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We present the next-to-next-to-leading order (��2
s) corrections to the first moment of the polarized

virtual photon structure function g�1 �x;Q
2; P2� in the kinematical region �2 � P2 � Q2, where

�Q2��P2� is the mass squared of the probe (target) photon and � is the QCD scale parameter. In order
to evaluate the three-loop-level photon matrix element of the flavor singlet axial current, we resort to the
Adler-Bardeen theorem for the axial anomaly and we calculate in effect the two-loop diagrams for the
photon matrix element of the gluon operator. The ��2

s corrections are found to be about 3% of the sum of
the leading order (�) and the next-to-leading order (��s) contributions, when Q2 � 30� 100 GeV2 and
P2 � 3 GeV2, and the number of active quark flavors nf is three to five.
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I. INTRODUCTION

The investigation of the photon structure has been an
active field of research both theoretically and experimen-
tally in recent years [1–5]. Also there has been growing
interest in the study of the spin structure of the photon. In
particular, the first moment of the polarized photon struc-
ture function g�1 has attracted much attention in connection
with its relevance to the QED and QCD axial anomaly [6–
10]. The polarized photon structure functions can be mea-
sured from two-photon processes in the polarized e�e�

collider experiments as shown in Fig. 1, where�Q2��P2�
is the mass squared of the probe (target) photon. The
photon structure functions are defined in the lowest order
of the QED coupling constant � � e2=4� and, in this
paper, they are of order �.

For a real photon (P2 � 0) target, there exists only one
spin-dependent structure function g�1 �x;Q

2�. The QCD
analysis of g�1 was performed in the leading order (LO)
(the order �) [11], and in the next-to-leading order (NLO)
(the order ��s) [12,13], where �s � g2=4� is the QCD
coupling constant. In the case of a virtual photon target
(P2 � 0) there appear two spin-dependent structure func-
tions, g�1 �x;Q

2; P2� and g�2 �x;Q
2; P2�. The former has been

investigated up to the NLO by the present authors in
[14,15], and also in the second paper of [13]. In
Refs. [14,15] the structure function g�1 �x;Q

2; P2� was an-
alyzed in the kinematical region

�2 � P2 � Q2; (1.1)

where � is the QCD scale parameter. The advantage in
studying the virtual photon target in the kinematical region
(1.1) is that we can calculate structure functions by the
perturbative method without any experimental data input
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[16], which is contrasted with the case of a real photon
target where in the NLO there exist nonperturbative pieces
[17].

In the present paper we focus on the photon structure
function g�1 , and especially on the first moment sum rule of
g�1 �x;Q

2; P2� in the kinematical region (1.1). We present a
new result on the next-to-next-to-leading order (NNLO)
(the order ��2

s) corrections to this sum rule.
The polarized structure function g�1 of the real photon

satisfies a remarkable sum rule [6–10]

Z 1

0
g�1 �x;Q

2�dx � 0: (1.2)

In particular, applying the Drell-Hearn-Gerasimov sum
rule [18] to the case of a virtual photon target and using
the fact that the photon has zero anomalous magnetic mo-
ment, the authors of Ref. [10] showed that the sum rule,
(1.2), holds to all orders in perturbation theory in both QED
and QCD.
FIG. 1. Deep inelastic scattering on a virtual photon in the
polarized e�e� collider experiments.
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When the target photon becomes off-shell, i.e., P2 � 0,
the first moment of the corresponding photon structure
function g�1 �x;Q

2; P2� does not vanish any more. In fact,
for the case �2 � P2 � Q2, the first moment has been
calculated up to the NLO (��s), as follows [8,14];

Z 1

0
dxg�1 �x;Q

2; P2� � �
3�
�

�Xnf
i�1

e4
i

�
1�

�s�Q
2�

�

�
�

2

�0

�

�Xnf
i�1

e2
i

�
2
�
�s�P2�

�
�
�s�Q2�

�

��

�O���2
s�; (1.3)

with �0 � 11� 2nf=3 being the one-loop QCD � func-
tion. Here �s�Q2� is the QCD running coupling constant,
and ei is the electromagnetic charge of the active quark
(i.e., the massless quark) with flavor i in the unit of proton
charge and nf is the number of active quark flavors. The
first moment depends only on the average charge squared
he2i � �

