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Polarized photon structure can be studied in the future polarized e*e™

colliding-beam experiments. We

investigate the spin-dependent structure function of the virtual photon g7(x,Q2,P?), in perturbative QCD for
A’<P*<Q?, where —Q%(— P?) is the mass squared of the probe (target) photon. The analysis is performed
to next-to-leading order in QCD. We particularly emphasize the renormalization scheme independence of the
result. The nonleading corrections significantly modify the leading log result, in particular, at large x as well as
at small x. We also discuss the nonvanishing first moment sum rule of g}, where O(a;) corrections are

computed. [S0556-2821(99)08309-5]

PACS number(s): 12.38.Bx, 13.60.Hb, 13.88.+¢

I. INTRODUCTION

In recent years there has been growing interest in the
study of a polarized photon structure function. The informa-
tion on the spin structure of the photon would be provided by
the resolved photon process in polarized electron and proton
collision in the polarized version of the DESY ep collider
HERA [1,2]. More directly, the spin-dependent structure
function of photon g} can be measured by the polarized
e*e™ collision in the future linear colliders (Fig. 1).

From the theoretical viewpoint the first moment of a pho-
ton structure function g7 has recently attracted attention in
the literature [3—7] in connection with its relevance for the
axial anomaly, which has also played an important role in the
QCD analysis of the spin structure of the nucleon. Our aim

here is to carry out the QCD computation of the photon’s’

polarized structure function at the same level of the unpolar-
ized case. Here we note that the two-loop splitting func-
tions of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation or equivalently the two-loop anomalous dimensions
have recently been calculated [8,9], and we can perform the
next-to-leading order QCD analysis for the polarized photon
structure function. Actually there has already been an analysis
of spin-dependent structure function g{ for the real photon
target by Stratmann and Vogelsang [10].

In this paper we shall investigate the polarized virtual
photon structure function g7(x,Q? P?) to the next-leading
order (NLO) in QCD, in the kinematical region:

A?<P?<Q?, (1.1
where — Q%(— P?) is the mass squared of the probe (target)
photon, and A is the QCD scale parameter. We can base our
arguments either on DGLAP-type Q? evolution equation for
the parton distributions or on the framework of operator
product expansion (OPE) and the renormalization group
(RG) method. The unpolarized virtual photon structure func-
tions FJ(x,0%,P%) and F}(x,Q% P?) were studied in the
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leading order (LO) [11] and in the NLO [12,13]. And the
parton contents of virtual photon were studied in Refs.
[14,15] and the target mass effect of unpolarized and polar-
ized virtual photon structure in LO was discussed in Ref.
[16].

The advantage to study the virtual photon target is that we
can calculate the whole structure function entirely up to NLO
by the perturbative method. On the other hand, for the real
photon target [17,18] we can calculate the perturbative
pieces, but not the nonperturbative contributions which may
be estimated, for example, by vector-dominance model [19].
The perturbative pieces for the real photon target can be
reproduced from the result for the virtual photon case.

In the next section we discuss the polarized photon struc-
ture functions. Next we present the two theoretical frame-
works based on OPE (Sec. III) and on DGLAP parton model
approach (Sec. IV). In Sec. V, the sum rule for the first
moment of g7 will be evaluated up to the order of a,. The
numerical analysis of g7 will be given in Sec. V1. The final
section is devoted to the conclusion and discussion.

“target’’

FIG. 1. Deep inelastic scattering on a polarized virtual photon in
polarized e *e ™ collision, e*e ™ —e™ e~ + hadrons (quarks and glu-
ons). The arrows indicate the polarizations of the e*, e~ and virtual
photons. The mass squared of the ‘‘probe’’ (‘‘target’’) photon is
- Q% (—PH)(A*<P?<(?).
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FIG. 2. Forward scattering of a virtual photon with momentum ¢
and another virtual photon with momentum p. The Lorentz indices
are denoted by u,v,p, 7.

II. POLARIZED PHOTON STRUCTURE FUNCTIONS

Let us consider the forward virtual photon scattering am-
plitude (Fig. 2),

. T o P>q)= l'f d*xd*yd*ze'd *eir 0D

X{O0|T( ,(x)J (0} ,(¥)T (2))|0). (2.1)

Its absorptive part is related to the structure tensor
W vpp>q) for the photon with mass squared pt=—P?
probed by the photon with g?>=— Q?:

1
W,u.vp'r(p’Q)= ;Mprpr(p’q)~ (22)

The antisymmetric part, Wﬁm, which is antisymmetric un-

der the interchange of u and v, can be decomposed as

1
A —
W/Lllp‘l'— e,u,v}\aq)\ eproﬂppp‘—qu‘f' Euv)\aqx(p . quTUﬁPB

~ €,748P"P°9%) 87, (23)

(p-q)’
which gives two spin-dependent structure functions,
gly(x,Qz,Pz) and gJ(x,0% P?). For a real photon, g7 is
identically zero, and there exists only one spin struture func-
tion, g7(x,Q?). On the other hand, for the off-shell or virtual
photon (P2#0) target, we have two spin-dependent struc-
ture functions g7 and gJ. A more detailed argument on the
structure functions is given in the Appendix D. The g7 is
related to the structure function W, which was discussed
some years ago in [20,21], such that g7(x,0%
—=—2WZ(x,Q2). Here we note that the LO QCD correction
was first studied by one of the authors in [22] and later in
[23,3].

First we note that the same framework used in the analy-
sis of the nucleon spin structure functions can be applied in
our case. We can either base our argument on the OPE
supplementd by the renormalization group (RG) method, or
on the DGLAP type parton evolution equations. It should be
noted the next-to-leading order analysis is now possible
since the two-loop anomalous dimensions of twist-2 opera-
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tors Rf, relevant for the spin-dependent structure function (or
equivalently two-loop parton splitting functions) were calcu-
lated independently by two groups, by Mertig-van Neerven
[8] and by Vogelsang [9].

III. THEORETICAL FRAMEWORK BASED ON OPE

In our previous paper [24], we based our argument on the
QCD improved parton model approach. Here we start with
theoretical framework based on the OPE and RG method.
Applying OPE for the product of two electromagnetic cur-
rents we get ‘ ’

i J d*xe'T*T(J ,(x)J ,(0)A

2

n
E) qﬂl. . .q#n_l

— s A
- lap,v)\trq 2
n=odd

i oy,l-~~q# PR
X 2 Cl,anl -l Z(S,u,p)urqvqp
i »

2
- evp)\crq,qu— q s,u.v)\o)

2 \"
n=odd E Qo D

XS Ch RN s

2 .
7 20

(3.1)
For polarized deep inelastic scattering, the twist-2 and
twist-3 operators: R],R’ contribute to the structure functions

in ‘the scaling limit. For g7 only twist-2 operators are rel-
evant. Now we can write down the moment sum rule for g7 :

1 .
f dxx""'gl(x,0%,P?)
0

= X CUeMEAE(pD)a)
i=y¢,G,NS,y

X(MPIRED)yP)), - (B2
where R: and C' are the twist-2 operators and their coeffi-
cient functions (hereafter we suppress the index 1 for twist-2
operators), with u being the renormalization point and «
=¢%/4m, the QED coupling constant. ¢, G, NS and vy stand
for singlet quark, gluon, nonsinglet quark and photon, re-
spectively. © The relevant twist-2  operators R, [i
=y(S),G,NS,y] are given by [22] :

ROFV En-1= in=lgadopri. o DHn-1}y 1 — trace terms,

Y 69

Rg#l. Mo — %in—le{aaﬁyGaulDyQ, . .D#n—l)Gﬁy

— trace terms, (3.4)
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R;g‘l"'“"‘l=i"_]47’7{aD#l' . .D/‘n—l}yS(th— Dy

— trace terms, (3.5)
ROML Hn-1 %,‘n-le{vampamauz. .. M-} FBY
Y
— trace terms, (3.6)

where {} means complete symmetrization over the Lorentz
indices oy - - -, -1, D* denotes covariant derivative, 1 is
an n;Xn; unit matrix and Q2, is the square of the ngXng
quark-charge matrix, with n, being the number of flavors.
Here we note that the essential feature in the above equation
is the appearance of photon operators R in addition to the
hadronic operators.

