
PHYSICAL REVIEW D 68, 054025 ~2003!
Target mass effects in polarized virtual photon structure functions

Hideshi Baba,* Ken Sasaki,† and Tsuneo Uematsu‡

Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Kyoto 606-8501, Japan,
Dept. of Physics, Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan,
and Dept. of Physics, Graduate School of Science, Kyoto University, Yoshida, Kyoto 606-8501, Japan

~Received 11 July 2003; published 30 September 2003!

We study target mass effects in the polarized virtual photon structure functionsg1
g(x,Q2,P2), g2

g(x,Q2,P2)
in the kinematic regionL2!P2!Q2, where2Q2(2P2) is the mass squared of the probe~target! photon. We
obtain the expressions forg1

g(x,Q2,P2) andg2
g(x,Q2,P2) in closed form by inverting the Nachtmann moments

for the twist-2 and twist-3 operators. Numerical analysis shows that target mass effects appear at largex and
become sizable nearxmax@51/@11(P2/Q2)##, the maximal value ofx, as the ratioP2/Q2 increases. Target
mass effects for the sum rules ofg1

g andg2
g are also discussed.
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I. INTRODUCTION

The investigation of the photon structure is an active fi
of research both theoretically and experimentally@1–4#. In
recent years, there has been growing interest in the stud
the spin structure of photon. In particular, the first momen
the polarized photon structure functiong1

g has attracted much
attention in connection with its relevance to the QED a
QCD axial anomaly@5–9#. The polarized photon structur
functions may be extracted from resolved photon proces
in the polarized version of the DESYep collider HERA.
More directly, they can be measured from two-photon p
cesses in the polarizede1e2 collider experiments~Fig. 1!,
where2Q2(2P2) is the mass squared of the probe~target!
photon.

For a real photon (P250) target, there exists only on
spin-dependent structure functiong1

g(x,Q2). The QCD
analysis forg1

g was performed in the leading order~LO! @10#
and in the next-to-leading order~NLO! @11,12#. In the case
of a virtual photon target (P2Þ0) there appear two spin
dependent structure functions, g1

g(x,Q2,P2) and
g2

g(x,Q2,P2). The former has been investigated up to t
NLO in QCD by the present authors in@13#, and also in the
second paper of@12#. In fact, we have analyzed in@13# the
structure functiong1

g(x,Q2,P2) in the kinematical region
L2!P2!Q2, whereL is the QCD scale parameter. The a
vantage of studying a virtual photon target in that kinema
cal region is that we can calculate structure functions enti
up to the NLO by the perturbative method@14#, which is
contrasted with the case of the real photon target wher
the NLO there exist nonperturbative pieces. As for the str
ture functiong2

g(x,Q2,P2), the analysis has not made muc
progress owing to the difficulty arising from the releva
twist-3 operators. So far only the LO QCD corrections to t
flavor nonsinglet part ofg2

g have been calculated in the larg
Nc limit @15#.
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If the target is real photon (P250), there is no need to
consider target mass corrections. But when the target
comes off-shell, for example,P2>M2, where M is the
nucleon mass, and for relatively low values ofQ2, contribu-
tions suppressed by powers ofP2/Q2 may become impor-
tant. Then we need to take into account these target m
contributions just like the case of the nucleon structure fu
tions. The consideration of target mass effects~TME! is im-
portant by another reason. For the virtual photon target,
maximal value of the Bjorken variablex is not 1 but

xmax5
1

11
P2

Q2

, ~1.1!

due to the constraint (p1q)2>0, which is contrasted with
the nucleon case wherexmax51. The structure functions

e−(e+)

e+(e−)

q

p

⇒

⇒

(⇐)

(⇐)

q2=-Q2<0

p2=-P2<0

FIG. 1. Deep inelastic scattering on a polarized virtual photon
a polarizede1e2 collision, e1e2→e1e21hadrons~quarks and
gluons!. The arrows indicate the polarizations of thee1 and e2.
The mass squared of the ‘‘probe’’~‘‘target’’ ! photon is
2Q2(2P2) (L2!P2!Q2) with L being the QCD scale param
eter.
©2003 The American Physical Society25-1
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should vanish atx5xmax. However, the NLO QCD resul
@13# for g1

g(x,Q2,P2) shows that the predicted graph do
not vanish but remains finite atx5xmax. This flaw is coming
from the fact that TME have not been taken into accoun
the analysis. The target mass corrections have been stu
in the past for the cases of unpolarized@16,17# and polarized
@18–22# nucleon structure functions.

In this paper we investigate TME in the polarized virtu
photon structure functionsg1

g(x,Q2,P2) and g2
g(x,Q2,P2).

In the analysis ofg1
g in @13#, the formalism of the operato

product expansion~OPE! supplemented by the renormaliz
tion group method was used. The photon matrix element
the relevant traceless operators in the OPE are expresse
traceless tensors. These tensors contain many trace term
that they satisfy the tracelessness conditions. The basic
for computing the target mass corrections exactly is to t
account of trace terms in the traceless tensors properly. T
are two methods used so far for collecting all those tr
terms. One, which was introduced by Nachtmann@16#, is to
make use of Gegenbauer polynomials to express the con
tions betweenqm1

¯qmn21
and the traceless tensors@6,18–

20#. This method leads to the Nachtmann moments for
twist-2 and twist-3 operators with definite spin. The oth
first used by Georgi and Politzer@17#, is to write traceless
tensors explicitly and then to collect trace terms and s
them up. Through the latter approach, the moments of st
ture functions are expressed as functions of the reduced
erator matrix elements and coefficient functions with diffe
ent spins. Actually both methods give equivalent results
this paper we apply the former method to study target m
corrections to the structure functionsg1

g andg2
g .

In the next section we discuss the framework for anal
ing the TME based on the OPE and derive the Nachtm
moments for the twist-2 and twist-3 operators with defin
spin using the orthogonality relations of Gegenbauer poly
mials. In Sec. III, by inverting the Nachtmann moments,
obtain the explicit expressions for the polarized photon str
ture functionsg1

g(x,Q2,P2) andg2
g(x,Q2,P2) with TME in-

cluded. In Sec. IV we perform the numerical analysis a
show that target mass corrections become sizable nearxmax.
Section V is devoted to the conclusion.

II. NACHTMANN MOMENTS

Let us consider the virtual photon-photon forward scatt
ing for g(q)1g(p)→g(q)1g(p) illustrated in Fig. 2,

Tmnrt~p,q!5 i E d4x d4y d4z eiq•xeip•~y2z!