Pnf
i e

2
i �=nf and the average of the fourth power of

the charge he4i � �
Pnf
i e

4
i �=nf. Note that the r.h.s. of

Eq. (1.3) does not involve any experimental data input.
This is because the nonperturbative pieces, which take part
in the real photon target case, can be neglected in the
kinematical region (1.1) and the whole twist-two contribu-
tions to g�1 �x;Q

2; P2� can be computed by the perturbative
method. It is also noted that the first term in the square
brackets of the r.h.s. of Eq. (1.3) resulted from the QED
triangle anomaly while the second term comes from the
QCD triangle anomaly [8,15].
II. THEORETICAL FRAMEWORK BASED ON OPE

For the analysis of the NNLO (��2
s) corrections to the

first moment of g�1 �x;Q
2; P2�, we will apply the framework

of the operator product expansion (OPE) supplemented by
the renormalization group method. First recall that for the
OPE of two electromagnetic (and thus gauge-invariant)
currents, only gauge-invariant operators need to be in-
cluded with their renormalization basis [19]. Since
gauge-invariant twist-two gluon and photon operators
with spin one are absent, we consider only quark operators,
i.e., the flavor singlet J�5S and nonsinglet J�5NS axial cur-
rents, as follows:

J�5S � � ���51 ; J�5NS � � ���5�Q
2
ch � he

2i1� ;

(2.1)

where 1 is an nf � nf unit matrix and Q2
ch is the square of

the nf � nf quark-charge matrix so that Tr�Q2
ch �

he2i1� � 0. Writing the photon matrix elements of the
quark currents as
094024
h��p�jJ�5i��
2�j��p�i � �	�
�2i���	
p
��	

� h��p�jjJ5i��2�jj��p�i;

i � S; NS (2.2)

where �	� and �	 are the polarization vectors of the target
photon with momentum p and � is the renormalization
point, then the first moment sum rule of g�1 �x;Q

2; P2� is
expressed as
Z 1

0
dxg�1 �x;Q

2; P2� � h��p�jjJ5S��
2�jj��p�i

� CS�Q2=�2; �g��2�; ��

� h��p�jjJ5NS��2�jj��p�i

� CNS�Q2=�2; �g��2�; ��: (2.3)

Here CS and CNS are the coefficient functions correspond-
ing to the currents J�5S and J�5NS, respectively. Putting it
more closely, CS and CNS are the n � 1 coefficient func-
tions which appear in the OPE of two electromagnetic
currents. Throughout this paper we neglect the effect of
quark masses.

We choose the renormalization point at �2 � P2. For
�p2 � P2 � �2, we can calculate perturbatively the pho-
ton matrix elements of the axial currents, which are ex-
pressed in the form as

h��p�jjJ5i��2 � P2�jj��p�i �
�

4�
Ai; i � S; NS;

(2.4)

with

Ai � A�0�i �
�s�P

2�

4�
A�1�i �

�
�s�P

2�

4�

�
2
A�2�i �    : (2.5)

The leading terms A�0�S and A�0�NS are connected with the
Adler-Bell-Jackiw anomaly [20] and are already known
[21]. In Sec. IV we will show, using the nonrenormaliza-
tion theorem for the triangle anomaly [22],

A�1�S � A�1�NS � A�2�NS � 0: (2.6)

In fact, the result A�1�S � A�1�NS � 0 has been used in
Ref. [14] to obtain the NLO (��s) corrections to the sum
rule shown in Eq. (1.3). On the other hand, A�2�S is non-
vanishing and will be calculated in Sec. IV.

The Q2 dependence of the coefficient functions CS and
CNS is governed by the renormalization group equations.
The solutions to these equations are given by

Ci�Q
2=P2; �g�P2�; �� � exp

�Z �g�P2�

�g�Q2�
dg0

�i�g0�
��g0�

�

� Ci�1; �g�Q2�; ��; i � S;NS

(2.7)

where �i�g� is the anomalous dimension of the axial
-2
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current J�5i and ��g� is the QCD �-function. We expand
�i�g� in powers of g as

�i�g� � ��0�i
g2

16�2 � �
�1�
i

�
g2

16�2

�
2
� ��2�i

�
g2

16�2

�
3

�O�g8�; i � S;NS: (2.8)

