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We investigate target mass effects in the unpolarized virtual photon structure functions F�2 �x;Q
2; P2�

and F�L�x;Q
2; P2� in perturbative QCD for the kinematical region �2 � P2 � Q2, where �Q2��P2� is

the mass squared of the probe (target) photon and � is the QCD scale parameter. We obtain the
Nachtmann moments for the structure functions and then, by inverting the moments, we get the
expressions in closed form for F�2 �x;Q

2; P2� up to the next-to-next-to-leading order and for
F�L�x;Q

2; P2� up to the next-to-leading order, both of which include the target mass corrections.
Numerical analysis exhibits that target mass effects appear at large x and become sizable near xmax��
1=�1� P2

Q2��, the maximal value of x, as the ratio P2=Q2 increases.
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I. INTRODUCTION

It is well known that, in e�e� collision experiments, the
cross section for the two-photon processes e�e� !
e�e� � hadrons illustrated in Fig. 1 dominates at high
energies over other processes such as one-photon annihi-
lation process e�e� ! �� ! hadrons. Here we consider
the two-photon processes in the double-tag events, where
both the outgoing e� and e� are detected. Especially, we
investigate the case in which one of the virtual photon is far
off-shell (large Q2 � �q2), while the other is close to the
mass-shell (small P2 � �p2). This process can be viewed
as a deep-inelastic scattering off a photon target [1] with
mass squared�P2, through which we can study the photon
structure functions.

In the case of a real photon target (P2 � 0), unpolarized
(spin-averaged) photon structure functions F�2 �x;Q

2� and
F�L�x;Q

2� were studied first in the parton model [2], and
then investigated in perturbative QCD (pQCD). In the
framework based on the operator product expansion
(OPE) [3] supplemented by the renormalization (RG)
group method, Witten [4] obtained the leading order
(LO) QCD contributions to F�2 and F�L and, shortly after,
the next-to-leading order (NLO) QCD corrections to F�2
were calculated by Bardeen and Buras [5]. The same

results were rederived by the QCD improved parton model
approach [6,7]. The QCD analysis of the polarized photon
structure function g�1 �x;Q

2� for the real photon target was
performed in the LO [8] and in the NLO [9,10].

The structure functions F�2 �x;Q
2; P2� and F�L�x;Q

2; P2�
for the case of a virtual photon target (P2 � 0) were
studied in the LO [11] and in the NLO [12] by pQCD. In
fact, these structure functions were analyzed in the kine-
matical region,

e−(e+)

e+(e−)

q2=-Q2<0

p2=-P2<0

‘Probe Photon’

‘Target Photon’

FIG. 1. Deep inelastic scattering on a virtual photon in the
e�e� collider experiments.
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 �2 � P2 � Q2; (1.1)

where � is the QCD scale parameter. The advantage of
studying a virtual photon target in the kinematical region
(1.1) is that we can calculate the whole structure function,
its shape and magnitude, by the perturbative method. This
is contrasted with the case of the real photon target where
in the NLO there exist nonperturbative pieces. The virtual
photon structure functions F�2 and F�L were also studied by
using the DGLAP-type QCD evolution equations [13–16].
In the same kinematical region (1.1), the polarized virtual
photon structure function g�1 �x;Q

2; P2�was investigated up
to the NLO in QCD in Ref. [17] and in the second paper of
[10]. Moreover, the polarized parton distributions inside
the virtual photon were analyzed in [18]. Recently the first
moment of g�1 �x;Q

2; P2� was calculated up to the next-to-
next-to-leading order (NNLO) [19]. For more information
on the recent theoretical and experimental investigation of
unpolarized and polarized photon structure, see the review
articles [20].

In our previous paper [21], we have studied the unpo-
larized virtual photon structure functions, F�2 �x;Q

2; P2� up
to the NNLO and F�L�x;Q

2; P2� up to the NLO, in pQCD
for the kinematical region (1.1). This investigation became
possible thanks to the recent three-loop calculations of the
parton-parton as well as photon-parton splitting functions
[22–24]. There we have considered the logarithmic cor-
rections arising from the QCD higher-order effects up to
the NNLO, and ignored all the power corrections of the
form �P2=Q2�k�k � 1; 2; 	 	 	� coming either from target
mass effects or from higher-twist effects.

In fact, if the target is a real photon (P2 � 0), there is no
need to consider target mass corrections. But when the
target becomes off-shell, for example, P2 
 M2, where
M is the nucleon mass, and for relatively low values of
Q2, contributions suppressed by powers of P2=Q2 may
become important. Then we need to take into account these
target mass contributions just like the case of the nucleon
structure functions. The consideration of target mass ef-
fects (TME) is important by another reason. For the virtual
photon target, the maximal value of the Bjorken variable x
is not 1 but

 xmax �
1

1� P2

Q2

; (1.2)

due to the constraint �p� q�2 
 0, which is in contrast to
the nucleon case where xmax � 1. The structure functions
should vanish at x � xmax. However, both the QCD NNLO
result for F�2 �x;Q

2; P2� and the NLO result for
F�L�x;Q

2; P2� [21] show that the predicted graphs do not
vanish but remains finite at x � xmax. This flaw is coming
from the fact that TME have not been taken into account in
the analysis. The target mass corrections have been studied
in the past for the cases of unpolarized [25–27] and
polarized [28–32] nucleon structure functions. As for the

polarized virtual photon structure functions g�1 �x;Q
2; P2�

and g�2 �x;Q
2; P2�, TME have been studied in Ref. [33].

