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We study target mass effects in the polarized virtual photon structure fungtf¢rsQ?,P?), g3(x,Q? P?)
in the kinematic regiom ><P?<Q?, where— Q?(— P?) is the mass squared of the pro@rge} photon. We
obtain the expressions fgf/(x,Q?,P2) andg3(x,Q?,P?) in closed form by inverting the Nachtmann moments
for the twist-2 and twist-3 operators. Numerical analysis shows that target mass effects appearxaatarge
become sizable neat,.[=1[1+ (P?/Q?)]], the maximal value ok, as the ratioP?/Q? increases. Target
mass effects for the sum rules @f andg} are also discussed.
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I. INTRODUCTION If the target is real photonR?=0), there is no need to
consider target mass corrections. But when the target be-
The investigation of the photon structure is an active fieldcomes off-shell, for exampleP?=M?, where M is the
of research both theoretically and experimentélly-4]. In nucleon mass, and for relatively low values@f, contribu-
recent years, there has been growing interest in the study &Pns suppressed by powers Bf/Q* may become impor-
the spin structure of photon. In particular, the first moment oftant. Then we need to take into account these target mass

the polarized photon structure functigii has attracted much contributions just like the case of the nucleon structure func-
tions. The consideration of target mass effd@®IE) is im-

attention in connection with its relevance to the QED and :
QCD axial anomaly[5—9]. The polarized photon structure portant by another reason. For the virtual photon target, the

functions may be extracted from resolved photon processe@ax'mal value of the Bjorken variableis not 1 but

in the polarized version of the DES¥p collider HERA. 1

More directly, they can be measured from two-photon pro- Xmax=—pz (1.9
cesses in the polarizegi"e™ collider experimentgFig. 1), 1+ =

where — Q?(— P?) is the mass squared of the prottarge} Q

photon.

due to the constraintp(+q)?=0, which is contrasted with

2_ .
For a real photonR"=0) target, there exists only one the nucleon case wherg,,=1. The structure functions

spin-dependent structure functiog](x,Q?). The QCD
analysis forg] was performed in the leading ordérO) [10]
and in the next-to-leading ordéNLO) [11,12. In the case
of a virtual photon targetR?+0) there appear two spin-
dependent  structure  functions, g7(x,Q%P?)  and
93(x,Q?%,P?). The former has been investigated up to the
NLO in QCD by the present authors i3], and also in the
second paper df12]. In fact, we have analyzed i3] the
structure functiong(x,Q%,P?) in the kinematical region
A?<P2<Q?, whereA is the QCD scale parameter. The ad-
vantage of studying a virtual photon target in that kinemati-
cal region is that we can calculate structure functions entirely
up to the NLO by the perturbative methdd4], which is
contrasted with the case of the real photon target where in
the NLO there exist nonperturbative pieces. As for the struc-

+ —
ture functiongJ(x,Q?,P?), the analysis has not made much e(e)
progress owing to the difficulty arising from the relevant 0
twist-3 operators. So far only the LO QCD corrections to the )
flavor nonsinglet part ofJ have been calculated in the large
N, limit [15]. FIG. 1. Deep inelastic scattering on a polarized virtual photon in

a polarizede*e™ collision, e*e” —e*e” +hadrons(quarks and
gluong. The arrows indicate the polarizations of thé ande™.
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should vanish ak=x,,c. However, the NLO QCD result
[13] for g7(x,Q% P?) shows that the predicted graph does
not vanish but remains finite &t X4 This flaw is coming
from the fact that TME have not been taken into account in
the analysis. The target mass corrections have been studied
in the past for the cases of unpolaridd®,17] and polarized
[18—-27 nucleon structure functions.

In this paper we investigate TME in the polarized virtual
photon structure functiong}(x,Q2,P?) and gJ(x,Q? P?).
In the analysis of§] in [13], the formalism of the operator
product expansiofOPE) supplemented by the renormaliza-
tion group method was used. The photon matrix elements of
the relevant traceless operators in the OPE are expressed by
traceless tensors. These tensors contain many trace terms soFIG. 2. Forward scattering of a virtual photon with momentym
that they satisfy the tracelessness conditions. The basic idgad another virtual photon with momentymThe Lorentz indices
for computing the target mass corrections exactly is to také@re denoted bys,v,p,7.
account of trace terms in the traceless tensors properly. There
are two methods used so far for collecting all those trace 1
terms. One, which was introduced by Nachtm#hél, is to Woarp(P,Q) = —1IMT,,,-(P,0Q). (2.2
make use of Gegenbauer polynomials to express the contrac-

tions betweerq,, ---q, , and the traceless tensdi,18— ) . N )
20]. This method leads to the Nachtmann moments for thérhe antisymmetric paiV,,,, under the interchangg — »

twist-2 and twist-3 operators with definite spin. The other,21dp« 7 can be decomposed as

first used by Georgi and Politz¢t7], is to write traceless

tensors explicitly and then to collect trace terms and sum . 0B y \ B
them up. Through the latter approach, the moments of struc- Wurpr= €umod’ €, pﬁﬁ 91+ €unoq’ (P-0€,.""Pg
ture functions are expressed as functions of the reduced op-

erator matrix elements and coefficient functions with differ- B a y
ent spins. Actually both methods give equivalent results. In ~ €prapP™Pq )(p.q)Z 92,
this paper we apply the former method to study target mass

corrections to the structure functiogg andg’.

