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We examine the spinning behavior of egg-shaped axisymmetric bodies whose cross sections are
described by several oval curves similar to real eggs with thin and fat ends. We use the gyroscopic
balance condition of Moffatt and Shimomura and analyze the slip velocity of the bodies at the point
of contact as a function ofu, the angle between the axis of symmetry and the vertical axis, and find
the existence of the critical angleuc . When the bodies are spun with an initial angleu initial.uc , u
will increase top, implying that the body will spin at the thin end. Alternatively, ifu initial,uc , then
u will decrease. For some oval curves,u will reduce to 0 and the corresponding bodies will spin at
the fat end. For other oval curves, a fixed point atu f is predicted, where 0,u f,uc . Then the bodies
will spin not at the fat end, but at a new stable point withu f . The empirical fact that eggs more often
spin at the fat than at the thin end is explained. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Spinning objects have historically been interesting s
jects to study. The spin reversal of the rattleback1 ~also called
a celt or wobblestone! and the behavior of the tippe top2 are
typical examples. Recently, the riddle of spinning eggs w
resolved by Moffatt and Shimomura.3 When a hard-boiled
egg is spun sufficiently rapidly on a table with its axis
symmetry horizontal, the axis will rise from the horizontal
the vertical. They discovered that if an axisymmetric body
spun sufficiently rapidly, a gyroscopic balance conditi
holds. Given this condition a constant of the motion exi
for the spinning motion of an axisymmetric body. The co
stant, which is known as the Jellett constant,4 has been found
previously for symmetric tops such as the tippe top. Us
these facts, they derived a first-order differential equation
u, the angle between the axis of symmetry and the vert
axis. For a uniform spheroid as an example they showed
the axis of symmetry indeed rises from the horizontal to
vertical.

The shape of an egg looks like a spheroid, but is not
actly so. It has thin and fat ends. Which end of the spinn
egg will rise? Empirically, we know that either end can ris
But we more often see eggs spinning at the fat end with
thin end up rather than the other way round. In this paper
investigate the spinning behavior of egg-shaped axisymm
ric bodies whose cross sections are described by several
curves. We use the gyroscopic balance condition and ana
the slip velocity of the body at the point of contact as
function of u and find the existence of the critical angleuc
for each model curve. When the bodies are spun with
initial angle u initial.uc , u will increase top, which means
that the body will spin at the thin end. Alternatively,
u initial,uc , then u will decrease. For some oval curves,u
will decrease to 0 and the corresponding bodies will shift
the stable spinning state at the fat end. For other oval cur
a fixed point atu f is predicted, where 0,u f,uc . In this
case the bodies will spin not at the fat end but at a new st
point with u f . We also explain why we observe more eg
spinning at the fat end than at the thin end.

The paper is organized as follows: To explain our notat
and the geometry, we review the work of Ref. 3 on spinn
eggs in Sec. II. Then in Sec. III we introduce several mod
775 Am. J. Phys.72 ~6!, June 2004 http://aapt.org/ajp
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of oval curves that we will study. In Sec. IV we analyze t
spinning behavior of axisymmetric bodies whose cross s
tions are described by these oval curves. The final sectio
devoted to a summary and discussion.

II. SPINNING EGG

We follow the geometry and notation of Ref. 3 in the
analysis of spinning eggs as much as possible. As is sh
in Fig. 1, an axisymmetric body spins on a horizontal ta
with point of contactP. We will work in a rotating frame of
referenceOXYZ, where the center of mass is at the orig
O. The symmetry axis of the body,Oz, and the vertical axis,
OZ, define a planeP, which precesses aboutOZ with an-
gular velocityV(t)5(0,0,V). We choose the horizontal axi
OX in the planeP and thusOY is vertical toP and inward.
The angle of interest isu(t), the angle betweenOZ andOz.