3^0uT@Jm~x!Jn~0!Jr~y!Jt~z!#u0&,
~2.1!

whereJ is the electromagnetic current, andq and p are the
four-momenta of two photons. Its absorptive part is related
the structure tensorWmnrt(p,q) for the target photon with
mass squaredp252P2 probed by the photon withq25
2Q2:
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n
ied

l

of
by
so

ea
e
re
e

c-

e
,

c-
p-

-
n
ss

-
n

-

-

d

r-

o

Wmnrt~p,q!5
1

p
Im Tmnrt~p,q!. ~2.2!

The antisymmetric partWmnrt
A under the interchangem↔n

andr↔t can be decomposed as

Wmnrt
A 5emnlsqlert

sbpb

1

p•q
g1

g1emnlsql~p•qert
sbpb

2ertabpbpsqa!
1

~p•q!2 g2
g , ~2.3!

which gives two spin-dependent structure function
g1

g(x,Q2,P2) andg2
g(x,Q2,P2). When the target is real pho

ton (P250), g2
g is identically zero, and there exists only on

spin structure function,g1
g(x,Q2). On the other hand, for the

off-shell or virtual photon (P2Þ0) target, we have two spin
dependent structure functionsg1

g andg2
g .

For the analysis of spin structure functions, we apply
OPE for the product of two electromagnetic currents. W
obtain for them-n antisymmetric part

i E d4x eiq•xT@Jm~x!Jn~0!#A

52 i emnlsql (
n51,3,...

S 2

Q2D n

qm1
¯qmn21

3H(
i

E~2!i
n R

~2!i
sm1¯mn211(

i
E~3!i

n R
~3!i
sm1¯mn21J ,

~2.4!

whereR(2)i
n and R(3)i

n are the twist-2 and twist-3 operator
respectively, and are both traceless, andE(2)i

n and E(3)i
n are

corresponding coefficient functions. The twist-2 operat
R(2)i

n have totally symmetric Lorentz indicessm1¯mn21 ,
while the indices of twist-3 operatorsR(3)i

n are totally sym-
metric amongm1¯mn21 but antisymmetric unders↔m i .

µν

τ ρ

qq

p p

FIG. 2. Forward scattering of a virtual photon with momentumq
and another virtual photon with momentump. The Lorentz indices
are denoted bym,n,r,t.
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In the case of photon target we evaluate ‘‘matrix ele-
ments’’ of the traceless operatorsR(2)i

n andR(3)i
n sandwiched

by two photon states with momentump, which are written in
the following forms:

^0uT@Ar~2p!R
~2!i
sm1¯mn21At~p!#u0&Amp

52 ia ~2!i
g,n M

~2!rt
sm1¯mn21, ~2.5!

^0uT@Ar~2p!R
~3!i
sm1¯mn21At~p!#u0&Amp

52 ia ~3!i
g,n M

~3!rt
@s,$m1#¯mn21% , ~2.6!

where the subscript ‘‘Amp’’ stands for the amputation of e
ternal photon lines, anda(2)i

g,n and a(3)i
g,n are reduced photon

matrix elements. The tensors M (2)rt
sm1¯mn21 and

M (3)rt
@s,$m1#¯mn21% are given by

M
~2!rt
sm1¯mn21[

1

n F erta
spm1

¯pmn21

1 (
j 51

n21

pspm1
¯erta

m j
¯pmn21Gpa

2~ trace terms!, ~2.7!

M
~3!rt
@s,$m1#¯mn21%

[Fn21

n
erta

spm1
¯pmn21

2
1

n (
j 51

n21

pspm1
¯erta

m j
¯pmn21Gpa

2~ trace terms!, ~2.8!

and satisfy the traceless conditions,

gsm i
M

~k!rt
sm1¯mn2150, gm im j

M
~k!rt
sm1¯mn2150 ~k52,3!.

~2.9!

Taking the ‘‘matrix elements’’ of ~2.4! with the virtual photon
states, we obtain for the deep-inelastic photon-photon
ward scattering amplitude

Tmnrt
A 5 i E d4x eiq•x^0uT$Ar~2p!

3@Jm~x!Jn~0!#AAt~p!%u0&Amp

52emnlsql (
n51,3,...

S 2

Q2D n

qm1
¯qmn21

3H(
i

a~2!i
g,n E~2!i

n M
~2!rt
sm1¯mn21

1a~3!i
g,n E~3!i

n M
~3!rt
@s,$m1#¯mn21%J . ~2.10!

The basic idea for treating target mass corrections exa
is to take account of trace terms in the traceless tensors p
05402
r-

ly
p-

erly. We evaluate the contraction betweenqm1
¯qmn21

and
the traceless tensors without neglecting any of the tr
terms in Eqs.~2.7! and ~2.8!. The results are expressed
terms of Gegenbauer polynomials@16,18,19#. Denoting
M (2)rt

sm1¯mn21[M̃ (2)b
sm1¯mn21erta

bpa and M (3)rt
@s,$m1#¯mn21%

[M̃ (3)b
sm1¯mn21erta

bpa, we find for the twist-2 part,

qm1
¯qmn21

M̃
~2!b
sm1¯mn215

1

n2 @db
san21Cn21

~2! ~h!

1qbpsan222Cn22
~3! ~h!#

1~ terms with pb or qs!,

~2.11!

and for the twist-3 part

qm1
¯qmn21

M̃
~3!b
sm1¯mn21

5db
s

an21

n2 @~n21!Cn21
~2! ~h!2~n11!Cn23

~2! ~h!#

2qbps
2an22

n2 @Cn22
~3! ~h!1Cn24

~3! ~h!#

1~ terms with pb or qs!, ~2.12!

wherea52 1
2 PQ, h52p•q/PQ andCn

(n)(h)’s are Gegen-
bauer polynomials~see Appendix A!. In fact in the above
two equations there appear terms withpb or qs. These terms
give null results when they are multiplied byerta

bpa and
emnlsql. @See Appendix B for the derivation of Eqs.~2.11!
and ~2.12!.#

We decompose the amplitudeTmnrt
A as

Tmnrt
A 5emnlsqlert

sbpb

1

p•q
~v1

g1v2
g!

2emnlsqlpsertabqapb
1

~p•q!2 v2
g , ~2.13!

then, using the above results on the contractions we find

v1
g1v2

g5 (
n51,3,...

(
i

a~2!i
g,n E~2!i

n S 2
P

QD n 1

n2 2hCn21
~2! ~h!

2 (
n53,5,...