(2.3

In the next section we discuss the framework for analyz which gives two spin-dependent structure  functions,
aY 2 p2 Y 2 p2 . i
ing the TME based on the OPE and derive the Nachtmanﬁl(x’Q P} andgi(x,Q", P). When the target is real pho

moments for the twist-2 and twist-3 operators with definite!®" (P?=0), g} is identically 2ero, and there exists only one
spin using the orthogonality relations of Gegenbauer polynoSPin structure functiong{(x,Q%). On the other hand, for the
mials. In Sec. Ill, by inverting the Nachtmann moments, weoff-shell or virtual photon P?#0) target, we have two spin-
obtain the explicit expressions for the polarized photon strucdependent structure functiogg andg3 .

ture functionsg(x,Q?,P?) andgl(x,Q?P?) with TME in- For the analysis of spin structure function_s, we apply the
cluded. In Sec. IV we perform the numerical analysis and®PE for the product of two electromagnetic currents. \We
show that target mass corrections become sizablexpgar ~ ©btain for theu-» antisymmetric part

Section V is devoted to the conclusion.

if d*x €97T[J,,(x)J,(0)]*
II. NACHTMANN MOMENTS
2

n
Let us consider the virtual photon-photon forward scatter- =_j ewqu > <?) Ay Gy
= 1 n71

ing for y(q) + y(p)— v(q) + y(p) illustrated in Fig. 2,
_ o X[EI E?z)inzl;ilmﬂnflJrZ EiRG "
T pvp(P,Q) =i J d*x dy d*z 9 %elP-(y=2
(2.9
X(0[T[J,(x)3,(0)J,(y)I(2)]]0),
20 where Rizy andR3y; are the twist-2 and twist-3 operators,

whereJ is the electromagnetic current, agcandp are the ~ respectively, and are both traceless, &g and E;) are
four-momenta of two photons. Its absorptive part is related t¢orresponding coefficient functions. The twist-2 operators
the structure tensow,,,,.(p,q) for the target photon with R(zy have totally symmetric Lorentz indicasuy--un-1,
mass squaregh?=— P? probed by the photon witlg?=  while the indices of twist-3 operatoR;) are totally sym-

-Q% metric amongu4- - - w,— 1 but antisymmetric undes < u; .
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In the case of photon target we evaluatmdtrix ele-
ments of the traceless operatom,y; andR(3) sandwiched

by two photon states with momentysnwhich are written in
the following forms:

<0|T[Ap( - p) R?zl;il.“lunilAT( p)]|0>Amp

=— ia(yz';‘iMfz‘;;'T”””*l, (2.5
(O TL AL~ PIRTE 227 ()]10) amp
__ ia(yé?iMEg):i/;l]”'#n—l}, (2.6)

where the subscript “Amp” stands for the amputation of ex-
ternal photon lines, and(;); andaj3); are reduced photon

matrix  elements. The tensors ME’Z’;;'T”""—l and
MEg)’i‘:l]m“”*l} are given by
Mrr,btl'--lin—l:i TR . e Mn—1
(2)pt - n epfa p p
n—-1
+j21 p"p#l...fpm“j...p/infl p*
—(trace termy, (2.7
n—-1
Eg)i/q’:l] Mn—l}E Tfpmapﬂl”'pﬂn’l
1 n—1
——2 po'p/-‘l-..E /"'J...pll«n_l pa
ni= pTa
—(trace termy, (2.9
and satisfy the traceless conditions,
THL -1 OpY -1 _
gUMiM(k)pT " _01 gMiMjM<k)pT "1=0 (k—2,3)
(2.9

Taking the “matrix elementsof (2.4) with the virtual photon

PHYSICAL REVIEW D 68, 054025 (2003

erly. We evaluate the contraction betwe«wl---q g and

the traceless tensors without neglecting any of the trace
terms in Egs.(2.7) and (2.8). The results are expressed in
terms of Gegenbauer polynomiald6,18,19. Denoting
Mal’vl"'/"nflzMgl‘l"'l’“nflepraﬁpa and M[‘T'{:"'l]"'l"nfl}

@pr )8 (37
=M “" e, P, we find for the twist-2 part,
N oML Mn—-1 1 5.7 n—lc(z)

R PR PP (2)B - HZ[ p 2 n-1(7)

+ Qﬁpoanizchws—)z( 7)]

+ (terms with pg or q7),

(2.11
and for the twist-3 part
q’ul. . .qﬂn71M ?sﬁllé"ﬂnfl
anfl
= 85"~ [(N=1)C21(n) — (n+ 1)C{Z4(n)]
n-2
—0pp "z [Ci2a(m) + C24()]

+(terms with p; or ), (2.12
wherea=—1PQ, »=—p-q/PQandC{"(7)’s are Gegen-
bauer polynomialgsee Appendix A In fact in the above
two equations there appear terms withor q”. These terms
give null results when they are multiplied t%mﬁp“ and
ewmq)‘. [See Appendix B for the derivation of EqR.11)
and(2.12.]
We decompose the amplitud’ém as

1

vpr Eﬂvkﬂq}\epfa-ﬁpﬁﬁ (ij_‘l' Ug)

A
T,

1
- eﬂvkaq)\pgepfaﬁqapﬂ(—)fvga (213

p-q

states, we obtain for the deep-inelastic photon-photon for-

ward scattering amplitude

T =

nvpT

iJ d*x €90| T{A,(— p)
X[3,(x)3,(0)]*A ()} 0) Amp
2 n

62) qu...an_l

yoen

Ouy M-

(2)pr

X

Ei az/é;]iE(rlz)iM

y,nen [odualpn-1}
Taj3iE@iMg),, "

(2.10

then, using the above results on the contractions we find

P A= P|"1 )
U1+02:n:;3 E. a’3)iEq ) ancn—l(ﬂ)
- 2 2 asE -(—E)n 127]
n5s.. 5 TR Q) n?