In a rotating frame of referenceOxyz, whereOx is in the
plane P and perpendicular to the symmetry axisOz and
whereOy coincides withOY, the body spins aboutOz with
the rate ċ. BecauseV is expressed asV52V sinux̂
1V cosuẑ in the frameOxyz, the angular velocity of the
body,v, is given byv52V sinux̂1u̇ŷ1nẑ. Herex̂, ŷ, and
ẑ are unit vectors alongOx, Oy, andOz, respectively,n(t)
is given byn5V cosu1ċ, and the dot represents differen
tiation with respect to time. TheOx and Oy axes are not
body-fixed axes but are principal axes, so that the ang
momentum,L , is expressed asL52AV sinux̂1Au̇ŷ1Cnẑ,
where (A,A,C) are the principal moments of inertia atO.

The coordinate systemOXYZ is obtained from the frame
Oxyzby rotating the latter about theOy (OY) axis through
the angleu. Hence, in the rotating frameOXYZ, v and L
have components

v5~~n2V cosu!sinu,u̇,V sin2 u1n cosu!, ~1!

L5~~Cn2AV cosu!sinu,Au̇,AV sin2 u1Cn cosu!,
~2!

respectively. The evolution ofL is governed by Euler’s equa
tion,
775© 2004 American Association of Physics Teachers
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1V3L5XP3~R1F!, ~3!

whereXP is the position vector of the contact pointP from
O, R is the normal reaction atP, R5(0,0,R), with R being
of order Mg, the weight, andF is the frictional force atP.
Because the pointP lies in the planeP, XP has components
(XP,0,Zp), which are given by

ZP52h~u!, ~4a!

XP5
dh

du
, ~4b!

whereh(u) is the height ofO above the table. We will see in
Sec. IV thath(u) is determined as a function ofu, once the
geometry and density distribution of the body are known

When the frictional force is weak andu̇ is correspondingly
small, the slip velocity of the pointP is, to leading order in
u̇, expressed asUP5(0,VP,0), where

VP5~V sin2 u1n cosu!
dh

du
1~n2V cosu!h~u!sinu.

~5!

Hence, the frictional force,F, is to leading order,F
5(0,F,0), whereF is a function ofVP given by the law of
dynamic friction between the two surfaces in contact.
later assume Coulomb friction forF.

The Y-component of Eq.~3! is expressed by

Aü1~Cn2AV cosu!V sinu52RXP . ~6!

Because the secular change ofu is slow and thusuüu!V2,
the first term in Eq.~6! can be neglected. Furthermore, in
situation whereV2 is sufficiently large so that the term
involving V in Eq. ~6! dominate the term2RXP , Eq. ~6! is
reduced, in leading order, to (Cn2AV cosu)V sinu50.
Hence, for sinuÞ0, we arrive at the condition

Cn5AV cosu, ~7!

Fig. 1. An axisymmetric body with center of massO on a horizontal table
with point of contactP. Its axis of symmetry,Oz, and the vertical axis,OZ,
define a plane II, which precesses aboutOZ with angular velocityV(t)
5(0,0,V). OXYZis a rotating frame of reference withOX horizontal in the
planeP. The height ofO above the table ish(u) ~from Ref. 3!.
776 Am. J. Phys., Vol. 72, No. 6, June 2004
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which was recently obtained by Moffatt and Shimomur3

and was called by them the gyroscopic balance condit
Under this condition, the Jellett constant4 also exists for a
general axisymmetric body. With Eq.~7!, the angular mo-
mentum simplifies toL5(0,Au̇,AV), and the X- and
Z-components of Eq.~3! reduce, respectively, to

AVu̇5FZP , ~8a!

AV̇5FXP . ~8b!

Equation~8!, together with Eq.~4!, leads to

2L "XP5AVh5J5constant, ~9!

where the Jellett constantJ is determined by the initial con
ditions. From Eqs.~4!, ~9!, and~8a!, we obtain a first-order
differential equation foru,

Ju̇52Fh2~u!. ~10!