(
i

a~3!i
g,n E~3!i

n S 2
P

QD n 1

n2 2h

3@~n11!Cn23
~2! ~h!2~n21!Cn21

~2! ~h!#, ~2.14!

v2
g52 (

n51,3,...
(

i
a~2!i

g,n E~2!i
n S 2

P

QD n 1

n2 8h2Cn22
~3! ~h!

1 (
n53,5,...

(
i

a~3!i
g,n E~3!i

n S 2
P

QD n 1

n2 8h2@Cn22
~3! ~h!

1Cn24
~3! ~h!#. ~2.15!
5-3
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Here we compare the expressions ofv1
g1v2

g andv2
g with

those given in Eqs.~8! and ~9! of Ref. @19#, which are the
invariant amplitudes for polarized deep inelastic lepto
nucleon scattering with target nucleon mass corrections
ing taken into account. Apart from the reduced matrix e
ments and coefficient functions, the expressions for b
photon and nucleon targets are exactly the same once
replacement ofM with 2 iP, or vice versa, is made. This is
due to the fact that the factor@erta

spa# (@erta
m j pa#) ap-

pearing in the photon matrix elements@Eqs.~2.7! and ~2.8!#
and in the decomposition@Eq. ~2.13!# plays the same role a
nucleon spinss(sm j), since pserta

spa50 (pm j
erta

m j pa

50). Thus the tensor structures of both polarized photon
polarized nucleon matrix elements are exactly the same.
only difference between the two is thatp252P2 for photon
target andp25M2 for nucleon.

Now we follow the same procedures as were taken
Wandzura@18# and in Ref.@19# for the polarized nucleon
case, and we obtain the analytic expression of the Na
mann moments for the twist-2 and twist-3 operators w
definite spinn. First we write the dispersion relations forv1

g

andv2
g and denote

g1,2
g 5

1

p
Im v1,2

g . ~2.16!

Second, using the orthogonality relations@Eq. ~A8!# and an
integration formula@Eq. ~A9!# for Gegenbauer polynomial
Cn

(n)(h), we project out( ia(2)i
g,n E(2)i

n and ( ia(3)i
g,n E(3)i

n with
definite spinn, which still include the infinite series in pow
ers of P2/Q2. Third, we sum up those infinite series an
express them in compact analytic forms@19#. Then we obtain

M2
n[(

i
a~2!i

g,n E~2!i
n ~Q2,P2,g!

5E
0

xmaxdx

x2 jn11F H x

j
1

n2

~n12!2

P2xj

Q2 J g1
g~x,Q2,P2!

1
4n

n12

P2x2

Q2 g2
g~x,Q2,P2!G ~n51,3,...!, ~2.17!

M3
n[(

i
a~3!i

g,n E~3!i
n ~Q2,P2,g!

5E
0

xmaxdx

x2 jn11Fx

j
g1

g~x,Q2,P2!1H n

n21

x2

j2

1
n

n11

P2x2

Q2 J g2
g~x,Q2,P2!G ~n53,5,...!,

~2.18!

wherex5Q2/(2p•q) andj, the so-calledj-scaling variable,
is given by
05402
-
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d
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j5
2x

11A12
4P2x2

Q2

. ~2.19!

In fact, the above results for the Nachtmann moments
reproduced from the counterparts in the case of sp
dependent nucleon structure functions, Eqs.~18! and~19! of
Ref. @19#, by replacing the target nucleon massM with 2 iP.

We see from Eq.~1.1! that the maximal value ofx is not
1 but 1/@11(P2/Q2)#. Therefore, the allowed range ofj is
0<j<1. It is important to note thatj(xmax)51 for the vir-
tual photon target. In the nucleon case, however, the c
straint (p1q)2>M2 gives xmax51. ChangingP2 in Eq.
~2.19! to 2M2, we get thatj(x51),1. This leads to a
well-known difficulty atx51 in the analysis of target mas
corrections to nucleon structure functions, both in unpo
ized and polarized cases. The nucleon structure funct
should vanish atx51 kinematically, while their expressions
once target mass effects are taken into account, vanishj
51 but remain non-zero whenj(x51),1. The resolution
to this problem was argued in Refs.@21–23# by considering
the dynamical higher-twist effects. On the other hand, in
case of a virtual photon target, we have no such difficu
When Q2,P2@L2, we can put the constraint as (p1q)2

>0 and this leads toxmax given in Eq. ~1.1!. We will see
later that the virtual photon structure functions with targ
mass corrections included do vanish atxmax, sincej(xmax)
51.

The left-hand side of Eqs.~2.17! and~2.18!, M2
n andM3

n ,
can be computed in perturbative QCD up to NLO, since
the kinematical regionQ2@P2@L2 both the reduced photon
matrix elementsa(k) i

g,n (k52,3) and coefficient functions
E(k) i

n (Q2,P2,g) (k52,3) are calculable. In fact, the pertu
bative QCD calculation ofM2

n has been done in LO@10# and
in NLO @13#, while the QCD analysis ofM3

n has been carried
out in LO for the flavor non-singlet part in the limit of larg
Nc @15#. Once the momentsM2

n andM3
n are known, we can

derive g1
g(x,Q2,P2) and g2

g(x,Q2,P2) as functions ofx by
inverting M2

n and M3
n , which will be discussed in the nex

section.

III. INVERTING THE MOMENTS

First let us rewrite the Nachtmann moments in the va
ablej and we get

M2
n5E

0

1

dj jn21F H 11
n2

~n12!2 kj2J 12kj2

11kj2 g1
g~x,Q2,P2!

1
n

n12
4kj2

12kj2

~11kj2!2 g2
g~x,Q2,P2!G , ~3.1!

M3
n5E

0

1

dj jn21F12kj2

11kj2 g1
g~x,Q2,P2!

1H n

n21
1

n

n11
kj2J 12kj2

~11kj2!2 g2
g~x,Q2,P2!G , ~3.2!
5-4
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where we have putk[P2/Q2. We define

A~j![
12kj2

11kj2 g1
g~x,Q2,P2!,

B~j![
12kj2

~11kj2!2 g2
g~x,Q2,P2!. ~3.3!

The boundary conditions forA(j) and B(j) are A(j51)
5B(j51)50, since g1

g(xmax,Q
2,P2)5g2

g(xmax,Q
2,P2)50

and j(xmax)51. Now introducing the following four func-
tions:

Ã~j!5E
j

1 dj8

j8
E

j8

1 dj9

j9
A~j9!, ~3.4!

B21~j!5E
j

1 dj8

j8
B~j8!,

B0~j!5E
j

1

dj8B~j8!,

B1~j!5E
j

1

dj8$j8B~j8!%, ~3.5!

and by partial integration we find that the above two m
ments are written as

Mn
2

n2 5E
0

1

dj jn21@~11kj2!Ã~j!12k$B1~j!2j2B21~j!%#,

~3.6!

