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Spin structure function g,(x,0%) and twist-3 operators in large-N. QCD
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It is shown in the framework of operator product expansion and the renormalization group method that the
twist-3 part of flavor nonsinglet spin structure function g2(x,0?%) obeys a simple Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equation in the large N limit even in the case of massive quarks (N is the number of colors).
There are four different types of twist-3 operators which contribute to g,, including quark-mass-dependent
operators and the ones proportional to the equation of motion. They are not all independent, but are constrained
by one relation. A new choice of the independent operator bases leads to a simple form of the evolution

equation for g, at large No. {S0556-2821(98)01519-7]

PACS number(s): 13.88.+e, 12.38.Bx, 13.60.Hb

L. INTRODUCTION

In experiments of polarized deep inelastic leptoproduc-
tion, we can obtain information on the spin structures of the
nucleon, which are described by the two functions g, (x,0?)
and g,(x,0%). The QCD effects on g, and g, have been
extensively studied [1] since earlier papers [2—4]. Increas-
ingly accurate measurements of g, have been performed at
SLAC, CERN, and DESY [5], while the g, measurements
still have limited statistical precision [6].

In the language of operator product expansion (OPE), the
twist-2 operators contribute to g, in the leading order of
1/Q?. As for the structure function g,, on the other hand,
both twist-2 and twist-3 operators participate in the leading
order. Moreover, the number of participating twist-3 opera-
tors grows with spin (moment of g,). Because of the in-
crease of the number of operators and the mixing among
these operators, the analysis of the twist-3 part of g, turns
out to be rather complicated [7—14]. In other words, the Q2
evolution equation for the moments of the twist-3 part of g,
cannot be written in a simple form, but in a sum of terms, the
number of which increases with spin.

For the case of the twist-3 flavor nonsinglet g,, it has
been observed by Ali, Braun, and Hiller (ABH) [15] that in
the large N limit, g, obeys a simple Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equation [16]. In their for-
malism of working directly with the nonlocal operator con-
tributing to the twist-3 part of g,, they showed that local
operators involving gluons effectively decouple from evolu-
tion equation for large N.. In fact their analysis has been
made with massless quarks.

In this paper, I reanalyze the Q? evolution of g, the
flavor nonsinglet twist-3 part of g,, in the framework of the
standard OPE and the renormalization group (RG) with mas-

sive quarks. Actually, the OPE analysis of g, has been per-
formed already and the anomalous dimensions of the rel-
evant twist-3 operators have been calculated [8,9,11,17,18].
However, to the best of my knowledge, the large N limit of

g, has not been thoroughly studied so far in OPE and RG.
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There are four different types of twist-3 operators which con-

tribute to g,, including quark-mass-dependent operators and
the ones proportional to the equation of motion. They are not
all independent, but are constrained by one relation. It was
pointed out recently by Kodaira, Uematsu, and Yasui [17]
that any choice of the independent operator bases leads to a
unique prediction for the moments. Taking a new basis of the
independent operators, I will show that the Q? evolution of
g2 obeys a simple DGLAP equation in the N ¢c— o limit and
thus the ABH result on g, is reproduced even with massive
quarks.

In the next section, we choose a new basis for the inde-
pendent operators which contribute to g, and derive a formal
expression for the moments of g, in the formalism of OPE
and RG. In Sec. III we obtain the anomalous dimensions for
this new set of the independent operators and show that in
the large N limit, the Q? evolution of g, obeys a simple
DGLAP equation even in the case of massive quarks. Sec-
tion IV is devoted to summary and discussion.