In the present paper, we investigate the TME for the
unpolarized virtual photon structure functions,
F�2 �x;Q

2; P2� up to the NNLO and F�L�x;Q
2; P2� up to

the NLO, in pQCD. We use the framework of the OPE
supplemented by the RG method. The photon matrix ele-
ments of the relevant traceless operators in the OPE are
expressed by traceless tensors. These tensors contain many
trace terms so that they satisfy the tracelessness conditions.
The basic idea for computing the target mass corrections is
to take account of these trace terms in the traceless tensors
properly. There are two methods used so far for collecting
all those trace terms. One, which was introduced by
Nachtmann [25], is to make use of Gegenbauer polyno-
mials to express the contractions between q�1

	 	 	 q�n
and

the traceless tensors [25,28–30]. This method leads to the
Nachtmann moments for the operators with definite spin.
The other, first used by Georgi and Politzer [26], is to write
traceless tensors explicitly and then to collect trace terms
and sum them up. Through the latter approach, the mo-
ments of structure functions are expressed as functions of
the reduced operator matrix elements and coefficient func-
tions with different spins. Actually both methods give
equivalent results. In this paper we apply the former
method to study the target mass corrections to the structure
functions F�2 and F�L.

In the next section we discuss the framework for analyz-
ing the TME based on the OPE. We introduce Gegenbauer
polynomials to take account of the trace terms properly. In
Sec. III we derive the Nachtmann moments for the struc-
ture functions using the orthogonality relations of
Gegenbauer polynomials. In Sec. IV, by inverting the
Nachtmann moments, we obtain the explicit expression
for F�2 �x;Q

2; P2� [for F�L�x;Q
2; P2�] evaluated up to the

NNLO (up to the NLO) with TME included. In Sec. V we
perform the numerical analysis and show that target mass
corrections become sizable near xmax. The final section is
devoted to the conclusion.

II. OPERATOR PRODUCT EXPANSION

We analyze the virtual photon structure functions
F�2 �x;Q

2; P2� and F�L�x;Q
2; P2� using the theoretical

framework based on the OPE and the RG method. Unless
otherwise stated, we will follow the notation of Ref. [5].
Let us consider the forward virtual photon scattering am-
plitude for ��q� � ��p� ! ��q� � ��p� illustrated in
Fig. 2,
 

T�����p; q� � i
Z
d4xd4yd4zeiq	xeip	�y�z�

� h0jT�J��x�J��0�J��y�J��z��j0i; (2.1)

where J� is the electromagnetic current. Its absorptive part
is related to the structure tensor W�����p; q� for the target
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photon with mass squared p2 � �P2 probed by the photon
with q2 � �Q2:

 W�����p; q� �
1

�
ImT�����p; q�: (2.2)

Taking a spin average for the target photon, we get

 W�
���p; q� �

1

2

X
�

���
����p�W�����p; q��

�
����p�

� �
1

2
g��W�����p; q�

�
1

2

Z
d4xeiqxh��p�jJ��x�J��0�j��p�ispin av:

(2.3)

Now W�
���p; q� is expressed in terms of two independent

structure functions F�L�x;Q
2; P2� and F�2 �x;Q

2; P2� with-
out neglecting the target mass squared p2 (see
Appendix A):

 W�
���p; q� � e��

�
1

x
F�L �

p2q2

�p 	 q�2
1

x
F�2

�
� d��

1

x
F�2 ;

(2.4)

where

 e�� � g�� �
q�q�
q2 ; (2.5)

 d�� � �g�� �
p�q� � p�q�

p 	 q
�

p�p�
�p 	 q�2

q2; (2.6)

and x is the Bjorken variable defined by x � Q2=2p 	 q.

Applying OPE for the product of two electromagnetic
currents at short distance we get
 

i
Z
d4xeiqxT�J��x�J��0��

�

�
g�� �

q�q�
q2

� X
n�0

n�even

�
2

Q2

�
n
q�1
	 	 	 q�n

X
i

CiL;nO
�1			�n
i

� ��g��g�	q
2 � g��q�q	 � g�	q�q�

� g��q�q	�
X
n�2

n�even

�
2

Q2

�
n
q�1
	 	 	 q�n�2

X
i

Ci2;nO
�	�1			�n�2
i

� 	 	 	 ; (2.7)

where CiL;n and Ci2;n are the coefficient functions which
contribute to the structure functions F�L and F�2 , respec-
tively, and O�1			�n

i and O�	�1			�n�2
i are spin-n twist-2

operators (hereafter we often refer to O�1			�n
i as On

i ).
The sum on i runs over the possible twist-2 operators and
	 	 	 represents other terms with irrelevant coefficient func-
tions and operators. In fact, the relevant On

i are flavor
singlet quark ( ), gluon (G), flavor nonsinglet quark
(NS) and photon (�) operators. It is noted that the operators
On
i are traceless and have totally symmetric Lorentz in-

dices �1 	 	 	�n (�	�1 	 	 	�n�2).
The spin-averaged matrix elements of these operators

sandwiched by the photon states with momentum p are
expressed as

 h��p�jO�1			�n
i j��p�ispin av � Ain��2; P2�fp�1 	 	 	p�n

� trace termsg

� Ain��2; P2�fp�1 	 	 	p�ngn;