M3
n

n2 5E
0

1

dj jn21F Ã~j!1
1

j
~12kj2!B0~j!2B21~j!

1kB1~j!G . ~3.7!

Inverting the moments we get

Ha~j!5
1

2p i Ec2 i`

c1 i`

dn j2nH M2
n

n2 J
5~11kj2!Ã~j!12k$B1~j!2j2B21~j!%,

~3.8!

Hd~j!5
1

2p i Ec2 i`

c1 i`

dn j2nH M3
n

n2 J
5Ã~j!1

1

j
~12kj2!B0~j!2B21~j!1kB1~j!,

~3.9!

where we have adopted the notation used in Ref.@21# for
Ha(j) and Hd(j). Further introducing the following func
tions @21#:
05402
-

Ga,d~j!52j
dHa,d~j!

dj
, Fa,d~j!52

dGa,d~j!

dj
,

~3.10!

we differentiate both sides of Eqs.~3.8! and ~3.9! by j and
get the relations betweenÃ(j), B21(j), B0(j), B1(j) and
Ha,d(j), Ga,d(j), Fa,d(j). Now replacing the former func-
tions with the latter, we solve forg1

g andg2
g and obtain

g1
g~x,Q2,P2!

54kj2
~11kj2!3

~12kj2!5 H 11
2kj2

~11kj2!2J Ha~j!

24kj2
~11kj2!2

~12kj2!4 H 11
1

11kj2J Ga~j!

1j
~11kj2!2

~12kj2!3 Fa~j!28kj2
~11kj2!3

~12kj2!5

3H 11
2kj2

~11kj2!2J Hd~j!112kj2
~11kj2!2

~12kj2!4 Gd~j!

24kj3
11kj2

~12kj2!3 Fd~j!, ~3.11!

g2
g~x,Q2,P2!

526kj2
~11kj2!3

~12kj2!5 Ha~j!1
~11kj2!3

~12kj2!4

3H 11
4kj2

11kj2J Ga~j!2j
~11kj2!2

~12kj2!3 Fa~j!

112kj2
~11kj2!3

~12kj2!5 Hd~j!2
~11kj2!4

~12kj2!4

3H 11
8kj2

~11kj2!2J Gd~j!1j
~11kj2!3

~12kj2!3 Fd~j!.

~3.12!

Equations~3.11! and ~3.12! are the final formulas for the
polarized photon structure functionsg1

g and g2
g when target

mass effects are taken into account. The parameterk repre-
sents the target mass corrections. Once the reduced ph
matrix elements and coefficient functions corresponding
the relevant twist-2 and -3 operators, more specifica
S ia(2)i

g,n E(2)i
n (Q2,P2,g) and S ia(3)i

g,n E(3)i
n (Q2,P2,g) in Eqs.

~2.17! and ~2.18!, are given, then we can calculateHa,d(j),
Ga,d(j), andFa,d(j) through Eqs.~3.8!–~3.10!, and predict
whole structure functions with target mass corrections. N
that by definition the functionsHa,d(j), Ga,d(j), and
Fa,d(j) contain the logarithmic QCD corrections dependi
on ln(Q2/L2) and ln(P2/L2). When we setk50 in Eqs.~3.11!
and ~3.12! and Eq.~2.19!, we obtain

g1
g~x,Q2,P2!u05xFa~x!, ~3.13!
5-5
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g2
g~x,Q2,P2!u05Ga~x!2xFa~x!2Gd~x!1xFd~x!

~3.14!

for the polarized photon structure functions without targ
mass effects, which have been investigated in the litera
@12,13,15#. We have suppressed the logarithmicQ2 and P2

dependence in the arguments ofGa,d(x) andFa,d(x).
Before we proceed to numerical analysis for target m

effects on the polarized photon structure functions, let
consider the power series expansion of target mass effec
the phenomenological analysis of target mass effects on
polarized nucleon structure functions@21#, the expansion in
powers ofP2/Q2 was carried out and the first order term
were kept to analyze the experimental data. It would be
teresting to see how good the first order approximation is
the case of the virtual photon target. We take thex moments
of the structure functionsg1,2

g (x,Q2,P2),

g1,2
g,n[E

0

xmax
dx xn21g1,2

g ~x,Q2,P2!

5E
0

1

dj
12kj2

~11kj2!2 S j

11kj2D n21

g1,2
g ~x,Q2,P2!.

~3.15!

Using the expressions given in Eqs.~3.11! and ~3.12! for
g1,2

g (x,Q2,P2), we expand the integrands to the first order
k. Then we obtain

g1
g,n5M2

n2k
n2~n11!

~n12!2 M2
n122k

4n~n11!

~n12!2 M3
n121O~k2!,

~3.16!

g2
g,n52

n21

n
M2

n1
n21

n
M3

n1k
n~n11!~n21!

~n12!2 M2
n12

2k
n2~n21!

~n12!2 M3
n121O~k2!, ~3.17!

where we have used the formulas

E
0

1

dj jn21Ha,d~j!5
M2,3

n

n2 ,

E
0

1

dj jn21Ga,d~j!5
M2,3

n

n
,

E
0

1

dj jnFa,d~j!5M2,3
n . ~3.18!

The result is consistent with the one obtained for the cas
a polarized nucleon target in Ref.@21#. For phenomenologi-
cal analysis, the experimental data will be used for the l
hand sides of Eqs.~3.16! and ~3.17! which should be com-
pared with the right-hand sides, the QCD predictions.
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IV. NUMERICAL ANALYSIS

Let us perform a numerical analysis for the target m
effects ing1

g andg2
g .

A. g1
g
„x,Q2,P2

… derived from H a,d„j…, Ga,d„j…, and F a,d„j…

We first compute the functions,Ha,d(j), Ga,d(j), and
Fa,d(j), inverting the Nachtmann momentsM2

n andM3
n ,

Ha,d~j!5
1

2p i Ec2 i`

c1 i`

dn j2n
M2,3

n

n2 , ~4.1!

Ga,d~j!5
1

2p i Ec2 i`

c1 i`

dn j2n
M2,3

n

n
, ~4.2!

jFa,d~j!5
1

2p i Ec2 i`

c1 i`

dn j2nM2,3
n . ~4.3!