X[(n+1)C24(m—(n—-1CEi(n)], (214

y,n =n P\"1 2~(3)
Ei a3 Eqi _6 ?877 Chnla(n)

een

The basic idea for treating target mass corrections exactly

is to take account of trace terms in the traceless tensors prop-

P\"1
+ yhEn | - | 802 C®
n=§3,:5,...§i: ag)i (3)I( Q) n2877 [CrZa(m)
+Cu(m)]. (2.15
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Here we compare the expressionsgft v} andv ] with 2x
those given in Egs(8) and (9) of Ref.[19], which are the
invariant amplitudes for polarized deep inelastic lepton-
nucleon scattering with target nucleon mass corrections be-

4P2H2
1+\/1-—
ing taken into account. Apart from the reduced matrix ele- Q

ments and coefficient functions, the expressions for bothy fact, the above results for the Nachtmann moments are
photon and nucleon targets are exactly the same once ﬂ?@produced from the counterparts in the case of spin-

&= (2.19

replacement oM with —iP, orvice versais made. This is
due to the fact that the factdre,,,”p”] ([epm’”p“]) ap-
pearing in the photon matrix elementsqgs.(2.7) and(2.8)]
and in the decompositiofEqg. (2.13] plays the same role as

. , ; a #_
nucleon spins’(s*i), since poepm"p“—o (pMJePW Ip*

dependent nucleon structure functions, EG8) and(19) of
Ref.[19], by replacing the target nucleon madsvith —iP.

We see from Eq(1.1) that the maximal value of is not
1 but [ 1+ (P?/Q?)]. Therefore, the allowed range éfis
0=<¢=<1. It is important to note thag(X,,,0=1 for the vir-

—0). Thus the tensor structures of both polarized photon anf‘@l photon tgrget.zln_the nucleon case, howezvgr, the con-
polarized nucleon matrix elements are exactly the same. Thgiraint +a)°=M* gives Xpa=1. ChangingP* in Eq.

only difference between the two is that= — P? for photon
target andp?=M? for nucleon.

(2.19 to —M?, we get thaté(x=1)<1. This leads to a
well-known difficulty atx=1 in the analysis of target mass

Now we follow the same procedures as were taken byfOrrections to nucleon structure functions, both in unpolar-

Wandzura[18] and in Ref.[19] for the polarized nucleon

ized and polarized cases. The nucleon structure functions

case, and we obtain the analytic expression of the Nachghould vanish ax=1 kinematically, while their expressi.ons,
mann moments for the twist-2 and twist-3 operators withonce target mass effects are taken into account, vanigh at

definite spinn. First we write the dispersion relations fof
andv} and denote

(2.19

Y =—Imuv?
Jdio p 1,2

Second, using the orthogonality relatidii&g. (A8)] and an
integration formuld Eq. (A9)] for Gegenbauer polynomials
C (), we project outs;a}}Er,, and S;alliEfyy with
definite spinn, which still include the infinite series in pow-
ers of P?/Q2. Third, we sum up those infinite series and

express them in compact analytic forfd®]. Then we obtain

M= il (Q%P%0)

Xmax 0 X X n?2 szg
:fo 7 el [E—’_ (n+2)2 QZ ]gz(Xan,Pz)
4n P?x? )
Thiz o BXQPH| (n=13.), (@217
MQEZ al3)iE3(Q?P%9)
_ Xmax d X n+lX y 5 2 n X2
_fo 75 Egl(x,Q P9+ mg_
n P22 ,
+511-5719%KQ,P) (n=35,..),
(2.18

wherex=Q?/(2p-q) andé, the so-called-scaling variable,
is given by

=1 but remain non-zero whef(x=1)<1. The resolution
to this problem was argued in Ref21-23 by considering
the dynamical higher-twist effects. On the other hand, in the
case of a virtual photon target, we have no such difficulty.
When Q?,P?>A?, we can put the constraint ap+q)?
=0 and this leads to,a given in Eq.(1.1). We will see
later that the virtual photon structure functions with target
mass corrections included do vanishxaf,,, since &(Xmax
=1.

The left-hand side of Eq$2.17 and(2.18, MJ andM3,
can be computed in perturbative QCD up to NLO, since in
the kinematical regio®?> P?> A2 both the reduced photon
matrix elementsa{,;)”i (k=2,3) and coefficient functions
E?k)i(Qz,Pz,g) (k=2,3) are calculable. In fact, the pertur-
bative QCD calculation ok has been done in L{L0] and
in NLO [13], while the QCD analysis df15 has been carried
out in LO for the flavor non-singlet part in the limit of large
N, [15]. Once the moments1] and M3 are known, we can
derive g7(x,Q?,P?) andg}(x,Q?% P?) as functions ofx by
inverting M5 and M3, which will be discussed in the next
section.

[ll. INVERTING THE MOMENTS

First let us rewrite the Nachtmann moments in the vari-
able ¢ and we get

1— k&
1+ ké?

n2
2

07(x,Q% P?)

1
ug- [ age

1—ké?
(1+ k&%)

n

+ 4rg?

Zgg(erzlpz):|v (31)

1- k&
ﬁzgz(X!Qza Pz)

1— k&2

n n
(1+ K§§2)2 gg(Xszv Pz)

+ +
n—1 n+1K

52

}, (3.2
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where we have puk=P?/Q?. We define

_ 2

1- k¢
AD)= Tz 910 Q% PY),

2

B(f)Eﬁgg(X,QZ,PZ)- (3.3

The boundary conditions foA(£) and B(¢) are A(é=1)

=B({=1)=0, since gf(xmax,QzaPZ)=9§(Xmax'Q2'P2)=0
and ¢£(Xma=21. Now introducing the following four func-
tions:

~ B 1 df’ 1 d§” .,

1d¢’
B_1(§>=L§—§B<§ )