Since the flavor nonsinglet axial current J�5NS is conserved
in the massless limit, it undergoes no renormalization, and
we have

��0�NS � ��1�NS � ��2�NS �    � 0: (2.9)

Thus the nonsinglet coefficient function CNS is expressed
as

CNS�Q2=P2; �g�P2�; �� � CNS�1; �g�Q2�; ��: (2.10)
094024
On the other hand, the flavor singlet axial current J�5S has
a nonvanishing anomalous dimension �S�g� due to the
axial anomaly. To be precise, we know ��0�S � 0 at one-
loop, but at higher loops we have nonzero ��1�S , ��2�S and so
on. The � function is expanded as:

�
@g
@�
� ��g�

� ��0
g3

16�2 � �1
g5

�16�2�2
� �2

g7

�16�2�3
�    :

(2.11)

Then using Eqs. (2.8) and (2.11), we obtain up to the order
of �2

s ,
exp
�Z �g�P2�

�g�Q2�
dg0

�S�g0�
��g0�

�
� 1�

��1�S
2�0

�
�s�Q2�

4�
�
�s�P2�

4�

�
�

1

4�0

�
��2�S � �

�1�
S

�1

�0

���
�s�Q2�

4�

�
2
�

�
�s�P2�

4�

�
2
�

�
1

8

�
��1�S
�0

�
2
�
�s�Q

2�

4�
�
�s�P

2�

4�

�
2
�O��3

s�: (2.12)
We need the information on the � function only up to the
two-loop level, i.e., �0 and �1, in the above expression.
But later for numerical analysis, we will use the QCD
running coupling constant �s�Q2� where the three-loop
�2 is also taken care of [23].

Finally the flavor singlet and nonsinglet quark coeffi-
cient functions, CS�1; �g�Q2�; �� and CNS�1; �g�Q2�; ��, are
expanded in power of �s�Q2� up to the two-loop level as,

CS�1; �g�Q2�; �� � he2i

�
1� B�1�S

�s�Q
2�

4�

� B�2�S

�
�s�Q2�

4�

�
2
�   

�
; (2.13)
CNS�1; �g�Q2�; �� �
�
1� B�1�NS

�s�Q2�

4�

� B�2�NS

�
�s�Q2�

4�

�
2
�   

�
: (2.14)
Then putting Eqs. (2.4), (2.5), (2.6), (2.10), (2.12), (2.13),
and (2.14) into Eq. (2.3), we obtain the expression for the
first moment sum rule of g�1 �x;Q

2; P2� up to the NNLO
(��2

s) corrections as follows:
Z 1

0
dxg�1 �x;Q

2; P2�=
�
�

4�

�
� he2iA�0�S � A

�0�
NS � �he

2iA�0�S B
�1�
S � A

�0�
NSB

�1�
NS�

�s�Q2�

4�
� he2iA�0�S

��1�S
2�0

�
�s�Q2�

4�
�
�s�P2�

4�

�

� �he2iA�0�S B
�2�
S � A

�0�
NSB

�2�
NS�

�
�s�Q2�

4�

�
2
� he2iA�0�S B

�1�
S

��1�S
2�0

�s�Q2�

4�

�
�s�Q2�

4�
�
�s�P2�

4�

�

� he2iA�0�S
1

4�0

�
��2�S � �

�1�
S
�1

�0

���
�s�Q

2�

4�

�
2
�

�
�s�P

2�

4�

�
2
�

� he2iA�0�S
1

8

�
��1�S
�0

�
2
�
�s�Q

2�

4�
�
�s�P

2�

4�

�
2
� he2iA�2�S

�
�s�P

2�

4�

�
2
: (2.15)
III. PARAMETERS IN THE MS SCHEME

All the quantities necessary to evaluate the NNLO (��2
s)

corrections to the first moment of g�1 �x;Q
2; P2� have been

calculated in the literature and already known, except for
the photon matrix element of the flavor singlet axial current
at three loops. If not otherwise mentioned, all the expres-
sions listed in this section are the ones calculated in the
modified minimal subtraction (MS) scheme [24].
-3
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The flavor singlet axial current J�5S has an anomalous
dimension starting at the two-loop order due to the axial
anomaly. The two-loop [25] and three-loop [26] results are:

��1�S � 12CFnf; (3.1)

��2�S �
�
284

3
CFCA � 36C2

F

�
nf �

8

3
CFn2

f; (3.2)

with CF �
4
3 and CA � 3 in QCD. In fact, ��1�S was first

calculated in the Pauli-Villars regularization [27]. The
result ��2�S was obtained in the MS scheme.