We use the QCD result forM2
n(5S ia(2)i

g,n E(2)i
n ), which has

been calculated up to NLO and given in Eq.~3.16! of the
first article of Ref.@13#. As for M3

n(5S ia(3)i
g,n E(3)i

n ), on the
other hand, we adopt the pure QED result, Eq.~3.22! of Ref.
@15#, with the factor (n21)/n taken out. The QCD calcula
tion of M3

n even in LO has not been accomplished yet. T
evaluation of the twist-3 partM3

n in QCD is feasible whenn
is a small number. But asn gets larger it becomes a more an
more difficult task due to the increase of the number of p
ticipating operators and the mixing among these opera
@24#.

We have plotted the twist-2 contributions,Ha(j), Ga(j),
andjFa(j) as functions ofj in Fig. 3, and the twist-3 con-
tributions,Hd(j), Gd(j), andjFd(j) in Fig. 4, for the case

—2

—1

0
Ha( )

Ga a( )ξξ ξ

0.2 0.4 0.80.6
ξ

H
a,

 G
a,

 F
a 

as
 fu

nc
tio

ns
 o

f 

Q2=30GeV2

P2=1GeV2

ξ

F ξ( )ξ

FIG. 3. The functionsHa(j) ~solid curve!, Ga(j) ~dash-dotted
curve!, andjFa(j) ~dashed curve! obtained by the inverse Mellin
transform of the weighted moments ofM2

n for twist-2 operators,
Eqs.~4.1!, ~4.2!, and~4.3!.
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of Q2530 GeV2 andP251 GeV2. We takeL50.2 GeV for
the QCD parameter andNf53 for the number of active
quark flavors throughout our numerical analysis. We see
all the functionsHa,d(j), Ga,d(j), andFa,d(j) vanish asj
→1. The behavior of a function nearj51 is governed by its
moments at largen. The LO QCD result forM2

n gives M2
n

;1/(n ln n) for large n, which determines the dominant be
haviors of the functions nearj51, and thus we expect tha

jFa~j!; 2
1

ln~12j!
, Ga~j!;

ln j

ln~12j!
,

Ha~j!; 2
~ ln j!2

ln~12j!
. ~4.4!

For the twist-3 part,M3
n , the pure QED result tells thatM3

n

;21/n2 at largen. So we get nearj51,

jFd~j!; ln j, Gd~j!;2~ ln j!2, Hd~j!;~ ln j!3.
~4.5!

The behaviors ofHa,d(j), Ga,d(j), andFa,d(j) asj→1 in
Figs. 3 and 4 are indeed just what we have expected.
functionsHa,d(j), Ga,d(j), andFa,d(j) for the case ofQ2

510 GeV2 andP251 GeV2 show the similar behaviors.
Putting these results into the formula~3.11!, we obtain

g1
g(x,Q2,P2) with TME as a function ofx, which is shown

~solid curve! in Fig. 5 for Q2530 GeV2 with P251 GeV2

and in Fig. 6 forQ2510 GeV2 with P251 GeV2. The ver-
tical axis is in units of 3Nf^e

4&(a/p)ln(Q2 /P2), where a
5e2/4p, the QED coupling constant, and^e4&5S i 51

Nf ei
4/Nf

with ei being the electric charge of thei th flavor quark. Also
plotted areg1

g(x,Q2,P2)u0 without TME ~dashed curve! @see

–2

–1

0

Hd( )
Gd( ) Fd( )

ξ
ξ ξξξ ξ

0.2 0.4 0.80.6
ξ

H
d,

 G
d,

 F
d 

as
 fu

nc
tio

ns
 o

f 
ξξ

Q2=30GeV2

P2=1GeV2

FIG. 4. The functionsHd(j) ~solid curve!, Gd(j) ~dash-dotted
curve!, andjFd(j) ~dashed curve! obtained by the inverse Mellin
transform of the weighted moments ofM3

n for twist-3 operators,
Eqs.~4.1!, ~4.2!, and~4.3!.
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at

he

Eq. ~3.13!# and the one with TME included up to the firs
order in P2/Q2 ~short-dashed curve!, which is obtained by
the inverse Mellin transform of the right-hand side of E
~3.16!. We observe that the target mass effects appear
tween intermediatex and xmax, and that the effects becom
sizable when the ratioQ2/P2 is reduced~see Fig. 6!. The
distinction between the behaviors ofg1

g with and without
TME is remarkable nearxmax. We get xmax'0.97 for Q2

530 GeV2 with P251 GeV2 and xmax'0.91 for Q2

510 GeV2 with P251 GeV2. The graphs ofg1
g with TME

–2

–1

0

1

With TME (1st order)

Without TME

Q2= 30 GeV2

P2= 1 GeV2

0.2 0.4 0.6 0.8
x

With TME (full order)

xmax=0.97

Nf = 3

g 1
  (

x,
Q

2 ,P
2 )/

3N
f<

e4 >
––

ln
 Q

/P2
2

πα
γ

FIG. 5. The graphs ofg1
g(x,Q2,P2) with full TME @Eq. ~3.11!,

solid curve# with the first order TME~short-dashed curve! and with-
out TME ~dashed curve! in units of 3Nf^e

4&(a/p)ln(Q2/P2) for
Q2530 GeV2 andP251 GeV2 with L50.2 GeV,Nf53.

–2

–1

0

1

With TME (1st order)

Without TME

Q2= 10 GeV2

P2= 1 GeV2

0.20 0.4 0.6 0.8 1
x

With TME (full order)

xmax=0.91

g 1
  (

x,
Q

2 ,P
2 )/

3N
f<

e4 >
––

ln
 Q

2 /P
2

π

Nf = 3

g 1
  (

x,
Q

2 ,P
2 )/

3N
f<

e4 >
––

ln
 Q

2 /P
2

g 1
  (

x,
Q

2 ,P
2 )/

3N
f<

e4 >
––

ln
 Q

2 /P
2

g 1
  (

x,
Q

2 ,P
2 )/

3N
f<

e4 >
––

ln
 Q

2 /P
2

FIG. 6. The graphs ofg1
g(x,Q2,P2) for Q2510 GeV2 and P2

51 GeV2 with L50.2 GeV,Nf53.
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vanish atxmax as they should. But those graphs without TM
or with TME partially included remain finite. In the smallx
region the target mass effects are almost negligible. We
note that the graph with the first order corrections inP2/Q2

is a good approximation to the full-order result exce
aroundxmax.

B. The first moment sum rule of g1
g
„x,Q2,P2

… and target mass
effects

When the target mass corrections are not taken into
count, the polarized virtual photon structure functi
g1

g(x,Q2,P2) satisfies the following sum rule@7,13#:

G1
g[E

0

1

dx g1
g~x,Q2,P2!u052

3a

p (
i 51

Nf

ei
41O~as!.

~4.6!