If we assume Coulomb friction,F is given by

F52mMg
VP

uVPu
, ~11!

and VP in Eq. ~5!, given the gyroscopic balance conditio
~7!, is expressed as a function ofu as

VP5
J

Ah~u! F S sin2 u1
A

C
cos2 u D dh

du

1sinu cosuS A

C
21Dh~u!G . ~12!

Hence, if we knowh(u) from geometrical considerations
we may solve Eq.~10! and determine the time dependence
u. Moffatt and Shimomura3 considered a uniform spheroid a
an example and showed thatu decreases fromp/2 to 0 for
the prolate spheroid whileu increases from 0 top/2 for the
oblate one.

However, the shape of an egg is not a spheroid and
thin and fat ends. Which end of the spinning egg will ris
Empirically, we know that either end may rise and that t
body spins with its axis of symmetry vertical. Which end t
spinning egg chooses might seem to depend on the in
inclination of the axis of symmetry, that is, the initial valu
of u. In the following we examine several models of ov
curves and determine the relation between the initial value
u and the final spinning position of the egg-shaped body

III. MODELS OF OVAL CURVE

The shape of a three-dimensional egg can be reconstru
by rotating its two-dimensional cross section around the a
of symmetry. The cross section of an egg looks similar to
ellipse, but is not quite. It is sharper at one end than at
other. We will examine several model curves that have b
proposed for the cross-section of a real egg.

Let us consider an axisymmetric body whose cross-sec
is described by

x25g~z!, ~13!

with g(z).0 for zmin,z,zmax and g(zmin)5g(zmax)50,
where we choose thez axis as the symmetry axis. If the bod
has uniform density, then the volume and thez component of
center of mass are given, respectively, by
776Ken Sasaki
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V5pE
zmin

zmax
g~z!dz, ~14a!

zg5
p

V E
zmin

zmax
zg~z!dz. ~14b!

The principal moments of inertia at center of mass are
pressed by

A5M
p

V E
zmin

zmaxF1

4
@g~z!#21g~z!~z2zg!2Gdz, ~15a!

C5
M

2

p

V E
zmin

zmax
@g~z!#2dz. ~15b!

Of course, the density of a real egg is not uniform. But if t
density distribution is given byr(r ,z) as a function ofr and
z, wherer is the distance from the symmetry axis, and t
cross-section is still described by Eq.~13!, we can calculate
zg , A, andC.

The following are the oval curves that we will examine
~i! Cartesian oval: The curve, given by Az21x2

1mA(z1a)21x25c, consists of two ovals. For definite
ness we setm52. The inside oval is expressed byx2

5g(z) with

g~z!52z22
8

3
az1

a2

9
~5k2212!

2
4

9
ka2Ak2232

6z

a
, ~16!

with k5c/a. For k59/4, we find thatg(z) is defined for the
interval 2 17

12a<z< 1
12a, zg520.710a, andA/C51.26 ~see

Fig. 2!.
~ii ! Cassini oval: This quartic curve is expressed by@(z
1a)21x2#@(z2a)21x2#5b4 with a,b.0. If a.b, the
curve consists of two loops, both of which look like th
cross-section of a real egg with thin and fat ends. We cho
the one that is expressed byx25g(z) with

Fig. 3. A Cassini oval in units ofa.

Fig. 2. A Cartesian oval in units of the arbitrary lengtha.
777 Am. J. Phys., Vol. 72, No. 6, June 2004
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g~z!52~z21a2!1aA4z21l4a2, ~17!

wherel5b/a,1 and2aA11l2<z<2aA12l2, so that
the thin end points to the positivez axis ~see Fig. 3!. For
l50.98, we find zmin521.40a, zmax520.199a, zg