It is well known that a suitable prescription is required
for the renormalization of the flavor singlet and nonsinglet
axial currents in the framework of dimensional regulariza-
tion. For the flavor singlet case, i.e., in order to obtain ��2�S
in Ref. [26], the �5-matrix was defined as [28]

���5 �
i

3!
��
�	�
���	: (3.3)

In addition, after the standard ultraviolet renormalization
of the axial current J�5S in the MS scheme, an extra finite
renormalization was introduced so that the one-loop char-
acter of the operator relation of the axial anomaly in QCD
[22],

@�J�5S �
g2

16�2

nf
2
���
�Ga

��Ga

�; (3.4)

where Ga
�� � @�Aa� � @�Aa� � gfabcAb�Ac� is the gluonic

field-strength tensor, is retained intact to all orders in
perturbation theory.

As for the prescription for the flavor nonsinglet case
[29], the �5-matrix defined in Eq. (3.3) is used but this
violates the axial Ward identity, which is to be restored by
an additional finite renormalization for J�5NS. Then we have
the nullified anomalous dimension for the nonsinglet axial
current (see Eq. (2.9)).

The flavor singlet coefficient function CS�1; �g�Q2�; ��
was calculated up to the two-loop level [30,31] while the
nonsinglet coefficient function CNS�1; �g�Q2�; �� up to the
three-loop level [29]. The one-loop [32] and two-loop
[30,31,33] results are

B�1�S � B�1�NS � �3CF; (3.5)

B�2�S � CF

�
21

2
CF � 23CA �

�
83 �

13

3

�
nf

�
; (3.6)

B�2�NS � CF

�
21

2
CF � 23CA � 4nf

�
; (3.7)

where 3 is the Riemann zeta-function (3 �

1:202056903    ). Both B�2�S and B�2�NS were calculated in
the MS scheme with the prescription for the renormaliza-
094024
tion of the flavor singlet and nonsinglet axial currents
explained above.

The � function has been calculated up to the four-loop
level in the MS scheme [34,35]. For the purpose of this
paper we need the� function up to the three-loop level (see
Eq. (2.11)) and, in addition to �0, we get

�1 � 102�
38

3
nf; (3.8)

�2 �
2857

2
�

5033

18
nf �

325

54
n2
f: (3.9)
IV. THE ADLER-BARDEEN THEOREM AND THE
PHOTON MATRIX ELEMENT OF THE AXIAL

CURRENT

In this section we show how to calculate the photon
matrix elements of the axial currents (Eqs. (2.4) and
(2.5)) up to the three-loop level (��2

s). We make a full
use of the Adler-Bardeen (AB) theorem [22] for the axial
anomaly both in QED and in QCD. With its use, the loop-
level of the Feynman diagrams to be evaluated decreases
by one and the calculation becomes much simpler. Also the
use of the AB theorem is legitimate from the viewpoint of
the renormalization scheme (RS) dependence. We already
know that we should use the same RS to compute higher-
order coefficient functions and anomalous dimensions of
operators in order to get the RS independent predictions. In
the present case, the same RS should be employed also for
the calculation of the higher-order photon matrix elements
of the axial currents. Recall that the definition of the
�5-matrix in Eq. (3.3) within the MS scheme leads to an
additional finite renormalization required for the axial
currents. In particular for the flavor singlet axial current,
the finite renormalization is fixed so that the AB theorem
for the axial anomaly may be secured. Using this RS or
renormalization prescription the three-loop anomalous di-
mension ��2�S of Eq. (3.2) and the two-loop coefficient
function B�2�S of Eq. (3.6) have been calculated. Therefore
it is a consistent procedure to apply the AB theorem for the
axial anomaly to the calculation of the higher-order photon
matrix elements of the axial currents.