IL. THE OPE ANALYSIS OF g,

The spin structure function g, receives contributions from
both twist-2 and twist-3 operators. However, the twist-2 part
of g, can be extracted once g, is measured [19]:

‘ _ 1 02
g."zfv'z(x,Qz)—-_-—&(x,Qz)"'f gl(yy—Q)dy- (1)

Thus the difference
82(x,0%)=g,(x,0%) — g5 *(x,0%) (2)

contains the twist-3 contributions only.
The twist-3 operators which enter the OPE for the flavor

nonsinglet g, are the following (I follow the notation and
conventions of Refs. [17,18] and omit the flavor matrices
)\i):
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n—1
R;ﬂr-ﬂn,l: - (n_l)lz,ys.yoD{pl,..Dn,,_l}‘/,_lzl J,.ys.ymD{aDm...DM—lD#zH...D#nﬂ},p —(traces), (3)
TRy " Hp—1 1 =
Rl —ﬂ(V,—V,,_I-1+U,+U,‘_1_,), (l—l, ,n—2), (4)
R:’lﬂ‘l'”“"‘lzin_zmsl ‘7/‘}/5 ﬂyUD/"l. . .D/’*n—Z'y/"n—llll—([Iaces), (5)
n—-1 __ -
Ry 1 =in "2 ST [ ys y DM -DEn 2y (iD= m) Yot i — m)ys y"DH1- - Dn-2ykn- 1] — (1races),

(6)

where { } means complete symmetrization over the Lorentz indices and m represents the quark mass. The symbol S’ denotes
symmetrization on the indices g, u, - u,_; and antisymmetrization on o u;. The operators in Eq. (4) contain the gluon field

strength G, and its dual tensor G = e #MBG"B and they are given by

Vi=—i"gS" gysD#1---GOM- - D¥n-2yykin-14— (traces), ™

U,=i""'g8" §yD*1---Go¥. - -D#n-29p#n-1— (traces), (8)

where g is the QCD coupling constant. The operator R in
Eq. (6) is proportional to the equation of motion (EOM op-
erator). The above twist-3 operators are not all independent,
but they are constrained by the following relation [7,12]:

1
Raﬂl"'l‘n—l

0#1...“n_1_n_
Ry =—
n m

n—2
+ X (n—1—D)RYM Hn1 4 RIH Hnot
=1

©)

Thus in total there are n independent operators contributing

to the (n— 1)th moment of g,. But we will see later that in
the N c— o limit, the (n — 1)th moment is expressed in terms
of one operator R;“1 41,

In all the analyses of g, performed so far in the frame-
work of OPE and RG, operators R;,R,, ,Rg of Egs. (4)—(6)
have been taken as independent bases. In this paper I choose
Ry ,R;,Rg as independent operators, replacing R,, with Rp
of Eq. (3). The advantage of this choice of operator basis is
that the coefficient functions take simple forms at the tree-
level. In fact we have [17] '

Er(tree)=1, Ej(tree)=0 for I=1,...,n—2, (10)

since the antisymmetric part of the short distance expansion
for the product of two electromagnetic currents can be writ-
ten at the tree level as

if d4xeiq'xT[Jﬂ(x)Ju(0)]lamisymmen'ic

2\n
- _ A —_
= le'uu)\oq W5 (QZ) qp,l q,u."_l

X{RZ#l"’l‘n—l+R;#1'“#n~1}+... , (11)
where dots - - - stands for nonleading terms and

RZ‘“I.”’“"fl _ in—[('l}ysy{dDﬂl. . .D”’n—l}w—- (traces)
(12)

are twist-2 operators which contribute to g, and g'2w‘2. It is
true that due to the relation, Eq. (9), R;” U1 can be ex-

pressed in terms of other operators. When eliminating R%,
we obtain a different set of coefficient functions. In other
words, the (tree-level) coefficient functions are dependent
upon the choice of the independent operators [17].

The renormalization constants for this new set of indepen-
dent operators are written in the matrix form as

% ZFF ZFj ZFE R%
Ri) =\ Zir Zy Zg || R}| .
n n
Rel g 0 0 Zg Rel &
o (Lj=1,..,n—2), (13)

where the suffix R(B) denotes renormalized (bare) quanti-
ties.