1
Bo(é)= L dé'B(¢’)

1
By(£)= Lds'{g'e@')}, 35

and by partial integration we find that the above two mo-
ments are written as

2 1 _
o fo dé & (1+ k€D)R(E) +2x{B1(§)~ £%B_1(£)}],

(3.6)
Mn
— fdggn 1{A(§>+§<1 KE2)Bo(£)—B_1(£)
+K|31(§)}- (3.7
Inverting the moments we get
B 1 c+iw h Mg
Ha(g)_ﬁ . dné v
=(1+kE)A(£) +2x{B1(£) — EB_1(&)},
(3.9

d<§>——j°+md ne [Mﬁ

~ 1
=A(6)+ E(l_ KkE)Bo(€)—B_1(€)+kBy(£),
(3.9

where we have adopted the notation used in R&f] for
H.(&) and Hy(€). Further introducing the following func-
tions[21]:

PHYSICAL REVIEW D 68, 054025 (2003

dHa q(8) _dGy4(8)
TdE Fada(é)=— dE

Gaa(§)=—¢
(3.10

we differentiate both sides of Eg&3.8) and (3.9) by £ and

get the relations betweeR(¢), B_1(£), Bo(£), B1(£) and
Haa(€), Gaa(é), Faq(é). Now replacing the former func-
tions with the latter, we solve fay} andgj and obtain

07(x,Q?,P?)

(1+k&?)3 2kE?

(1_K§2)5 [1+ (1+K§2)2] Ha(g)

(1+Kkg?)?

(1—K§ﬂ(1+1+xg
(1+k£?)? (1+ k€23

ez FalO) - 8K§2(1_—K2)5

2\2

=4 é?

— 4K Ga(é)

2k&?
(1+k&9)*

2
—4ké (—;273 a(), (3.1

X431+

]Hd(g)+ 12,<g2

93(x,Q% P?)
(1+ k23 (1+ké%)°
e L RO R
4 2 1+ 2\2
1+1+K—f§2]Ga(§) fEl §2;3 a(g)

=6k s

X

,(1+kg)® (1+ k&%)
T T ey

Bis? (1+x82)?
Lt ey ]Gd<§> ).

(3.12

X

Equations(3.11) and(3.12 are the final formulas for the
polarized photon structure functiogg and g when target
mass effects are taken into account. The parametepre-

sents the target mass corrections. Once the reduced photon
matrix elements and coefficient functions corresponding to
the relevant twist-2 and -3 operators, more specifically,

3 a(Z)IE(Z)I(QZ P%,g) and 3, a(3)|E(3)|(Q P%g) in Egs.
(2.17 and(2.18, are given, then we can calculat, 4(£),
Gaa(§), andF, 4(€) through Egs(3.8—(3.10, and predict

whole structure functions with target mass corrections. Note

that by definition the functionsH, 4(&), G, q4(€), and

Fa.a(€) contain the logarithmic QCD corrections depending
on In(@Q%A?) and InP?A?). When we sek=0 in Egs.(3.11)
and(3.12 and Eq.(2.19, we obtain

91(x,Q? P?)|o=xF4(x), (3.13

054025-5
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Ga(x) =XFa(X) = Gg(x) +XF4(X) '
(3.14

P?)|o=

93(x,Q?,

o
T

for the polarized photon structure functions without target
mass effects, which have been investigated in the literature
[12,13,13. We have suppressed the logarithré and P?
dependence in the arguments®f 4(x) andF, 4(x).

Before we proceed to numerical analysis for target mass
effects on the polarized photon structure functions, let us o
consider the power series expansion of target mass effects. In ©
the phenomenological analysis of target mass effects on the -

Q%=30GeV

P?=1GeV?

as functions of &

polarized nucleon structure functiof@l], the expansion in
powers of P2/Q? was carried out and the first order terms
were kept to analyze the experimental data. It would be in-
teresting to see how good the first order approximation is in
the case of the virtual photon target. We take xhmoments

of the structure functiong Ax,Q?,P?),

Xmax
9i5= J dx X" g7 5(x,Q% P?)
, o ,

f

n-1

)
. 97 Ax.Q%P?).

(1+x€)°

3

1+ k&

(D

3]

0.4 0.6 0.8

€

FIG. 3. The functiond (&) (solid curve, G,(¢) (dash-dotted

curve, and £F,(€) (dashed curveobtained by the inverse Mellin
transform of the weighted moments b} for twist-2 operators,

Egs.(4.1), (4.2), and(4.3.

(3.19

Using the expressions given in Eq&.11) and (3.12 for
97 Ax,Q% P?), we expand the integrands to the first order in
x. Then we obtain

n2
n<(n+1) 4n(n+1)
y.n_pqn n+2 n+2 2
gl 2T K75\ 7 (n+2)2 (n+2)2 M3 +O(K )1
(3.19
n—-1 n—-1 nin+1)(n—1)
yn_ _ n n n+2
93 n Mo+ n 3tk (nt2)2 2
n?(n—1)
(n+—2)2Mn+2+O(K2)’ (3.17
where we have used the formulas
1 VBN
Jdgsn—lHa,d(§>=—?
0 n
Mn
fdggﬂ "Gy ()=~
1
Jo dé £"F 4 4(£)=M3 . (3.18

The result is consistent with the one obtained for the case
a polarized nucleon target in R¢R21]. For phenomenologi-

cal analysis, the experimental data will be used for the left-

hand sides of Eq943.16 and(3.17 which should be com-
pared with the right-hand sides, the QCD predictions.

IV. NUMERICAL ANALYSIS

Let us perform a numerical analysis for the target mass
effects ingy andg}.