A. The AB theorem for QED

The leading terms A�0�S and A�0�NS in Eq. (2.5) are already
known [14,21]:

A�0�S � �12nfhe2i; A�0�NS � �12nf�he4i � he2i2�:

(4.1)

We will rederive the above results as an example of how to
use the AB theorem for the calculation of the photon
matrix elements of the axial currents.
-4
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FIG. 2. Two- and three-loop QCD corrections to the basic
triangle diagram.
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FIG. 3. The three-loop diagrams of the gluon-photon scattering
type.
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The AB theorem for the axial current J�5 � � ���5 in
QED gives

@�J
�
5 �

e2

16�2 �
��
�F��F
�; (4.2)

where F�� � @�A� � @�A� is the field-strength tensor of
photon. The term on the r.h.s. is the Adler-Bell-Jackiw
anomaly [20]. Note that this is an operator form and holds
to all orders in perturbation theory. Let us define

�p1 � p2��R
��	�p1; p2� � i

Z
d4x1d

4x2

� eif�p1�p2�x�p1x1�p2x2g

� h0jT
@�J�5 �x�A
��x1�

� A	�x2��j0iAmputated (4.3)

where A� is a photon field and T is the covariant time-
ordered product. Actually, the expression of the r.h.s. does
not depend on x. According to the AB theorem, this is
equal to

i
Z
d4x1d

4x2e
if�p1�p2�x�p1x1�p2x2g

e2

16�2

�h0jT
4���
�@�A��x�@
A��x�A
��x1�A

	�x2��j0iAmputated:

(4.4)

Now differentiating both sides of Eq. (4.3) with respect
to p1�, and setting p1 � �p2 � �p [36], we obtain

R��	��p; p� �
Z
d4x1d

4x2e
ip�x1�x2�

� h0jT
J�5 �x�A
��x1�A

	�x2��j0iAmputated;

(4.5)

where we have used an identity i�x� x1�
�@�J

�
5 �x� �

�iJ�5 �x�, since

Z
d4x
i�x� x1�

�@�J
�
5 �x�� � 
surface terms� � i

Z
d4x

� 
@x;��x� x1�
��J�5 �x�

� �i
Z
d4xJ�5 �x�: (4.6)

Note that the r.h.s. of Eq. (4.5) is nothing but the photon
matrix element of J�5 at zero momentum transfer.
Differentiating Eq. (4.4) with respect to p�1 , and setting
p1 � �p2 � �p, we find that R��	��p; p� is also ex-
pressed as

R��	��p; p� �
e2

16�2 4
Z
d4x1d4x2eip�x1�x2����
�

� h0jT
A��x�@
A��x�A
��x1�

� A	�x2��j0iAmputated: (4.7)
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The leading terms A�0�S and A�0�NS are obtained from the
evaluation of the r.h.s. of Eq. (4.5) in the leading order e2.
Instead we compute the r.h.s. of Eq. (4.7). It is a tree-graph
calculation and we obtain to order e2

R��	��p; p� �
�
�

e2

16�2 4
�
� 
�2i���	
p
�: (4.8)

Now we take into account the quark-charge factors and the
color degrees of freedom and make the following replace-
ment:

e2 ! 3
X
i

�eie�
2 � 3e2nfhe

2i for J5S; (4.9)

e2 ! 3
X
i

�e2
i � he

2i��eie�
2 � 3e2nf�he

4i � he2i2�

for J5NS:
(4.10)

Finally considering the convention to define the photon
matrix element as is shown in Eq. (2.2), we reach the
expressions (4.1) for A�0�S and A�0�NS.

To obtain the NLO and NNLO terms A�1�NS and A�2�NS
corresponding to the flavor nonsinglet axial current J�5NS,
we resort to the nonrenormalization theorem [22] for the
triangle anomaly. The theorem says that there are no
radiative corrections (in this case, QCD corrections) to
the basic triangle diagram. The contributions of the two-
loop and three-loop diagrams such as shown in Fig. 2 sum
up to zero. Moreover, the three-loop diagrams such as
shown in Fig. 3, in which the axial current part is connected
to the photon-vertex part by two gluon lines, do not con-
tribute to A�2�NS. Thus we have

A�1�NS � A�2�NS � 0: (4.11)
-5
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B. The AB theorem for QCD