The right-hand side corresponds to the twist-2 contributi
M2

n51(5S ia(2)i
g,n51E(2)i

n51), and actually the first term is th
consequence of the QED axial anomaly. Now it will be i
teresting to see how this sum rule is modified when TME
included.

From Eq.~2.17! we easily see that once the target ma
corrections are taken into account, the above sum rul
modified to the first Nachtmann moment, which reads

1

9 E0

xmax
dx

j2

x2 F514A12
4P2x2

Q2 Gg1
g~x,Q2,P2!

1
4

3 E0

xmax
dx

j2

x2

P2x2

Q2 g2
g~x,Q2,P2!

52
3a

p (
i 51

Nf

ei
41O~as!. ~4.7!

Phenomenologically it would be appropriate to express
first moment ofg1

g(x,Q2,P2) itself in terms ofM2
n andM3

n ,
which are calculable by perturbative QCD. Settingn51 in
Eq. ~3.16!, we obtain to the first order inP2/Q2,

E
0

xmax
dx g1

g~x,Q2,P2!

5M2
n512H 2

9
M2

n531
8

9
M3

n53J P2

Q2 1O„~P2/Q2!2
…

~4.8!

whereM2
n5152(3a/p)S i 51

Nf ei
4. Thus the target mass co

rectionsDG1
g to the first moment ofg1

g , i.e., the difference
between the left-hand sides of Eqs.~4.8! and ~4.6! is given,
to the first order inP2/Q2, by

DG1
g52H 2

9
M2

n531
8

9
M3

n53J P2

Q2 . ~4.9!

Up to this order inP2/Q2 we only need to know the reduce
matrix elements and coefficient functions forn53. Using the
NLO result for M2

n53 in QCD, given in Eq.~3.16! of Ref.
@13#, we obtain
05402
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M2
n53Y a

p
50.163 ~0.0601! for

Q2530 GeV2 ~10 GeV2!, P251 GeV2. ~4.10!

As for the twist-3 contributionM3
n53, the LO result in QCD

is available. Taking the results in Eqs.~4.30!–~4.36! of Ref.
@15#, we get

M3
n53Y a

p
520.130 ~20.0942! for

Q2530 GeV2~10 GeV2!, P251 GeV2. ~4.11!

With these numerical values we find

DG1
g/M2

n51520.00395 ~20.0106! for

Q2530 GeV2 ~10 GeV2!, P251 GeV2. ~4.12!

The target mass corrections to the first moment sum
of g1

g amount to 0.40%~1.1%! for Q2530 GeV2 ~10 GeV2!
with P251 GeV2, which are negligibly small. Even for the
latter case,Q2510 GeV2 and P251 GeV2, the corrections
are, at most, of order of 1%. We see from Eqs.~4.10! and
~4.11! that the twist-2 and twist-3 contributionsM2

n53 and
M3

n53 for n53 are almost the same in magnitude but ha
the opposite signs. This leads to the smallness of target m
corrections to the first moment sum rule ofg1

g .

C. g2
g
„x,Q2,P2

… and the target mass effects

We obtain the graph ofg2
g(x,Q2,P2) with TME by insert-

ing the functionsHa,d(j), Ga,d(j), and Fa,d(j) derived
from Eqs.~4.1!–~4.3! into Eq. ~3.12!. Again we have used
the pure QED result forM3

n , Eq. ~3.22! of Ref. @15#, since
the QCD result forM3

n with n.3 is not available. In Fig. 7
we have plottedg2

g(x,Q2,P2) with TME ~solid curve! in
units of 3Nf^e

4&(a/p)ln(Q2/P2) for Q2530 GeV2 and P2

51 GeV2. Also shown in Fig. 7 is the box-diagram contr
bution to g2

g ~dashed curve! for an example without TME,
the expression of which is given by@15#

g2
g~Box!~x,Q2,P2!5

3a

p
Nf^e

4&F2~2x21!ln
Q2

P2

12~2x21!ln x16x24G . ~4.13!

The graph ofg2
g with TME vanishes atxmax, but not the one

without TME.
In a certain limit the analysis ofM3

n in QCD becomes
tractable. The contribution toM3

n is made up of two compo-
nents; the flavor singlet and nonsinglet. In an approximat
of neglecting terms of orderO(1/Nc

2) we are able to calcu-
late M3

n(NS) , the flavor nonsinglet contribution toM3
n , for

arbitraryn in QCD since in this limit the problem of operato
mixing can be evaded@25#. In fact, we have computed
M3

n(NS) in LO QCD for the largeNc limit, which is given in
5-8
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Eq. ~4.40! of Ref. @15#. Using theseM3
n(NS) we perform the

inverse Mellin transform of Eqs.~4.1!–~4.3! to obtain the
flavor nonsinglet contributions,Hd

NS(j), Gd
NS(j), and

Fd
NS(j). Then putting these functions into the formula~3.12!

and setting the twist-2 contributions to zero, i.e.,Ha(j)
5Ga(j)5Fa(j)50, we obtainḡ2

g(NS)(x,Q2,P2), the twist-3
contribution to the flavor nonsinglet part ofg2

g , including
TME.

In Fig. 8 we have plottedḡ2
g(NS)(x,Q2,P2) with TME

~solid curve! in units of 3Nf(^e
4&2^e2&2)(a/p)ln(Q2/P2)

for Q2530 GeV2 and P251 GeV2, where (̂ e4&2^e2&2) is
a charge factor for the flavor nonsinglet component w
^e2&5( i 51

Nf ei
2/Nf . Also plotted are the graphs ofḡ2

g(NS)

without TME ~short-dashed curve! and the box-diagram con
tribution to ḡ2

g(NS) ~dashed curve! which is obtained by sub
tracting the twist-2 contribution@27# from Eq. ~4.13! and is
given by @15#

ḡ2
g~NS,Box!5

3a

p
Nf~^e

4&2^e2&2!F ~2x222 ln x!ln
Q2

P2

22~2x21!ln x12~x21!1 ln2 xG . ~4.14!

We observe that target mass corrections in the twist-3
are negligibly small. This is inferred from the fact that targ
mass effects appear at largej ~largex! and the twist-3 con-
tributions jFd(j), Gd(j), and Hd(j) vanish as lnj,
2(ln j)2, and (lnj)3, respectively, forj→1. Another case for
Q2510 GeV2 with P251 GeV2 is shown in Fig. 9, where
we see that target mass effects become slightly larger
the case forQ2530 GeV2, in particular, in the region nea
xmax.