Now we proceed to the moment sum rule for g,. Define
the matrix elements of composite operators between nucleon
states with momentum p and spin s by
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n—1
p.sIRZ Hn ps)= — ——d,(s°p*1—stip?)pHa- - phn-r, (14)
F
<p’s|R;Tl‘1"'/"n-1|p’s>= —fil(s‘rpl"l—sﬂ-lp”)pﬂ-z...pl‘n-l’ (15)
{p.s|RE" " |p,s)=0. (16)

Normalization is such that for free quark target, we have
d,=1 and f}=0(g?). It is recalled that physical matrix el-
ements of the EOM operators vanish [20]. Using Egs. (14)-
(16), we can write down the moment sum rule for g, as

1
M,= fo dxx""'ga(x,0%)

n—-2

-1
dEF(Q2)+ Ef,.E"(QZ) (17)

2n
The coefficient functions E% (Q ) and E} (Q?) satisfy the
following renormalization group equation:
i +
Fon B(g)

— Ym(g)m E 'YJIE

for i,j=F,1,..,n—2, (18)

where B(g) and v,(g) are the QCD B function and the

anomalous dimension of mass operator, respectively. The

anomalous dimension matrix '}7,-]- of the composite operators
and R} with [=1,...,n—2 is defined as

__ . 9Z
Z 'uw—| for i,j=F,1,..,n—2, (19)
rm

ij

711

Note that the anomalous dimension matrix which appears in
Eq. (18) is a transposed one. This comes from our conven-
tion of defining renormalization constants and anomalous di-
mensions of the operators in Egs. (13) and (19).

In the leading-logarithmic approximation, the solutions of
the RG equations in Eq. (18) are given as follows [21]:

where a(Q?) is the QCD running coupling constant, 8, and

¥ are, respectively, one-loop coefficients of the B func-

tion and anomalous dimension matrix,

s 1 1IN-2n,
B(g)z_—ﬂog +O(g )9 ﬂ0=(4,n_)2 3 ’

@1

Yi(g)=7"g*+0(g", (22)

with n; being the number of flavors, and we have used the
fact that Ef(u?)=1 and Ej(u?)=0 (for I=1,...,n—2) at
the lowest-order.

III. MOMENT SUM RULE FOR g,
IN THE LARGE N, LIMIT

Now we need the information on the anomalous dimen-
sions (¥yO™)g; (for i=F,1,...,n—2). We can get it without
embarking on a new calculation of the relevant Feynman
diagrams. We utilize the existing results on the anomalous
dimension matrix for the operators R;,R,, and Rg. In the
case of the conventional choice of R;,R,, and Ry as inde-
pendent operators,-the renormalization constant matrix takes
a triangular form

R} Zj Zin Zg)\ R}
Rl =l 0 Zmm O |[RY], (Lj=1...n—2).
R:/ , 0 0 Zg/ \Re/,

(23)

In the minimal subtraction (MS) renormalization scheme, Z;;
is expressed as

2

8 ..

ZU=5,]— _2_1671' SXij (l,]=l, ..,n—2,m,E), (24)

YOr [ a(Q?) . .
EMQ?)=|exp| — ( ) for i=F,1,....n—2, where €=(4—d)/2 with d the space-time dimension, and
! 2B\ a(u?) ; the components X;; have been calculated [8,9,11,18]. The

(20)  following is the result on X;; taken from Ref. [18]:

J
(J+1)(j+2) 14 n—2Cj—1 (n=1+1—j) 2(-1)

.= — — J . < j<]-—-
Xu=Comrnaraa—y T\ e menay T e 1G] 0SED @
X, =Co| 2 - — ! L -5 F2C—Co)| ——+ 2= (1

