shimomuriconsidered a uniform spheroid as
an example and showed thatdecreases fromr/2 to O for
dh the prolate spheroid whil@ increases from 0 ter/2 for the
XP:@’ (4D oblate one.

However, the shape of an egg is not a spheroid and has
whereh(6) is the height ofO above the table. We will see in thin and fat ends. Which end of the spinning egg will rise?
Sec. IV thath(6) is determined as a function & once the Empirically, we know that either end may rise and that the
geometry and density distribution of the body are known. body spins with its axis of symmetry vertical. Which end the

When the frictional force is weak anlis correspondingly ~ SPinning egg chooses might seem to depend on the initial
small, the slip velocity of the poir is, to leading order in Il}cgn?tlotrr: offt?le axis of symmetry, that IS] thec;mltlal ;/aluel
: of 6. In the following we examine several models of ova
0, expressed ablp=(0Vp,0), where curves and determinge the relation between the initial value of

dh 6 and the final spinning position of the egg-shaped body.
Vp=(Q sir? 6+ n cosh) de +(n—Q cosh)h()siné.

(5
Hence, the frictional force,F, is to leading order,F

=(0F,0), whereF is a function ofVp, given by the law of The shape of a three-dimensional egg can be reconstructed
dynamic friction between the two surfaces in contact. Weyy rotating its two-dimensional cross section around the axis
later assume Coulomb friction fd. of symmetry. The cross section of an egg looks similar to an
The Y-component of Eq(3) is expressed by ellipse, but is not quite. It is sharper at one end than at the
A6+ (Cn—AQ cos)Q sinf= — RXp. 6) other. We will examine several model curves that have been
proposed for the cross-section of a real egg.
Because the secular changeis slow and thug b|<92, ~ Letus consider an axisymmetric body whose cross-section
the first term in Eq(6) can be neglected. Furthermore, in a IS described by
situation whereQ? is sufficiently large so that the terms x2=g(2), (13)
involving Q in Eq. (6) dominate the term-RXp, EQ.(6) is .
reduced, in leading order, toCH—AQ cosf)Qsing=0. With 9(2)=>0 for Zy<z<Zpay and 9(Zmin)=9(Zna) =0,
Hence for sirg=0. we arrive at the condition where we choose_ theaxis as the symmetry axis. If the body
' ’ has uniform density, then the volume and #fmponent of
Cn=A( cos¥, (7) center of mass are given, respectively, by

IIl. MODELS OF OVAL CURVE
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Fig. 2. A Cartesian oval in units of the arbitrary length
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Fig. 4. A Cassini oval with an air chamber in units af

9(z)=—(2+a? +a4z?+\%a?, (17)

wherex=b/a<1 and—ay1+\?<z=<-—a\1—\?, so that
the thin end points to the positive axis (see Fig. 3. For
A=0.98, we find z,,=—1.40, Zu,=—0.19%, z
=—0.84(, andA/C=1.25.

The principal moments of inertia at center of mass are exfiii) Cassini oval with an air chambeA real egg has an air

Zmax
Vzwf g(z)dz (14a

Zmin

T [ Zmax
zgzv zg(z)dz (14b

Zmin

pressed by

a-mZ 1 24 2|d 15
=My |, |3le@Fre@z-z)|dz  (sa
c= T [ty 2 150
=2V, [9(z)]°dz. (15b

chamber near the fat end. We take into account the existence
of an air chamber by using the Cassini oyal) and taking
Zmin=— 0@, With 1—\?<a< /14 \? for the evaluation of

V, z4, A, andC. This condition means that an empty space
exists for — J1+\2a<z<-—aa (see Fig. 4. For A=0.98

and a=1.2, we obtainzy=—0.798 and A/C=1.07. The
position of the center of magg is closer to the thin end and

Of course, the density of a real egg is not uniform. But if thethe ratioA/C is smaller compared to the curve without an air

density distribution is given by(r,z) as a function of and

chamber.

z, wherer is the distance from the symmetry axis, and the(iv) Wassenaar egg curvé rather simple equation for an
cross-section is still described by E@.3), we can calculate oval curve was proposed recently by Wassehaad is given

Zq, A andC.

The following are the oval curves that we will examine.

(i) Cartesian oval The curve, given by JZ2+ X2

+my(z+a)’+x?=c, consists of two ovals. For definite-

ness we setm=2. The inside oval is expressed by
=g(2) with
2 8 a2 2
g(z)=-z —§az+ 3(5K —12)

- gfca2 Kk?>—3— %,
with k=c/a. For k=9/4, we find thay(z) is defined for the
interval — ffas<zs<a, z,=—0.71G, andA/C=1.26 (see
Fig. 2.