–2

0

2

Box

BOX

γ

0.6

Q2=30 GeV2

P2=1 GeV2

With TME

With TME xmax = 0.97

0.2 0.4 0.8
x

g 2
  (

x,
Q

2 ,P
2 )/

3N
f<

e4 >
––

ln
(Q

2 /P
2 )

α π

Nf = 3

0 1

FIG. 7. The graph ofg2
g(x,Q2,P2) with TME @Eq. ~3.12!, solid

curve# and the box-diagram contribution tog2
g ~dashed curve! in

units of 3Nf^e
4&(a/p)ln(Q2/P2) for Q2530 GeV2 and P2

51 GeV2 with L50.2 GeV,Nf53.
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D. Burkhardt-Cottingham sum rule

Just as the spin-dependent nucleon structure func
g2

nucl, the polarized virtual photon structure functio
g2

g(x,Q2,P2) satisfies the Burkhardt-Cottingham~BC! sum
rule @26#

0        1
–1

0

1

0.2 0.4 0.6 0.8

–0.2

–0.4

–0.6

–0.8

x

0.2

0.4

0.6

0.8

g 2
  (

N
S

) (
x,

Q
2 ,P

2 )/
3N

f (
<

e4 >
–<

e2 >
2 )–

–l
n(

Q
2 /P

2 )
α π

γ
–

LO

with TME

Box

xmax=0.97

Q2=30 GeV2

P2=1 GeV2

Nf = 3

FIG. 8. The graphs ofḡ2
g(NS)(x,Q2,P2), the twist-3 contri-

bution to the flavor non-singlet part ofg2
g , in units of 3Nf(^e

4&
2^e2&2)(a/p)ln(Q2/P2) for Q2530 GeV2 and P251 GeV2 with
L50.2 GeV,Nf53. The twist-3 effects are evaluated in LO QC
for the largeNc limit. The solid and short-dashed curves show t
results with TME and without TME, respectively. We have al
shown the box-diagram contribution toḡ2

g(NS) ~dashed curve! for
comparison.

–1

0

1

0.2 0.4 0.6 0.8

–0.2

–0.4

–0.6

–0.8

x

0.2

0.4

0.6

0.8

g 2
  (

N
S

) (
x,

Q
2 ,P

2 )/
3N

f (
<

e4 >
–<

e2 >
2 )–

–l
n(

Q
2 /P

2 )
α π

γ
–

LO

with TME

Box

xmax=0.91

Q2=10 GeV2

P2=1 GeV2

Nf = 3

0 1

FIG. 9. The graphs ofḡ2
g(NS)(x,Q2,P2) for Q2510 GeV2 and

P251 GeV2 with L50.2 GeV,Nf53.
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E
0

1

dx g2
g~x,Q2,P2!u050. ~4.15!

We put the subscript 0 to emphasize that this is the statem
when the target mass corrections are not included. When
TME are included, Eq.~3.17! shows that the BC sum rul
still holds up to the first order inP2/Q2. Actually we take the
x moments ofg2

g whose expression is given in Eq.~3.12!.
Using the relations in Eq.~3.10! and by partial integration
with the boundary conditionsHa,d(j51)5Ga,d(j51)50,
we obtain

E
0

xmax
dx xn21g2

g~x,Q2,P2!

5n~n21!E
0

1

dj
jn21

~11kj2!n11 @2Ha~j!

1~11kj2!Hd~j!#. ~4.16!

Taking n51, we arrive at

E
0

xmax
dx g2

g~x,Q2,P2!50, ~4.17!

which shows the BC sum rule is free from the target m
effects. Note that the upper limit of integration has chang
from 1 toxmax. A similar expression to the one in Eq.~4.16!
has been obtained by Piccione and Ridolfi@21# for the mo-
ments of the nucleon structure functiong2

nucl when the target
mass corrections are included.

V. CONCLUSION

In this paper we have investigated the target mass eff
in the polarized virtual photon structure function
g1

g(x,Q2,P2), g2
g(x,Q2,P2) which can be measured in th

future experiments of the polarized version of theep or
e1e2 colliders.

We based our argument on the framework of the OPE
the O~4! expansion, taking into account the trace terms of
operators of the definite spin. This amounts to the use of
expansion of the amplitudes in terms of the Gegenba
polynomials and their orthogonality relations to extract t
contributions with the definite spin, given as the Nachtma
moments. The evaluation of the ‘‘kinematical’’ target ma
effects is important to extract the ‘‘dynamical’’ higher-twi
effects which would also exist in the power corrections
P2/Q2.

We have derived the expressions forg1
g(x,Q2,P2) and

g2
g(x,Q2,P2) in closed form by inverting the Nachtman

moments for the twist-2 and twist-3 operators. The char
teristic feature for the photon target compared to the nucl
case is the presence of the maximal valuexmax(,1) of the
Bjorken variablex, while j(xmax)51. Hence we do not en
counter the similar problem due to the kinematical relat
j(xmax),1 with xmax51 in the case of the nucleon.

Our numerical analysis shows that the target mass eff
appear at largex and become sizable nearxmax„51/@1
05402
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1(P2/Q2)#…, as the ratioP2/Q2 increases. The structur
functions evaluated by inverting the Nachtmann moments
fact vanish atx5xmax. We have also examined the targ
mass effects for the first-moment sum rules ofg1

g and g2
g .

For the kinematic region we consider, the corrections to
first moment ofg1

g turn out to be negligibly small. The firs
moment ofg2

g leads to the Burkhardt-Cottingham sum rul
where the upper limit of integration becomesxmax. More
thorough QCD analysis, including the flavor-singlet part
g2

g , is now under investigation.
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APPENDIX A: GEGENBAUER POLYNOMIALS

In this appendix we present main formulas of Gegenba
polynomials which are used in this paper. The Gegenba
polynomials Cn

(n)(h) are defined through the generatin
function given by@28,29#

~122ht1t2!2n5 (
n50

`

Cn
~n!~h!tn. ~A1!

In terms of hypergeometric functionsF(a,b,g;z), Cn
(n)(h)

is expressed as

Cn
~n!~h!5

2nG~n1n!

n!G~n!
FS 2

n

2
,
12n

2
,12n2n;

1

h2D
5

1

G~n! (j 50

n/2
~21! jG~n1n2 j !

j ! ~n22 j !!
~2h!n22 j ,

~A2!

from which we obtain, for example,

Cn
~1!~h!5(

j 50

n/2
~21! j

j !

~n2 j !!

~n22 j !!
~2h!n22 j , ~A3!

Cn21
~2! ~h!5 (

j 50

~n21!/2
~21! j

j !

~n2 j !!

~n22 j 21!!
~2h!n22 j 21.