n=Co\ T T T 152 =i ST S [ F(2Ck ] P I(I+1)(1+2) n-l

+Cp(3-28,-28,-1-1), (26)
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(n—1-j)(n—j) —2C; (n=1~1+j) n—2-1Cn-2-;
X;= ——— +(2Cp—Cg)| (- 1) 2 F(-i i
0= o1 nG-p o N TV g T T
(I+1sjsn-2), 27)
X fCr X 4CsS 28
lm_nl(l+l)(l_+_2)’ mm™— Fon-1- ( )
|
If we impose that the renormalized and bare operators, n
respectively, satisfy the constraint Eq. (9), we find from Egs. —87? 7}3’"— —(n=1-)| Xppmt+ P
(13) and (23) that Z’s are related to the conventional Z’s as
follows: n-2
X2 (n=1-DXp
n-2 =1
Zer=Zpmt — 2 (n—1-1Z,,,, (29)
n—2
e + 121 (n—1-DXy;, (34)
Zpj=—(n—1=j)Zpp+ 121 (n—1-DZ;,
(30)
_ga2zn_ "
8w yp = _1le9 (35)
~ n n
ZIFZ n—IZ,,,,, (31)
—87 Y = Xyy— — (= 1= )Xim,
Z =Zj— (n—l —NZyys (32) (36)
where [,j=1,...,n—2. Using MS scheme rule, 1/e—In ,u,z,
we obtain, from Egs. (19) and (22),
n-2 0
—gm2y (O)n —1-0)X (33) It is straightforward to calculate the above y( n using the
m> expressions X;; in Egs. (25)—(28). Especially, we obtain
8m2 50 =4Cp Spoy— ot e (37)
FF F n—1 4 2n

By =—(2Cr—Cg)

1
(n—l—])(ZS,I_l—SJ—Sn_}_1+l+;)

j-1

+121 (n—1—1)((—1)'+f

n—ZCj (n_l_l+1) _q\n—jn=2- 1Cn-2- ])
Yo T iy S Gk ey
2(~1) _(—1)f)
JGADG+2) =g

[ ejnm2Ci-1 (= 141-)) 2(—1)y )
2, (o1 ”(( e e na—y T nar

+(n—l—j)( "

n-2

for j=1,...,n—2. (38)
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Now we see that the mixing anomalous dimension 7(0)"

turns out to be proportional to (2Cr—Cg). Since
Ni-1
CF=—EV—C—, CG Nc, (39)
we have 2Cr=Cg and thus ‘y(o)" 0 in the No— oo limit.
Then Eq. (20) gives
a(Q?)\ 7#¥"7#o
HQ?H)= ( ) (40)
a(u?)
ENQYH=0 for I=1,...,n—2. (41)

Returning to Eq. (17), we find that, at Nc going to infinity,
the moment sum rule for g, takes a simple form as follows:

1 1 a(@%) 7"
fo dxx""'g,(x,0%) = (a(ﬂ .)) (42)
with
Yo" 2N(S,-,— 1/4+1/2n)
(43)

28, (13)(11N¢—2ny)

In other words, at large N, the operators R;*! #~1 in-
volving the gluon fields decouple from the evolution equa-
tion of g, and the whole contribution is represented by one

type of operators R;*" #"~!. With the substitution Cp

=N¢/2 and n=j+ 1, the anomalous dimension 8 725" co-

incides with Eq. (18) of Ref. [15]. This completes the repro-
duction, in the framework of OPE and RG, of the ABH result

on §2.

IV. SUMMARY AND DISCUSSION

It should be emphasized that we have reproduced the
ABH result without assuming massless quarks. A question
expected to come up immediately is that the replacement of
the mass-dependent operator R, with R% may be equivalent
to working with massless quarks. The answer is no. Indeed it
can be shown that even when we include the mass-dependent
operator R}, among the independent operator bases, we reach
the same conclusion. Let us take, for an example, Rz, R}
(with I=2,...,n—2), R, and R} as independent operators
replacing one quark-gluon operator Rj_; with Rz . With this
choice of new operator bases, the moment sum rule for g, is
written in terms of the coefficient functions £ F(Q ), E (0%

with [=2,...,n—2, and E:',,(Q ). The renormalization con-
stants for these operators are written as