For —p%=P?> A2, we can calculate the photon matrix
elements of the hadronic operators perturbatively. Choosing
u? to be close to P?, we get, to the lowest order,

a

. 1 .. P*
IR(WINP)= 72| — K04, ),

i=y(S),G,NS, (3.7)

where K%'= (K% are one-loop anomalous dimension matrix
elements between the photon and hadronic operators. On the
other hand, in the leading order of the QED coupling con-
stant, @, we have for the photon operator R

(Y(P)RY ()| ¥(p))=1. (3.8)

It should be noted that the finite term A’ depends on the
renormalization scheme for the operators R: . Putting u?
=—p?=P?, we have

KPIRDY O 2epi=ge Al (B9)

and the nth moment with this choice u?>=P? in Eq. (3.2)
becomes

1
fo dxx"_lgi"(x,Qz,PZ)

= >

N (¥(P)IRL(u?=P?)| ¥(p))
i,j=¢,G,NS,y

2P ¥a(8) o=
TCXP[ fg_(QZ) a B(g) Dijc”(l’g’a)‘

(3.10)

X

The evolution factor in the last equation is found to be [17]

_(M,,|0
\x, |1

2P Yau(g)
TeXp[ fE(QZ) % B(g)

), (3.11)
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where

22 = p2yy 2(PY) 5',,(8)}
M, (Q°/P",g(P%))=T exp L(QZ) 880 |
2102 =/ p2 _ E(PZ) Kn(g’a)
X, g (P, a0= |* | dg o
g ¥a(8")
T dg' ==~
whexp fg«z% § B(g’)]
(3.12)

with 7y, and K, the hadronic anomalous dimension matrix
and the off-diagonal element representing the mixing be-
tween the photon and hadron operators (see Appendix A).
Thus we get

1
J’o dxx""lg¥(x,0%,P?)

a

= 774 M. (Q%P.g(P?))C,(1,5(2%)

+X,(Q%P%,g(P?),a)-C,(1,5(Q%)+CY
(3.13)

with
A,=(A}AS A)).

(3.14)

The coefficient functions are given by (see Appendix C)

§2
6, 1+ ——B"
v - ‘”( 1672 ¥
Ci(lg) S
_ _ 4 n
C.(lg)=| cSg | = Sy 85
c¥(1,8)

2
Ons .1 + Ton? Biys

— a
Cl(13.0)= 5,8, (3.15)

with 8, =
=33 le? .
We then derive the following formula for the moments:

(e?) = 3% e~2/nf,5NS = 1,6, = 3nge?)

=11
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1

n
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a,(0?)

j dxx"~1 gi(x, 0?, Pz)———L

4a 2Bg| i=+ .= NS

+ > A;‘[l—(
i=+,—,NS

4 [
“1HN2B, ,(02)

as(QZ) )‘?/230 .
as(Pz)) +'_2‘ B

A1280+ 1]

2y \ A 12Bo+1
Z’gz;) ] +C"+O(ay)|.

a(P?)

(3.16)

Here aS(Q2)=g_2(Q2)/47r is the QCD running coupling constant. In Eq. (3.16), we have defined

Pr=K%P"C,(1,0)(i=+,—,NS),

(3.17)

where P}’s are projection operators given in the Appendix A. The coefficients A}, B} and C" are computed from the NLO

perturbative calculation, and are given by

PIyP; 1
Ar=-K0> — C,(1,0) —K°B ”C(IO) B°+K‘ P}C,(1,0) —2BoA,P;C,(10),
T 2Bo+ N =] \'2B, " Bo N128, N7128,
(3.18)
(1) pn 5¢B:;l n
Bk D g kpr| B | Bl 19
T 2Bo+N]=\] 1+\"28, SusBlus | 1HNI12Bo Bo +\"28 (3.19)
C"=2py(5,B,+A, C,(1,0)), (3.20)

where )\;'(i= +,—,NS) are eigenvalues of the 1-loop
anomalous dimension matrix %0) and are given in Appendix
A. B, and the B, are the one- and two-loop B functions, and
Bo=11—2n/3 and B,=102—38n/3.

All the quantities necessary to evaluate P?, A", B?, and
C" are now known and will be presented in Appendlxes
A-C. Two-loop results [8,9] have been calculated in the
modified minimal subtraction (MS) scheme [25]. Actually
the expressions of Egs. (3.16) and (3.17)—(3.20) are the same
in form as the ones obtained before by one of the authors and
Walsh for the case of the virtual photon structure function FJ
[12]. The explicit expressions of the one-loop and two-loop
anomalous dimensions [8,9] as well as one-loop coefficient
functions [26-30,8,9] are given in Appendixes B and C.

Equation (3.16) is our main result of the present paper.
The first term is the LO result, and the remaining terms are
the NLO QCD corrections.

Now let us examine the renormalization scheme indepen-
dence of the coefficients; A7, B} and C". As in the unpo-
larized case, B} can be written in terms of a scheme-
independent combination of 2-loop anomalous dimensions
and 1-loop coefficient functions in the hadronic sector. Using
the scheme-independent coefficients Réy,, [31-33], we can
write

Bi=L{R,, (i=+,—.,NS), (3.21)

where the explicit form for Rg’n is given in Egs. (9)—(12) of
Ref. [31] (see also [12]) and

1
L'=Pt————— (3.22)
1+\"12B,

which is the coefficient of the leading-log term. The scheme
independence of B} follows from these two equations.

Regarding C”, we first consider the photon matrix ele-
ments of the renormalized quark and gluon operators. The
finite matrix elements A, and the tree-level coefficient func-
tions C,(1,0) are given by

A,=6((e2),0(eH)—(eHHAY,, (3.23)
(€?)
0= % |. (3.24)
1
Hence, we have
A,-C,(1,00=6(eHAY;. (3.25)

1140114
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Noting that
B;=—2— G 0,=3nge*). (3.26)
Ny
we find C" equal to be
C"=12B(e*)(BL+AYs). (3.27)

Since the combination Bf;+AY; is scheme independent [25],

so is C". In fact, in the MS scheme [8], the gluon matrix
elements of quark operators (i =, NS) read

(p.sIRTHY =t (u?)|p,s)
=Ai(p*, 1% 8)[{s°p} - - - p#n-1}—traces] (i=y,NS),
2

_ 8
1672

(3.28)

1 N —p2 —
_7%’ ln7+A,'f'G),

Ay 2

where the finite matrix element AY, is given in the parton
language as [8]

_ 1
AY.= jo dxx""'af!) (x), (3.29)

where
af) ()=TL(4-8x){lnx+In(1-x)}]  (3.30)

with Tf= nf/2. Thus, we get

AY=2n ———$\(n)+ L]
=2nd —=S8,(n)+———— ———|.
"¢ n(n+1) ! (n+1)2 n? n
(3.31)
Therefore, from Eq. (3.27) we finally arrive at
C"=24 y2o 2 2 + 3.32

which is consistent with the Box diagram calculation.