(2.8)

where i �  , G, NS, �, and Ain��2; P2� is the reduced
photon matrix element with � being the renormalization
point which we choose at �2 � P2. For�p2 � P2 � �2,
we can calculate Ain�P2� perturbatively. The fp�1 	 	 	p�ngn
denotes the totally symmetric rank-n tensor formed with
the momentum p alone and satisfies the traceless condition
g�i�j

fp�1 	 	 	p�ngn � 0. Taking the spin-averaged photon
matrix elements of (2.7) we obtain for the photon-photon
forward-scattering amplitude

 

T����p; q� � i
Z
d4xeiq	xh��p�jT�J��x�J��0��j��p�ispin av

�

�
g�� �

q�q�
q2

� X
n�0

n�even

�
2

Q2

�
n
q�1
	 	 	 q�n

fp�1 	 	 	p�ngn
X
i

CiL;nA
i
n�P

2� � ��g��g�	q
2 � g��q�q	 � g�	q�q�

� g��q�q	�
X
n�2

n�even

�
2

Q2

�
n
q�1
	 	 	 q�n�2

fp�p	p�1 	 	 	p�n�2gn
X
i

Ci2;nA
i
n�P2�: (2.9)

µν

τ ρ

qq

p p

FIG. 2. Forward scattering of a virtual photon with momentum
q and another virtual photon with momentum p. The Lorentz
indices are denoted by �, �, �, �.
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The basic idea for treating target mass corrections exactly
is to take account of trace terms in the traceless tensors
properly. We evaluate the contraction between q�1

	 	 	 q�n

and the traceless tensors without neglecting any of the trace
terms. The results are expressed in terms of Gegenbauer
polynomials [25,28,29]:

 q�1
	 	 	 q�n

fp�1 	 	 	p�ngn � anC�1�n �
�; (2.10)

 

q�1
	 	 	 q�n�2

fp�p	p�1 	 	 	p�n�2gn

�
1

n�n� 1�

�
g�	

Q2 a
n2C�2�n�2�
� �

q�q	

Q4 an8C�3�n�4�
�

� p�p	an�22C�3�n�2�
�

�
p�q	 � q�p	

Q2 an�14C�3�n�3�
�
�
; (2.11)

where

 a � �
1

2
PQ; 
 � �

p 	 q
PQ

; (2.12)

and C���n �
�’s are Gegenbauer polynomials (see
Appendix B). Recall that in the case of a nucleon target
with mass M, we had p2 � M2, 
 � ip 	 q=MQ and a �
� 1

2 iMQ [28]. In the photon case, we have p2 � �P2

instead, and thus, replacing M with �iP, we obtain the
expressions for a and 
 in (2.12). The derivation of
Eqs. (2.10) and (2.11) are given in Appendix C.

We decompose the amplitude T����p; q� as
 

T����p; q� � e��

�
1

x
T�L �

p2q2

�p 	 q�2
1

x
�p 	 q�T�2

�

� d��
1

x
�p 	 q�T�2 ; (2.13)

then, using the results (2.10) and (2.11), we find from
Eq. (2.9)

 

1

x
�p 	 q�T�2 �

X
n�2

n�even

�
�
P
Q

�
n
16
2C�3�n�2�
�

1

n�n� 1�
M�

2;n;

(2.14)

 

1

x
T�L �

p2q2

�p 	 q�2
1

x
�p 	 q�T�2

�
X
n�0

n�even

�
�
P
Q

�
n
2C�1�n �
�M

�
L;n �

X
n�2

n�even

�
�
P
Q

�
n 8

n�n� 1�

� C�2�n�2�
� � 2C�3�n�4�
� � 4
C�3�n�3�
��M
�
2;n;

(2.15)

where we have defined

 M�
2;n �

1

2

X
i

Ci2;n�Q
2; P2; g�Ain�P2�;

M�
L;n �

1

2

X
i

CiL;n�Q
2; P2; g�Ain�P2�:

(2.16)

III. NACHTMANN MOMENTS

We derive the Nachtmann moments for the definite
spin-n contributions, M�

2;n and M�
L;n. First we write the

dispersion relations for T�2 and T�L , and we denote

 F�2 �
1

�
Im�p 	 q�T�2 ; F�L �

1

�
ImT�L: (3.1)

Then, using the orthogonality relation (B4) and the inte-
gration formula (B5) for the Gegenbauer polynomials
C���n �
�, we can project out M�

2;n and M�
L;n. The results

are as follows:
 

��
2;n�Q

2; P2� �
Z xmax

0
dx

1

x3 �
n�1

�

�
3� 3�n� 1�r� n�n� 2�r2

�n� 2��n� 3�

�
� F�2 �x;Q

2; P2�

� M�
2;n; (3.2)

 

��
L;n�Q

2;P2��
Z xmax

0
dx

1

x3�
n�1

�
F�L�x;Q

2;P2��
4P2x2

Q2

�
�n�3���n�1��2P2=Q2

�n�2��n�3�
F�2 �x;Q

2;P2�

�
�M�

L;n: (3.3)

The Nachtmann moments ��
2;n and ��

L;n are given by the
weighted integrals of the structure functions F�2 andF�L and
are equal to the definite spin-n contributions, M�

2;n and
M�
L;n, respectively. The variables r and � are defined as

 r �

����������������������
1�

4P2x2

Q2

s
; � �

2x

1�
������������������
1� 4P2x2

Q2

q �
2x

1� r
:

(3.4)

We see from Eq. (1.2) that the maximal value of x is not 1
but 1=1� �P2=Q2��. Therefore, the allowed ranges of r
and � turn out to be rmin � r � 1 and 0 � � � 1, respec-
tively, where rmin � r�xmax� � �1� P2=Q2�=�1� P2=Q2�
and ��xmax� � 1.