PHYSICAL REVIEW D 58 (094007

n Zer Zrj Zrm Zre R"
F A A . A F
P | 4r 2y Zim Zi R}
n - ~ n ’
R:, o o0 Z,, O 11:'""
ET B 0 0 0 Zg ET r
1,j=2,...,n=2). (44)

Again imposing that the renormalized and bare operators,

respectively, satisfy the constraint Eq. (9), we find that Z’s
are related to conventional Z’s as follows:

n—2

~

-1-0Z,, (45)

n-2
Zpj=—(n—1-j)Zpp+ 121 (n—1-1)Z,,

(j=2,...,n—-2), (46)

n—1 , n—1 n2
ZFF+TZ”‘"'+,21("—1—I)Z”"' (47)

Y~

ZFm~:

Then it is easy to obtain the following one-loop coefficients
of the relevant anomalous dimensions

' 1 1
gly\dn= 4CF(S,,_l 4+2—)

+terms proportional to (2Cp—Cg), (48)
8y = (2Cr—Cg) for j=2,...,n-2, (49)
8y (2Cr— Cg). (50)

Inserting these anomalous dimensions to the solutions of the
RG equations for the coefficient functions E (Q2) E"(Q )
(1=2,...,n—2) and E"(Q?),

|l 2
for i=F,2,...,n—2m, (51)
we obtain in the large N limit
£30Y)= (“if ;)7 gy,
E}(Q*=0 for 1=2,...,n—2, (53)
En(@h=0. (54)
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Thus we reach the same conclusion Eq. (42) even when we
include the mass-dependent operators among the indepen-
dent operator bases.

A few comments are in order. Firstly, the twist-3 quark-
gluon operators R} decouple from the evolution equation for

g, at large N. This might be explained by an argument on
quark condensate [7]. A hint is that the mixing anomalous
dimensions 37(,%)" turn out to be proportional to (2Cp
— Cg). There are two types in the products of color matrices

entering into the calculation of anomalous dimensions for the
flavor nonsinglet g,:

1 1
b b - a— _
T°T°T (CF 2Co|T*= 35T (55)
DT = €y =+ N o T (56)
L S Y

It is argued in Ref. [7] that the quark condensate contains all
colors and at large N, the condensate polarization becomes
small and that the combination T°T°T? is connected with
condensate polarization effects.

Secondly, we have chosen particular sets of the indepen-
dent operators and reached a simple form for the moments of

g in the large N limit. However, arbitrariness in the choice
of the operator bases should not enter into physical quantities
[17]. A different choice of the operator bases leads to differ-
ent forms for the anomalous dimension matrix and the coef-
ficient functions. Recall that the constraint, Eq. (9), gives a

PHYSICAL REVIEW D 58 094007

relation among the tree-level coefficient functions and also a
relation among the matrix elements of the operators. After
diagonalizing the anomalous dimension matrix and using
these relations, we can arrive at the same conclusion for the

moments of g, in the Nc—o0 limit. What we did in this
paper is that we chose particular sets of bases from the be-
ginning which include an operator that represents the whole

contribution to g, for large N.

Finally, the nucleon has other twist-3 distributions,
namely, chiral-odd distributions k;(x,Q?) and e(x,0?) [22].
Just like the g, case, the Q2 evolutions of flavor nonsinglet
h L(x,QZ) and e(x,0?) turn out to be quite complicated due
to mixing with quark-gluon operators, the number of which
increases with spin. However, it has been proved [23] that in
the large N limit, these twist-3 distributions also obey a
simple DGLAP equation. The proof holds true only when we
work with massless quarks.

ACKNOWLEDGMENTS

This work was inspired by an interesting talk given by Y.
Koike at International Symposium on QCD Corrections and
New Physics, Hiroshima. I would like to thank him and also
thank the organizer of the Symposium, J. Kodaira. The dis-
cussions with Y. Koike and T. Uematsu on the twist-3 op-
erators in the large N limit were indispensable for the
completion of this paper and are happily acknowledged. This
work is supported in part by the Monbusho Grant-in-Aid for
Scientific Research No. (C)(2)-09640342.