On the other hand, in the RG scheme adopted by Kodaira
[28] which is the momentum subtraction scheme, we have,
for n=3,

A%.=0 (3.33)

with the coefficient function given by
B;=2 2 42 + 3.34
I PR nt (n+1)%] (334

For n=1; because of the Adler-Bell-Jackiw anomaly

Al =—2n; (3.35)
and

B~ '=0, (3.36)
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by definition, since we have no gauge-invariant gluon opera-
tor for n=1. Combining this with the result for ;(,'f’G, we
arrive at the same result for C”.

The scheme-independence of the remaining coefficients
A follows from the above arguments on B” and C" and the
physically measurable moments given in Eq. (3.16).

IV. QCD IMPROVED PARTON MODEL APPROACH

We now turn to the analysis based on the QCD improved
parton model [34] using the DGLAP parton evolution equa-
tions.

Let ¢.(x,0%,P%, GY(x,0%P%, TY(x,0%LP? be
quark with i-flavor, gluon, and photon distribution functions
with * helicities of the longitudinally polarized virtual pho-
ton with mass —P? [24]. Then the spin-dependent parton
distributions are defined as

Ag'=q', +¢'—q¢' —q", 4.1)
AG?=GY—GY, AT"=T7-T7.
| “2)

In the leading order of the electromagnetic coupling con-
stant, @=e?/47, AT does not evolute with Q2 and is set to
be AT (x,0?% P?)=8(1—x). The quark and gluon distribu-
tions Ag' and AG? satisfy the following evolution equations:

dAqgi(x,0% P?) fldy { - (x ) ‘
— = o S AP 2,07 Agi(y.0% P) -
dInQ? x Y zj: P R A

+AF¢IG(§7Q2) AGy(y9Q2?P2)]

+AP i (x,0% PY), (4.3)

dAG™(x,0*P%) [(ldy[ _ o
&z fx—yX[APGq(g’QZ)Z Aq’(y,Qz,Pz)

dIn Q?
+AFGG(§’Q2) AGy(yaQ27P2)]

+APg;.(x,0%P?), (4.4)
where AP,y is a polarized splitting function of B-parton to
A-parton, defined as AFABEPA+B+—PA_B+(=PA_B_
— P4, p_, due to parity conservation in QCD and QED).
For later convenience we use, instead of Ag’, the flavor
singlet and nonsinglet combinations defined as follows:

Ag¥=2 Adq', (4.5)

(4.6)
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so that 3;Agls=0 and n ¢ is the number of relevant active
quark flavors. The quark-quark splitting function Aﬁq;qj is
made up of two pieces, the one representing the case that
Jj-quark splits into i-quark without through gluon, and the
other one through gluon, and may be expressed as

SAP + — APfIq,
ng

where the second term is representing the splitting through
gluon, and AP, and AP}, are both independent of quark
flavor, i and j. It is noted that by construction Af’sq is rel-
evant for the evolunon of flavor-siglet Ag? and first appears
in the order of a

In the QCD 1mproved parton model, which is based on
the factorization theorem, the polarized virtual photon struc-
ture function g}(x,Q?% P?) is expressed as

AP, 4.7)

qiqi =

ldy ) )
gl(x,0%,PY) = L—y—[Z Aq’(y,QZ,P2>c'(§,QZ)

+AG7(y,Q2,P2>cG(§,Q2)]+c7<x,QZ),

4.8)

where C!, CS, and C? are the coefficient functions of
i-quark, gluon, and photon, respectively, and are independent

of target photon mass P2. Up to one-loop level they are

given by
2.
Ci(z,0%)=¢; {5(1 —z)+ (7QT )Bq(z)}, (4.9)
2

C%z,0%)= (e2)|0+ :(Q)BG(Z)}

(4.10)

a

CN(z,0%)= 7-3nKe)B,(2), (4.11)

where (e2)=3 e2/nf and (e*)=3,e}/n;. It is noted that
By(z) in Eq (4.9) is independent of the quark flavor i. Since
3,Aq'C' is rewritten as

Agll
S agc=3 [ sah+ 25

- 2y( 2 _z
Aq¥(y, 0%, P) )[ (1 y)

4 (2%

o)

+> e?Aqxs(y,QZ,Pz)[ 5( 1—- ;5)

(@9

@ 2B£
47 "Nyl |’

4.12)

PHYSICAL REVIEW D 59 114011

we obtain

1d
g7(x,0%.P?) = f—}[ Aqs’(y,Qz,Pz)CS(g,Qz)
+AG"(y,0% PZ)CG( QZ)

+Aq;{,s(y,Q2,P2)CNS(§,Q2) } +C(x,0%),
4.13)

where we have defined

s(Qz)

C(z,0%)= (ez)!«?(l —7)+ Bs(l)] (4.14)

s( 2)

CM¥S(z,0H)=6(1-2z2)+ Bys(2),

(4.15)

Agls=2 elAgys. (4.16)

and Bg(z)=Bys(z)=B,(2). From Egs. (4.3)-(4.7) and
(4.16), the evolution equations for Ag}, AG?, and Agjs are
now given by

dAq}(x,Q%P%) (1dy x
= 2] an, 50
dinQ
+Aﬁiq(§,Q2HAq§(y,QZ,P2)
+anﬁqG(§7Q2)AGy(y’QZ’PZ)}l

+ AP (x,0%), 4.17)

dAGY(x,0% P?) f“’y[ ( 2)

A 2P2
g ,0°1Aq3(y,0°,P7)
+AFGG(§,92)AGY<»Q2,P2>]

+AP;(x,0%), (4.18)

114011-6
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quZIS(x’QZ’PZ) ldy =~ X
dlnQ? =f Y APadl 50| Adks(3.0%PY

Af’qi},(x,Qz)

+Z e,-2
1

1 ~
by ; Aquy(x,Qz)}. (4.19)

Introducing a row vector Ag”=(Aq{,AG”,Aq}s), the
above evolution equations, Egs. (4.17)—(4.19) are expressed

in a compact matrix form

dAq”(x,0%, P?)