We now outline how to derive the Nachtmann moments
for the case of F�2 �x;Q

2; P2� given in (3.2). Since
�p 	 q�=x � ��PQ
���P=Q�2
, we see that T�2 in
(2.14) is expressed as
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 T�2 �x;Q
2; P2� �

1

Q2

X
n�2

n�even

�
�
P
Q

�
n�2
	 8C�3�n�2�
�

�
1

n�n� 1�
M�

2;n: (3.5)

By the use of orthogonality relation of the Gegenbauer
polynomials (B4) for � � 3 we get

 

Z 1

�1
�1� 
2�5=2C�3�n�2�
�T

�
2 d


�
1

Q2

�

24

�
�
P
Q

�
n�2
�n� 2��n� 3�M�

2;n: (3.6)

Applying the dispersion relation, we can relate the full
amplitude with its absorptive part:

 T�2 �!� �
Z 1
!min

�
1

!0 �!
�

1

!0 �!

�
W�

2 �!
0�d!0;

!min �
1

xmax
;

(3.7)

where ! � 2p 	 q=Q2 � 1=x and denoting � �
�!0Q�=��2P�, 
 � �!Q�=��2P� we derive
 Z 1

�1
�1� 
2�5=2C�3�n�2�
�T

�
2 d


� 2
Z 1
!min

d!0W�
2 �!

0; Q2; P2�
Q
��2P�

�
Z 1

�1

��1�

���� � 

�1� 
2�5=2C�3�n�2�
�d
; (3.8)

where we have noted C�3�n�2��
� � C�3�n�2�
� for even n.
From (B5) for m � 0, � � 3, we get
 Z 1

�1
�1� 
2�5=2C�3�n�2�
�T

�
2 d


�

�
�Q
2P

�
	
�
4
	
Z 1
!min

d!W�
2 �!;Q

2; P2���2 � 1���1�

� �� � ��2 � 1�1=2�n�1�n� 2��n� 3�

�

�
1�

6

n� 2
z�

12

�n� 2��n� 3�
z2

�
; (3.9)

where we used the following relation for the hypergeomet-
ric function with � � �p 	 q=PQ,
 

F�3;�2; n� 2; z� � 1�
6

n� 2
z�

12

�n� 2��n� 3�
z2;

z �
����� � ��2 � 1�1=2

2��2 � 1�1=2
: (3.10)

Setting (3.6) equal to (3.9) and changing integration vari-
able from ! to x, we get

 Z xmax

0
dx

1

x3 �
n�1

�
1�

4P2x2

Q2

��
1�

6

n� 2
z

�
12

�n� 2��n� 3�
z2

�
F�2 �x;Q

2; P2� � M�
2;n: (3.11)

Here one should note that n is even and the following
relations hold:

 � � �
Q

2Px
; �� � ��2 � 1�1=2 �

P
Q
�;

z � �
P2

Q2

�x
r
; � �

Q2

2P2x
�1� r�;

(3.12)

and so we finally get for F�2 �x;Q
2; P2� as

 Z xmax

0
dx

1

x3 �
n�1

�
3� 3�n� 1�r� n�n� 2�r2

�n� 2��n� 3�

�
� F�2 �x;Q

2; P2� � M�
2;n�Q

2; P2�; (3.13)

where the left-hand side is ��
2;n�Q

2; P2�, the Nachtmann
moment, which is equal to the definite spin-n contribution
M�

2;n, and this is consistent with the previous result for the
case of nucleon target [25,34–36] with a replacement of
the variable M ! �iP.

For the longitudinal structure function, we first solve for
1
x T

�
L from Eqs. (2.14) and (2.15) and we get (see

Appendix B)
 

1

x
T�L �

X
n�0

n�even

�
�
P
Q

�
n
C�1�n �
�M

�
L;n �

X
n�2

n�even

�
�
P
Q

�
n 4

n�n� 1�

�

�
�2

n
C�3�n�2�
� �

2

n
C�3�n�4�
�

�
M�

2;n: (3.14)

Then using the recursion relation (B10) for the case
� � 1:
 

C�1�n �
� �
2

�n� 1��n� 2�
C�3�n �
� �

4

n�n� 2�
C�3�n�2�
�

�
2

n�n� 1�
C�3�n�4�
�; (3.15)

and the orthogonality relation of the Gegenbauer polyno-
mials C�3�n ’s we can derive the recursive relations for the
sequenceM�

L;n’s which can be solved as (See Appendix D):

 

Z xmax

0
dx

1

x3 �
n�1

�
F�L�x;Q

2; P2� �
4P2x2

Q2

�
�n� 3� � �n� 1��2P2=Q2

�n� 2��n� 3�
F�2 �x;Q

2; P2�

�
� M�

L;n; (3.16)

where the left-hand side integral is the Nachtmann moment
��
L;n for the longitudinal part. This coincides with the

result obtained in [25,34] after the replacement mentioned
above.
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IV. INVERTING THE NACHTMANN MOMENTS

We now invert the Nachtmann moments to express the
structure functions F�2 and F�L explicitly as functions of x,
Q2 and P2. We first consider F�2 . By changing the integra-
tion variable from x to �, we can rewrite the Nachtmann
moments, given in Eqs. (3.2) and (3.3), as follows:
 