In order to evaluate the NLO and NNLO terms A�1�S and
A�2�S for the photon matrix element of J�5S, we use the AB
theorem for the singlet axial current in QCD, which reads

@�J
�
5S �

g2

16�2

nf
2
���
�Ga

��G
a

�; (4.12)

where Ga
�� is the gluonic field-strength tensor. This is an

operator form and holds to all orders in perturbation theory.
We define the following amplitude:

�p1�p2��S
��	�p1;p2�� i

Z
d4x1d

4x2e
if�p1�p2�x�p1x1�p2x2g

�h0jT
@�J
�
5S�x�A

��x1�

�A	�x2��j0iAmputated (4.13)

where A� is a photon field. Differentiating both sides of
Eq. (4.13) with respect to p1�, and setting p1 � �p2 �
�p, we obtain

S��	��p; p� �
Z
d4x1d4x2eip�x1�x2�

� h0jT
J�5S�x�A
��x1�A

	�x2��j0iAmputated;

(4.14)

which is nothing but the photon matrix element of the
singlet axial current J�5S at zero momentum transfer. We
consider the amplitude S��	��p; p� up to the order e2g4,
namely, up to the three-loop level.

The AB theorem (4.12) tells us that �p1 �
p2��S

��	�p1; p2� is also expressed as

�p1�p2��S��	�p1;p2��
g2

16�2

nf
2
i
Z
d4x1d4x2

�eif�p1�p2�x�p1x1�p2x2g

�h0jT
���
�Ga
���x�Ga


��x�A��x1�

�A	�x2��j0iAmputated: (4.15)

The operator ���
�Ga
��G

a

� is expanded in terms of gluon

fields as

���
�Ga
��Ga


� � 4���
�@�Aa�@
Aa�

� 4gfabc���
�@�A
a
�A

b

A

c
�; (4.16)

where the quartic term of gluon fields does not appear due
to the fact that

g2fabcfade���
�Ab�Ac�Ad
Ae� � 0:

Now we find that, up to the order e2g4, Eq. (4.15) can be
rewritten as
094024
�p1 � p2��S
��	�p1; p2� �

g2

16�2

nf
2
i
Z
d4x1d

4x2

� eif�p1�p2�x�p1x1�p2x2g4���
�

� h0jT
@�Aa��x�@
Aa��x�A��x1�

� A	�x2��j0iAmputated; (4.17)

since photon does not couple to gluon field directly. Again
differentiating both sides of Eq. (4.17) with respect to p1�,
and setting p1 � �p2 � �p, we obtain up to the order
e2g4,

S��	��p; p� �
g2

4�2

nf
2

Z
d4x1d

4x2e
ip�x1�x2����
�

� h0jT
Aa��x�@
Aa��x�A��x1�

� A	�x2��j0iAmputated: (4.18)

The NLO term A�1�S is derived from the calculation of
S��	��p; p� in the order e2g2. Instead of evaluating the
r.h.s. of Eq. (4.14), which is a two-loop calculation, we
compute the r.h.s. of Eq. (4.18). Then the calculation
reduces to the one-loop level but gives null result in this
order since gluon and photon do not couple directly. Thus
we obtain

A�1�S � 0: (4.19)
C. Calculation of A�2�S
In order to obtain A�2�S , we need to calculate S��	��p; p�

in the order e2g4. Again instead of evaluating the r.h.s. of
Eq. (4.14), which is a three-loop calculation, we compute
the r.h.s. of Eq. (4.18). Then the calculation reduces to the
two-loop level.

The relevant two-loop diagrams are shown in Fig. 4.
There are also two counter-term diagrams corresponding to
the diagrams (a) and (b). Because the quarks are Dirac
fermions, there are two directions for the charge flow. The
result for each diagram is invariant under reversing the
charge flow, so each diagram is computed only for one
arrow direction and then multiplied by a factor of 2. We
-6
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have performed calculation in the MS scheme with n �
4� 2�, and used the latest version of the program FORM

[37] to do the necessary algebra.
For the moment let us assume that each quark has a

charge e. The contributions of the diagrams (a), (b) and (c)
are

Diagram �a� � Diagram �b�

�

�
�s
�

nf
2

��
�

4�
�s
4�

�
3CFS2�

�
�2

�p2

�
2�

�

�
4

�
� 16

�

�2i���	
p
�; (4.20)