=Ak(x,0%)
dInQ? (x.Q
ldy
f —Ag"(y,0° P2)AP Z 0,
(4.20)
where the elements of a row vector Ak
=(AK5,AKG,AKNS) are
AKSEE quiy, AKGEAﬁG},,
— 1 -
AKys=2, e’ APéiy—n—fZ Aquy]
i J
4.21)

Since APq y 1s proportional to e, , it is easily seen that AK
and AKys have factors n{e”) and nf((e4) (e?)?), respec-
tively. The 3 X3 matrix AP(z 0?) is written as

AP(z,0%)
Aqu(z,Qz) APg,(z,0%) 0
AP,G(z2,0%) AP;6(2,0%) 0
0 0 AP (2,07
(4.22)

where

APS =AP,,+APS

qq° APqGEanPqG

APGqEAPGq, APGGEAFGG’ APN = P qq

(4.23)

Once we get the information on the coefficient functions
in Eqs. (4.9)—(4.11) and parton splitting functions in Eqs.
(4.21)-(4.23), we can predict the behavior of g](x,0Q?% P?)
in QCD. The NLO analysis is now possible since the spin-
dependent one-loop coefficient functions and two-loop par-
ton splitting functions are available [8,9]. There are two
methods to obtain g}(x,Q%,P?) in NLO. In one method, we
use the parton splitting functions up to two-loop level and we

PHYSICAL REVIEW D 59 114011

solve numerically Ag”(x,Q2,P?) in Eq. (4.20) by iteration,
starting from the initial quark and gluon distributions of the
virtual photon at Q2= P2, The interesting point of studying
the virtual photon with mass — P? is that when P?> A2, the
initial parton distributions of the photon are completely
known up to the one-loop level in QCD. Then inserting the
solved Aq”(x,Q?,P?) into Eq. (4.13), and together with the
known one—loop coefficient functions we can predict
g7(x,0% P?) in NLO.

The other method, which is more common than the
former, is by making use of the inverse Mellin transforma-
tion. From now on we follow the latter method. First we take
the Mellin moments of Eq. (4.13),

1
fo dxx"'gY(x,0%,P?)

=Aq"(n,0% P?)-C(n,0*)+C(n,0%), (424

where we have defined the moments of an arbitrary function

f(x) as

1
f(n)= fo dxx""f(x). (4.25)

Comparing Eq. (4.24) with Egs. (3.10) and (3.15), we can
easily see the correspondence between the quantities in the
QCD improved parton model and those in the framework of
OPE as follows:

L.
[Ag"(n,Q%PY)]i= X {¥p)IRL(u*=P?)|y(p))
j=S,G,NS,y,

{renf [erica),

(i=5,G.NS), (4.26)
C(n,0%)=C,(1g), (4.27)
C"(n,0%)=C)(1,8,a). (4.28)

Henceforce we omit the obvious n-dependence for sim-
plicity. We expand the splitting functions Ak(Q?) and
AP(Q? in powers of the QCD and QED coupling constants
as

2
Ak(Q? )— —AKO+———= éx(i)Ak“H---, (4.29)
m
2 2
(4.30)

and introduce ¢ instead of Q2 as the evolution variable [35],

2 (P
Bo " a0

(4.31)

114011-7
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Then, taking the Mellin moments of the both sides in Eq.
(4.20), we find that Ag”(¢)(= Aq”(n,Q% P?)) satisfies the
following inhomogenious differential equation [36,37]:

B

dAq(1) - Ak(o)]+(’)(as)]

dt 2w

l Ak(°)+[Ak(”—

Bl )
2B, ——AP

+Aq7(t)[AP(°)+ [AP(”

+O( af)] , (4.32)

where we have used the fact that the QCD effective coupling
constant a,(Q?) satisfies

a(0%)?
P b (4.33)

da0®)  a,(0)’
dinQ? =P,

with By=11—2n4/3 and B, =102~ 38n,/3. Note that the P’
dependence of Ag” solely comes from the initial condition
(or boundary condition) as we will see below.

We look for the solution Ag”(#) in the following form:

Ag (1)=Ag"O (1) +Aq" (), (4.34)
where the first (second) term represents the solution in the
LO (NLO). First we discuss about the initial conditions of
Ag”.

In Sec. III, we have observed that for — p?=P?> A? the
photon matrix elements of the hadronic operators R, ‘Li
=y(S),G,NS] can be calculated perturbatlvely Choosing
the square of the renormalization point x? to be close to P?,
we obtain, to the lowest order

. a 1 . p? .
()R VP =7 —EKS"ln;;JrA'n :

i=y(S),G,NS. (4.35)
The KS"-terms and A!-terms represent the operator mixing
between the hadronic operators and photon operators in the
LO and NLO, respectively. The operator mixing implies that
there exists quark distribution in the photon. When we renor-
malize the photon matrix elements of the hadronic operators
at u?=P?, we obtain

HDIRAWIYP)ompr=g7 A5 (436)

which shows that, at ,u2= PZ quark distljibution exists in the
photon, not in the LO but in the NLO. Thus we have

a
Ag"®(0)=0, Ag™V(0)=—A,. = (437)

Explicit expressions of A, in the MS scheme are given in
Sec. II.
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With these initial conditions, we obtain for the solution
Aq(¢) of Eq. (4.32),

AqY(O)(t)= :Z:) a[ 1—

a,(t)

a,(0)

1-24P® g,
, . (4.38)

Ag V(1) = —Za[ f’dTe(AP(O)—ﬂOQ)T
0

x| AP — 12 AP© —AP(O)-r}eAP(O)t
a (1) 24P,
+bj1— *.(0)
—24p0)
a,(1)]~28P 18
+Aq7(1)(0){a5(0)] , (4.39)
where
AR
a= 55 Ak INZUL (4.40)
Bo
By
= M 22 A0
b {217 Ak 2,30Ak
+2a|lAPW - 'B—AP(O) ! (4.41)
2B, APO" ‘

It is noted that the parton distributions Ag?(¢) do depend on
the initial conditions Ag¥(0)=(a/4m)A, , but we have seen
in Sec. III that the structure function g}(x,Q% P?) itself is
independent of Ag”(0) in NLO in QCD.

The moments of the splitting functions are related to the
anomalous dimensions of operators as follows:

1. 1.
APO=_ 4_7 AP(I)——g—y(l) (4.42)

1 1
Ak<°>=4—K2, Ak“>=§K,{ (4.43)

The evaluation of Ag”®(z)-and Ag”"(z) in Egs. (4.38) and
(4.39) can be easily done by introducing the projection op-
erators P} such as

APO=—zy=—7 2 NP, i=+,=.Ns,
(4.44)
0 i#j,
PIPI=\pn izj > Pr=1, (4.45)
i L

114011-8



SPIN STRUCTURE FUNCTION OF THE VIRTUAL . .. PHYSICAL REVIEW D 59 114011

where A} are the eigenvalues of the matrix &2 Then the solution Ag?(t) of Eq. (4.32) in the NLO is written as

w0/ |mml

.1 20
a0 P [1‘[
+

1+>\,’.'/230]

a;(0)
2B,
1
1S L P
{ E. 'NI2Bo "B E ( ;'/2/30)
PP 1 [a(t)r?”ﬂoJ
_KO Jj/n i _2 n _ s
; 2B+ NI =N N2, B"A"Z P‘} ay(0)
PP 1 B \12B, { [a(t) ALY 'Zﬁo]
K, -— r— :
¥ 21: 2B+ N =N} 1+>\_ BOKSZi b N e - s(0) 2B
2B 2B
(4.46)

Now inserting the above solution of Agq”(z) into Eq.
(4.24) and together with the information on the coefficient
functions in Eq. (3.15), we reproduce the same formula for
the moments of g7(x,Q% P?) given in Egs. (3.16)~(3.20), as
for the case of the OPE approach in the NLO.