M�
2;n �

Z 1

0
d��n�2�1� �2��1� �2�

�
3

�n� 2��n� 3�

�
3�n� 1�

�n� 2��n� 3�

1� �2

1� �2 �
n

n� 3

�
1� �2

1� �2

�
2
�

� F�2 �x;Q
2; P2�; (4.1)

 

M�
L;n �

Z 1

0
d��n�2�1� �2��1� �2�

�
F�L�x;Q

2; P2�

� 4
�2

�1� �2�2

�
1

n� 2
� �2 n� 1

�n� 2��n� 3�

�

� F�2 �x;Q
2; P2�

�
; (4.2)

where we have made use of the following relations:

 x �
�

1� �2 ; r �
1� �2

1� �2 ;
dx
d�
�

1� �2

�1� �2�2
;

(4.3)

with  � P2=Q2. Now we define

 A��� �
1� �2

1� �2 F
�
2 �x;Q

2; P2�;

B��� � �1� �2��1� �2�F�L�x;Q
2; P2�:

(4.4)

Then the above two moments are written as

 

M�
2;n

n�n� 1�
�
Z 1

0
d��n�2

�
A���

n�n� 1�
�

2�2A���
n�n� 2�

�
2�4A���

�n� 2��n� 3�

�
; (4.5)

 

M�
L;n

n� 1
�
Z 1

0
d��n�2

�
B���
n� 1

�
4�2A���

�n� 1��n� 2�

�
42�4A���
�n� 2��n� 3�

�
: (4.6)

The boundary conditions for A��� and B��� are
A�� � 1� � B�� � 1� � 0, since F�2 �xmax; Q

2; P2� �
F�L�xmax; Q2; P2� � 0 and ��xmax� � 1. Now introducing
the following four functions,
 

A0��� �
Z 1

�
d�0A��0�; A�1��� �

R
1
� d�

0 A��0�
�0 ;

A�2��� �
Z 1

�
d�0

A��0�

�02
; (4.7)

 B�3��� �
Z 1

�
d�0

B��0�

�03
; (4.8)

and by partial integration we find that the above two mo-
ments are written as
 

M�
2;n

n�n� 1�
�
Z 1

0
d��n�2�1� �2�f�1� �2�A�1���

� �A�2��� � �A0���g; (4.9)

 

M�
L;n

n� 1
�
Z 1

0
d��nB�3��� � 4f�1� �2�A�1���

� �A�2��� � �A0���g�: (4.10)

Inverting the moments we get

 G��� �
1

2�i

Z c�i1

c�i1
dn��n�1

� M�
2;n

n�n� 1�

�
� �1� �2�f�1� �2�A�1��� � �A�2���

� �A0���g; (4.11)

 S��� �
1

2�i

Z c�i1

c�i1
dn��n�1

�M�
L;n

n� 1

�

� B�3��� �
4

1� �2 G���; (4.12)

where in Eq. (4.12) we have used the result of Eq. (4.11).
We further introduce the following functions,

 H��� � �
dG���
d�

�
1

2�i

Z c�i1

c�i1
dn��n

M�
2;n

n
; (4.13)

 F��� � �
dH���
d�

�
1

2�i

Z c�i1

c�i1
dn��n�1M�

2;n; (4.14)

 FL��� � ��
dS���
d�

�
1

2�i

Z c�i1

c�i1
dn��n�1M�

L;n: (4.15)

Differentiating both sides of Eqs. (4.11) and (4.12) with
respect to �, we get the relations between A�1���,
�A�2��� � A0����, A���, B��� and G���, H���, F2���
and FL���. Now solving for A��� and B��� and, then
recalling Eq. (4.4), we obtain

 F�2 �x;Q
2; P2� �

x2

r3 F��� � 6
x3

r4 H��� � 122 x
4

r5
G���;

(4.16)

 F�L�x;Q
2; P2� �

x2

r
FL��� � 4

x3

r2 H��� � 82 x
4

r3 G���:

(4.17)

Equations (4.16) and (4.17) are the final formulas for the
photon structure functions F�2 and F�L when target mass
effects are taken into account. They can also be derived
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from the method of Georgi and Politzer [26]. Once M�
2;n

and M�
L;n in Eq. (2.16), are given, then we can calculate the

four ‘‘profile’’ functions G���, H���, F��� and FL���
through Eqs. (4.11), (4.13), (4.14), and (4.15), and by using
Eqs. (4.16) and (4.17) we can predict whole structure
functions with target mass corrections.

Note that in the above expressions, theQ2- as well as P2-
dependence of F���, G���, H���, and FL��� are implicit,
since they are given byM�

2;n and M�
L;n which depend onQ2

as well as on P2. If we take the ! 0 limit, the above
expression reduces to that for the F�2 and F�L without TME.
And in the absence of TME we have

 M�
2;n �

Z 1

0
dxxn�2F�2 �x;Q

2; P2�;

M�
L;n �

Z 1

0
dxxn�2F�L�x;Q

2; P2�:
(4.18)

From our previous QCD calculation [21] of M�
2;n and

M�
L;n we already know the three functions, F���, G���, and

H��� to NNLO and FL��� to NLO, so we can evaluate the
photon structure functions with TME to the same accura-
cies as in the case we neglect TME.