(ii) Cassini oval This quartic curve is expressed byz
+a)2+x?][(z—a)’+x?]=b* with a,b>0. If a>b, the

(16)

by
x?=g(z)=2a[ - 2z— £a+ y4a’+4faz+ £°a7],

(18

for 5<¢<6 and —asz=a. For {=5.6 we find z,
=-0.0714 andA/C=1.21(see Fig. 5.

(v) Lemniscate of BernoulliThe lemniscate of Bernoulli is
not a candidate for oval curves and actually looks like the
infinity symbol. We study it because its final spinning posi-
tion might be interesting. The curve is expressed[by
+a)?2+x%][(z—a)’+x%]=a*. We study the half of the
curve that is given by

x?=g(z)=—(2+a?)+a\4z2+a?,

with —2a=<z=<0. The lemniscate is a special case of a
Cassini oval and is obtained by settiagb in Eq. (17). For
the lemniscate, we obtaiy=—0.813 andA/C=1.34(see

(19

curve consists of two loops, both of which look like the Fig. 6).
cross-section of a real egg with thin and fat ends. We choose

the one that is expressed ky=g(z) with
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Fig. 3. A Cassini oval in units oé.

777 Am. J. Phys., Vol. 72, No. 6, June 2004

Vglz]

-1 -0.5 0.5 1

Fig. 5. Wassenaar egg curve in unitsaof

Ken Sasaki 777



Vglz] x
04

0.2

-14 -12 -1 -08 -06 -04 -0.2

Fig. 6. The lemniscate in units af

We plot in Fig. 7 the Cartesian and Cassini ovals and the
Wassenaar egg curve, adjusting the paranseter each case
so that they have the same length along Fhe symmetry aXizn axisymmetric body. The center of ma3ss at the origin. The lin®©Q is
We observe that the Cartesian and Cassini ovals almo_st OVEL= hendicular to the line tangent to the curve at the pBifzx= T(2)).
lap. Indeed the axisymmetric bodies whose cross sections affe line PQ is on a horizontal table ang corresponds to the point of
expressed by these oval curves have close value&/Gf  contact. The lineQO defines the vertical axi©®Z, and the polar angle
(1.26 and 1.25 for the Cartesian and Cassini ovals, respebetweerOZ andOzis given by targ=1/8, whereg is the slope of the line
tively). However, we will see in Sec. IV that these ovals tangent to the curve &. The length ofOQ is h(6).
predict different spinning behavior for the corresponding axi-
symmetric bodies.

Fig. 8. An oval curvex= \/f(z) that describes a part of the cross section of

We take a coordinate system in which the center of mass
O resides at the origin. In this coordinate system, the oval

IV. WHICH END WILL RISE? curves satisfy

We obtain from Eqs(10) and(11), x>=f(z)=g(z+ zg), (22)
b= T v 20 whereg(z) is introduced in Eq(13) to describe the cross-
Vel TP (20 section of an axisymmetric body whose center of mass is at

z=2z,. We consider the poinP(z,x=f(z)) on the curve

with (see Fig. 8 The slopeg of the line tangent to the curve Bt
~ A h?uMg is given by
Vp:ij and T— A . (21)
dx f'(2)
Equation(20) implies that the change dfis governed by the B= dz ﬁ (23)

sign of Vp . If Vp is positive(negative, 6 will increase(de- ) . L . .
crease with time. Therefore a close examination of the be-DPraw a line from the origin which is perpendicular to the line
havior of Vp as a function of¢ will be important. Moffatt ~ tangent to the curve=yf(z) atP. Let the point of intersec-

and Shimomurashowed that for a uniform prolate spheroid, tion be Q(zq,xq), whose coordinates are

Vp has the formVpe«sin 20 with a negative proportionality B

constant. Thus if the body is spusufficiently rapidly on a 2q=———(Bz—f(2)), (249
table with the initial inclination angled,,ijy< /2, then B+l

decreases to 0. On the other hand, if the body is spun with 1

Owmiia™> 712, 0 increases taor. Either end will rise, because Xo=— EZQ. (24b)
both ends of the prolate spheroid look the same. The case of

a _real egg is different. We can easily distinguish k_)etween phsuppose that the lineQ is in a horizontal plane of table and
thin and the fat end. We will now analyze the axisymmetricp is the point of contact. Then the lif@O defines the ver-

bodies whose cross-sections are expressed by the oval CUNMgS;| axis OZ. The polar angleg, betweenOZ and Oz is
introduced in Sec. lll. determined by

1 2Jf(2)
tan0=E= 2 " (25

which gives the relation betweehandz The heighth(#6),
of O above the table is equal to the length@f), and we

obtain
1
h(9)=VZé+Xé=ﬁ(\/f(Z)—BZ), (26)

because (f(z) — 8z)>0. The squared length &#Q corre-
Fig. 7. The Cartesian ovdh solid curve, the Cassini ovalshort-dashed ( ) B ) q 9 Q