A. g7(x,Q? P?) derived from H,4(£), G, q(£), and F, 4(£)

We first compute the functiondil, 4(¢), G, q(€), and
Fad(£), inverting the Nachtmann momeri4; andM3,

B 1 c+io . 2'3
Haa(6) =5~ e 4.7
1 c+iw [V
Ga,d(§)=2—7ﬂjkioc dng‘”—“, (4.2)
1 Cc+icw
FosO-5 | dnemL 43

We use the QCD result fo5(=2; a(z)I E(2)), which has
been calculated up to NLO and given in E§.16 of the
first article of Ref.[13]. As for M3(=3;a/3}E(3y), on the
other hand, we adopt the pure QED result, 8122) of Ref.
[15], with the factor —1)/n taken out. The QCD calcula-
tion of M3 even in LO has not been accomplished yet. The
evaluation of the twist-3 pai} in QCD is feasible whem

is a small number. But asgets larger it becomes a more and
more difficult task due to the increase of the number of par-
dfcipating operators and the mixing among these operators
[24].

We have plotted the twist-2 contributiortd, (&), G.(€),

and éF4(€) as functions of in Fig. 3, and the twist-3 con-
tributions,Hy(&), Gq4(€), andéF4(¢) in Fig. 4, for the case
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MW —]
5
"
c
S
8
c
3
2} . /
© -1r Ve Q%=30GeV?
w / // 2 2
& i P’=1GeV
5 1/
T }'/
ot i
/ |
02 04 06 08

€

FIG. 4. The functiondH4(&) (solid curve, G4(¢) (dash-dotted
curve, and éF4(€) (dashed curveobtained by the inverse Mellin
transform of the weighted moments bf} for twist-3 operators,
Egs.(4.1), (4.2, and(4.3.

of Q?=30 GeV? andP?=1 Ge\?. We takeA =0.2 GeV for
the QCD parameter antl;=3 for the number of active

PHYSICAL REVIEW D 68, 054025 (2003

1F Q°=30GeV? 1
@ P’=1 GeV?
NO Nf =3
= \\
SR O eeesseeeesereesee g L
<'_/\
[¢)]
Vu—
P
@
“E_ /) === Without TME il
NO_’ ---------- With TME (1st order)
X
>£S' With TME (full order)
=2 Ximax=0.97
0.2 0.4 0.6 0.8
X

FIG. 5. The graphs o§(x,Q? P?) with full TME [Eq. (3.11),
solid curvg with the first order TMEshort-dashed curyand with-
out TME (dashed curvein units of 3N (e*)(a/m)In(Q¥P?) for
Q?=30 GeV andP?=1 Ge\? with A=0.2 GeV,N;=3.

Eqg. (3.13] and the one with TME included up to the first
order in P?/Q? (short-dashed curyewhich is obtained by

quark flavors throughout our numerical analysis. We see thd{!€ inverse Meliin transform of the right-hand side of Eq.

all the functionsH, 4(§), G, q(§), andF, 4(&) vanish asé
—1. The behavior of a function nege=1 is governed by its
moments at large. The LO QCD result foiM} gives M}
~1/(nInn) for large n, which determines the dominant be-
haviors of the functions near=1, and thus we expect that

Iné&
EF (&)~ “Ini=9" Ga(f)Nm,
(In§)?
Ha(é)~ “in(i-9 (4.4

For the twist-3 partM3, the pure QED result tells that]
~—1/n? at largen. So we get neaé=1,

EFg(E)~INE Gy(&)~—(IN§?% Hy(H)~(Iné)°.
(4.9

The behaviors oH, 4(§), G4 4(€), andF, 4(€) asé—1 in
Figs. 3 and 4 are indeed just what we have expected.
functionsH, 4(&), G, q4(§), andF, 4(&) for the case of?
=10 GeV? and P?=1 Ge\? show the similar behaviors.
Putting these results into the formu{@.11), we obtain
97(x,Q?%,P?) with TME as a function of, which is shown
(solid curve in Fig. 5 for Q°=30 Ge\? with P?=1 Ge\?
and in Fig. 6 forQ?=10 Ge\? with P?=1 Ge\2. The ver-
tical axis is in units of Bl (e*)(a/7)IN(Q?/P?), where a
=e?/4, the QED coupling constant, afe*)=3" ef'/N;
with g; being the electric charge of thth flavor quark. Also
plotted areg(x,Q?,P?)|, without TME (dashed curve[see

_|
0
D
9,Y (x,Q%P)/3N<e*>Z In Q%P>

(3.16. We observe that the target mass effects appear be-
tween intermediat& and X,,,, and that the effects become
sizable when the rati®?/ P? is reduced(see Fig. 6. The
distinction between the behaviors gf with and without
TME is remarkable nearqay. We getXqya.~0.97 for Q?
=30GeV? with P?=1Ge\V? and Xp,~0.91 for Q2

=10 Ge\? with P?=1 Ge\2. The graphs ofy] with TME

Q%= 10 GeV? 7
P’= 1 GeV?
N, =3

- —

Tt

Without TME

With TME (1st order)

With TME (full order)

X7, =0.91 |
v

1

0.2 0.4 0.6 0.8

X

FIG. 6. The graphs 0§](x,Q2,P?) for Q?=10 Ge\* and P?
=1 Ge\? with A=0.2 GeV,N;=3.
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vanish atx,,,, as they should. But those graphs without TME
or with TME partially included remain finite. In the small
region the target mass effects are almost negligible. We also
note that the graph with the first order correction®fQ?

is a good approximation to the full-order result except
aroundX,ax-

n
2

3 /4
M —=0.163 (0.0603 for

Q?=30 GeV (10Ge\?), P?=1Ge\’. (4.10

As for the twist-3 contributiotMj~3, the LO result in QCD
is available. Taking the results in Eq4.30—(4.36) of Ref.