520.840a, andA/C51.25.
~iii ! Cassini oval with an air chamber: A real egg has an air
chamber near the fat end. We take into account the existe
of an air chamber by using the Cassini oval~17! and taking
zmin52aa, with A12l2,a,A11l2 for the evaluation of
V, zg , A, andC. This condition means that an empty spa
exists for 2A11l2a<z<2aa ~see Fig. 4!. For l50.98
and a51.2, we obtainzg520.798a and A/C51.07. The
position of the center of masszg is closer to the thin end and
the ratioA/C is smaller compared to the curve without an a
chamber.
~iv! Wassenaar egg curve: A rather simple equation for an
oval curve was proposed recently by Wassenaar5 and is given
by

x25g~z!52a@22z2ja1A4a214jaz1j2a2#, ~18!

for 5,j,6 and 2a<z<a. For j55.6 we find zg

520.0714a andA/C51.21 ~see Fig. 5!.
~v! Lemniscate of Bernoulli: The lemniscate of Bernoulli is
not a candidate for oval curves and actually looks like
infinity symbol. We study it because its final spinning po
tion might be interesting. The curve is expressed by@(z
1a)21x2#@(z2a)21x2#5a4. We study the half of the
curve that is given by

x25g~z!52~z21a2!1aA4z21a2, ~19!

with 2A2a<z<0. The lemniscate is a special case of
Cassini oval and is obtained by settinga5b in Eq. ~17!. For
the lemniscate, we obtainzg520.813a andA/C51.34 ~see
Fig. 6!.

Fig. 4. A Cassini oval with an air chamber in units ofa.

Fig. 5. Wassenaar egg curve in units ofa.
777Ken Sasaki
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We plot in Fig. 7 the Cartesian and Cassini ovals and
Wassenaar egg curve, adjusting the parametera for each case
so that they have the same length along the symmetry a
We observe that the Cartesian and Cassini ovals almost o
lap. Indeed the axisymmetric bodies whose cross section
expressed by these oval curves have close values ofA/C
~1.26 and 1.25 for the Cartesian and Cassini ovals, res
tively!. However, we will see in Sec. IV that these ova
predict different spinning behavior for the corresponding a
symmetric bodies.

IV. WHICH END WILL RISE?

We obtain from Eqs.~10! and ~11!,

u̇5
t

uVPu
ṼP , ~20!

with

ṼP5VP

A

J
and t5

h2mMg

A
. ~21!

Equation~20! implies that the change ofu is governed by the
sign of ṼP . If ṼP is positive~negative!, u will increase~de-
crease! with time. Therefore a close examination of the b
havior of ṼP as a function ofu will be important. Moffatt
and Shimomura3 showed that for a uniform prolate spheroi
ṼP has the formṼP}sin 2u with a negative proportionality
constant. Thus if the body is spun~sufficiently rapidly! on a
table with the initial inclination angleu initial,p/2, then u
decreases to 0. On the other hand, if the body is spun
u initial.p/2, u increases top. Either end will rise, becaus
both ends of the prolate spheroid look the same. The cas
a real egg is different. We can easily distinguish between
thin and the fat end. We will now analyze the axisymmet
bodies whose cross-sections are expressed by the oval c
introduced in Sec. III.

Fig. 6. The lemniscate in units ofa.

Fig. 7. The Cartesian oval~a solid curve!, the Cassini oval~short-dashed
curve!, and Wassenaar egg curve~dashed curve! adjusted to have the sam
length along the symmetry axis.
778 Am. J. Phys., Vol. 72, No. 6, June 2004
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We take a coordinate system in which the center of m
O resides at the origin. In this coordinate system, the o
curves satisfy

x25 f ~z!5g~z1zg!, ~22!

whereg(z) is introduced in Eq.~13! to describe the cross
section of an axisymmetric body whose center of mass i
z5zg . We consider the pointP(z,x5Af (z)) on the curve
~see Fig. 8!. The slopeb of the line tangent to the curve atP
is given by

b[
dx

dz
5

f 8~z!

2Af ~z!
. ~23!