Diagram �c� �
�
�s
�

nf
2

��
�

4�
�s
4�

�
3CFS2�

�
�2

�p2

�
2�

�

�
4

�
�

82

3
� 163

�

�2i���	
p
�; (4.21)

where

S� � �4���e���E; (4.22)

and a factor 3CF comes from Tr
TaTa� with Ta being the
generator of the color group SUC�3�. The contributions of
the counter-term diagrams corresponding to the
diagrams (a) and (b) are the same and each gives,�

�s
�

nf
2

��
�

4�
�s
4�

�
3CFS2�

�
�2

�p2

�
�
�
�

6

�
� 12

�

�
�2i���	
p
�: (4.23)
�
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Summing up all contributions, we obtain in the order of
e2g4
S��	��p; p� �
�

4�

�
�s
4�

�
2
6CFnf

�
106

3
� 163

� 12 ln
�2

�p2

�

�2i���	
p
�: (4.24)
We renormalize the photon matrix element S��	��p; p� at
�2 � �p2 � P2. Also we take into account the quark-
charge factor and replace � with �nfhe2i. Then we find
A�2�S � 12he2iCFn2
f

�
53

3
� 83

�
: (4.25)
Apart from the charge and SUC�3� group factors, the result
(4.25) is consistent with the QED version of the two-loop
calculation by Larin [26] for the matrix element of
���
�Ga

��Ga

� between two gluon states (see Eq. (22) of

Ref. [26]).
V. THE NNLO (��2
s ) CORRECTIONS

Putting the parameters in Eqs. (3.1), (3.2), (3.5), (3.6),
(3.7), (3.8), (4.1), and (4.25) into Eq. (2.15), we finally
obtain the NNLO (��2

s) corrections to the first moment
of g�1 �x;Q

2; P2�:
Z 1

0
dxg�1 �x;Q

2; P2� � �
3�
�

�Xnf
i

e4
i

�
1�

�s�Q
2�

�

�
�

2

�0

�Xnf
i

e2
i

�
2
�
�s�P

2�

�
�
�s�Q

2�

�

�

�
2

�0

�Xnf
i

e2
i

�
2 �s�Q2�

�

�
�s�P2�

�
�
�s�Q2�

�

�
�

1

4�0

�
�1

�0
�

59

3
�

2

9
nf

��Xnf
i

e2
i

�
2
�
�2
s�P2�

�2 �
�2
s�Q2�

�2

�

�
2nf
�2

0

�Xnf
i

e2
i

�
2
�
�s�P

2�

�
�
�s�Q

2�

�

�
2
�

�
55

12
�

1

3
nf

�Xnf
i

e4
i
�2
s�Q

2�

�2 �

�
2

3
3 �

1

36

��Xnf
i

e2
i

�
2 �2

s�Q
2�

�2

�
1

12

�
53

3
� 83

��Xnf
i

e2
i

�
2 �2

s�P2�

�2

�
; (5.1)
TABLE I. The coefficients in Eq. (5.2) for the first moment of
g�1 �x;Q

2; P2�.

nf c0 c1Q c1P c2Q c2QP c2P

3 0.22222 �0:12346 �0:098765 �0:34685 0.032922 �0:41201
4 0.41975 �0:12346 �0:29630 �0:027306 0.011852 �1:1533
5 0.43210 �0:042405 �0:38969 0.50097�0:11860 �1:4062
where we are back to the notations
Pnf
i e

2
i �� nfhe

2i� andPnf
i e

4
i �� nfhe

4i�. The third to eighth terms in the paren-
theses are the NNLO contributions. The sum rule is ex-
pressed in the form asZ 1

0
dxg�1 �x;Q

2;P2���
3�
�

�
c0�c1Q

�s�Q
2�

�
�c1P

�s�P
2�

�

�c2Q

�
�s�Q

2�

�

�
2
�c2QP

�s�Q
2�

�
�s�P

2

�

�c2P

�
�s�P2�

�

�
2
�
; (5.2)
where the coefficients c0, c1Q, c1P, c2Q, c2QP and c2P
depend on the number of the active quark flavors, nf. We
list in Table I the numerical values of the coefficients ci for
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TABLE II. The NLO and NNLO corrections relative to LO and the ratio of the NNLO to the
sum of the LO and NLO contributions for the first moment of g�1 �x;Q

2; P2�. The values of the
QCD running coupling constant we have used are �s�Q2 � 30 GeV2� � 0:2048, �s�Q2 �
100 GeV2� � 0:1762, �s�P2 � 1 GeV2� � 0:4996, and �s�P2 � 3 GeV2� � 0:3211.