B. The first moment sum rule of g7(x,Q?,P?) and target mass [15], we get

effects
e e gl mase corecions e ok en o 20+ g2 /70130 (~00%42 o
07(x,Q?,P?) satisfies the following sum rulgr,13]: 07=30 GeVA(10 GeVP), PP—1 Ge\r. 1
ry= foldx gl(x,Q?,P?)|p=— 3;%1 e!+0(ay). With these numerical values we find
N (4.6 ATY/M5=*=—-0.00395 (—0.0108 for
The right-hand side corresponds to the twist-2 contribution, 0?=30GeV? (10 GeV?), P?—=1 Ge\l. 4.12

M5~ (=3 ak) 'Efs)). and actually the first term is the
consequence of the QED axial anomaly. Now it will be in-  The target mass corrections to the first moment sum rule
teresting to see how this sum rule is modified when TME argy¢ g7 amount to 0.40%1.19% for Q2=30 Ge\? (10 Ge\?)

included. _ with P2=1 Ge\?, which are negligibly small. Even for the
From Eq.(2.17) we easily see that once the target MasYatter caseQ?=10 Ge\? and P?=1 Ge\?, the corrections
corrections are taken into account, the above sum rule i

modified to the first Nachtmann moment, which reads

1JXmaxd & - /1 4Px2| 2 p2
3, xz| ot Tgl(X!Q! )
4JXmaxd §;2 P2X2 y 2 PZ
*t3 . XYZETQZ(X,Q, )
N
3a
=——2 e'+0(ay) (4.7)
T {T1

Phenomenologically it would be appropriate to express th
first moment ofg}(x,Q?,P?) itself in terms ofM} andM3,
which are calculable by perturbative QCD. Settimg 1 in
Eq. (3.16), we obtain to the first order iR?/Q?,

Xmax
f dx g(x,Q%P?)
0

n=1 2 n=3 8 n=3 P2 2 2\2
=M; "— §M2 +§M3 @‘FO((P 1Q%)%)
(4.8
whereM5~=—(3a/m) 3 e Thus the target mass cor-

rectionsAT'] to the first moment ofy], i.e., the difference
between the left-hand sides of Eq4.8) and (4.6) is given,
to the first order inP?/Q?, by

8 2

Mg=3+9

AT7= —[2 (4.9

.| P
M g
Up to this order inP?/Q? we only need to know the reduced
matrix elements and coefficient functions for 3. Using the
NLO result forM5~2 in QCD, given in Eq.(3.16 of Ref.

[13], we obtain

05402

dre, at most, of order of 1%. We see from E¢&10 and
(4.12) that the twist-2 and twist-3 contributiord)~> and
M5=3 for n=3 are almost the same in magnitude but have
the opposite signs. This leads to the smallness of target mass
corrections to the first moment sum rule @f.

C. g2(x,Q?,P?) and the target mass effects

We obtain the graph af}(x,Q?,P?) with TME by insert-
ing the functionsH, 4(¢), G, 4(&), and F, 4(£) derived
from Egs.(4.1)—(4.3) into Eq. (3.12. Again we have used
the pure QED result foM3, Eq. (3.22 of Ref. [15], since
he QCD result foM}3 with n>3 is not available. In Fig. 7
we have plottedg}(x,Q? P?) with TME (solid curve in
units of 3N¢(e*)(a/7)In(Q¥P?) for Q?=30 Ge\? and P?
=1 Ge\2. Also shown in Fig. 7 is the box-diagram contri-
bution to gJ (dashed curvefor an example without TME,
the expression of which is given B{5]

QZ

3a
93'%(x,Q% P?) = —N(e*)| —(2x=1)In5;

+2(2x—1)Inx+6x—4|. (4.13

The graph ofg] with TME vanishes axay, but not the one
without TME.

In a certain limit the analysis ok3 in QCD becomes
tractable. The contribution tM} is made up of two compo-
nents; the flavor singlet and nonsinglet. In an approximation
of neglecting terms of orddD(l/Ng) we are able to calcu-
late MYNS) | the flavor nonsinglet contribution b5, for
arbitraryn in QCD since in this limit the problem of operator
mixing can be evaded25]. In fact, we have computed
M3MNS) in LO QCD for the largeN, limit, which is given in

5-8
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‘ ' 1 :
\ a0 | I 4
ol Q=30 GeV* ] o Q%=30 GeV?
< \ No, 08- T
K= )\ P’=1 GeV? ¥ g6
12/ \ N =3 SR
= = —
olg [ N T a 04
A o
“o \I/ 0.2
V. A
<
A I R 1% oo
ND_— \\\\\\\ B %_
NO_* With TME =
= o
> i T No:
2 ———- BOX s
——  With TME Xmax = 0-97 0
) v, >3
. . . . 1 1o
0 0.2 04 X 0.6 0.8 0 0.2 0.4 0.6 0.8 1
X
FIG. 7. The graph o§23(x,Q?,P?) with TME [Eq. (3.12), solid S ) _
curve] and the box-diagram contribution ®} (dashed curvein FIG. 8. The graphs of"(x,Q*P?), the twist-3 contri-
units of 3N(e"(a/m)INQYPY) for Q*=30GeV? and P2 bution to the flavor non-singlet part @}, in units of 3N¢({e%)
—1Ge\? with A=0.2 GeV, N, =3. —(e%)?)(al m)In(Q*P?) for Q=30 GeV* and P?=1 GeV? with

A=0.2 GeV,N;=3. The twist-3 effects are evaluated in LO QCD

. n(NS) for the largeN, limit. The solid and short-dashed curves show the
Eq. (4.40 of Ref.[15]. Using theseM we perform the results with TME and without TME, respectively. We have also

inverse Mellin transform of Eqsi4.1)—(4.3 to obtain the  ghown the box-diagram contribution TS (dashed curvefor
flavor nonsinglet contributions Hy*(¢), G§%(€), and  comparison.