V. NUMERICAL ANALYSIS

In this section we perform a numerical analysis for the
structure functions F�2 and F�L when TME are included. We
first compute the four profile functions G, H, F, and FL
which are given in Eq. (4.11), (4.13), (4.14), and (4.15). We
use the QCD results for M�

2;n and M�
L;n, which have been

calculated up to the NNLO and the NLO in QCD, respec-
tively, in Ref. [21]. Indeed, the expressions of M�

2;n and
M�
L;n are given in the right-hand sides of Eq. (2.29) and

Eq. (6.3) of Ref. [21]. In Fig. 3 we have plotted the
functions F, G, H and FL as functions of x for the case
of Q2 � 30 GeV2 and P2 � 1 GeV2 with xmax � 0:968.

We take � � 0:2 GeV for the QCD parameter and nf � 4
for the number of active quark flavors throughout our
numerical analysis. Note that we have multiplied each
function by a suitable power of x to accommodate four
functions in a single graph. The Bjorken variable x ranges
from 0 to xmax.

Now inserting the functions F, G, H and FL into
Eqs. (4.16) and (4.17), we obtain the graphs of
F�2 �x;Q

2; P2� and F�L�x;Q
2; P2� as functions of x, which

are shown in Figs. 4 and 5, respectively. We observe that
TME become sizable at larger x region. While TME en-
hances F�2 at larger x, it reduces F�L. In fact, F�2 becomes
maximum at x very close to the maximal value of x, xmax

(1) for the case with (without) TME. The target mass
correction is of order 10% when compared at the maximal
values for F�2 . In the case of F�L, the maximal value is
attained in the middle x, where the TME reduces the F�L
about 5%.
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FIG. 3 (color online). The four functions F, G, H and FL as
functions of x. Q2 � 30 GeV2 and P2 � 1 GeV2. xmax � 0:968.
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One should note that F��� is dominant at larger x region,
and determines the leading behavior of F�2 . And the factor
x2=r3 in front of F�2 shows the deviation upwards from x2

as x approaches xmax. On the other hand, the expression for
F�L, Eq. (4.17), possesses no dependence upon the function
F���, in contrast to the case of F�2 . This is a reason why F�L
becomes maximum in the middle x region, as seen from
Fig. 3.

Now let us compare our theoretical prediction for the
virtual photon structure functions with the existing experi-
mental data. In Fig. 6 and 7, we have plotted the experi-
mental data from PLUTO Collaboration [37] and also
those from L3 Collaboration [38] on the so-called ‘‘effec-
tive photon structure function’’ defined as F�eff �

F�2 �
3
2F

�
L, together with the theoretical predictions. The

effective structure function is proportional to 	TT �
	LT � 	TL � 	LL, where 	ab (a, b � T, L; T �
transverse and L � longitudinal) is the total cross section
with the helicity state (a) of the probe photon and helicity
(b) of the target photon. This combination of F�2 and F�L is
obtained in the limit of P2=Q2 � 1 [10,39,40].

In the above experiments we have Q2 � 5�120� GeV2

and P2 � 0:35�3:7� GeV2 with xmax � 0:93�0:97�, for
PLUTO (L3) data. Here we note that for the PLUTO
data, P2 � Q2 is satisfied since P2=Q2 ’ 0:07, but P2 is
not much larger than �2 i.e. �2=P2 ’ 0:114. For L3 data,
both hierarchical conditions are satisfied. Although the
experimental error bars are rather large, the data are con-
sidered to be roughly consistent with the theoretical ex-
pectations, except for the larger x region in the case of L3
data. Note that the TME for the F�eff in this kinematical
region is almost negligible for both cases. This could be

explained as a consequence of the cancellation of the TME
between F�2 and F�L, as discussed above.

VI. CONCLUSIONS

We have investigated the target mass corrections for the
unpolarized virtual photon structure functions
F�2 �x;Q

2; P2� and F�L�x;Q
2; P2� to the NNLO in perturba-

tive QCD.
In contrast to the case of the nucleon target, the virtual

photon target provides us with the unique testing ground
for the perturbatively calculable target mass effects. Taking
into account the trace terms in the operator matrix elements
by using the expansion in terms of orthogonal Gegenbauer
polynomials we get the Nachtmann moments. These mo-
ments were then inverted to derive explicit expressions for
F�2 �x;Q

2; P2� and F�L�x;Q
2; P2� in terms of the four profile

functions which are calculable to NNLO for the first three
functions F, G, H and to NLO for the last one FL. The
TME becomes sizable at larger x region, and it enlarges F�2
near xmax and reduces F�L in the region of x larger than the
middle point. When we go to higher values ofP2, e.g.P2 �
3 GeV2 for Q2 � 30 GeV2, it has turned out that the F�2
blows up as x approaches xmax. So some prescription like
resummation of large logs would be needed to avoid such
difficulties.

We have carried out the confrontation of our theoretical
predictions with the existing experimental data on the
effective photon structure function F�eff from PLUTO and
also those from L3 Collaboration. Roughly speaking we
find the rather good agreement between theory and experi-
ments. However, it turned out that TME looks almost
negligible for F�eff , which is the combination of F�2 and
F�L and exhibits a cancellation of TME between them. In
the present analysis, we have treated the active flavors as

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

F
ef

fγ (x
,Q

2 ,P
2 )/

α

x

nf = 4, Q2=5GeV2, P2=0.35GeV2, xmax=0.93

xmax

NNLO + no TME
NNLO + TME

BOX(LO + NLO)
PLUTO

FIG. 6 (color online). NNLO predictions with and without
TME for the effective photon structure function: F�eff � F�2 �
3
2F

�
L for Q2 � 5 GeV2 and P2 � 0:35 GeV2 with xmax � 0:93.

