© by Oldenbourg Wissenschaftsverlag, München

Crystal structure of 2-[4-(9*H*-carbazol-9-yl)benzylidene]-2,3dihydroinden-1-one, C₂₈H₁₉NO

Byung-Soon Kim^I, Su-Ho Kim^{II}, Shinya Matsumoto^I and Young-A Son^{*,II}

^I Yokohama National University, Graduate School of Environmental and Information Sciences, Hodogaya-ku, Yokohama 240-8501, Japan
^{II} Chungnam National University, Department of Organic Materials and Textile System Engineering, Daejeon 305-764, Korea

Received January 21, 2011, accepted and available on-line April 9, 2011; CCDC no. 1267/3371

Abstract

C₂₈H₁₉NO, monoclinic, *P*12₁/*a*1 (no. 14), *a* = 7.7107(3) Å, *b* = 32.422(1) Å, *c* = 8.3715(4) Å, β = 105.095(3)°, *V* = 2020.6 Å³, *Z* = 4, *R_{gt}*(*F*) = 0.036, *wR*_{ref}(*F*) = 0.071, *T* = 296 K.

Source of material

2-(4-(9*H*-carbazol-9-yl)benzylidene)-2,3-dihydroinden-1-one was synthesized easily according to a previously described method with some modifications [1-4]. Yellow crystals of 2-(4-(9*H*-carbazol-9-yl)benzylidene)-2,3-dihydroinden-1-one suitable for X-ray diffraction measurement were grown by solvent diffusion method in which dichloromethane and n-hexane were used as a good and a poor solvent, respectively. All hydrogen atoms were positioned from the geometrical point of view and not refined.

Discussion

The crystal structure contains four symmetry-equivalent molecules per unit cell. The interatomic distances within the molecule are in the normal range. The molecular structure shows the electro-withdrawing and electro-donating moieties bridged by aromatic ring, which is defined by C11, C12, C13, C14, C15 and C16 (figure, top). The electro-withdrawing moiety (C1, C2, C3, C4, C5, C6, C7, C8 and O1) and electro-donating moiety (C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28 and N1) of the molecule consists of an almost planar aromatic system. A bridge aromatic ring is tilted by $53.8(3)^{\circ}$ against the electro-donating moiety, whereas it has an almost planar system to electro-withdrawing moiety. The torsion angle C8, C10, C11, C12 is estimated to be $178.6(2)^{\circ}$. The crystal structure is built by packing molecules layer by layer with d = 3.402(3) Å (figure, bottom). The packing scheme is characterized by a herring-bone arrangement [5]. A gradient angle of 114.5° is observed between the neighboring two-dimensional layers.

Table 1. Data collection and handling.

Crystal:	vellow prism, size $0.10 \times 0.10 \times 0.30$ mm
Wavelength:	Cu K_{α} radiation (1.54187 Å)
μ:	5.96 cm^{-1}
Diffractometer, scan mode:	Rigaku RAXIS-RAPID, ω
$2\theta_{\text{max}}$:	136.46°
N(hkl) _{measured} , N(hkl) _{unique} :	18287, 3674
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \sigma(I_{\rm obs}), 1746$
N(param) _{refined} :	290
Programs:	SIR92 [6]

Table 2. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	$U_{\rm iso}$
H(1)	4 <i>e</i>	-0.1909	-0.0526	1.3952	0.081
H(2)	4e	0.2691	-0.1171	1.5639	0.097
H(3)	4e	-0.0320	-0.1074	1.5497	0.091
H(4)	4e	0.4215	-0.0721	1.4301	0.092
H(5)	4e	0.3713	0.0132	1.3154	0.077
H(6)	4e	0.3161	-0.0131	1.1551	0.078
H(7)	4e	-0.0168	0.0728	1.0686	0.066
H(8)	4e	0.0498	0.1286	0.9255	0.067
H(9)	4e	0.2435	0.1692	0.8207	0.068
H(10)	4e	0.6457	0.0892	1.0047	0.075
H(11)	4e	0.4544	0.0497	1.1169	0.075
H(12)	4e	0.3202	0.1378	0.5504	0.087
H(13)	4e	0.3206	0.1628	0.2872	0.106
H(14)	4e	0.5351	0.2095	0.2551	0.119
H(15)	4e	0.7648	0.2308	0.4805	0.107
H(16)	4e	0.7692	0.1590	1.1657	0.076
H(17)	4e	1.0267	0.1996	1.2660	0.093
H(18)	4e	1.1455	0.2386	1.0871	0.105
H(19)	4e	1.0028	0.2414	0.8055	0.098