2 .
curve, and Wassenaar egg curi@ashed curveadjusted to have the same sponds tOXP' We Choosle the sign c)(P to be the same as
length along the symmetry axis. that of (z—zg) and obtain
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If we use Eqs(25)—(27), we confirm Eq.(4b) and find that
Vp in Eq. (12) can be rewritten as a functianas follows:

EN

Fig. 9. Xp as a function ofg for a Cartesian oval.
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Fig. 11. le as a function ofg for a Cassini oval.

line Vp=0 at an angled, andVp>0 for 6,<6#<m but is
negative for G< < 6.. So, the angl®, is acritical point. If

the body is spun on a table with the initial anghga

> 6., then # will increase tom, which means that the body
will eventually spin at the thin end. Fd,ia< 6., we will

see that the body spins at the fat end. That is, depending on
the initial value 6,2, the body will spin at the thin or the

fat end. Both ends are stable points. We haveC for Car-
tesian ovals, which leads tf.> 6, . Numerically we obtain

From Eq.(25), Xp andV; can be considered as functions from Egs.(30) and (29) that 6,=1.86 and6,=1.72. Recall

of 6. As an example, we plot in Fig. 9 the graphX versus
o for the case of the Cartesian oval in Ef6). In addition to
0=0 and, Xp vanishes at an anglg , which is obtained by

solving

z+ B+f(z)=0.

When the body is placed at rest on a table, its incIinatiorf
angle isd, and the heighh(#) of center of mas® from the
table is a minimum a®, . We observe from Eqg5) or (12)
that Vp=0 at =0 and 7, because sii=0 and dh/dé
(=Xp)=0 at these points. Moreovey,, vanishes at other

angles, which are given by solving

A

z

—+———==0.
C pf(2)

WhenA=C, Egs.(29) and(30) become equivalent, which
means tha¥/p and X vanish at the same inclination angle.
We next examine the graph ¥% as a function of for the

oval curves introduced in Sec. Ill.

(i) A Cartesian ovalFigure 10 shows thef!p crosses the

Ve
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Fig. 10. Vp as a function off for a Cartesian oval.
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that 6, is the inclination angle when the body is placed at
rest. If we give an arbitrary spin to the body, the initial angle
Oinitial tends to be nead, . Because & 6,<6, it is likely
that the body is spun with;,io between 0 and., and thus
it will shift to the stable spinning state at the fat end. Em-
irically, we more often observe eggs spinning at the fat end
ather than at the thin end. The expected behavior of the
axisymmetric body expressed by the Cartesian oval in Eq.
(16) well explains the observed features of the spinning egg.
(i) A Cassini oval The second example of oval curves
presents an interesting situation. We see from Fig. 11\that

crosses the lin& =0 at s and 6. (6s<6.), and thatVp is
negative forf;< 6< 6, and otherwise positive. Numerically
we obtain#;=0.45 and¢.=1.92 (and ¢, =1.77). Thus the
graph ofVp in Fig. 11 implies that for the Cassini ovél?7)

the thin end(6=m) is a stable point, but the fat end is not.
When the body is spun with the initial value 6fanywhere
between 0 and., 6 will approach thefixed pointé;. In
other words, the body will spin not at the fat end, but at the
point with the inclination angle; . It is interesting to note

Ve
0.3
0.2

0.1 6.

FNE
SR

-0.1

-0.2

Fig. 12. Vp as a function off for a Cassini oval with an air chamber.

Ken Sasaki 779



1
0.2
0.15 0.8
0.1 6 6 0.6
0.05 l
0.4
n Vi g 3 T 0
—_ —_ 14
~0.05 2 2 - 02 o &
-0.1 l 0
r 3
4 4

Fig. 13. VP as a function ofg for Wassenaar egg curve.
Fig. 14. V;p as a function ofg for the lemniscate.

that the curves of the Cartesiab6) and Cassin{17) ovals

almost overlap each other when they are adjusted to have thisition of the body at rest is @ =1.81, and its spinning
same length along the symmetry axsee Fig. 7. But they  giate has two stable points @t ¢; and 3r/4.

predict different behaviors fov, and thus different spinning

behaviors for the corresponding axisymmetric bodies. Does a

hard boiled egg show the behavior predicted by this CassinV. SUMMARY AND DISCUSSION

oval? We are almost certain that we have never seen such a ) o . _ .
behavior. We have examined the spinning behavior of axisymmetric