~A4!

1. Recursion formulas

nCn
~n!~h!52n@hCn21

~n11!~h!2Cn22
~n11!~h!#, ~A5!

~n12n!Cn
~n!~h!52n@Cn

~n11!~h!2hCn21
~n11!~h!#, ~A6!

~n12!Cn12
~n! ~h!52~n1n11!hCn11

~n! ~h!

2~n12n!Cn
~n!~h!. ~A7!
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2. Orthogonality relations

E
21

1

~12h2!n2~1/2!Cm
~n!~h!Cn

~n!~h!dh

5
2p

22n

G~n12n!

~n1n!n! @G~n!#2 dmn . ~A8!

In addition we need the following formula for the integral
project out the contributions of definite spin from the disp
sion relations:

E
21

1

dh hm~12h2!n2„1/2…Cn
~n!~h!

1

z2h

5
p

2n21 zm~z221!~n21!/2@z2~z221!1/2#n1n

3
G~n12n!

G~n!G~n1n11!

3FS n,12n,n1n11;
2z1~z221!1/2

2~z221!1/2 D . ~A9!

In fact the factor @z2(z221)1/2#n1n gives
(2P/Q)n1n jn1n, wherej is the so-calledj-scaling vari-
able given in Eq.~2.19!.

APPENDIX B: DERIVATION OF EQS. „2.11…, „2.12…

1. Contraction formulas

We give a table of contractions which are used for
derivation. First we introduce the most general rank-n sym-
metric and traceless tensor,Pm1¯mn, that can be formed with
the momentump alone@17#,

~B1!

I ~0!~n![qm1
¯qmn

Pm1¯mn5anCn
~1!~h!, ~B2!

where

a52
1

2
PQ, h5 2

p•q

PQ
. ~B3!

Next we differentiate both sides of Eq.~B2! with respect
to pb. Using the following formulas:
05402
-

e

]a

]pb 5aS 2pb

P2 D ,
]h

]pb 5
qb

2a
1h

pb

P2 ,

dCn
~n!~n!

dh
52nCn21

~n11!~h!, ~B4!

we find

nqm1
¯qmn

$db
m1pm2

¯pmn21%n

5H 2nan
pb

P2 Cn
~1!~h!1anF qb

2a
1h

pb

P2G2Cn21
~2! ~h!J ,

~B5!

where $db
m1pm2

¯pmn21%n is a tensor which is formed with

onedb
m i andn21 momentum four-vectorsp and totally sym-

metric among indicesm1¯mn . Moreover, it is traceless in
the sense thatgm im j

$db
m1pm2

¯pmn21%n50 for all pairs i,j .
Now it is reminded that the polarized photon matrix eleme
are multiplied by the factorerta

b. Thus the terms withpb in
contractions do not contribute in the end. Also the terms w
qs which appear later on give null results when multiplie
by emnls

l @see Eq.~2.10!#. So we obtain

I ~1!b~n!5qm1
¯qmn

$db
m1pm2

¯pmn21%n5
1

n
qban21Cn21

~2! ~h!

1~ terms with pb!. ~B6!

Further, we differentiate both sides of Eq.~B6! with re-
spect toqs . With

]a

]qs
5aS 2qs

Q2 D ,
]h

]qs
5

ps

2a
1h

qs

Q2 , ~B7!

we obtain

I ~2!b
s ~n21!5qm1

¯qmn21
$db

spm1
¯pmn21%n5

1

n

]I ~1!b~n!

]qs

5
1

n2 $db
san21Cn21

~2! ~h!1qbpsan222Cn22
~3! ~h!%

1~ terms with pb or qs!. ~B8!

Finally, both sides of Eq.~B2! are differentiated with respec
to qs , and we get

I ~3!
s ~n21!5qm1

¯qmn21
Psm1¯mn215

1

n

]I ~0!~n!

]qs

5
1

n
$psan21Cn21

~2! ~h!%1~ terms with qs!.

~B9!

The terms withqs which appear in Eqs.~B8! and~B9! have
been omitted. With Eqs.~B2!, ~B6!, ~B8!, and~B9! at hand,
we are now ready to derive Eqs.~2.11! and ~2.12!.
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2. Derivation

The tensorM̃ (2)b
sm1¯mn21, which corresponds to the trace

less twist-2 operatorR(2)i
n , is formed onedb

s ~or db
m i) and

n21 momentum four-vectorsp and is totally symmetric
among indicess,m1¯mn21 . Thus it is given by

M̃
~2!b
sm1¯mn215$db

spm1
¯pmn21%n . ~B10!

For its contraction withqm1
¯qmn21

, we find from Eq.~B8!

qm1
¯qmn21

M̃
~2!b
sm1¯mn21

5I ~2!b
s ~n21!

5
1

n2 $db
san21Cn21

~2! ~h!1qbpsan222Cn22
~3! ~h!%

1~ terms with pb or qs!. ~B11!

The tensorM̃ (3)b
sm1¯mn21, which corresponds to the trace

less twist-3 operatorR(3)i
n , is also formed onedb

s ~or db
m i)
01

7,

A

05402
and n21 momentum four-vectorsp. Its indices are totally
symmetric amongm1¯mn21 but antisymmetric under
s↔m i . The one which satisfies these requirements is@21#

M̃
~3!b
sm1¯mn215

n21

n H n11

n Fdb
sPm1¯mn212

1

~n21!

3 (
l 51

n21

db
m lPsm1¯~m l !¯mn21G

1
n21

n FpsM̃
~2!b
m1¯mn212

1

~n21!

3 (
l 51

n21

pm l M̃
~2!b
sm1¯~m l !¯mn21G J . ~B12!

Using Eqs.~B2!, ~B6!, ~B8!, ~B9!, we obtain
qm1
¯qmn21

M̃
~3!b
sm1¯mn215

n21

n H n11

n
@db

sI ~0!~n21!2qbI ~3!
s~n22!#1

n21

n
@psI ~1!b

~n21!2p•qI ~2!b

s~n22!#J
5

1

n2 db
san21$~n21!~n11!Cn21

~1! ~h!22hCn22
~2! ~h!%1

1

n2 qbpsan22$22Cn22
~2! ~h!

24hCn23
~3! ~h!%1~ terms with pb or qs!

5
1

n2 db
san21$~n21!Cn21

~2! ~h!2~n11!Cn23
~2! ~h!%2

1

n2 qbpsan222$Cn22
~3! ~h!1Cn24

~3! ~h!%

1~ terms with pb or qs!, ~B13!

where at the final stage the recursion relations in Eqs.~A5! and ~A6! were used.
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