FNS(¢). Then putting these functions into the form&12

and setting the twist-2 contributions to zero, i.ely(&) D. Burkhardt-Cottingham sum rule

= = = iz (NS) 2 p2 ist-
Ga(§) . Fa(£)=0, we obtau‘gz_ (x,Q%P7), the tWIS.t 3 Just as the spin-dependent nucleon structure function
contribution to the flavor nonsinglet part g, including nucl

TME g5, the polarized virtual photon structure function
L (NS)/ N2 B2\ 93(x,Q?%,P?) satisfies the Burkhardt-Cottingha(BC) sum
In Fig. 8 we have plotted?'"™’(x,Q%,P) with TME rule [26]

(solid curvg in units of 3N;((e*—(e?)?)(alm)IN(Q%P?
for Q=30 GeV? and P?=1 Ge\?, where (e*)—(e?)?) is
a charge factor for the flavor nonsinglet component with 1 -
(e?)== e?IN;. Also plotted are the graphs a3 Q%=10 GeV? 1

In(Q%*P?

without TME (short-dashed curyend the box-diagram con- 0.8] ]
tribution to gy (dashed curvewhich is obtained by sub- o 06
tracting the twist-2 contributiof27] from Eq. (4.13 and is ,L
given by[15] :,\ 0.4
[¢]
v 0.2
3a Q2 |
@(NS'BOX):? N¢((e*—(e?)?)| (2x—2—In x)In 57 <r€J 0
5 zZ
—2(2x—=DInx+2(x—1)+In°x|. (4.19 ™
o
We observe that target mass corrections in the twist-3 parth 0 6: \\\__/// 1
are negligibly small. This is inferred from the fact that target X ~-~[ _
mass effects appear at lar§dlarge x) and the twist-3 con- 2 _ogt X =0.911
Z max . i

tributions éF4(&), G4(&), and Hy(§) vanish as Irg, > r
—(In &2, and (In&)®, respectively, fog— 1. Another case for 1@ -1
Q?=10 GeV* with P?=1 Ge\? is shown in Fig. 9, where 0 0.2 04 X 0.6 0.8 1
we see that target mass effects become slightly larger than

the case folQ?=30 Ge\?, in particular, in the region near  FIG. 9. The graphs o§3™9(x,Q2,P?) for Q?=10 Ge\? and
Xmax- P2=1 Ge\? with A=0.2 GeV,N;=3.
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o o +(P?/Q?)]), as the ratioP?/Q? increases. The structure
J; dx g3(x,Q% P9)[o=0. (419 fynctions evaluated by inverting the Nachtmann moments in
fact vanish atx=x,.. We have also examined the target
We put the subscript 0 to emphasize that this is the statememass effects for the first-moment sum rulesggfand g .
when the target mass corrections are not included. When tHeor the kinematic region we consider, the corrections to the
TME are included, Eq(3.17 shows that the BC sum rule first moment ofg] turn out to be negligibly small. The first
still holds up to the first order iP?/Q?. Actually we take the moment ofg} leads to the Burkhardt-Cottingham sum rule,
x moments ofg} whose expression is given in E3.12.  where the upper limit of integration becomgs,,. More
Using the relations in Eq3.10 and by partial integration thorough QCD analysis, including the flavor-singlet part of
with the boundary conditionsl, 4(§=1)=G, 4({é=1)=0, g7, is now under investigation.
we obtain
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1
=n(n— 1)f0 dfmm[— Ha(é)
APPENDIX A: GEGENBAUER POLYNOMIALS

+(1+kE)Hq(6)]. (4.16
) . In this appendix we present main formulas of Gegenbauer
Takingn=1, we arrive at polynomials which are used in this paper. The Gegenbauer
- polynomials Cﬁ,”’(n) are defined through the generating
J' dx gd(x,Q%,P?)=0, (4.17)  function given by[28,29
0
which shows the BC sum rule is free from the target mass (1-27t+1?) E M pt", (A1)

effects. Note that the upper limit of integration has changed n=0

from 1 toXay- A Similar expression to the one in E@L.16

has been obtained by Piccione and Ridf#il] for the mo-  In terms of hypergeometric functio&(a,,7v;z), C{"(7)
ments of the nucleon structure functig@“c' when the target is expressed as

mass corrections are included.

, 2T (n+v) n 1—n 1
V. CONCLUSION C M=oy Tl T e
In this paper we have investigated the target mass effects 1 M2 ~ 1)l (v+n—j) _
in the polarized virtual photon structure functions E TCEERY (294,
97(x,Q?,P?), g3(x,Q?% P?) which can be measured in the = JHn=2p!
future experiments of the polarized version of tap or (A2)

e*e” colliders.

We based our argument on the framework of the OPE anffom which we obtain, for example,
the Q4) expansion, taking into account the trace terms of the
operators of the definite spin. This amounts to the use of the 1 -1 (n—j)!
expansion of the amplitudes in terms of the Gegenbauer  Ci (%)= 2 T (n=2] ),(
polynomials and their orthogonality relations to extract the Jt 1
contributions with the definite spin, given as the Nachtmann _

. oS S (=12 4] Y
moments. The evaluation of the “kinematical” target mass c2 (= 3 (=) (n=j)!
n—-1 -

n/2
2m)"2, (A3)

n—-2j—-1
effects is important to extract the “dynamical” higher-twist - b it (n—2j—1)! (27) '
effects which would also exist in the power corrections in (A4)
P2/Q%.