(iii) A Cassini oval with an air chambeBecause an egg bodies whose cross sections are described by several model
has an air chamber near the fat end, we study the case ofcarves, including a Cartesian oval, Cassini ovals with and
Cassini oval with an air chamber. The existence of an aitvithout an air chamber, and the Wassenaar egg curve. These
chamber moves the position of center of magsoward the results together with the lemniscate of Bernoulli are summa-
thin end, fromz,=—0.84( to z,=—0.79&, and reduces rized in Table_|: For each oval curve we l_Jsed th_e gyroscopic
the ratio A/IC from 1.25 to 1.07. Consequently, the fixed balance conditior(7) and found the predicted slip velocity

: P ; Vp of the contact point as a function of the inclination angle
point at s, which is present for Eq17), dlsappeqrs. The 'P . - .
graph ofV, in Fig. 12 shows that it crosses the liNg=0 0 and the existence of the critical anglge. When the body is

N L spun on a table with the initial angl@;;a> 6., 6 will in-
only once aw.“_l.g?' The inclination angle at rest becomescrease tomr, which means that the body will spin at the thin
0,=1.93, which is very close to the value @ because

: : ) o end. If 6i,iia< 6., then 6 will decrease. For the Cartesian
A/C~1. The axisymmetric body described by a Cassini ovaly5| and Cassini oval with an air chambenill reduce to 0

with an air chamber also reproduces the features of the spinynq the corresponding bodies will spin at the fat end. More-
ning €gg. . , over, when the bodies are spun without intention, we expect
(iv) Wassenaar egg curveigure 13 shows that this curve (4 gee their spinning states at the fat end more often than at

has a fixed point ad;=0.93. Whenfyy is between 0 and  he hin end because the inclination angjeat rest is smaller

fc=1.85, 6 will move to ¢;, another stable point in addition han ¢_. This behavior is consistent with the features of a
to the one at the thin en@=). In addition, the graph ok spinning egg.

for this oval curve vanishes at two other pOintS. One is at On the other hand, the Cassini oval and Wassenaar egg
6:=1.78, a position at rest, and one &t0.58, an unstable cyrves predict the existence of the fixed pointat where
point. ) , ) 0< 6;<6.. Then the fat end#=0) is no longer a stable

(v)_ Lemniscate of BernoulliFor the lemniscate of Ber- point. If the corresponding bodies are spun withy
noulii, we find “mzizmax(lll_g): —1, so that Eq(25)_te||s US" <., 6 moves tos; and not to 0, and the bodies will spin at
that the allowed region of is between 0 and@4. Figure 14 4 new stable point af; . The lemniscate of Bernoulli is not
shows thatVp vanishes at the fat enth=0), at the fixed an oval curve, but the body described by this curve also has
point (6;=0.74), and at the critical pointd¢=1.96). The a fixed point.

Table I. Predicted values of the critical anglg, the inclination angle at re#, , and the fixed point anglé; for the axisymmetric bodies whose cross sections
are described by the various oval curves. Also tabulated are the predicted possibilities of those axisymmetric bodies spinning at the fatrand/odthe t

Critical The angle Fixed point Spin at Spin at
Oval curves angle 6, at resté, angle 6¢ the fat end the thin end

Cartesian ovalEq. (16)] 1.86 1.72 Not exist Yes Yes
Cassini oval Eqg. (17)] 1.92 1.77 0.45 No Yes
Cassini ovalEqg. (17)] with 1.97 1.93 Not exist Yes Yes
an air chamberz,,;,,=—1.2a)
Wassenaar egg curV&qg. (18)] 1.85 1.78 0.93 No Yes
Lemniscatg Eq. (19)] 1.96 1.81 0.74 No No
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It would be very interesting to make axisymmetric bodieswith a numerical factory~O(1) for Coulomb friction, and
whose cross sections are described by the Cassini(@Val  t(6,— )= (1/ug) x with y~O(10) for viscous friction.
Wassenaar egg curvd8) and the lemniscate of Bernoulli
(19) and determine if those bodies will spin at a new stable
point that is different from the fat end. ACKNOWLEDGMENTS
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A THEORETICAL CONCEPT

Forty-nine years old; strong-featured face, brooding eyes, a mass of sexy dark hair she|tosses
about like a forties movie vamp, the walk seductive and knowing, the mouth sullen and grievance-
collecting in respose, then surprisingly girlish in laughter when the eyes fill with a sudden shim-
mering light. Alma Norovsky is a theoretical physicist at a university renowned for its devotign to
the life of the mind. Of her colleagues Alma says drily: “They’re very theoretical. People|are
always asking me how women are treated here. ‘Women?’ | answer. ‘They're a theoretical con-
cept.””

Vivian Gornick, Women in Science; Portraits from a World in Transiti@imon and Schuster, Inc., 199@®Reprinted in
The World Treasury of Physics, Astronomy, and Mathemétiitse, Brown and Company, Boston, MA, 1991p. 747.
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