Q2=GeV2 P2=GeV2 LO NLO NNLO NNLO=�LO� NLO�

nf � 3 30 1 1 �0:107 �0:0520 �0:0582
100 1 1 �0:102 �0:0505 �0:0562

30 3 1 �0:0816 �0:0250 �0:0272
100 3 1 �0:0766 �0:0234 �0:0254

nf � 4 30 1 1 �0:131 �0:0695 �0:0800
100 1 1 �0:129 �0:0694 �0:0797

30 3 1 �0:0913 �0:0288 �0:0317
100 3 1 �0:0886 �0:0287 �0:0315

nf � 5 30 1 1 �0:150 �0:0802 �0:0944
100 1 1 �0:149 �0:0811 �0:0953

30 3 1 �0:0986 �0:0309 �0:0343
100 3 1 �0:0977 �0:0319 �0:0354
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nf � 3, 4, 5. We see that the values of ci increase or
decrease with nf. We also see that the values of c2P are
rather large in magnitude compared with other coefficients.
This is due to the effect of A�2�S , the three-loop photon
matrix element of the flavor singlet axial current J�5S.
Indeed, without the contribution of A�2�S , the numerical
values of c2P read as �0:11386, �0:32510 and
�0:40405 for nf � 3, 4 and 5, respectively.

To estimate the sizes of the NLO (��s) and NNLO
(��2

s) corrections compared to the LO (�) term and the
ratio of the NNLO to the sum of the LO and NLO con-
tributions, we take, for instance, Q2 � 30 and 100 GeV2,
and P2 � 1 and 3 GeV2, although these values of Q2 and
P2 may not be large enough to apply the formula (5.1) or
(5.2) to the cases of nf � 4 and 5. The corresponding
values of �s are obtained from Ref. [23]. We get �s�Q2 �
30 GeV2� � 0:2048, �s�Q

2 � 100 GeV2� � 0:1762,
�s�P

2 � 1 GeV2� � 0:4996, and �s�P
2 � 3 GeV2� �

0:3211. The results are given in Table II. Since the numeri-
cal values of c2P are rather large in magnitude compared
with those of other coefficients, the NNLO corrections
become large when P2 is small but still satisfies the con-
dition (1.1). In fact, when P2 � 1 GeV2 and Q2 � 30�
100 GeV2, the NNLO corrections amount to 6% (nf � 3�,
8% (nf � 4� and 9� 10% (nf � 5� of the sum of the LO
and NLO contributions. On the other hand, when P2 �
3 GeV2, Q2 � 30� 100 GeV2 and nf is three to five, the
NNLO corrections are found to be about 3% of the sum of
the LO and NLO contributions.
094024
VI. SUMMARY

We have investigated the next-to-next-to-leading order
(��2

s) corrections to the first moment of the polarized
virtual photon structure function g�1 �x;Q

2; P2� in the kine-
matical region Q2 � P2 � �2 in QCD. All the necessary
information on the coefficient functions and anomalous
dimensions corresponding to the quark axial currents has
been already known, except for the three-loop-level photon
matrix element (the finite term) of the flavor singlet quark
axial current J�5S. Instead of evaluating the relevant three-
loop Feynman diagrams, we resort to the Adler-Bardeen
theorem for the axial anomaly, Eq. (4.12). Then calculation
reduces to the one in the two-loop level. We evaluate in
effect the two-loop diagrams for the photon matrix element
of the gluon operator, the r.h.s. of Eq. (4.18).

The ��2
s corrections are found to be about 3% of the

sum of the leading (�) and the next-to-leading (��s)
contributions, when Q2 � 30� 100 GeV2 and P2 �
3 GeV2, and the number of active quark flavors nf is three
to five.
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