We have derived the expressions @}(x,Q? P?) and
93(x,Q? P?) in closed form by inverting the Nachtmann
moments for the twist-2 and twist-3 operators. The charac- (M) ) =2 (1) (r+1) A
teristic feature for the photon target compared to the nucleon NGy (m=2v[7C=y () = Czy (], (AS)
case is the presence of the maximal vakyg(<1) of the

1. Recursion formulas

Bjorken variablex, while £(xh.,0=1. Hence we do not en- (n+20)C () =2[C V() = nC P ()], (A6)
counter the similar problem due to the kinematical relation
E(Xmay <1 with x,,,,=1 in the case of the nucleon. (n+2)C 2( n)=2(n+v+ 1)7;C<”>1( 7)
Our numerical analysis shows that the target mass effects
appear at largex and become sizable neag,(=1/[1 —(n+2v)C" (). (A7)

054025-10
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2. Orthogonality relations

G

B 2 I'(n+2v)
" mranrop e 49

=77 AC () C (m)dy

In addition we need the following formula for the integral to
project out the contributions of definite spin from the disper-

sion relations:

f dy n™(1— 7% " VIC(5) —

{—7n
— S NP1 - (- 1)
T'(n+2v)
T (nrvil)
_ 2_1 1/2
XF V,l_V,n+V+1;§(+§(2§_1)l/)2 (Ag)
In fact the factor [{—(2—1)Y3"""  gives

(—P/Q)" " &*¥ where & is the so-calledé-scaling vari-
able given in Eq(2.19.

APPENDIX B: DERIVATION OF EQS. (2.11), (2.12

1. Contraction formulas

PHYSICAL REVIEW D 68, 054025 (2003

Ja (_pﬁ> dn Qg Ps

&_pﬁza P2 ) gpP 2a "p2
dCy(») (rt)
T—Z vCL (), (B4)
we find

nq,ul. . an{ 5glp,u2. .. pl‘bnfl}n

=i - na”% CH(p)+a

2 ﬁz}zc%( )]
(85)

Where{ﬁglpf‘z---p“n*l}n is a tensor which is formed with
one 5’; andn—1 momentum four-vectons and totally sym-
metric among indicegt - --u,, . Moreover, it is traceless in
the sense thag#iﬂj{ﬁglp%--p”nfl}n=0 for all pairsi,j.
Now it is reminded that the polarized photon matrix elements
are multiplied by the factoepm'g. Thus the terms witp; in
contractions do not contribute in the end. Also the terms with
g’ which appear later on give null results when multiplied
by €,..," [see Eq(2.10]. So we obtain

M1~ L % 1 n—-1~(2)
|(1)B(n):q#1"'qﬂn{5ﬁ pr2--phn-1} =—qga" "CyZ(n)

+ (terms with pg). (B6)

Further, we differentiate both sides of E@®6) with re-

We give a table of contractions which are used for thespect tog,. With

derivation. First we introduce the most general rangym-

metric and traceless tens®#1 "#n, that can be formed with

the momentunp alone[17],
n—2j
nf2
(—1y (n J)'
M1y =
1 ;0 57

(B1)

2
g -gp - p(p?),
——r
J
where g---g stands for a product of j metric tensors g*!*4
W._/

J
with 2j indices chosen among i,...,u, in all possible
ways. Then we easily find that the contraction of IT#1""#»
with ¢ p ", is expressed in terms of the Gegenbauer

polynomial C"’(#) given in Eq. (A3) [16,18],

lo(M=0a,, q, 1" #n=a"Ci! (),  (B2)
where
1 p-q
a——EPQ, n= —P—Q. (B3)

Next we differentiate both sides of E(B2) with respect
to p?. Using the following formulas:

Ja -q” an  p° q°
e S L T
we obtain
a o 1 (?I(l) (n)
1 oan—1~(2) Fan—2 (3)
= 2167a" "CrZy(m)+agpa “2C Zo( 7))

+(terms with pg or q). (B8)

Finally, both sides of EQ:B2) are differentiated with respect
to q,, and we get

n dq,

|Efs)(n—l):q#1...qﬂn7 [1o#1 Hn-1=

1 —1~(2 :
= ﬁ{p"a” C2, ()} + (terms with q°).
(B9)

The terms withg” which appear in Eq4B8) and(B9) have
been omitted. With Eq4B2), (B6), (B8), and(B9) at hand,
we are now ready to derive EqR.11) and(2.12).
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2. Derivation and n—1 momentum four-vectorp. Its indices are totally

The tensorvi Efzf;g"#n—l, which corresponds to the trace- Symmetric among uy - un—1 but antisymmetric under
o+ w;. The one which satisfies these requiremen{ig

less twist-2 operatoR(yy; , is formed onesy (or &') and
n—21 momentum four-vectorg and is totally symmetric
among indicesr,u- - un—1. Thus it is given by

I.\../Io.ﬂl.‘.unflz{&gpﬂl...p/’-n—l}n. (Blo)

(2)B

For its contraction witrqﬂlmq L, we find from Eq.(B8)

M —

N THL -1

q"‘l. ' .qﬂn—l (2)B

[

= F{%Uan_ 1) () + quUan_zch'—) 2(n)}

+(terms with pg or ). (B11)

The tensorM 742 "#n-1 which corresponds to the trace-

(3)8
less twist-3 operatoR(;) , is also formed one; (or )

n—1{n+1

oML -1
n

Ay Ay Miz)p n

MGMl“'#n—lZE E S0TI#L " Hn—1— L
38 n B (n—1)
n—1
% 21 5Z|H¢TM1“'(MI)"',U«n—1
s
n—1
% 21 pmmzfzﬁg“(m)'wnfl ] (812

Using Eqgs.(B2), (B6), (B8), (B9), we obtain

n—1
[3571(0)(N—1)—qpgl (3 (N—2)]+ T[p"unﬁ(n—l)—p-ql(2>5"(n—2)]}

1 1
= 58,7a" {(n=1)(n+1)CM1(7) —27C2 5 (m)} + 5 dp7a" 4~ 2C{7 ()

—4nC¥,(n)}+ (terms with pg or q7)

1 1
= 857" H{(n—1)C21(7) ~ (n+ 1)C25(m)} — 5 0p7a" 22{C%5(n) +CiY 4(m)}

+(terms with pg or q7),

(B13)

where at the final stage the recursion relations in E4S) and (A6) were used.
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