V. SUM RULE FOR THE FIRST MOMENT OF g(x,0%P?)

The polarized structure function g] of the real photon
satisfies a remarkable sum rule [3-7]

folg{(x,QZ)dFo. (5.1)

Now we can ask what happens to the first moment of the
virtual photon structure function g}(x,Q2,P?). This can be
studied by taking the n— 1 limit of Eq. (3.16). Note that we
have the following eigenvalues of the one-loop anomalous

dimension matrix y_,:

NTI=0, N =25, As'=0. (52)

Physically speaking, the zero eigenvalues N~ '=\%3!
=0 correspond to the conservation of the axial-vector cur-
rent at one-loop order, which has the counterpart for the
unpolarized structure function F,; the conservation of energy
momentum tensor, A"~2=0. The other eigenvalue \"~ 1=
— 23y, which is negative, is rather an artifact of continuation
of the anomalous dimension of the gluon operators to n=1,
since there is no twist-2 gluon operator exists for n=1, in
the RG scheme in which only gauge-invariant operators are
allowed. But n=1 gluon operator exists in the so-called
Adler-Bardeen scheme [38,39]. In fact, in the QCD im-
proved parton model approach, there is no reason why the
n=1 moment of the polarized gluon distribution should not
be considered [40].

In the coefficients

pn n

i 9 i B:l (l=+9_9NS)
1+ N2,

(5.3)

the special points (5.2) would develop the singularities at n
=1, since in those coefficients there exist the factors

1 1
ALTONEST 1HNT2B,y

(5.9
Now if we take the limit of n going to 1, we have

i T —0(G=+,—-,NS),
1+\"128,

A’ —finite, A" —0, A} — finite,

B, —0, B2 —finite, Bj—0. (5.5)

However, A%, Ay, and B are multiplied by the following
vanishing factors:
"25’250}

2y\ N3728
iz
a,(P?)
~ oy \ AL2Bg+ 1
[1_(as(Q )) ] 56

a(P?)
respectively, and thus the terms proportional to P?, A7, and
B in Eq. (3.16) all vanish in the n=1 limit. Note that these
vanishing factors are specific to the case of the virtual photon
target, and that such factors do not appear when the target is
real photon.

(0%
ay(P?)
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Thus, the first three terms in the 1st moment vanish irre-
spective of the RG scheme. So we get

1 a 1
Y 2 p2y_— ___ n=1
fo dxg{(x,0%,P%) 417_5/?0(3 +O(a,). (5.7
Now let us consider C"=!, which is given by
C"= 1 =12B4(e")(BG+ATG) =1 - (58)

As we have seen, the combination (BE+AY;) is
renormalization-scheme independent [25]. The results in the
MS scheme [8,9,29] are

=1=0, A,, 16= " 2n;. (5.9
The same results have been obtained by Kodaira [28] in the
framework of OPE and RG method. He set B '=0, observ-
ing that there is no gauge-invariant twist-2 gluon operator for
n=1 and obtained AY_,;=—2n; from the Adler-Bell-
Jackiw anomaly. In the end, we have for the sum rule of the
virtual photon structure function g7,

1 3a X
f dxg?(x,QZ,P2)=—72 e} +0(a,), (5.10)
0 i=1

where

0% P2>m? A%, i=1,...,n; (5.11)

with m; the mass of ith flavor quark, and n; the number of
active flavors.

Now it should be pointed out that we can further pursue
the QCD corrections of order a; to the first moment of g7 .
In the above equation for the first moment, the leading order
is O(1) not of order l/as(Qz), which is the case for the
general moments. So we now go to the order a; QCD cor-
rection.

First we take the renormalization scheme of Kodalra [28].
We write down the first moment of g](x, 02, P?):

1
J dxgi’(x,Qz,Pz)
0

=CY(QYP%g(PY),a)y(p)|R{(n*=P?)|¥(p))
+CY5(QYP2,g(P?), @)

X(y(p)IRY*(u?=P?)|¥(p)). (5.12)

Here it should be emphasized that because of the absence of
the gauge-invariant n=1 gluon and photon operators, the
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mixing problem becomes much simpler. The coefficient
functions can be given by

cl(Q¥P*g(P?),a) )
c¥S(Q% P, g(PY),a)

2
=Texp f_g( )d

51’ )( ct(1,g(0%), a))
g(0%

B(g") \ CY(1,g(Q),a)
(5.13)

where y,(g) is a 2X2 diagonal matrix:

%/u/;(g)

&l(g)=( 5 (5.14)

YNs(g)) '

Here anomalous dimensions are expanded in powers of the
coupling constant:

g2 2 \2
=40 M +0(g%, (5.15
y(g)=v 62 6.2 (&%), (5.15)
where
7%“7533‘0
N2_ nf )
(5.16)
and the coefficient functions are
Q2
C{(1,g(0»,a)= <62>(1——CF Q)
a,(Q?
=<e2>(1— (f )),
30N 1= S, W@ a0
18 )= 4 F o T
(5.17)
i vi(g) ¥
Tex J dg' =1- g2(P?)
P lion ® agn T 16w 280
-g*(0M]. (5.18)

Here we have the finite matrix element of the quark op-
erators between the virtual photon states:

(¥(p)IRL=y(1? P2)!7(1))>— A_, (519

where
A,=6((e?),0(e"Y—(e)AY, (5.20)

Now we recall Kodaira’s statement that the bare Green’s
function for the n=1 case does not receive divergent correc-
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tions, but the finite correction connected with Adler-Bell-
Jackiw anomaly:

AY_ G=—4T(R)=—2n;.

n

(5.21)

Putting all these equations together, we finally obtain the
O(a;) QCD correction:

3 nf 2
Jlng;/(x,Qz,Pz):_ _a[z e?(l— a(Q ))
0 T |i=1

aw
2 (&) sy as(Qz))
Bo\ &t € m m
+0(d?). (5.22)

This result is perfectly in agreement with the one obtained by
Narison, Shore and Veneziano in Ref. [5], apart from the
overall sign for the definition of g7 .

Now we show that we obtain_the same result for the first
moment of g7(x,0?% P?) in the MS scheme. Although there
exist no gauge-invariant twist-2 gluon- and photon-operators
for n=1, the MS calculation of the anomalous dimensions
gives nonzero results for ygg and ¥, . Thus, the
MS-scheme results rather correspond to the QCD parton

PHYSICAL REVIEW D 59 114011

model approach where the first moments of the gluon and
photon distributions are as well defined as the other distribu-
tions.

Including the gluon and photon operators, let us start with

Eq. (3.13) for the first moment of gJ(x,Q% P?) in MS
scheme: .

1
f dxg}(x,0% P?)
0

- %Al -M(Q%P%g(P)-Ci(18(0%)

+X,(Q¥P*,g(P?),a)-C,(1,8(@*)+C].
(5.23)

We expand A, in powers of g2(P?) as

=2 p2
P
A=A+ %Aﬁ% e (529
167
where A{® is given in Eq. (3.23). Using the MS results for

the n=1 anomalous dimensions, we obtain up to the order
0(g?)