Draw a line from the origin which is perpendicular to the lin
tangent to the curvex5Af (z) at P. Let the point of intersec-
tion beQ(zQ ,xQ), whose coordinates are

zQ5
b

b211
~bz2Af ~z!!, ~24a!

xQ52
1

b
zQ . ~24b!

Suppose that the linePQ is in a horizontal plane of table an
P is the point of contact. Then the lineQO defines the ver-
tical axis OZ. The polar angle,u, betweenOZ and Oz is
determined by

tanu5
1

b
5

2Af ~z!

f 8~z!
, ~25!

which gives the relation betweenu andz. The height,h(u),
of O above the table is equal to the length ofOQ, and we
obtain

h~u!5AzQ
2 1xQ

2 5
1

Ab211
~Af ~z!2bz!, ~26!

because (Af (z)2bz).0. The squared length ofPQ corre-
sponds toXP

2 . We choose the sign ofXP to be the same as
that of (z2zQ) and obtain

Fig. 8. An oval curvex5Af (z) that describes a part of the cross section
an axisymmetric body. The center of massO is at the origin. The lineOQ is
perpendicular to the line tangent to the curve at the pointP(z,x5Af (z)).
The line PQ is on a horizontal table andP corresponds to the point o
contact. The lineQO defines the vertical axisOZ, and the polar angleu
betweenOZ andOz is given by tanu51/b, whereb is the slope of the line
tangent to the curve atP. The length ofOQ is h(u).
778Ken Sasaki
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1

Ab211
~z1bAf ~z!!. ~27!

If we use Eqs.~25!–~27!, we confirm Eq.~4b! and find that
VP in Eq. ~12! can be rewritten as a functionz as follows:

VP5
J

A

b2

b211
F S 1

b2
1

A

CD z1bAf ~z!

Af ~z!2bz
1

1

b S A

C
21D G .

~28!

From Eq.~25!, XP andVP can be considered as function
of u. As an example, we plot in Fig. 9 the graph ofXP versus
u for the case of the Cartesian oval in Eq.~16!. In addition to
u50 andp, XP vanishes at an angleu r , which is obtained by
solving

z1bAf ~z!50. ~29!

When the body is placed at rest on a table, its inclinat
angle isu r and the heighth(u) of center of massO from the
table is a minimum atu r . We observe from Eqs.~5! or ~12!
that VP50 at u50 and p, because sinu50 and dh/du
(5Xp)50 at these points. Moreover,VP vanishes at othe
angles, which are given by solving

A

C
1

z

bAf ~z!
50. ~30!

When A5C, Eqs. ~29! and ~30! become equivalent, which
means thatVP andXP vanish at the same inclination angl

We next examine the graph ofṼP as a function ofu for the
oval curves introduced in Sec. III.

~i! A Cartesian oval: Figure 10 shows thatṼP crosses the

Fig. 9. XP as a function ofu for a Cartesian oval.

Fig. 10. ṼP as a function ofu for a Cartesian oval.
779 Am. J. Phys., Vol. 72, No. 6, June 2004
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line ṼP50 at an angleuc and ṼP.0 for uc,u,p but is
negative for 0,u,uc . So, the angleuc is acritical point. If
the body is spun on a table with the initial angleu initial

.uc , thenu will increase top, which means that the bod
will eventually spin at the thin end. Foru initial,uc , we will
see that the body spins at the fat end. That is, dependin
the initial valueu initial , the body will spin at the thin or the
fat end. Both ends are stable points. We haveA.C for Car-
tesian ovals, which leads touc.u r . Numerically we obtain
from Eqs.~30! and ~29! that uc51.86 andu r51.72. Recall
that u r is the inclination angle when the body is placed
rest. If we give an arbitrary spin to the body, the initial ang
u initial tends to be nearu r . Because 0,u r,uc , it is likely
that the body is spun withu initial between 0 anduc , and thus
it will shift to the stable spinning state at the fat end. Em
pirically, we more often observe eggs spinning at the fat e
rather than at the thin end. The expected behavior of
axisymmetric body expressed by the Cartesian oval in
~16! well explains the observed features of the spinning e