^{*} Correspondence author (e-mail: yason@cnu.ac.kr)

Table 3. Atomic coordinates and displacement parameters (in $Å^2$).

Atom	Site	x	у	z	U_{11}	U_{22}	<i>U</i> 33	U_{12}	<i>U</i> ₁₃	U ₂₃
O (1)	4 <i>e</i>	-0.1961(2)	0.02016(5)	1.1849(2)	0.056(1)	0.075(1)	0.088(1)	0.0004(8)	0.0226(9)	0.0073(9)
N(1)	4e	0.5789(2)	0.15760(6)	0.8356(2)	0.049(1)	0.061(1)	0.059(1)	-0.0019(8)	0.0180(9)	0.0088(9)
C(1)	4e	-0.0668(3)	-0.05657(8)	1.4036(2)	0.072(2)	0.068(2)	0.063(2)	-0.013(1)	0.020(1)	-0.001(1)
C(2)	4e	0.0272(4)	-0.08891(8)	1.4934(3)	0.094(2)	0.064(2)	0.069(2)	-0.014(2)	0.024(2)	0.009(1)
C(3)	4e	0.2071(4)	-0.09448(8)	1.5024(3)	0.095(2)	0.066(2)	0.081(2)	0.004(2)	0.024(2)	0.017(1)
C(4)	4e	0.2979(3)	-0.06796(7)	1.4239(3)	0.078(2)	0.065(2)	0.087(2)	0.008(1)	0.026(2)	0.016(1)
C(5)	4e	0.2052(3)	-0.03503(7)	1.3355(2)	0.065(2)	0.052(1)	0.060(2)	-0.000(1)	0.019(1)	0.002(1)
C(6)	4e	0.0242(3)	-0.02965(7)	1.3247(2)	0.064(2)	0.050(1)	0.054(1)	-0.007(1)	0.019(1)	-0.001(1)
C(7)	4e	-0.0414(3)	0.00734(7)	1.2247(2)	0.056(1)	0.056(1)	0.058(2)	-0.004(1)	0.019(1)	-0.004(1)
C(8)	4e	0.1156(2)	0.02582(6)	1.1784(2)	0.052(1)	0.050(1)	0.060(1)	-0.001(1)	0.020(1)	0.002(1)
C(9)	4e	0.2758(3)	-0.00162(7)	1.2436(2)	0.062(2)	0.059(1)	0.073(2)	0.003(1)	0.021(1)	0.008(1)
C(10)	4e	0.1000(2)	0.06109(7)	1.0938(2)	0.049(1)	0.053(1)	0.062(2)	0.002(1)	0.017(1)	0.001(1)
C(11)	4e	0.2303(2)	0.08464(6)	1.0322(2)	0.049(1)	0.047(1)	0.057(1)	0.001(1)	0.018(1)	0.001(1)
C(12)	4e	0.1719(2)	0.12069(6)	0.9429(2)	0.046(1)	0.056(1)	0.066(2)	0.006(1)	0.019(1)	0.005(1)
C(13)	4e	0.2858(2)	0.14472(6)	0.8803(2)	0.054(1)	0.052(1)	0.065(2)	0.007(1)	0.022(1)	0.012(1)
C(14)	4e	0.4627(2)	0.13311(6)	0.9034(2)	0.049(1)	0.051(1)	0.057(1)	-0.003(1)	0.019(1)	0.003(1)
C(15)	4e	0.5243(3)	0.09737(7)	0.9904(3)	0.045(1)	0.062(1)	0.082(2)	0.005(1)	0.023(1)	0.015(1)
C(16)	4e	0.4103(2)	0.07379(7)	1.0549(3)	0.050(1)	0.057(1)	0.081(2)	0.008(1)	0.021(1)	0.018(1)
C(17)	4e	0.5456(3)	0.16946(7)	0.6697(3)	0.062(1)	0.058(1)	0.062(2)	0.009(1)	0.026(1)	0.012(1)
C(18)	4e	0.4098(3)	0.15648(8)	0.5362(3)	0.066(2)	0.090(2)	0.061(2)	0.012(1)	0.015(1)	0.010(1)
C(19)	4e	0.4103(4)	0.1715(1)	0.3821(3)	0.089(2)	0.112(2)	0.063(2)	0.033(2)	0.019(2)	0.012(2)
C(20)	4e	0.5401(5)	0.1991(1)	0.3623(4)	0.116(2)	0.100(2)	0.081(2)	0.042(2)	0.047(2)	0.032(2)
C(21)	4e	0.6759(4)	0.21191(8)	0.4947(4)	0.100(2)	0.066(2)	0.100(2)	0.020(2)	0.059(2)	0.024(2)
C(22)	4e	0.6805(3)	0.19656(7)	0.6529(3)	0.071(2)	0.051(1)	0.078(2)	0.012(1)	0.039(1)	0.010(1)
C(23)	4e	0.8009(3)	0.20165(7)	0.8151(3)	0.059(1)	0.044(1)	0.090(2)	0.002(1)	0.037(1)	-0.001(1)
C(24)	4e	0.7341(2)	0.17721(6)	0.9252(3)	0.048(1)	0.049(1)	0.068(2)	0.003(1)	0.022(1)	-0.001(1)
C(25)	4e	0.8160(3)	0.17574(7)	1.0935(3)	0.053(1)	0.065(1)	0.071(2)	0.001(1)	0.019(1)	-0.006(1)
C(26)	4e	0.9683(3)	0.19938(8)	1.1511(3)	0.064(2)	0.077(2)	0.093(2)	0.001(1)	0.018(2)	-0.023(2)
C(27)	4e	1.0385(3)	0.22329(8)	1.0436(4)	0.064(2)	0.066(2)	0.133(2)	-0.012(1)	0.035(2)	-0.028(2)
C(28)	4 <i>e</i>	0.9558(3)	0.22475(7)	0.8777(4)	0.072(2)	0.052(1)	0.120(2)	-0.005(1)	0.048(2)	-0.005(2)