1
1- — g2 (P —gX(Q)]X24CTs, -+, O
| 8P~ (@)X 24CHT; as
‘ 0, , o) '
0, , 1
|
where the second column is irrelevant since B;=0 in MS a Om=1 g’ (D=1
_ o = = — Sn= P
scheme and thus Cf(l,g) starts in O(af). Now it is easy to Cl(l.g,a)= Eav B, + 1677237 + ’
see that the first term of Eq. (5.23), to be more specific, (5.27)

[(a/Am)APOM ,C,(1,5(Q?))] gives the same result as in Eq.
(5.22).

Let us now consider the contributions of other terms. If
A}“” and A’lvs(” in the second term in Eq. (5.24) remain
nonzero, then they give the O(g?) contribution. But A‘f’m
=AY5M=0 due to the nonrenormalization theorem [41] for
the triangle anomaly, so its contribution is at most in O( af).
The contribution of the second term in Eq. (5.23) is also in
O(a?), since K)=K{"’=0 and we expect

Kf/,Z)’Fl =K2m=1=0, (5.26)

for the three-loop mixing anomalous dimensions which are
implied from the fact that the three-loop yff();’ﬁ =0 [40].
Finally we expand the third term of Eq. (5.23), C7, as

where B()f))’"zl =B’;=1 in Eq. (3.15). We already know that
B(.ro)"‘= '=0 in MS scheme. On the other hand, the two-loop
(O( af)) coefficient function for the polarized gluon has
been caluculated in the MS scheme by Zijlstra and van Neer-
ven [30]. It is made up of two terms, one proportional to
factor CgTyn; and the other proportional to factor C4Tny.
The first moments of both terms turn out to vanish. It can be
shown that the two-loop (O(aa;)) coefficient function for
the polarized photon, B, is obtained from the two-loop
gluon coefficient function, by picking up the term with the
CgTyn; factor and by modifying the group factors. Thus we
conclude that the first moment of B(,/’) is zero. In the end, C}
does not give O(1) nor O(«;) contributions to the first mo-
ment of g{(x,Qz,Pz). This means that we arrive at the same
result for the 1st moment of g7 given in Eq. (5.22) in the MS
scheme.
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V1. NUMERICAL ANALYSIS

We now perform the inverse Mellin transform of Eq.
(3.16) to get g7 as a function of x. The n-th moment is
denoted as

1
M(’I,Qz,Pz):f x"1g¥(x,0%,P?)dx. 6.1)
0
Then by inverting the moments (6.1) we get
1 [C+ie
gl(x,0* P)=5— M(n,0%P)x""dn. (6.2)
21 ) c-iw

In order to have better convergence of the numerical inter-
gration, we change the contour in the complex n-plane from
the vertical line connecting C—io% with C+i% (C is an ap-
propriate positive constant), introducing a small positive
constant g, to

n=C—gly|+iy,—o<y<oo, (6.3

Hence we have

1 ©
g{(x,Qz,P2)=——.f M(C-ey+iy,0* P?)
2mi Jy
Xe—(C-ey+iy)log(x)(i_e)dy
+LJ'0 M(C+ey+iy, 0% P?)
2 ) _» =
Xe—(C+sy+iy)log(x)(i+8)dy
1 o
=— f [Re{M(z,0% P?)e™* ¢}
0

— & Im{M(z,0%,P?)e 2 1€} ]dy

z=C—gey+iy. 6.4)

In Fig. 3 we have plotted, as an illustration, the result for
ng=3, 0*=30 GeV” and P?=1 GeV? for the QCD scale
parameter A =0.2 GeV. The vertical axis corresponds to

2
gl"(x,Qz,Pz)/ 3?anf(e“) ln%. (6.5)

Here we have shown four cases; the Box (tree) diagram con-
tribution,

3a 2
7,07 P?)=(2x—1)—nge*)in =

—, (6.6)
P
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Py

L Q2= 30 GeV?2 o
PE 1 GeV? .

-1t

(x, @, P?)/3n; <e* > In Q°/P?

Y
1

9
&

0 1

FIG. 3. Polarized virtual photon structure function g 7(x,02,P?)
to the next-to-leading order (NLO) in units of
(3ange*y/ m)n(Q¥P?) for 0*=30 GeV?, and P?=1GeV? and the
QCD scale parameter A =0.2 GeV with n;=3 (solid line). We also
plot the leading order (LO) result (long-dashed line), the Box (tree)
diagram (dash-dotted line) and the Box including non-leading con-
tribution, Box (NL) (short-dashed line).

the Box diagram contribution including nonleading correc-
tion ignoring quark mass

g iy(Box,non-leading) ( X, QZ, P2 )

3a ., 0? "
——ﬂ—nf(e ) (2x—1)lnp—2(2x—1)( x+1)|,

(6.7)

the leading-order (LO) QCD correction and the next-to-
leading order (NLO) QCD correction. We observe that the
NLO QCD correction is significant at large x as well as at
low x. We have also studied other examples with different
Q? and P? In Fig. 4 we have plotted the case for Q*
=100 GeV? with P?=1 GeV?. Another case for Q2
=30 GeV? with P2=3 GeV? is shown in Fig. 5. We have
not seen any sizable change for the normalized structure
function (6.5) for these different values of Q? and P2. We
examined the n;=4 case as well. It is observed that the
normalized structure function is insensitive to the number of

=~ T Q®=100Gev? s
2 2 -
° P’= 1 Gev PPt
sle -
Ao
]
v
s
Q
I
>
o
»c,’_ 2
0 1
X

FIG. 4. Virtual photon structure function g[’(x,QZ,PZ) for Q?
=100 GeV?, and P?=1 GeV? with A=0.2 GeV, n;=3.
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InQ?/ P?

11
T

(x, Q% P)3n, <e*>

9

FIG. 5. Virtual photon structure function g}(x,Q?%,P?) for Q*
=30 GeV?, and P?=3 GeV? with A=0.2 GeV, n;=3.

active flavors. Here we have not directly taken into account
the. heavy quark mass dependence, but rather confined our-
selves to the above kinematical region. It turns out from the
numerical analyis as well as from theoretical arguments that,
as P? increases, the NLO QCD result approaches the Box
contribution including the nonleading correction, as in the
unpolarized structure function [11,12].
Now let us consider the real. photon case P?=0. The
structure function can be decomposed as
gT(x’Qz) =giy(x’ Qz)lpert-l-g 17(x7Q2)|n0n-pert. . (68)
The second term can only be computed by some nonpertur-
bative method like lattice QCD, or estimated by vector me-
son dominance (VMD) model. The first term, the pointlike
piece, can be calculated in a perturbative method. Actually, it
can formally be recovered in our analysis by setting P?
=A% in Eq. (3.16). In Fig. 6, we have plotted the pointlike
piece of g] of the real photon. The LO QCD result coincides
with the previous result obtained by Sasaki in [22]. The NLO
result is qualitatively consistent with the analysis by Strat-
mann and Vogelsang [10]. Finally, a comment on the n=1

U T
I T Q®=30Gev® RealPhoton .- ]
NO ng = ) -7
E T
:s|/n\= —=.
< - \ 7
(]
v
<3
Q
Re Rt |/ Box
Z |
I (e LO
!
-2t — NLO
L
0 1

FIG. 6. Pointlike piece of the real photon structure function
g/(x,0% in NLO for 0*=30 GeV? with A=0.2 GeV, n,=3
(solid line). Also plotted are the LO result (fong-dashed line) and
the Box (tree) diagram contribution (short-dashed line).
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limit of the real photon structure function is in order. In the
case of the unpolarized structure function F we have a sin-
gularity of A" at n=2 due to the vanishing of A7 at n=2
which leads to the negative structure function [18]. As dis-
cussed in Refs. [42-44] we have to introduce some regular-
ization prescription to recover positive structure function.
For the polarized case we do not have such complication at
n=1 as we have seen in Sec. V.