~ii ! A Cassini oval: The second example of oval curve
presents an interesting situation. We see from Fig. 11 thatṼP

crosses the lineṼP50 atu f anduc (u f,uc), and thatṼP is
negative foru f,u,uc and otherwise positive. Numericall
we obtainu f50.45 anduc51.92 ~and u r51.77). Thus the
graph ofṼP in Fig. 11 implies that for the Cassini oval~17!
the thin end~u5p! is a stable point, but the fat end is no
When the body is spun with the initial value ofu anywhere
between 0 anduc , u will approach thefixed pointu f . In
other words, the body will spin not at the fat end, but at t
point with the inclination angleu f . It is interesting to note

Fig. 12. ṼP as a function ofu for a Cassini oval with an air chamber.

Fig. 11. ṼP as a function ofu for a Cassini oval.
779Ken Sasaki
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that the curves of the Cartesian~16! and Cassini~17! ovals
almost overlap each other when they are adjusted to have
same length along the symmetry axis~see Fig. 7!. But they
predict different behaviors forṼP and thus different spinning
behaviors for the corresponding axisymmetric bodies. Do
hard boiled egg show the behavior predicted by this Cas
oval? We are almost certain that we have never seen su
behavior.

~iii ! A Cassini oval with an air chamber: Because an egg
has an air chamber near the fat end, we study the case
Cassini oval with an air chamber. The existence of an
chamber moves the position of center of masszg toward the
thin end, fromzg520.840a to zg520.798a, and reduces
the ratio A/C from 1.25 to 1.07. Consequently, the fixe
point at u f , which is present for Eq.~17!, disappears. The
graph ofṼP in Fig. 12 shows that it crosses the lineṼP50
only once atuc51.97. The inclination angle at rest becom
u r51.93, which is very close to the value ofuc because
A/C'1. The axisymmetric body described by a Cassini o
with an air chamber also reproduces the features of the s
ning egg.

~iv! Wassenaar egg curve: Figure 13 shows that this curv
has a fixed point atu f50.93. Whenu initial is between 0 and
uc51.85,u will move to u f , another stable point in additio
to the one at the thin end~u5p!. In addition, the graph ofXP
for this oval curve vanishes at two other points. One is
u r51.78, a position at rest, and one atu50.58, an unstable
point.

~v! Lemniscate of Bernoulli: For the lemniscate of Ber
noulli, we find limz→zmax

(1/b)521, so that Eq.~25! tells us
that the allowed region ofu is between 0 and 3p/4. Figure 14
shows thatṼP vanishes at the fat end~u50!, at the fixed
point (u f50.74), and at the critical point (uc51.96). The

Fig. 13. ṼP as a function ofu for Wassenaar egg curve.
780 Am. J. Phys., Vol. 72, No. 6, June 2004
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position of the body at rest is atu r51.81, and its spinning
state has two stable points atu5u f and 3p/4.

V. SUMMARY AND DISCUSSION

We have examined the spinning behavior of axisymme
bodies whose cross sections are described by several m
curves, including a Cartesian oval, Cassini ovals with a
without an air chamber, and the Wassenaar egg curve. T
results together with the lemniscate of Bernoulli are summ
rized in Table I. For each oval curve we used the gyrosco
balance condition~7! and found the predicted slip velocit
VP of the contact point as a function of the inclination ang
u and the existence of the critical angleuc . When the body is
spun on a table with the initial angleu initial.uc , u will in-
crease top, which means that the body will spin at the th
end. If u initial,uc , then u will decrease. For the Cartesia
oval and Cassini oval with an air chamber,u will reduce to 0
and the corresponding bodies will spin at the fat end. Mo
over, when the bodies are spun without intention, we exp
to see their spinning states at the fat end more often tha
the thin end because the inclination angleu r at rest is smaller
than uc . This behavior is consistent with the features of
spinning egg.