Acknowledgment. This research was financially supported by the research fund of the Overseas Visiting Scholarship Program by the Office of the Vice President for International Affairs at Chungnam National University

References

- Li, X.; Kim, S. H.; Son, Y. A.: Optical properties of donor-*π*-(accepter)n merocyanine dyes with dicyanovinylindane as accepter group and triphenylamine as donor unit. Dyes Pigments 82 (2009) 293-298.
- Horie, S.; Nagata, M.; Nakano, J.: Electrophorographic light-sensitive materials, United States Patent, US 4469678, 1984.
- Murakami, M.; Fukuyama, M.; Suzuki, M.; Hashimoto, M.: Electroluminescent device containing anthraquinone derivative or indandione derivative. Japanese Kokai Tokkyo Koho JP 08097465, 1996.
- 4. Kato, E.: Cellulose acylate films, their manufacture, optical films, liguidcrystal displays, and silver halide photographic materials. Japanese Kokai Tokkyo Koho, JP 2004042381, 2004.
- Reich, C.; Pandolfe, W. D.; Bird, G. R.: Attachments and spectral shifts of dye aggregates on silver bromide surfaces. Photogr. Sci. Eng. 17 (1973) 334-341.
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M.: SIR92 - a program for automatic solution of crystal structures by direct methods. J. Appl. Crystallogr. 27 (1994) 435.