VII. CONCLUSION

Here in the present paper, we have investigated virtual
photon’s spin structure function g;’(x,Q2,P2) for the kine-
matical region A2<P2<Q?, in the next-to-leading order in
QCD. We presented our arguments both in the framework of
OPE supplemented by RG method and in the DGLAP equa-
tion approach. The results are shown to be independent of
the renormalization scheme.

The first moment of g7 for the virtual photon is nonvan-
ishing in contrast to the vanishing first moment for the real
photon case. We can go a step further to the order a; which
has turned out to reproduce the previous result of Narison,
Shore, and Veneziano [5], and the result is RG scheme-
independent. ’ .

The numerial evaluation of g7 by the inverse Mellin
transform was performed. The result shows that the NLO
QCD corrections are significant at large x and also at small x.
The numerical analysis can also be applied to the pointlike
component of the real photon structure function. The result is
qualitatively consistent with the previous analysis.

Although we have neglected in our kinematical region,
we should also consider the power corrections of the form
(P%Q%¥k=1,2,...), which are arising from the target
mass effects as well as from higher-twist effects.

In the present paper we only presented the result for the
polarized photon structure function g7 itself. In the course of
the parton model analysis, we also obtain the polarized par-
ton distributions [2,45] of the longitudinally polarized pho-
ton, for the case of virtual photon, which will be discussed
elsewhere.

As a future subject, it would be intriguing to study an-
other spin structure function g3 which only exists for off-
shell photon. In the OPE language, the twist-2 as well as
twist-3 operators contribute to the QCD effects for g7,
which are now under investigation.
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APPENDIX A: NOTATION
FOR ANOMALOUS DIMENSIONS

To the lowest order in a, the anomalous dimension matrix
has the form

Ya(g?) 0

K.(g%a) 0 (A1)

Ya(g @)=

where '}n( g?) is the usual 3 X 3 anomalous dimension matrix
in the hadronic sector

Yol8) Yoy(8) 0
.;,n(g)= 7/:/,6(8) Y66(8) 0 (A2)
Y 0 Yns(8)
and K, (g,a) is the three-component row vector
K,(g,2)=(Ky(g.a),K¢(8,a),Kys(g.a))  (A3)

representing the mixing between photon and three hadronic
operators. The anomalous dimensions are expanded as

2 4 :
()= =0+ —E 3 10g8),  (a%)
1672 (167%)?
e2 2 2 K(])
K, (g,a)=— +0(e%g?
(g,a) 6r" (16w 2)2 (e“g"). s
A

The one-loop anomalous dimension matrix %" can be ex-

pressed in terms of its eigenvalues A}(i=+,—,NS) as
W= NP, (A6)
i=+,— NS :

where

Y66) +47yg gl
(A7)

1
o= (vt vee=L(vgy-

Mys= Vs (A8)
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and P? are the corresponding projection operators,

0, 0,
')’4/,2— b ')'G’c;z 0

P = 1 ’)’% 7?;’&‘7\':: 0 , (A9)
- n n
Mehs 0 0o 0
000
pr=(0 00 (A10)
0 0 1

APPENDIX B: EXPLICIT EXPRESSIONS
FOR ANOMALOUS DIMENSIONS

1. One-loop order

7./;./, YNS_ZCF -3- +48(n)|, (BI)

n(n+1)
on_ gy, 1] B2)
Yo = Fa(n+1)’ (
on _ n+2
YGy= —4CFn(n—+1), (B3)
11 8
'yGG_ch ?_n__'—(n+1)+4sl(n) +§-Tf’
(B4)
where
51
Si(m)=2 = (BS)
i=1]
and
4
CA=37 szg, Tf= TRnf=nf/2 (B6)
with n; being the number of flavors
K=(K}"0.K%), (B7)
KO =24n () (B8)
y T n(n+1)’
n—
n_ 4\ _/,2\2
Kis=24n,(e)~(e")) s (BY)
2. Two-loop order [8,9]
a. Non-singlet sector
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with
3,5 5 3 2 1
Ans= 8 n ntl p2 (n+1)? nl
3 ( ) 4 + 2
(n+1)3 ntl p?
4 2 2 + 2 +5,(n) 2 2
_= ==
(n+1)2 n® (n+1)3 ! n? (n+1)?
+S 3 2+ 2 +48 S, n)[2
2(n) i 1) | +83 5115
2 (n =
—'T1—451(n) —53 E +85'(n), (Bll)
B 17 1871 187 1 LN 17 1 5 1
Ns 24 18 n 18 n+1 6 n2 6 (n+1)?

e
(n+1)?2 n® (n+1) 9 i
11 2 2
+8,(n) —?+;—m—451(n)

1 n ~
+ S3(§) —48(n),

(B12)

., 1221 22 1 21 2 1 20
DNS=_+———————-—+————‘3‘51('1)

679 9 ntl 3.2 3 (nt1)
+ =S,(n), (B13)
where
Sa(n) =z S s =z =
ST(n)=é1 - Y50, (B14)
and
e )
(B15)
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n\ 1-(—-1)" [n—1
e A ]

S3(n) 1+(2—1)"S3

(B16)
b. Singlet sector
(1) vyy:
‘yfl’]‘/)’n_ (1), "+7’§Jls),'$w (B17)
with
(1),n 8C.T 2+ 2 2 + 6
Yps.yy— SCFrly n on+l n? (n+1)?
4 4
s ) (B13)
n3 (n-l-l)3
2 vye:
Yo" =8CHT/D yo+8CAT/E yg (B19)
with
n 2 2 4. 2 4
Dy=S8i(n)| — == | =Sa(m)| ~ = —
i 8 8 4 +22 27
i\ === 22 n n+l
9 8 2 4
- — (B20)

+—+ ,
n2 (n+1)? nd (n+1)3

S"n 2 4
“P202)\n n+1

4 n
—— (_252(,,)+52 2 +£(2)]. (B21)

2
+[1+(—1)"](;l‘
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(3) v6y: ) |
° #83| 2)| == —=| +[1+ (- 1))

n

2 1
with X(——m)(zsz(n) Sz( ) 5(2)) (B24)

D 16 1 4 1 +4 1
1 2 1 2 Gy~ 9 3 2
_ —S](n)(—+ " ) 9n 9n+1 3(n+1)

(n+1)° nontl  (n+1)?
) 81 4 1
+Sf(n)(———+1—) S2(n)(r—l_n+l)’ Sl(")(gz_gn_l_l (B25)
(B23)
4 vge6:
411 35 1 4 38 1 4