The experimental data are from the PLUTO group [37]. The box
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massless quarks, and ignored the mass effects of the heavy
flavors, which should remain as a future subject. We should
also investigate the power corrections �P2=Q2�k (k �
1; 2; 	 	 	 ) due to the higher-twist effects.

We expect the future experiments would provide us with
more accurate data for the double-tag two-photon pro-
cesses in e�e� collisions.

ACKNOWLEDGMENTS

One of the authors (T. Uematsu) would like to thank
Guido Altarelli and Silvano Simula for the useful discus-
sions. This research is supported in part by Grant-in-Aid
for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology, Japan
No. 18540267.

APPENDIX A: PHOTON STRUCTURE FUNCTIONS

Averaging the structure tensor W�����p; q� given in
Eq. (2.2) over the target polarization, we get [41,42]
 

W�
���p; q� � �

g��

2
W�����p; q�

� R��

�
WTT �

1

2
WTL

�

� k1�k1�

�
WLT �

1

2
WLL

�
; (A1)

where
 

R�� � �g�� �
1

X
p 	 q�q�p� � p�q��

� q2p�p� � p2q�q��; (A2)

 k1� �

����������
�q2

X

s �
p� �

p 	 q

q2 q�

�
; (A3)

with X � �p 	 q�2 � q2p2. In the above equation the first
index (a � T, L) of the invariant functions Wab refers to
the probe photon and the second one (b � T, L) to the
target photon, and the subscripts T and L denote the
transverse and longitudinal photon, respectively.

We define the unpolarized photon structure functions F�2
and F�L as,

 

1

x
F�2 �

�p 	 q�2

X

��
WTT �

1

2
WTL

�
�

�
WLT �

1

2
WLL

��
;

(A4)

 

1

x
F�L � WLT �

1

2
WLL: (A5)

Another structure function F�1 is often used, which is
defined as [43]

 F�1 � WTT �
1
2WTL: (A6)

Then we get a well-known relation

 F�L � �xF
�
1 �

X

�p 	 q�2
F�2 � �xF

�
1 �

�
1�

4x2P2

Q2

�
F�2 :

(A7)

Since R�� and k1�k1� are expressed in terms of e�� and
d��, which are given in Eqs. (2.5) and (2.6), as

 R�� �
p2q2

X
e�� �

�p 	 q�2

X
d��; (A8)

 k1�k1� �
�p 	 q�2

X
fe�� � d��g; (A9)

we find that W�
���p; q� in (A1) is rewritten as

 W�
���p; q� � e��

�
1

x
F�L �

p2q2

�p 	 q�2
1

x
F�2

�
� d��

1

x
F�2 :

(A10)

APPENDIX B: GEGENBAUER POLYNOMIALS

The Gegenbauer polynomials are defined through the
generating function given by [44,45]

 �1� 2
t� t2��� �
X1
n�0

C���n �
�tn: (B1)

In terms of hypergeometric functions F��;�;�; z�,C���n �
�
is expressed as
 

C���n �
� �
2n��n� ��
n!����


nF
�
�
n
2
;
1� n

2
; 1� n� �;

1


2

�

�
1

����

Xn=2

j�0

��1�j���� n� j�
j!�n� 2j�!

�2
�n�2j: (B2)

For example, we have

 C�1�n �
� �
Xn=2

j�0

��1�j

j!
�n� j�!
�n� 2j�!

�2
�n�2j: (B3)

1. Orthogonality relations

The orthogonality relation reads

 

Z 1

�1
�1� 
2����1=2�C���m �
�C

���
n �
�d


�
2�

22�

��n� 2��

�n� ��n!�����2
�mn: (B4)

In addition we have the following formula for the integral
to project out the contributions of definite spin from the
dispersion relations,
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 Z 1

�1
d

m�1� 
2����1=2�C���n �
�

1

� � 


�
�

2��1 �
m��2 � 1����1�=2� � ��2 � 1�1=2�n��

�
��n� 2��

������n� �� 1�

� F
�
�; 1� �; n� �� 1;

�� � ��2 � 1�1=2

2��2 � 1�1=2

�
:

(B5)

In fact the factor � � ��2 � 1�1=2�n�� gives �� P
Q�
n���n��,

where � is the so-called �-scaling variable given in
Eq. (3.4).

2. Recursion relations

The recursion relations for Gegenbauer polynomials
read

 nC���n �
� � 2�
C���1�
n�1 �
� � C

���1�
n�2 �
��; (B6)

 �n� 2��C���n �
� � 2�C���1�
n �
� � 
C���1�

n�1 �
��; (B7)

 

�n� 2�C���n�2�
� � 2�n� �� 1�
C���n�1�
�

� �n� 2��C���n �
�: (B8)

We get from (B6) and (B7),

 C���n �
� �
�

n� �

�
C���1�
n �
� � C���1�

n�2 �
�
�
; (B9)

 

C���n �
� �
�

n� �
	

�� 1

n� �� 1
C���2�
n �
�

�
2���� 1�

�n� ��2 � 1
C���2�
n�2 �
�

�
�

n� �
	

�� 1

n� �� 1
C���2�
n�4 �
�: (B10)

Now we derive the second line of Eq. (3.14). Choosing
� � 2 and n! �n� 2� in (B9), we find