[1] See, for example, R. L. Jaffe, Report Nos. MIT-CTP-2506 and
HUTP-96/A003, hep-ph/9602236.

[2] M. A. Ahmed and G. G. Ross, Phys. Lett. 56B, 385 (1975);
Nucl. Phys. B111, 441 (1976); K. Sasaki, Prog. Theor. Phys.
54, 1816 (1975).

[3]J. Kodaira, S. Matsuda, K. Sasaki, and T. Uematsu, Nucl.
Phys. B159, 99 (1979).

[4] J. Kodaira, S. Matsuda, T. Muta, K. Sasaki, and T. Uematsu,
Phys. Rev. D 20, 627 (1979).

[5] J. Ashman et al., Nucl. Phys. B328, 1 (1989); D. Adams et al.,
Phys. Lett. B 329, 399 (1994); 357, 248 (1995); 396, 338
(1997); K. Abe et al., Phys. Rev. Lett. 74, 346 (1995); 75, 25
(1995); 79, 26 (1997); Phys. Lett. B 364, 61 (1995); 404, 377
(1997); 405, 180 (1997); K. Ackerstaff et al., ibid. 404, 383
(1997).

[6] P. L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993); Phys.
Rev. D 54, 6620 (1996); D. Adams et al., Phys. Lett. B 336,
125 (1994); K. Abe et al., Phys. Rev. Lett. 76, 587 (1996);
Phys. Lett. B 404, 377 (1997). '

[7]1E. V. Shuryak and A. 1. Vainshtein, Nucl. Phys. B199, 951
(1982); B201, 141 (1982).

(8] A. P. Bukhvostov, E. A. Kuraev, and L. N. Lipatov, Sov. J.
Nucl. Phys. 38, 263 (1983); 39, 121 (1984); JETP Lett. 37, 482
(1984); Sov. Phys. JETP 60, 22 (1984).

[9] P. G. Ratcliffe, Nucl. Phys. B264, 493 (1986).

[10] L 1. Balitsky and V. M. Braun, Nucl. Phys. B311, 541 (1989).

[11] X. Ji and C. Chou, Phys. Rev. D 42, 3637 (1990).

[12] R. L. Jaffe, Comments Nucl. Part. Phys. 19, 239 (1990).

[13] R. L. Jaffe and X. Ji, Phys. Rev. D 43, 724 (1991).

[14] J. Kodaira, S. Matsuda, T. Uematsu, and K. Sasaki, Phys. Lett.
B 345, 527 (1995).

[15] A. Ali, V. M. Braun, and G. Hiller, Phys. Lett. B 266, 117
(1991).

[16] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 675
(1972); L. N. Lipatov, ibid. 20, 94 (1975); Y. L. Dokshitser,
Sov. Phys. JETP 46, 641 (1977); G. Altarelli and G. Parisi,
Nucl. Phys. B126, 298 (1977).

[17] J. Kodaira, T. Uematsu, and Y. Yasui, Phys. Lett. B 344, 348
(1995).

[18] J. Kodaira, K. Tanaka, T. Uematsu, and Y. Yasui, Phys. Lett.
B 387, 855 (1996).

{19] W. Wandzura and F. Wilczek, Phys. Lett. B 172, 195 (1977).

[20] H. D. Politzer, Nucl. Phys. B172, 349 (1980).

[21] T. Muta, Foundations of Quantum Chromodynamics (World
Scientific, Singapore, 1987).

[22] R. L. Jaffe and X. Ji, Phys. Rev. Lett. 67, 552 (1991); Nucl.
Phys. B375, 527 (1992). ‘
[23] L. 1. Balitsky, V. M. Braun, Y. Koike, and K. Tanaka, Phys.
Rev. Lett. 77, 3078 (1996); Y. Koike and K. Tanaka, Phys.
Rev. D 51, 6125 (1995); Y. Koike and N. Nishiyama, ibid. 55,

3068 (1997).

094007-6