__6 sy 0L L L 4 YO =8CpTDgc+8CATEG+8CaF g, (B26)
(n+1)3 3 3n+1 n2
g2 2 1\ S 2 1
i(n) n n+l 2(n) n n+l with
]
" o14 10 10 10+ 2 N 4 N 4 (B27)
T n ntl w2 (n41)2 R (1)
- 4+761 76 1 41 4 1 ZOS B28
66=37 9 T 9 n+l 3,2 3(n+1)? 9 1(n), (B28)
o 8 971+97 1 +291 67 1 8 24 +S()67 8 8
= e —— —_— —_—— —_—— e ———_ e ——_— n —_——
G673 18n 18+l 3,2 3 (n+1)2 n® (nt+1)? n?  (n+1)2
4 z 2 2 1 )" ! -28
— 553 Bl +a8m—253{ 3] 1m0~ 24— |+ {14~ 1) 883(m)| - — x| ~253(n)
n 2 2 1, 4 4
—4S81(n)S,(n)+25, 5 (n)——+ o +ES3 —45(n)+(2)| 28 (n)——+— ={(3)].
(B29)
|
1) n n
c. K Kye= —3n((e*)—(e*)*)Cp8D';.
1n Ln (B33)
Ki=(KJ K& Ki), (B30)
. d. Anomalous dimensions at n=1 (M_S scheme)
with
K'Y= —3n(e?)Cs8D';, (B31) s =Yy =0, (B34)

Kg'==3nKe?)Cp8(Dgs—1), (B32) yye =0, (B35)

114011-16



SPIN STRUCTURE FUNCTION OF THE VIRTUAL ...

‘)'(();':#l _6CF, (B36)
_ 22 8
Yee =- 7 Cat3T==2p0. (B37)
= =K%"='=O, (B38)
‘)’gvls)n -, (B39)
(1),n=1_ B40
Y1 =24C,T,, (B40)
Yo" =0, (B41)
i} 142 8
,y(cgl};n 1=18C127_TCACF+§CFTf’
(B42)
(1),n=1 =8C T+@C T _§C2=—2
Y66 FifT 3 halfm 3% P
(B43)
Ks/jl),,,=1___K(Gl),n=l=Kl(vls),n=l =0. (B44)

APPENDIX C: COEFFICIENT FUNCTIONS

C,(C)) is the coefficient function of the hadronic (pho-
ton) operators [17}:

(2" )
1) B,
¢(1+ 1672
~ 5 8(2) 2(Q)
C,(1g(QM)= Y l6m? Bg , (€D
g*(0%)
5Ns(1+g_16;2‘ nNS)

Ca(18(2%, (€2)

and

B"=(2/n;)B. (C3)

1. MS scheme [8,9]

Bj=Bys=Cf Si(n—1)

2 2 +3
PRy

n—1 1 . 6 ]
+4, =85,(j)—4Sy(n—1)+——9|, (C4)
j=t] n
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-1 1
n __ —_
Be=4T) o +1)(Sl(n)+1)
+ 2 CS5
n(n+1)| (©5)
2. Momentum subtraction [27,28]
By=Bys=Cp| =2 3+ 5 + !
Yo ONSTHE n n+l ,2
- +3S,(n)—8S,(n)|, (C6)
PS8 )}
Bs=8T ! —2 : 2 3
= —_— - =
TR T T 2 |
-~ =0. cn

APPENDIX D: TENSOR DECOMPOSITION
OF VIRTUAL PHOTON-PHOTON AMPLITUDE

After using parity invariance, time-reversal invariance,
and gauge invariance, Brown and Muzinich [20] have shown
that there are eight independent tensors, in other words,
eight-invariant amplitudes for virtual photon-photon scatter-
ing. Those eight independent tensors, which are free from
kinematic singularities and kinematic zeros, are given in Egs.
(A3)-(A10) of Ref. [20].

Using these tensors (I;),.,,, the absorptive part of the
forward virtual photon-photon scattering amplitude W,,,,, is
decomposed as

8
,uvpr 2 I),twprAi(w’thtZ)’ (Dl)

where the A; are the invariant amplitudes and

w=p-q, 1=¢>=—0% n=p’=—PL.  (D2)

In order to implement crossing symmetry under g— —¢q and
um— v, we form the even combinations, 1, I,+13, I, I5,
[;+1g, and the odd combinations, I,— 13, I;—1Ig, Ig=2I
—3wl;—wlg+ (¢t t,/w)(I,—I3). It is noted that the combi-
nations I, — I3 and I;—Ig are antisymmetric under the inter-
change of u— v and p— 7, while the rest of the combina-
tions are symmetric. In terms of these crossing-even and
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-odd combinations, the amplitude W=E,~8=II,<A,- is rear-
ranged as follows:

S 1
,Zl LA=LA+ 5 (L + 1) (Ar+As) + LAy

1

11 1,
+5lAst 5(12”13) Az—As—';v—A()

1
+5 (I~ I5)(A7—AgtwAs). (D3)

Now g{=2W] is written in terms of invariant amplitudes as

gixann—ai—1-1 (D4)

2 Ly
=w (AZ_A3—TA6)_t1t2(A7_A8+WA6)
(Ds)

which is obtained from Eq. (Al4) of Ref. [20]. Here
aq (aj-11-1) represents the s-channel helicity amplitude
for (+1)y+(x1)y—(+1)y+(x1)y. It is noted that
[A;—As;—(tt,/w)Ag] is the invariant amplitude associated
with (I,—13), while (A;—Ag+wAg) is associated with (I;
—1I3). In the limit £,=p%=0 or in the case that w=p-q,t,
= q2>t2=p2, the second term #,2,(A;—Ag+wAg) does not
contribute to g7'.

In fact we observe that the tensor (I,—I3)=I_ is associ-
ated to g7 while (I;—1Ig)=J_ is associated to gJ. It can be
shown that

A af 1
€pvnad €pr Pﬂ=m1— s (D6)
and in the limit of —g¢2,p-q> —p?
[€nanodvq”~ €vancdud” ~ €pmnol epfaﬂpﬁpx=.’_ .
(D7)
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Now using an identity

g,u.veaﬂ‘y¢$= gpaevﬁyﬁ+gyﬂ€au76+ g,u,‘yeaﬁvb‘-’-g,u&eaﬁzv ’
D

we get
€uncd (P q€p:"PP g~ €5rapP?P°q®)
=- [e/uz)\oqvqa_ eva)\aq,u,qa

— €unod 1€, "Ppgp™. (DY)

Hence we have from Eq. (2.3)

W#”P"':—_z[(l—)#l/pfgiy_ (J—),u,vp'rg2‘y]‘ (DIO)
(P9

Finally it is interesting to see the relation between the
polarized photon structure functions g and g7 and polarized
nucleon structure functions g; and g,. By introducing the
polarization vectors, €*? and €” for the target photon just
like those for the gluon target discussed by Gabrieli and
Ridolfi [46], we have

1
WA — _xp T_ (KPP T kTP
iW,,=e€**W, € —W,“,pTz(e €'~ e*7eP)

i
=W, - €78 ,
,w,,,( 24lp’| pysa)

where s is the longitudinal spin vector for the target photon.
After using the relation p-s=0, we get

(D11)

VP 87

A __ A A — -

W,w——p_q €unod 81 €unad (P-qs°7 q-SP”)p,q
(D12)

which, apart from the factor \/W , has exactly the same
form as Eq. (2.4) of Kodaira et al. [27] which defines the
polarized nucleon structure functions g, and g,, and also as
Eq. (9) in Ref. [46].
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