On the other hand, the Cassini oval and Wassenaar
curves predict the existence of the fixed point atu f , where
0,u f,uc . Then the fat end~u50! is no longer a stable
point. If the corresponding bodies are spun withu initial

,uc , u moves tou f and not to 0, and the bodies will spin a
a new stable point atu f . The lemniscate of Bernoulli is no
an oval curve, but the body described by this curve also
a fixed point.

Fig. 14. ṼP as a function ofu for the lemniscate.
ns
e t
Table I. Predicted values of the critical angleuc , the inclination angle at restu r , and the fixed point angleu f for the axisymmetric bodies whose cross sectio
are described by the various oval curves. Also tabulated are the predicted possibilities of those axisymmetric bodies spinning at the fat and/or thhin end.

Oval curves
Critical
angleuc

The angle
at restu r

Fixed point
angleu f

Spin at
the fat end

Spin at
the thin end

Cartesian oval@Eq. ~16!# 1.86 1.72 Not exist Yes Yes
Cassini oval@Eq. ~17!# 1.92 1.77 0.45 No Yes
Cassini oval@Eq. ~17!# with
an air chamber (zmin521.2a)

1.97 1.93 Not exist Yes Yes

Wassenaar egg curve@Eq. ~18!# 1.85 1.78 0.93 No Yes
Lemniscate@Eq. ~19!# 1.96 1.81 0.74 No No
780Ken Sasaki
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It would be very interesting to make axisymmetric bod
whose cross sections are described by the Cassini oval~17!,
Wassenaar egg curve~18! and the lemniscate of Bernoul
~19! and determine if those bodies will spin at a new sta
point that is different from the fat end.

The inclusion of an air chamber at the fat end tends
diminish the appearance of the fixed point atu f . The case of
a Cassini oval is an example. For the Wassenaar egg cu
we need a rather large air chamber; an empty space for2a
<z<20.5a in Eq. ~18! is necessary for the disappearance
u f . The fixed point of the lemniscate vanishes if we ta
zmin521.33a for Eq. ~19!. Moreover, the inclusion of an ai
chamber at the fat end moves the position of the cente
mass zg toward the thin end and makes the ratioA/C
smaller. Consequently, the values of the critical angleuc and
the inclination angle at restu r move towardp.

We have assumed Coulomb’s law for the frictionF @see
Eq. ~11!#. If we instead assume a viscous friction law,

F52m̃MgVP , ~31!

all our conclusions remain unchanged, in particular, the
sitions of the critical points and fixed points. Only the tra
sition time from the unstable to the stable state will be mo
fied. As an example, the transition time from the angleuc to
p is numerically calculated to bet(uc→p)5(J/mMga2)x
781 Am. J. Phys., Vol. 72, No. 6, June 2004
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with a numerical factorx;O~1! for Coulomb friction, and
t(uc→p)5(1/m̃g)x with x;O~10! for viscous friction.
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A THEORETICAL CONCEPT

Forty-nine years old; strong-featured face, brooding eyes, a mass of sexy dark hair she tosses
about like a forties movie vamp, the walk seductive and knowing, the mouth sullen and grievance-
collecting in respose, then surprisingly girlish in laughter when the eyes fill with a sudden shim-
mering light. Alma Norovsky is a theoretical physicist at a university renowned for its devotion to
the life of the mind. Of her colleagues Alma says drily: ‘‘They’re very theoretical. People are
always asking me how women are treated here. ‘Women?’ I answer. ‘They’re a theoretical con-
cept.’ ’’

Vivian Gornick, Women in Science; Portraits from a World in Transition~Simon and Schuster, Inc., 1990!. Reprinted in
The World Treasury of Physics, Astronomy, and Mathematics~Little, Brown and Company, Boston, MA, 1991!, p. 747.
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