 C�2�n�2�
� �
2

n
C�3�n�2�
� � C

�3�
n�4�
��: (B11)

Next choosing � � 3 and n! �n� 4� in (B8), we get

 4
C�3�n�3�
� �
2

n
�n� 2�C�3�n�2�
� � �n� 2�C�3�n�4�
��:

(B12)

Thus we obtain
 

C�2�n�2�
� � 2C�3�n�4�
� � 4
C�3�n�3�
�� � 2C�3�n�2�
�

�
�2

n
C�3�n�2�
� �

2

n
C�3�n�4�
�: (B13)

APPENDIX C: CONTRACTION FORMULAS

Here we derive Eqs. (2.10) and (2.11). The most general
rank-n symmetric and traceless tensor, fp�1 	 	 	p�ngn, that
can be formed with the momentum p alone, is expressed as
follows [26],

 fp�1 	 	 	p�ngn �
Xn=2

j�0

��1�j

2j
�n� j�!
n!

g 	 	 	 g|��{z��}
j

p 	 	 	p
z���}|���{n�2j

�p2�j;

(C1)

where g 	 	 	 g|��{z��}
j

stands for a product of jmetric tensors g�l�k

with 2j indices chosen among �1; 	 	 	 ; �n in all possible
ways. Then we easily see that the contraction of
fp�1 	 	 	p�ngn with q�1

	 	 	 q�n
is expressed in terms of

Gegenbauer polynomial C�1�n �
� given in (B3) as [25,28],

 q�1
	 	 	 q�n

fp�1 	 	 	p�ng � anC�1�n �
�; (C2)

which is Eq. (2.10). Here we have put

 a � �
1

2
PQ; 
 � �

p 	 q
PQ

: (C3)

Next we differentiate both sides of Eq. (C2) twice with
respect to q� and q�. The left-hand side becomes

 

@
@q�

@
@q�
�q�1

	 	 	 q�n
fp�1 	 	 	p�ngn�

� n�n� 1�q�1
	 	 	 q�n�2

fp�p�p�1 	 	 	p�n�2gn: (C4)

Differentiation of anC�1�n �
� with respect to q� gives

 

@
@q�
�anC�1�n �
���nan�1

�
�aq�

Q2

�
C�1�n �
�

�an2C�2�n�1�
�
�
p�

2a
�


q�

Q2

�

�
q�

Q2a
n2C�2�n�2�
��p

�an�1C�2�n�1�
�; (C5)

where we have used the following formulas

 

@a
@q�

� a
�
�q�

Q2

�
;

@

@q�

�
p�

2a
� 


q�

Q2 ;

dC���n �
�
d


� 2�C���1�
n�1 �
�;

(C6)

and, at the last line, the recursion relation (B6). Further, we
differentiate the both sides of Eq. (C5) with respect to q�.
Again using the formulas in (C6) and the recursion relation
(B6), we get
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@
@q�

@
@q�
�anC�1�n �
�� �

g��

Q2 a
n2C�2�n�2�
�

�
q�q�

Q4 an8C�3�n�4�
�

� p�p�an�22C�3�n�2�
�

�
p�q� � q�p�

Q2 an�14C�3�n�3�
�:

(C7)

Thus, from Eqs. (C4) and (C7), we obtain
 

q�1
	 	 	 q�n�2

fp�p�p�1 	 	 	p�n�2gn

�
1

n�n� 1�

�
g��

Q2 a
n2C�2�n�2�
�

�
q�q�

Q4 an8C�3�n�4�
� � p
�p�an�22C�3�n�2�
�

�
p�q� � q�p�

Q2 an�14C�3�n�3�
�
�
; (C8)

which is Eq. (2.11).

APPENDIX D: NACHTMANN MOMENTS OF F�L
By applying the orthogonality relation (B4) for � � 3 to

the longitudinal amplitude (3.14) with the help of (3.15) we
derive the following recursive relation for M�

L;n’s:

 M�
L;n�2

n�1

n�4
M�
L;n�2�

2 �n�1��n�2�

�n�4��n�5�
M�
L;n�4� In;

(D1)

where
 

In �
Z xmax

0

dx

x5
�n�3

�
3� 3�n� 3�r� �n� 2��n� 4�r2

�n� 4��n� 5�

�

� F�L�x;Q
2; P2� � 4

1

n� 2
M�

2;n�2

� 42 �n� 1��n� 2�

�n� 3��n� 4�2
M�

2;n�4: (D2)

The above recursive Eq. (D1) can be solved as an infinite
series:

 M�
L;n � �n� 1�

X1
l�0

l
�l� 1��n� 2� l�

�n� 2l� 1��n� 2l� 2�
In�2l:

(D3)

Introducing a variable t defined by ��P=Q� � t we have

 �
����

p
� t; r �

1� t2

1� t2
; �x �

t2

1� t2
;

Z xmax

0
dx	 	 	� �

Z 1

0
d�

1� t2

�1� t2�2
	 	 	�;

(D4)

and then in terms of t we can sum up the above infinite
series and find

 M�
L;n �

Z 1

0
d��n

1� t2

1� t2

�
1

x2 F
�
L�x;Q

2; P2�

� 4
�n� 3� � �n� 1�t2

�n� 2��n� 3�
F�2 �x;Q

2; P2�

�
; (D5)

the right-hand side of which turns out to be the Nachtmann
moments (3.3), ��

L;n.
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